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Decentralized Control of Multi-Agent Systems using
Local Density Feedback

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman

Abstract—In this paper, we stabilize a discrete-time Markov
process evolving on a compact subset of Rd to an arbitrary target
distribution that has an L∞(·) density and does not necessarily
have a connected support on the state space. We address this
problem by stabilizing the corresponding Kolmogorov forward
equation, the mean-field model of the system, using a density-
dependent transition kernel as the control parameter. Our main
application of interest is controlling the distribution of a multi-
agent system in which each agent evolves according to this
discrete-time Markov process. To prevent agent state transitions
at the equilibrium distribution, which would potentially waste
energy, we show that the Markov process can be constructed in
such a way that the operator that pushes forward measures is
the identity at the target distribution. In order to achieve this,
the transition kernel is defined as a function of the current agent
distribution, resulting in a nonlinear Markov process. Moreover,
we design the transition kernel to be decentralized in the sense
that it depends only on the local density measured by each agent.
We prove the existence of such a decentralized control law that
globally stabilizes the target distribution. Further, to implement
our control approach on a finite N -agent system, we smoothen
the mean-field dynamics via the process of mollification. We
validate our control law with numerical simulations of multi-
agent systems with different population sizes. We observe that as
N increases, the agent distribution in the N -agent simulations
converges to the solution of the mean-field model, and the number
of agent state transitions at equilibrium decreases to zero.

I. INTRODUCTION

IN this paper, we address the problem of stabilizing a multi-
agent system evolving on a compact, connected subset of

Rd to a target distribution. Such a control approach could be
used for a variety of multi-agent applications that require task
reallocation or spatial redistribution, such as environmental
monitoring, surveillance, disaster response, and autonomous
construction. We consider groups of agents that all follow the
same dynamics and control policies, which are independent of
the agents’ identities. We assume that each agent can obtain
local measurements of the agent population but do not require
inter-agent communication.

Instead of specifying the spatiotemporal evolution of each
individual agent, a microscopic approach to agent control, we
will design agent control laws using a fluid approximation of
the multi-agent system, called the macroscopic or mean-field
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model [13]. This approximation is justified by modeling each
agent’s dynamics as a Markov process, and then the mean-field
behavior of the population is determined by the Kolmogorov
forward equation corresponding to the Markov process. We
will address the problem of stabilizing this mean-field model
using the transition kernel as the control parameter. In contrast
to commonly used graph-theoretic approaches for controlling
multi-agent systems [7], [24], control approaches based on
mean-field models scale well to very large numbers of agents.
Moreover, a range of tools are available to analyze and control
mean-field dynamical models, which have the advantage of
linearity in the absence of agent interactions.

This paper builds on our work in [3], wherein we con-
structed a Markov process that can be stabilized to probability
distributions that have continuous densities, with the additional
requirement that the operator acting on densities be the identity
operator at the target distribution. In this paper, we extend
these results to multi-agent systems in which the agents have
specified dynamics and the target distribution has an L∞(·)
density. The contribution of this paper is the design of
stochastic agent control laws, using a mean-field model of
the agent population dynamics, that have the following three
properties.
1. We design the transition kernel to stabilize the mean-field
model to target measures that have L∞(·) densities, a larger
class of measures than we previously considered in [3]–[5]. In
[4], [5], we considered measures that have L∞(·) densities that
are strictly positive a.e. (almost everywhere) on the domain. In
general, discrete-time Markov chains cannot be stabilized to
distributions that do not have connected supports; we showed
this for continuous-time Markov chains in [15], and similar
arguments can be applied to discrete-time Markov chains [1].
However, in this paper, we are able to stabilize the mean-field
model to distributions that are not supported everywhere, due
to the fact that, unlike in our earlier works, the control law
considered here is density-dependent; the reason for this will
be explained next.
2. The convergence of a Markov process to an equilibrium
distribution does not necessarily imply that the agents evolving
according to the process also converge to equilibrium states.
In fact, agents may continue to transition between states,
which can cause them to waste energy. To prevent agents
from continuing to switch between states at the equilibrium
distribution, we construct the Markov process such that its
forward operator, which pushes forward measures, is the
identity operator at the desired equilibrium. This results in
a time-dependent transition kernel that is a function of the
distribution and gives rise to a nonlinear Markov process.
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Such stochastic processes, called density-dependent population
processes, are used to model the dynamics of logistic growth,
epidemics, and chemical reaction networks [17].
3. Since we establish that the transition kernel must depend
on the distribution, our third goal is to construct the kernel
to have a decentralized structure. A kernel with this structure
corresponds to agent control policies that require each agent to
estimate the population only in its local neighborhood. Toward
this end, we construct a kernel for the mean-field model that
is defined pointwise; that is, it is a function of the value of
the distribution at the current state. We proved the existence
of such feedback control laws in the case of continuous-
time Markov chains evolving on finite graphs in [14], [16].
A similar problem is addressed in [23], which develops a
decentralized control approach by a priori restricting the
controller to have a decentralized structure. Another related
work [10] designs a centralized controller and uses estimation
algorithms to determine the entire agent distribution in a
decentralized manner.

Our approach of analyzing the stability of a dynamical
system from a measure-theoretic point of view is quite clas-
sical [22]. This approach is also used extensively in the
context of mean-field games [20], optimal transport theory
[25], and mean-field control [19]. In [4], we present a review
of significant works that have influenced research on the
stabilization of Markov processes.

II. NOTATION

In this section, we present notation that will be used
throughout the paper. We define R̄+ := [0,∞) and R+ :=
(0,∞). Similarly, we define Z̄+ as the set of all non-negative
integers and Z+ as the set of all positive integers. Given a
dimension d ≥ 1, the closed ball in Rd of radius δ centered
at x will be denoted by Bδ(x). For an arbitrary set A, the
symbol |A| will refer to the cardinality of A.

We denote the state space by (Ω,B(Ω)), a measurable space.
Here, Ω ⊆ Rd is a compact set and B(Ω) represents the Borel
sigma algebra on Ω corresponding to the standard topology on
Rd. The set of admissible control inputs and its corresponding
Borel sigma algebra will be denoted by (U,B(U)). We will
assume that U is compact in Rd. The dimension of the set U
could be larger than d, but we are restricting it for notational
simplicity.

We denote the space of probability measures on Ω and U
by P(Ω). The Lebesgue measure on Rd will be denoted by m.
For a measure ν on Rn, ν is said to be absolutely continuous
with respect to m, denoted by ν � m, if ν(E) = 0 whenever
m(E) = 0. In this case, there exists a function f : Rn →
R such that dν = fdm; this function is called the Radon-
Nikodym derivative of ν with respect to m [18].

For a measure space (X , ν), we define Lp(X , ν), where
p ∈ [1,∞), as the space {f : X → R : f is mea-
surable and ‖f‖p < ∞}, where ‖f‖p = (

∫
|f |pdν)1/p.

In addition, we define L∞(X , ν) = {f : X → R :
f is measurable and ‖f‖∞ < ∞}, where ‖f‖∞ =
ess supx∈X |f(x)|. Where it is understood, the measure will
be dropped from the notation of Lp spaces. C(X ) is the space

of continuous functions on X . For a function f : X → R, the
support of f is the closure of the set of points in X where
f is nonzero. The characteristic function over a set A will be
denoted as χA(·). The Dirac measure concentrated a point x
is denoted as δx, where δx(A) = 1 if x ∈ A and δx(A) = 0
otherwise.

For measurable spaces (X ,M) and (Y,N ), where M and
N are the sigma algebras of M and N , respectively, a tran-
sition kernel or Markov kernel is a map T : X ×N → [0, 1],
where T (x, ·) is a measure on Y for each fixed x ∈ X
and T (·, E) is a Borel measurable function on X for each
fixed E ∈ N . The transition kernel T induces an operator
T : P(X ) → P(Y) as follows. For each probability measure
ν on X ,

(Tν)(E) =

∫
X
T (x,E) dν(x), E ∈ N

defines a probability measure on (Y,N ). We will say that T
is regular if there exists a function h ∈ L∞(X × Y,m×m)
such that for each x ∈ X , the measure T (x, ·) is absolutely
continuous with respect to m and T (x, du) = h(x, u)du. The
density h : X ×Y → R̄ will also be called the kernel function
of the transition kernel T .

We define a continuous map F : Ω × U → Rd. We also
define Fx as the map from U → Rd when x ∈ Ω is held fixed,
and Fu as the map from Ω→ Rd when u ∈ U is held fixed.
We specify that F is non-singular, which means that for all
E ∈ B(Ω), m(F−1

u (E)) = 0 and m(F−1
x (E)) = 0 whenever

m(E) = 0. We also assume that F (x, 0) = x.

III. PROBLEM FORMULATION

We now state the problem addressed in this paper. Consider
a system of N agents evolving in discrete time on the set
Ω ⊂ Rd. We suppose that the dynamics of each agent k ∈
{1, . . . , N} is governed by the following nonlinear discrete-
time control system:

ξkn+1 = F (ξkn, u
k
n), n = 0, 1, 2, ...

ξk0 ∈ Ω, (1)

where ξkn ∈ Ω, and (ukn)∞n=1 is a sequence in U such that
F (ξkn, u

k
n) ∈ Ω for each n ∈ Z+. Let ξk0 be a random variable

with distribution µ0 ∈ P(Ω).
The empirical distribution of the N -agent system over Ω

at time n is given by 1
N

∑N
k=1 δξkn . Our goal is to design a

feedback control law ukn that redistributes the agents from their
initial empirical distribution 1

N

∑N
k=1 δξk0 to a desired empir-

ical distribution 1
N

∑N
i=1 δξk,d that “closely approximates” a

target density fd ∈ L∞(Ω) as n→∞, where 1
N

∑N
i=1 δξk,d is

a sample of fd. Since we assume that the agents are identity-
free, we will define the control law as a function of the current
empirical distribution 1

N

∑N
k=1 δξkn rather than the individual

agent states ξkn. However, 1
N

∑N
k=1 δξkn is not a state variable

of the system (1). In order to treat 1
N

∑N
k=1 δξkn as the state,

we consider the mean-field limit of this quantity as N →∞.
Suppose that every agent k ∈ {1, . . . , N} uses the same

control law ukn = un at each time n; that is, the control
law is independent of the agent identity k. In this case, when
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N →∞, the empirical distribution 1
N

∑N
k=1 δξkn converges to

a deterministic quantity µn ∈ P(Ω), which evolves according
to the following forward equation,

µn+1 = F#(·, un)µn, µ0 ∈ P(Ω), (2)

where F#(·, un) : P(Ω) → P(Ω) is the induced forward
operator corresponding to the deterministic map F (·, un).
This operator is defined as

(F#(·, un)µn)(E) = µn(F−1
un (E)) =

∫
Ω

χE(F (x, un))dx

for each E ∈ B(Ω). Since we are interested in the problem of
stabilizing system (2) to a given target measure µd with density
fd, we must determine whether there exists a sequence of
feedback laws un such that starting from any initial measure,
the system (2) converges to µd. In general, this problem cannot
be solved using deterministic feedback laws, as was shown in
[12]. Therefore, we will construct a stochastic feedback law
using a state-to-control transition kernel K : Ω × B(U) →
[0, 1]. On a continuous state space, the transition kernel plays
the role of the transition probability matrix on a discrete state
space. That is, given that an agent is at state x ∈ Ω, it chooses a
subset of control inputs W ⊂ U with probability K(x,W ). We
note that deterministic control laws v : Ω → U are a special
type of stochastic control law in that K(x, du) = δv(x); that is,
given the state x, the probability of choosing the control v(x)
is 1. The transition kernel K induces a forward Kolmogorov
operator P : P(Ω)→ P(Ω), defined as

(Pµ)(E) =

∫
Ω

∫
U

χE(F (x, u))K(x, du)dµ(x)

for each E ∈ B(Ω). The mean-field model that governs the
time evolution of µn can then be written as

µn+1 = Pµn, µ0 ∈ P(Ω). (3)

Hence, taking the mean-field limit of the empirical distribution
enables us to treat the N -agent system as a continuum, as
described in the Introduction. Moreover, to achieve our goal
of redistributing agents over Ω, we will construct K to be a
function of the current distribution µn.

Using K, we can define a closed-loop transition kernel Q :
Ω×B(U)→ [0, 1]. That is, if the Markov chain (ξkn)n induces
a probability measure P on Ω∞, then an agent k evolves on
Ω according to the following conditional probability,

P(ξkn+1 ∈ E|ξkn = x) = Q(x,E), (4)

for each x ∈ Ω and E ∈ B(Ω). For µ ∈ P(Ω) and E ∈ B(Ω),
P can be redefined as

(Pµ)(E) =

∫
Ω

Q(x,E)dµ(x). (5)

In this paper, instead of arbitrary measures in P(Ω), we will
consider those measures that have L1 densities (derivatives
with respect to m). By restricting P to this subset of P(Ω), we
can define an operator P̃ on L1(Ω); the exact construction will
be carried out in the next section. Then (3) can be rewritten
as

fn+1 = P̃ fn, f0 ∈ L1(Ω). (6)

We are now ready to state the problem that we address in
this paper rigorously.

Problem III.1. Let P̃ be the forward operator induced by
the operator P defined in (5). Given a target distribution
µd ∈ P(Ω) with density fd ∈ L∞(Ω) and a non-singular
continuous map F : Ω × U → Rd, determine whether there
exists a transition kernel Q : Ω × B(Ω) → [0, 1] such that
(a) equation (6) satisfies limn→∞ P̃nf0 = fd for all initial
measures f0 ∈ L1(Ω), and (b) P̃ (fd) = I , where I is the
identity operator.

The operator P̃ governs the stochastic transitions of indi-
vidual agents between states. Thus, the condition P̃ (fd) = I
ensures that all agents stop transitioning between states once
the density fd of the target equilibrium distribution is reached.
This condition leads to a nonlinear operator P̃ that depends on
f . We will address Problem 1 in Section IV, where we show
that the construction of P̃ requires additional conditions on Ω
and F .

Having proven the existence of such an operator P̃ , in
Section V we will introduce the system of N agents that
evolve according to the N -agent Markov process that is an
approximation of the mean-field model (3). Since P (via Q)
can be constructed such that µd is an equilibrium of the system
(3), we observe that in simulations of the corresponding N -
agent system, presented in Section VI, the empirical distribu-
tion 1

N

∑N
k=1 δξkn converges to an empirical distribution that

approximates fd as n→∞.

IV. STABILITY RESULT

In this section, an operator P̃ that solves Problem 1 will
be constructed. As stated in Problem 1, fd ∈ L∞(Ω) is the
density of the target measure. In our previous work [4], we
assumed that fd is supported m almost everywhere on Ω; in
this paper, we relax this assumption. The cost of this generality
comes at the price of working with a nonlinear operator P̃ ,
which is also necessary to ensure that agent transitions be-
tween states stop once the equilibrium distribution is reached.

We begin by stating our assumptions. We assume that Ω is
a path connected, compact subset of Rd. Path connectedness
of Ω means that any two points x, y ∈ Ω can be connected
by a path in Ω, which is a continuous map p : [0, 1] → Ω
with p(0) = x, p(1) = y. We also require Ω to satisfy the
cone condition (Definition 4.6, [2]), which ensures that the
boundary of Ω is regular enough. A domain D is said to satisfy
the cone condition if there exists a finite cone C such that each
x ∈ Ω is the vertex of a finite cone Cx that is contained in Ω
and congruent to C. Note that Cx need not be obtained from
C by parallel translation, but simply by rigid motion. Lastly,
for the system (1) to be controllable, we need the following
local controllability condition.

Definition IV.1. The system (1) is said to be locally con-
trollable if there exists r > 0 such that, for every x ∈ Ω,
Br(x) ∩ Ω ⊆ F (x, U).

From here on, we will consider r to be fixed as per this
definition.



4

Let µ ∈ P(Ω) be such that µ � m. Further, if fµ is the
derivative of µ with respect to m, we assume that fµ ∈ L1(Ω).
For an arbitrary f ∈ L1(Ω), define a function af on Ω as

af (x) =

{
f(x)−fd(x)

f(x) for m-a.e. x if f(x)− fd(x) > 0;

0 otherwise.
(7)

We note that af ∈ L∞(Ω) with norm 1.
Define k : Ω × U → [0, 1] to be a bounded function that

satisfies the following properties:

k(x, u)

{
> 0 for m-a.e. x ∈ Ω, u ∈ U st. F (x, u) ∈ Ω;

= 0 otherwise;

(8)∫
U

k(x, u)du = 1 for m-a.e. x ∈ Ω. (9)

Before we proceed, we must determine whether we can
construct a measurable k ∈ L∞(Ω× U,m×m) that satisfies
these properties. We note that due to the first condition (8),
the integral in the second condition (9) is computed over the
set Ux := F−1

x (Ω). This integral can therefore be expressed as∫
U
k(x, u)χUx(u)du = 1. Since Fx is continuous, the set Ux

is measurable for each x. The following lemma can be used
to construct such a measurable k.

Lemma IV.2. For ∀x ∈ Ω, we have the following results:
1) There exists an ε > 0 such that m(Ux) > ε.
2) The map x 7→ m(Ux) is measurable.
3) The characteristic function χUx(u) is jointly measurable

in x and u.

Proof. Result (1) is proved in Proposition V.2 of [4]. The idea
of the proof is as follows. First, it is shown that for some r > 0,
m(Br(x) ∩ Ω) > 0 for all x ∈ Ω. Second, it is shown that
for every E ∈ B(Ω), m(F−1

x (E)) > 0 whenever m(E) >
0. These properties require the domain Ω to have a smooth
enough boundary, which is ensured by the cone condition.

To prove results (1) and (3), let G = {(x, u) ∈ Ω × U :
F (x, u) ∈ Ω}. G is Borel measurable because F is continuous
in both variables. Since χG is a Borel measurable function, the
Tonelli theorem [18] implies that (χG)x is Borel measurable
for each x ∈ Ω. Since, (χG)x(u) = χUx(u), we have that
χUx(u) is a measurable function in both variables, proving
result (2). Then, by the Tonelli theorem, we have that x 7→∫
U

(χG)xdu is Borel measurable. Since (χG)x(u) = χG(x, u),
we have that

∫
U

(χG)xdu = m(F−1
x (Ω)) = m(Ux). That is,

x 7→ m(Ux) is Borel measurable.

The existence of a measurable function k then trivially
follows from the fact that one can set k to be the uniform
kernel, k(x, u) =

χBx
m(Ux) .

Next, we define a transition kernel K : Ω×B(U)→ [0, 1].
For W ∈ B(U),

K(x,W ) = K(x,W ∩ Ux) = K1 +K2, where (10)

K1 = afµ(x)

∫
W

k(x, u)du,

K2 = (1− afµ(x))δ0(W ).

Recall that we have assumed that F (x, 0) = x. Since this
kernel is a function of afµ , it depends on the density fµ. The
kernel is defined such that the corresponding Markov chain
stays at control 0 with probability 1 − afµ(x) and moves to
a control in the set Ux with probability afµ(x), and when it
moves, the distribution is given by the density k(x, u). The
integral term K1 is regular because its kernel function k(x, u)
is in L∞(Ω× U).

Remark IV.3. We note that the local controllability assump-
tion, Definition IV.1, implies that there exists a measurable
control V (x) ∈ U such that F (x, V (x)) = x (see Proposition
V.13 in [4]). Therefore, the condition F (x, 0) = x is not
restrictive. However, we impose this condition here for the
sake of simplicity and note that we can extend our results
even when this condition is not satisfied following the steps in
[4].

The proof of the next result follows from Lemma IV.2.

Lemma IV.4. The kernel K is well-defined. That is, K(·,W )
is a measurable function on Ω for each fixed W ∈ B(U) and
K(x, ·) is a probability measure on U for each fixed x ∈ Ω.

Using K, we define a closed-loop kernel Q : Ω×B(Ω)→
[0, 1]. For E ∈ B(Ω),

Q(x,E) =

∫
U

χE(F (x, u))K(x, du) (11)

= afµ(x)

∫
U

χE(F (x, u))k(x, u)du +

(1− afµ(x))

∫
U

χE(F (x, u))dδ0

= Q1 +Q2, where (12)

Q1 = afµ(x)

∫
U

χE(F (x, u))k(x, u)du,

Q2 = (1− afµ(x))δx(E).

For the next result, we require F to satisfy Lusin’s property
[6] in both the x and u variables, which in simple terms means
that F maps sets of measure zero to sets of measure zero. For
x ∈ Ω fixed, we say that Fx : (U,m) → (Rd,m) satisfies
Lusin’s property if m(Fx(W )) = 0 for every W ∈ U with
m(W ) = 0. Lusin’s property for Fu has a similar definition.

Lemma IV.5. The kernel Q is well-defined; that is, Q(·, E) is
a measurable function on Ω for each E ∈ B(Ω) and Q(x, ·)
is a probability measure on Ω for each x ∈ Ω. Further, if F
satisfies Lusin’s property, then Q1 is regular.

Proof. The proof that Q is well-defined is similar to the proof
that K is well-defined (Lemma IV.4). To prove that Q1 is
regular, we first require that Q1(x, ·)� m for every x. Indeed,
if E ∈ B(Ω) is such that m(E) = 0, then due to the non-
singularity of F with respect to both variables x and u, we
have that (m×m)(F−1(E)) = 0. Therefore, for x ∈ Ω, u ∈
U , we have that χE(F (x, u)) = χ

F−1(E)(x, u) = 0 in the
integral that defines Q1 . Hence, Q1(x,E) = 0.

The full proof that Q1 has a kernel function q ∈ L∞(Ω×Ω)
is given in Proposition IV.4 of [4]. Here, we provide a brief
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idea of the proof. If q exists, then for E ∈ B(Ω) and x ∈ Ω,

Q1(x,E) =

∫
E

q(x, y)dy =

∫
U

χE(F (x, u))K1(x, du)

=

∫
U

χE(F (x, u))k(x, u)du ≤ c m(E),

where c > 0 is a constant that is independent of x and E.
The proof of Proposition IV.4 in [4] shows the existence of
the uniformly bound c. That is, the measure Q1(x, ·) has a
uniform upper bound, and hence, we must have that its kernel
function q is in L∞(Ω× Ω) (Lemma IV.3 of [4]). �

Next, we define an operator P : P(Ω)→ P(Ω) in terms of
Q as follows:

(Pµ)(E) =

∫
Ω

Q(x,E)dµ(x) (13)

=

∫
Ω

∫
U

χE(F (x, u))K(x, du)dµ(x)

=

∫
Ω

∫
U

afµ(x)χE(F (x, u))k(x, u)du dµ(x) +∫
Ω

(1− afµ(x))δx(E)dµ(x)

=

∫
Ω

∫
U

afµ(x)χE(F (x, u))k(x, u)du dµ(x) +∫
E

(1− afµ(x))dµ(x). (14)

Using expression for Q in (12), it is straightforward to show
that Q(x,E) can also be expressed as

Q(x,E) = (Pδx)(E). (15)

Due to the properties of Q (Lemma IV.5), we immediately
have the following lemma.

Lemma IV.6. Operator P preserves P(Ω), and furthermore,
it preserves absolutely continuous measures.

By restricting P to those measures that are absolutely
continuous w.r.t m, that is, measures that have L1 densities,
we can define P̃ : L1(Ω) → L1(Ω). The next few steps will
be toward this effort. Lemma IV.6 implies that Pµ � m ;
let P̃ fµ be the density, that is, for E ∈ B(Ω), (Pµ)(E) =∫
E

(P̃ fµ)(y). We note that since Q1 is regular, there must
exist a function q ∈ L∞(Ω × Ω). Therefore, from (12), we
have that

Q1(x,E) =

∫
E

q(x, y)dy =

∫
U

χE(F (x, u))K1(x, du).

Using this expression, (14) can be rewritten as follows. For
E ∈ B(Ω),

(Pµ)(E) =

∫
Ω

∫
E

afµ(x)q(x, y)dyfµ(x)dx +

∫
E

(1− afµ(x))fµ(x)dx =

∫
E

(P̃ fµ)(y)dy.

Applying Fubini’s theorem [18] to the equation above, we
obtain an expression for an operator P̃ defined on L1(Ω) as
follows. For f ∈ L1(Ω),

P̃ = P̃1 + P̃2, where (16)

(P̃1f)(y) =

∫
Ω

af (x)q(x, y)f(x)dx,

(P̃2f)(y) = (1− af (y))f(y).

Remark IV.7. The operator P̃ so defined is different from the
one defined in [3]. In our earlier work [3], P̃ was defined on
C(Ω), and q was defined to be non-negative only over a ball
of radius r; that is, for x ∈ Ω, q(x, y) = 0 for y /∈ Br(x)∩Ω.
Here, to obtain such a q, we would have to redefine Ux to be
F−1
x (Br(x) ∩ Ω). However, proving the measurability of this

function is challenging given the agent dynamics defined in
(1). In contrast, explicit agent dynamics were not specified in
[3].

Since Q1 was proven to be regular in Lemma IV.5, we have
that P̃ preserves L1(Ω), as we state in the proposition below.

Proposition IV.8. We have the following two results.
1) P̃ : L1(Ω) → L1(Ω) is well-defined. Moreover, P̃

preserves probability densities; in other words, it is a
Markov operator [22].

2) In fact, P̃ : L2(Ω)→ L2(Ω) is well-defined.

The second result above is a consequence of Proposition
II.4.7 of [8], detailed in Proposition IV.4 of [4]. We will require
this result in Section V.

When we need to emphasize the fact that P and P̃ are
nonlinear operators which depend on µ and f , respectively,
we will write these operators as P (µ) and P̃ (f). Note that
for each fixed f , P̃ (f) is a linear operator. In the following
result, B(L2(Ω)) stands for the set of bounded linear operators
on L2(Ω).

Lemma IV.9. The map from L2(Ω) → B(L2(Ω)), defined
as f 7→ P̃ (f), is uniformly bounded; that is, for every f ∈
L2(Ω), ‖P̃ (f)‖ ≤ C for some C > 0. Moreover, this result
also holds true for P̃ as an operator on L1(Ω).

Proof. This follows from the fact that P̃ depends on f through
the af function, which is in L∞ for any f ∈ L1(Ω) or L2(Ω).
An application of Theorem 6.18 in [18] then proves the result
for P̃1. The result holds true trivially for P̃2, since it is a
multiplication operator.

We will use this result in Section V.
Clearly, the operator P̃ satisfies P̃ fd = fd. Further, note

that P̃ is constructed to satisfy P̃ (fd) = I , in order to ensure
that all agents stop transitioning between states when the target
density fd is reached.

Next, we will show that fd is a globally asymptotically
stable equilibrium of system (6).

Theorem IV.10. For the system (6), fd is globally asymptot-
ically stable in the L1(Ω,m) norm, and hence

‖fn − fd‖1 → 0 as n→∞.
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Before presenting the proof of this theorem, we make
the following observation. Consider the case when for some
y ∈ Ω, fn(y) > fd(y). Then, it follows that afn(y) > 0.
Expression (16) then becomes:

P̃ fn(y) =

∫
Ω

afn(x)k(x, y)fn(x)dx+ fd(y).

The first term in the equation above is non-negative. Therefore,
one of the following conditions must be true:

fn+1(y) ≥ fn(y) > fd(y);
fn(y) > fn+1(y) ≥ fd(y).

(17)

Consequently, it is not possible that fn+1(y) < fd(y) for any
value of n. Next, consider the case when y ∈ Ω is such that
fn(y) ≤ fd(y). In this case, afn(y) = 0. Expression (16) then
reduces to:

P̃ fn(y) =

∫
Ω

afn(x)k(x, y)fn(x)dx+ fn(y). (18)

Similar to the previous case, given that the first term in
the equation above is non-negative, one of the following
conditions must be true:

fn+1(y) ≥ fd(y) > fn(y);
fd(y) > fn+1(y) ≥ fn(y).

(19)

Therefore, in this case, we observe that fn+1(y) monotonically
increases with n.

Define the sets

E1
n = {y ∈ Ω : fn(y) < fd(y)},

E2
n = {y ∈ Ω : fn(y) = fd(y)},

E3
n = {y ∈ Ω : fn(y) > fd(y)}.

We note that Ω = E1
n tE2

n tE3
n, where t denotes a disjoint

union.
We can now state the proof of Theorem IV.10, which is

a slight modification of the proof of Theorem 4 in [3]. To
summarize, the proof employs an argument by contradiction
that if the density fn converges to a function other than fd,
then the measure µn is pushed from sets where its density fn is
greater than fd to sets where fn < fd. This is straightforward
to conclude from the definitions of the transition kernels K
and Q; however, to prove the convergence of fn to fd, it
is necessary to precisely quantify the measure that is pushed
during each time step, which is computed in the proof.
Proof of Theorem IV.10. To prove this result, it is sufficient
to show that on the set E1

n, ‖fn− fd‖1 → 0 as n→∞. This
follows from the fact that each fn is a probability density
on Ω. On E1

n, by (19), we have that fn+1 ≥ fn, and hence
that fd − fn ≥ fd − fn+1. Set Fn = (fd − fn)+, where for
an arbitrary function h : Rd → R, h+ denotes the positive
part of h. Then Fn is monotonically decreasing on Ω. The
sequence (Fn)n is bounded, and monotonically decreasing,
which implies that Fn converges pointwise to a function, say g.
By the monotone convergence theorem [18], we then have that∫

Ω
Fn →

∫
Ω
g. If g = 0, then we have our result. If g 6= 0, then

since fn is a probability density on Ω,
∫

Ω
Fn →

∫
Ω
g implies

that
∫

Ω
(fn − fd)+ 6→ 0. We will next prove by contradiction

that g is in fact 0.

We suppose that g 6= 0. Let
∫

Ω
g ≥ γ, where γ > 0. Define

S = {x ∈ Ω : g(x) > 0}. We note that the definition of S
is independent of time. Given the conditions in (17) and (19),
it follows that E1

n ⊃ E1
n+1 for all n. Due to the convergence

of Fn to g, we must have that for all n, S ⊂ E1
n. Moreover,

limn→∞m(E1
n)→ m(S). Note that,∫

S

fd(x)− fn(x)dx ≥
∫
S

g(x)dx > γ. (20)

Since Ω is compact, Ω can be covered by a finite number M of
balls of radius ε, where 4ε < r. That is, Ω ⊂ ∪Mi=1Bε(xi) for
some xi ∈ Ω. We will denote Bε(xi)∩Ω by B(xi). Choose a
ball B(xj) from this cover that intersects both E1

n and (E1
n)c.

Then,

m(B(xj)) = m(B(xj) ∩ S) +m(B(xj) ∩ (E1
n \ S))

+m(B(xj) ∩ (E1
n)c). (21)

Let m(B(xj) ∩ S) ≥ ε0, for some ε0 > 0. If m(B(xj) ∩
(E1

n)c) = 0 at the current time n, then we look for a large
enough time T ∈ Z+ such that m(E1

T \ S)) ≤ ε1 << ε0.
At times n ≥ T , (21) shows that m(B(xj) ∩ (E1

n)c) > 0,
ensuring the existence of at least one ball from the cover that
has intersections of positive measure with both S and (E1

n)c.
Next, let J = {1, . . . ,M} and define the following sets:

N1 =
⋃
i∈J

m(B(xi)∩S)>0

B(xi),

Nk =
⋃
i∈J

m(B(xi)∩Nk−1)>0

B(xi) \Nk−1, k > 1.

Let n > T . If
∫
N1∩(E1

n)c
fn − fd is not tending to 0 with

increasing n, then we must have that
∫
N1∩(E1

n)c
fn − fd ≥ δ

infinitely often (i.o), for some δ > 0. Moreover, each time the
integral exceeds δ, the measure that is pushed from N1∩(E1

n)c

to S can be quantified as∫
N1∩(E1

n)c
Q1(x, S)dµn(x)

=

∫
N1∩(E1

n)c

∫
S

afn(x)q(x, y)dyfn(x)dx

=

∫
N1∩(E1

n)c
(fn(x)− fd(x))

∫
S

q(x, y)dydx

= C1

∫
N1∩(E1

n)c
fn(x)− fd(x)dx,

where the constant C1 in the last expression is
∫
S
q(x, y)dy.

Therefore, the measure that gets pushed onto S from N1 ∩
(E1

n)c is C1δ at every time n when
∫
N1∩(E1

n)c
fn − fd ≥ δ.

Let {tn}n be a sequence in Z+ of all such times n, with
t0 > T . When the integral exceeds δ, we have that∫

S

fn+1(x)dx =

∫
S

fn(x)dx+ C1δ.

Consequently, for each tn we have,∫
S

ftn(x)dx =

∫
S

fn(x)dx+ C1nδ,
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which implies that∫
S

fd(x)− ftn(x)dx =

∫
S

fd(x)− fn(x)dx− C1nδ.

As n→∞, the integral on the right-hand side of the equation
above tends to −∞, contradicting the fact that this integral is
an upper bound on the integral of g over S, as per (20). Thus,
we must have that

∫
N1∩(E1

n)c
fn − fd → 0 as n→∞.

We will now use an induction argument to show that∫
(E1
n)c

fn − fd → 0. We have just shown that this was true
for the neighborhood of S given by N1 ∩ (E1

n)c. We assume
that

∫
Nk∩(E1

n)c
fn − fd → 0 for some k > 1. We will prove

that this also holds true for Nk+1 ∩ (E1
n)c. Suppose that it is

not true; then,
∫
Nk+1∩(E1

n)c
fn− fd ≥ δ1 i.o for some δ1 > 0.

Again, denote the sequence of times when this happens by
{tn}n. By construction, Nk+1 does not intersect S; however,
Nk+1 may intersect E1

n (possibly a subset of Nk), to which
it can push measure. We now demonstrate that Nk+1 pushes
most of its measure to Nk ∩ (E1

n)c. We have established that
for any n ≥ T , m(Nk ∩ E1

n) ≤ m(E1
n \ S) ≤ ε1, which is

arbitrarily small. Hence, m(Nk∩E1
n) must be arbitrarily small,

and therefore m(Nk ∩ (E1
n)c) must have positive measure.

Consequently, we have that∫
Nk+1∩(E1

n)c
Q1(x,Nk ∩ (E1

n)c)dµn(x)

=

∫
Nk+1∩(E1

n)c
(fn(x)− fd(x))

∫
Nk∩(E1

n)c
q(x, y)dydx

= Ck

∫
Nk+1∩(E1

n)c
(fn(x)− fd(x))dx,

where Ck =
∫
Nk∩(E1

n)c
q(x, y)dy. That is, the measure pushed

from Nk+1∩(E1
n)c to Nk∩(E1

n)c is Ckδ1 for every tn. Using
similar arguments, we can conclude that

∫
Nk+1∩(E1

n)c
fn −

fd → 0 as n → ∞. Since Ω is compact, this process of
induction must stop at a finite k. Therefore, we have that∫

(E1
n)c

fn−fd → 0, and consequently, g = 0, proving that fd

is globally attractive. Since, fd − fn is strictly decreasing on
the set E1

n and
∫
fn = 1 for all n, we can conclude that, in

fact, the equilibrium distribution fd is stable in the sense of
Lyapunov. This concludes the proof. �

V. THE N -AGENT SYSTEM

In this section, we will define the microscopic description
of the system, i.e., the model of individual agents’ state
transitions, and study how it relates to the macroscopic or
mean-field model (3). The following mathematical definitions
are adapted from [9].

Consider a population of N agents evolving on the state
space Ω. Let the state of each agent k at time n be given by
the random variable ξkn ∈ Ω, k = {1, . . . , N}. Each agent
transitions between states on Ω according to the transition
kernel Q defined in (12). The N -agent system can therefore
be described as a Markov chain ξn = (ξ1

n, . . . , ξ
N
n ) with state

space ΩN . To a measure ν ∈ P(Ω), we associate a measure
ν⊗N = ν× . . .× ν ∈ P(ΩN ). The empirical measure mN (x)
associated with the point x = (x1, . . . , xN ) ∈ ΩN , where each

entry xk is the state of agent k, is given by a normalized sum
of Dirac measures associated with each agent,

mN (x) =
1

N

N∑
k=1

δxk . (22)

The corresponding Markov process (ξn)n on (ΩN ,Fn,P) is
defined by

P(ξ0 ∈ dx) = µ⊗N0 (dx),
P(ξn ∈ dx|ξn−1 = z) = (PmN (z))⊗N (dx),

(23)

where dx = dx1 × . . . × dxN , and P is as defined in (14).
At time n = 0, the N -agent system can be modeled as
N independent random variables ξ1

0 , . . . , ξ
N
0 with common

distribution µ0. At time n ≥ 1, define µNn := mN (ξn). Then,
µNn+1 is evaluated as

µNn+1 = PmN (ξn). (24)

Thus, from the equation above, at time n the N -agent system
is modeled as N random variables ξ1

n, . . . , ξ
N
n that are condi-

tional on ξn−1 and distributed according to PmN (ξn−1). The
agents’ states are therefore not independent of one another;
their distribution is dependent on the system configuration
at time n − 1. Although the evolution of each agent’s state
is not Markovian, the distribution of the N -agent system
evolves according to an interacting Markov chain. At time
n = 0, µN0 → µ0 as N → ∞. At times n ≥ 1, due to the
aforementioned interaction between agents, the law of large
numbers does not apply. Thus, another method must be used to
establish the limit µNn

N→∞−→ µn, where µn evolves according
to (3). This limit is called the mean-field limit. The work [9]
proved this limit for systems of the form (3) in which the
right-hand side is continuous. In [21], this limit is referred to
as the dynamic law of large numbers; it is proven for Markov
processes whose evolution is governed by a partial differential
equation (PDE).

Since the empirical measure mN is a sum of Dirac mea-
sures, it is not absolutely continuous with respect to the
Lebesgue measure. We will “mollify” the Dirac measures in
order to be able to use results from the previous section and
to apply the operators P̃ and P defined in (14) and (16), re-
spectively, to absolutely continuous measures. Mathematically,
this means that the measure mN is convolved with a smooth
function φ : Rd → R, a mollifier, to obtain a smooth function
(density). The convolution of mN and φ is carried out as

φ ∗mN =

∫
Ω

φ(x)dmN =
1

N

N∑
i=1

φ(x− xk). (25)

The result of this convolution is a sum of smooth functions,
which is smooth. Loosely speaking, this convolution replaces
each Dirac measure by a measure with smooth density φ. We
can now apply P̃ and P to the right-hand side of this equation.
In our simulations, we have defined φ as the standard bump
function with a compact support:

φ(x) =

{
e
−
(

1
1−‖x‖2

)
, x ∈ (−1, 1),

0, otherwise.
(26)
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Fig. 1. Visualization of two bump functions φh with h = 0.1 and one bump
function with h = 0.05.

To change the support of φ, we define a function φh on Rd
for some h > 0 as follows [18]:

φh(x) = h−dφ
(x
h

)
. (27)

Note that
∫
φh = 1, which is independent of h. Moreover, the

“mass” of φh becomes concentrated at the origin as h → 0;
that is, φh tends to a Dirac measure as h→ 0. Figure 1 shows
a visualization of two bump functions with h = 0.1 and one
with h = 0.05. Since the integral of all bump functions is 1,
to compensate for the decrease in h, the peak of the bump
function with h = 0.05 is significantly higher than the peaks
of the functions with h = 0.1.

The introduction of the mollifier also has implications for
the implementation of the N -agent system in practice. For an
agent with state x, given a distribution f , the transition kernel
K in (10) is defined such that it requires pointwise evaluation
of the function f(x) in the term af = (f − fd)/f from (7).
However, to evaluate the density φ at its state x using (25),
the agent must know the states xi of all other agents whose
states are within a distance h of its own. For example, if the
agents’ states are their positions in space, mollification of the
empirical measure implies that each agent must estimate the
density φ in (25) based on its relative distance to all agents that
are located within a neighborhood whose size is determined
by the parameter h. As h→ 0, this neighborhood shrinks, and
the density tends to the Dirac measure, which is singular.

In order to derive the macroscopic (mean-field) model from
the microscopic description of the system, i.e. the dynamics
of N individual agents, one typically needs to take the mean-
field limit, as described earlier in this section. Since we have
introduced the mollifier, a second limit needs to be proven as
well. Both limits are defined below.

1) N →∞: We now introduce a measure µhn that evolves
according to the deterministic difference equation

µhn+1 = P (φh ∗ µhn)µhn, µh0 ∈ P(Ω). (28)

Due to the introduction of the mollifier, we expect the
N -agent system (24) to converge to the system above,
which is different from (3). That is,

µNn → µhn as N →∞.

This limit is usually proven in the weak topology and
can be established for discrete-time systems using
results from [9]. Applying these results requires proving
that the right-hand side of (3) is continuous in the
weak topology, which is significantly challenging for
our system. Thus, we will reserve this investigation for
future work.

2) h→ 0: The second limit proves that the solution of (28)
converges to the solution of (3); that is, for all n ∈ Z+,

µhn → µn as h→ 0. (29)

We shall prove this convergence in the L1(·) norm in
the next subsection.

A. The limit as h→ 0

We prove the limit (29) for a dense subset of L1(Ω);
specifically, we consider distributions µ ∈ P(Ω) that have
L2(Ω) densities. Moreover, we require fd to be bounded from
below a.e. on Ω.

Let µ0 � m with density f0 ∈ L2(Ω). In Proposition IV.8,
we proved that P̃ preserves L2(Ω); that is, fn = Pnf0 ∈
L2(Ω) for n ∈ Z+ Therefore, system (28) can be rewritten on
L2(Ω) as

fhn+1 = P̃ (φh ∗ fhn )fhn , fh0 ∈ L2(Ω). (30)

Since m(Ω) < ∞, L2(Ω) ⊂ L1(Ω), and therefore we will
consider system (6) to be a system on L2(Ω) instead of L1(Ω).
We will show that solutions of the above system converge to
those of (6) in the L1(Ω) norm.

Theorem V.1. Suppose the initial condition f0 be in L2(Ω).
Let fhn and fn be solutions of (30) and (6), respectively. If fd

is bounded from below a.e. on Ω, then

‖fhn − fn‖1 → 0

for any n ∈ Z+.

To prove this result, we need the following proposition,
whose proof is given in the Appendix.

Proposition V.2. Let g ∈ L2(Ω). If fd is bounded from below
a.e. on Ω, then we have the following convergence results:

1) For f ∈ L2(Ω),

‖P̃ (φh ∗ f)g − P̃ (f)g‖1
h→0−→ 0

2) If fi
i→∞−→ f in the L1(Ω) norm, then

‖P̃ (fi)g − P̃ (f)g‖1
i→∞−→ 0

We can now prove Theorem V.1.
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Proof of Theorem V.1. To prove this result, we will use an
induction argument. For n = 1, we have that

fh1 = P̃ (φh ∗ f0)f0,

f1 = P̃ (f0)f0.

Then, by statement (1) of Proposition V.2, ‖fh1 − f1‖1 =
‖P̃ (φh ∗ f0)f0 − P̃ (f0)f0‖1 → 0 as h → 0. Assume that
this is true for some n > 1; i.e., ‖fhn − fn‖1 → 0 as h → 0.
We will show that this limit holds true for n + 1 using the
following computation:

‖fhn+1 − fn+1‖ =
∥∥∥P̃ (φh ∗ fhn )fhn − P̃ (fn)fn

∥∥∥
1

=
∥∥∥(P̃ (φh ∗ fhn )fhn − P̃ (fn)fhn ) +

(P̃ (fn)fhn − P̃ (fn)fn)
∥∥∥

1

=
∥∥∥(P̃ (φh ∗ fhn )− P̃ (fn))fhn + P̃ (fn)(fhn − fn)

∥∥∥
1

≤
∥∥∥(P̃ (φh ∗ fhn )− P̃ (fn))fhn

∥∥∥
1

+
∥∥∥P̃ (fn)(fhn − fn)

∥∥∥
1

The bracket (fhn − fn) in the second term converges to 0 as
h→ 0 due to our assumption. Considering the first term, we
observe that:

lim
fhn→fn

lim
h→0

P̃ (φh ∗ fhn ) = P̃ (fn)

This follows from the fact that the inner limit tends to
P̃ (fhn ) by statement (1) of Proposition V.2, and the outer
limit limfhn→fn P̃ (fhn ) tends to P̃ (fn) by statement (2) of
Proposition V.2. Therefore, the bracket P̃ (φh ∗ fhn ) − P̃ (fn)
in the first term tends to 0 as h→ 0, and hence we have our
result. �

VI. SIMULATIONS

In this section, we present numerical solutions of the mean-
field model (3) and simulations of the corresponding N -agent
system. We provide verification via these simulations that as
N → ∞, the simulations of the N -agent system (stochastic
simulations) approach the solution of the deterministic system
(3).

In the example below, we define the agent state space
Ω ⊂ R2 as the unit square [0, 1]×[0, 1], representing a physical
domain in which the agents move. The target distribution,
shown in Fig. 2, is set to fd = sin2(2πx1) + sin2(2πx2),
where [x1 x2]T ∈ Ω. The initial distribution is set to the Dirac
measure at (0, 0). We consider a nonlinear vector field F in
system (1) that represents a unicycle model:

x1
n+1 = x1

n + u1
n cos(u2

n),

x2
n+1 = x2

n + u1
n sin(u2

n). (31)

Here, xn = [x1
n x

2
n]T ∈ Ω and un = [u1

n u
2
n]T ∈ U . The set

of control inputs is defined as U = [0, 0.1]× [0, 2π]. This map
F satisfies all the required conditions stated in Section IV.

To simulate the mean-field model (6), we need to discretize
both Ω and U . The set Ω is partitioned into nx ∈ Z+ sets,
Ω̃ = {Ω1, . . . ,Ωnx}, where Ω = ∪nxi=1Ωi and the sets Ωi have
intersections of zero Lebesgue measure. The set of control

inputs U is approximated as a set of nu ∈ Z+ discrete
elements, Ũ = {v1, . . . , vnu}, where vi ∈ U for each i. Define
index sets I = {1, . . . , nx} and J = {1, . . . , nu}. Using
these definitions, we construct an approximating controlled
Markov chain on the finite state space I. For i ∈ I, when
the system state is in the set Ωi, we will consider the state
of this Markov chain to be i. We use a modified version of
Ulam’s method [11] to construct this approximation. In the un-
controlled setting, Ulam’s method is a classical technique for
constructing approximations of the pushforward map (Perron-
Frobenius operators) induced by dynamical systems. Let plij
denote the probability of the system state being in the set Ωj
in the next time step, given that the system state is uniformly
randomly distributed over the set Ωi and the selected control
input is vl. To obtain plij via the modified Ulam’s method, we
assume that a fixed number of agents, say M , are uniformly
distributed over Ωi. For each agent m ∈ {1, . . . ,M} with
state xm ∈ Ωi, we compute F (xm, vl). Then, we define
the transition probabilities of the approximating controlled
Markov chain as follows:

plij =

∣∣{y ∈ Ωj : xm = F−1
l (y), m = 1, . . . ,M}

∣∣∣∣{y ∈ Ω : xm = F−1
l (y), m = 1, . . . ,M}

∣∣ ,
where Fl(·) = F (·, vl). We next define an equivalent of the
state-to-control transition kernel K. Let k̃il be the probability
of choosing the control variable vl, given that the system state
xm is in Ωi. We set k̃il > 0 if for some m, F (xm, vl) ∈ Ω,
while ensuring that k̃il is a probability.

We now define the discretization of the mean-field model
(3). Let µ ∈ P(Ω̃) and j ∈ I, and let µd be the discretization
of fd on Ω̃. Let P ∈ Rnx×nx be the discretization of the
operator P defined in (14). Then the discretization of system
(3) is given by:

µn+1 = Pµn, (32)

Pµ(j) =
∑
i∈I

aµ(i)
∑
l∈J

k̃il p
l
ijµ(i) + (1− aµ(j))µ(j),

where aµ(i) = (µ(i) − µd(i))/µ(i) if µ(i) − µd(i) > 0,
and aµ(i) = 0 otherwise. Figure 3 shows snapshots of the
simulation of this system at several times n.

Algorithm 1 presents the pseudocode that simulates the
evolution of agents over a domain Ω with a control set U , until
a specified final time Tf . An agent considers another agent to
be its neighbor if their relative distance is less than h, the
parameter of the bump function φh described in the previous
section. We denote the set of neighbors of agent k at any
given time by N (k). At every time step, each agent computes
the value of the bump function based on the relative distances
of its neighbors. Note that C in Line 31 is a normalizing
constant which is chosen to ensure that Φ is a probability
density. Figures 4-7 show snapshots of the N -agent simulation
for agent population sizes of N =100, 500, and 1000, with
h = 0.1 in the first three figures and 0.05 in the last figure.

We first investigate the effect of increasing N while keeping
h fixed on the time evolution of the simulated N -agent system.
Figure 3 shows that as time n increases, the mean-field model
indeed converges asymptotically to the target distribution in
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Algorithm 1 Simulation of N agents

1: Input: Ω, U, k, F,N, fd, h, Tf
2: Initialize n = 0, ak = 0, xk0 ∈ Ω for all k = 1, . . . , N
3: while n ≤ Tf do
4: for k = 1 : N do
5: y = xkn . Current location of agent k
6: s = 0
7: for all j ∈ N (k) do

. N (k) := {agents within distance h of k}
8: z = xjn
9: s = s+ PHI(y, z, h)

10: end for
11: fn(y) = 1

|N (k)|s

12: if fn(y) > fd(y) then
13: ak = fn(y)−fd(y)

fn(y)
14: end if
15: if ak > 0 then
16: Draw v uniformly from (0, 1)
17: if v ≤ ak then
18: Draw u ∼ k(y, ·) from U
19: y = F (y, u)
20: end if
21: end if
22: xkn+1 = y
23: end for
24: n = n+ 1
25: end while

26: function PHI(y, z, h)
27: d = ‖y − z‖2
28: if d

h < 1 then
29: Φ = 1

C
1
h2 exp

(
−1

1−(d/h)2

)
. C := Normalizing constant

30: end if
31: return Φ
32: end function
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Fig. 2. Target distribution fd

Fig. 2. We observe that the convergence slows down signifi-
cantly after time n = 500. Following our discussion in Section
V, we expect the stochastic simulations of the N -agent system
to converge to the discretization of system (28) in the limit
N → ∞. Although system (28) is different from the system
(3), note that the solutions of the two systems (3) and (28)
converge in the limit h → 0. The snapshots in Figs. 4-6
show that as the population size N is increased with a fixed
value of h, the agent distribution in the N -agent simulation
approaches the solution of system (32), plotted in Fig. 3. In
all three figures, the agent distribution converges to a discrete
approximation of the continuous target distribution.

Next, we study the effect of N on the frequency of agent
state transitions. For each of the N -agent simulations shown in
Figs. 4-7, Figs. 8a-8d plot the time evolution of the 2-norm of
five randomly selected agents’ states. Figs. 8a-8c show that the
agents’ frequency of state transitions significantly decreases
with increasing N ; the agents eventually stop transitioning
between states (i.e., stop moving) for both N = 500 and
N = 1000. This trend can be attributed to our approximation
of a continuous distribution by a discrete function representing
the state of the N -agent system. For low values of N , the
resulting coarse discretization of fd might yield an operator
P̃ (φh ∗ µNn ) that is not a sufficiently accurate approximation
of P̃ (fd) = I , the condition that stops agent state transitions.
Higher values of N produce a finer discretization of fd, which
improves the accuracy of the approximation of P̃ (fd) = I .
This validates our claim that control policies designed for
the mean-field model can be implemented on a population
of individual agents to achieve a target distribution, as long as
this population is sufficiently large.

Finally, we investigate the effect of changing h while
keeping N fixed. Similar to the agent distribution in Fig.
6 (h = 0.1), the agent distribution in Fig. 7 (h = 0.05)
approaches the solution of (32) shown in Fig. 3 as N increases.
However, the relative closeness of the distributions in Figs. 6
and 7 to the distribution in Fig. 3 is not apparent from the
figures. This can be explained by noting that in this case, we
are holding N constant and decreasing h, thereby reversing
the order of limits that we considered in Section V. There
is no mathematical guarantee that the limits commute, and
hence, we do not necessarily expect that with reduced h, the
N -agent simulations will more closely approach the solution
of (32). Moreover, a lower value of h for a fixed N yields
a smaller neighborhood in which each agent evaluates the
local density, which can produce a less accurate approximation
of P̃ (fd) = I . As explained previously, this can result in
persistent agent state transitions, which are evident in the
simulation of N = 1000 agents when h is reduced from 0.1
(Fig. 8c) to 0.05 (Fig. 8d). Increasing h, on the other hand, can
result in the eventual cessation of agent transitions in smaller
agent populations N . This is demonstrated in Figs. 9a-9b,
which show that when h is increased from 0.2 to 0.25, the
population of N agents stops transitioning for a lower value
of N . The snapshots of stochastic simulations for N = 1000
at time n = 2000 in Figs. 6d, 7d, 10a, and 10b demonstrate
that the agent distribution becomes smoother as h is increased,
due to the smoothening effect of the mollification.
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(a) n = 50
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(b) n = 200
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(c) n = 500
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(d) n = 2000

Fig. 3. Snapshots of the simulation of system (32) at several times n.
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(a) n = 50
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(b) n = 200
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(c) n = 500
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(d) n = 2000

Fig. 4. Snapshots of a stochastic simulation of N = 100 agents, with h = 0.1, at several times n.
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(a) n = 50
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(b) n = 200
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(c) n = 500
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(d) n = 2000

Fig. 5. Snapshots of a stochastic simulation of N = 500 agents, with h = 0.1, at several times n.
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(a) n = 50
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(b) n = 200
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(c) Density at time n = 500
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(d) n = 2000

Fig. 6. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.1, at several times n.
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(a) n = 50
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(b) n = 200
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(c) n = 500
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(d) n = 2000

Fig. 7. Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.05, at several times n.
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(a) N = 100, h = 0.1
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(c) N = 1000, h = 0.1
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Fig. 8. Time evolution of the 2-norm of five randomly selected agents’ states in each of the N -agent simulations.
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Fig. 9. Time evolution of the 2-norm of five randomly selected agents’ states
in two N -agent simulations with different values of N and h (snapshots of
corresponding stochastic simulations not shown).
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(a) h = 0.2
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(b) h = 0.25

Fig. 10. Snapshots at time n = 2000 of stochastic simulations of N = 1000
agents with different values of h.

VII. CONCLUSION

In this paper, we have used a discrete-time mean-field
model describing the state dynamics of a multi-agent system
to design decentralized state-feedback agent control laws that
drive the agents asymptotically to a target state distribution. To
implement the control laws, the agents only require knowledge
of the local agent density; for example, the density of agents
within their sensing range. The mean-field model considered
here is the forward Kolmogorov equation of a discrete-time
Markov process that can be stabilized to an arbitrary dis-
tribution that has L∞(·) derivatives. Moreover, the Markov
process can be constructed such that its forward operator is
the identity operator at the desired distribution. This prevents
agents from switching between states once the equilibrium
distribution is reached. Although stability and convergence
results were proven for the mean-field model, simulations
of the corresponding N -agent system demonstrate that for
relatively small numbers of agents (N & 500), the agents
indeed redistribute themselves to the target distribution and
thereafter cease switching between states. Our use of density-

dependent feedback control laws enables us to specify a more
general class of target distributions than in our prior works
[4], [5], in which we considered only open-loop control laws.
In the future, we would like to establish the mean-field limit
of the system considered in this paper, as well as extend our
results to swarms of agents governed by M -step controllable
dynamical models (where M > 1).

APPENDIX A
PROOF OF PROPOSITION V.2

Here, we prove the two convergence results stated in the
proposition.

(1) Let f ∈ L2(Ω). Then, φh∗f ∈ L2(Ω). By Theorem 8.14
of [18], φh∗f

h→0−→ f in the L2 norm. To prove convergence of
P̃ (φh ∗ f) to P̃ (f) as operators on L1(Ω), choose g ∈ L2(Ω)
(since Ω has finite measure, g ∈ L1(Ω)), and compute the
following:

‖P̃ (φh ∗ f)g − P̃ (f)g‖1

=

∫
Ω

∣∣∣P̃ (φh ∗ f)g(y)− P̃ (f)g(y)
∣∣∣ dy. (33)

Recall that according to (16), P̃ = P̃1 + P̃2. We will now
evaluate the integral (33) in terms of the two operators P̃1 and
P̃2.

In (33), the component of the integrand that depends on P̃1

is given by:

P̃1(φh ∗ f)g(y)− P̃1(f)g(y) =

∫
Ω

A(x, y)dx, where

A(x, y) = aφh∗f (x)q(x, y)g(x)− af (x)q(x, y)g(x).

We now define the following sets:

E1 = {x ∈ Ω : φh ∗ f(x) > fd(x)},
E2 = {x ∈ Ω : φh ∗ f(x) ≤ fd(x)},
E3 = {x ∈ Ω : f(x) > fd(x)},
E4 = {x ∈ Ω : f(x) ≤ fd(x)}.

We will split the integral
∫

Ω
A over four sets constructed from

these sets, namely, S1 = {E1 ∩ E3}, S2 = {E2 ∩ E3}, S3 =
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{E1∩E4}, and S4 = {E2∩E4}. Note that S1tS2tS3tS4 =
Ω. Consider the integral of A over S1:∫

E1∩E3

A ≤ ‖q‖∞
∫
E1∩E3

aφh∗fg − afg (34)

= ‖q‖∞
∫
E1∩E3

φh ∗ f − fd

φh ∗ f
g − f − fd

f
g

= ‖q‖∞
∫
E1∩E3

φh ∗ f − f
φh ∗ f

fd

f
g.

Note that on E1∩E3, φh∗f
‖·‖2−→ f > fd > 0 and

∥∥∥ fdf ∥∥∥∞ < 1.

Since fd is bounded from below a.e. on Ω, we must have that∥∥∥ 1
φh∗f

∥∥∥
∞
<∞. Continuing the computation from above,

‖q‖∞
∫
E1∩E3

φh ∗ f − f
φh ∗ f

fd

f
g

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥fdf
∥∥∥∥
∞

∫
E1∩E3

φh ∗ f − fg

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥fdf
∥∥∥∥
∞
‖φh ∗ f − f‖2‖g‖2.

The second inequality above follows from Hölder’s inequality.
Since we have established that ‖φh∗f−f‖2 → 0 as h→ 0, the
integral of A over S1 must converge to 0. Next, we consider
the integral of A over S2:∫

E2∩E3

A ≤ ‖q‖∞
∫

E2∩E3

−f − f
d

f
g (35)

≤ ‖q‖∞
∥∥∥∥f − fdf

∥∥∥∥
∞
‖g‖2 m(E2 ∩ E3).

The second inequality follows from Hölder’s inequality. In this
case, we will establish that m(E2∩E3)→ 0 as h→ 0, which
would imply that the integral of A over S2 converges to 0.
We can compute m(E2 ∩ E3) as:

m(E2 ∩ E3) = m({φh ∗ f − fd ≤ 0} ∩ {f − fd > 0})
= m({(φh ∗ f − f) + (f − fd) ≤ 0} ∩ {f − fd > 0}).

Note that,

{(φh ∗ f − f) + (f − fd) ≤ 0} ⊂ {(φh ∗ f − f) ≤ 0}.

Continuing the computation from above,

m(E2 ∩ E3) ≤ m({φh ∗ f − f ≤ 0} ∩ {f − fd > 0})
= m({φh ∗ f − f < 0} ∩ {f − fd > 0})

By Proposition 2.29 of [18], since φh ∗ f − f → f in the
L2 norm as h → 0, then φh ∗ f − f → f in measure; that
is, m({φh ∗ f − f ≤ δ}) → 0 as h → 0 for every δ > 0.
Therefore, we must have that m(E2∩E3)→ 0 as h→ 0, and
consequently, the integral of A over E2 ∩ E3 must converge
to 0. Now, consider the integral of A over S3:∫
E1∩E4

A ≤ ‖q‖∞
∫
E1∩E4

φh ∗ f − f
φh ∗ f

g (36)

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞
‖g‖2 ‖φh ∗ f − f‖2 m(E1 ∩ E4).

The second inequality follows from Hölder’s inequality. Since
we have that ‖φh ∗ f − f‖2 → 0 as h→ 0, the integral of A
over E1 ∩ E4 converges to 0. Finally, the integral of A over
S4 is trivially zero:∫

E2∩E4

A =

∫
E2∩E4

aφh∗fg − afg = 0. (37)

Thus, we have shown that
∫

Ω
A→ 0 as h→ 0.

Returning to the integral (33), the component of the inte-
grand that depends on P̃2 is given by:

P̃2(φh ∗ f)g(y)− P̃2(f)g(y)

= (1− aφh∗f (y)) g(y)− (1− af (y)) g(y)

= af (y)g(y)− aφh∗f (y)g(y) := B(y). (38)

This term is equal to the integrand of each of the four integrals
considered in (34)-(37). Since we showed that each of these
integrands tends to 0 as h→ 0, we must have that B(y)→ 0
as well.

We can now evaluate (33) as

‖P̃ (φh ∗ f)g − P̃ (f)g‖1

=

∫
Ω

∣∣∣∣∫
Ω

A(x, y)dx+B(y)

∣∣∣∣ dy
=

∫
Ω

∣∣∣∣∫
S1tS2tS3tS4

A(x, y)dx+B(y)

∣∣∣∣ dy.
Since we have shown that both

∫
Ω
A → 0 and B(y) → 0 as

h→ 0, the outer integral converges to 0 as well, and we have
our result.

(2) The proof of this result is similar to the proof of result
(1).
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