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Abstract. In this article, we consider the problem of stabilizing a class of degenerate stochastic
processes, which are constrained to a bounded Euclidean domain or a compact smooth manifold, to
a given target probability density. This stabilization problem arises in the field of swarm robotics,
for example in applications where a swarm of robots is required to cover an area according to a
target probability density. Most existing works on modeling and control of robotic swarms that use
partial differential equation (PDE) models assume that the robots’ dynamics are holonomic, and
hence, the associated stochastic processes have generators that are elliptic. We relax this assumption
on the ellipticity of the generator of the stochastic processes, and consider the more practical case of
the stabilization problem for a swarm of agents whose dynamics are given by a controllable driftless
control-affine system. We construct state-feedback control laws that exponentially stabilize a swarm
of nonholonomic agents to a target probability density that is sufficiently regular. State-feedback laws
can stabilize a swarm only to target probability densities that are positive everywhere. To stabilize the
swarm to probability densities that possibly have disconnected supports, we introduce a semilinear
PDE model of a collection of interacting agents governed by a hybrid switching diffusion process. The
interaction between the agents is modeled using a (mean-field) feedback law that is a function of the
local density of the swarm, with the switching parameters as the control inputs. We show that under
the action of this feedback law, the semilinear PDE system is globally asymptotically stable about
the given target probability density. The stabilization strategy without inter-agent interactions is
verified numerically for agents that evolve according to the Brockett integrator and a nonholonomic
system on the special orthogonal group of 3-dimensional rotations SO(3). The stabilization strategy
with inter-agent interactions is verified numerically for agents that evolve according to the Brockett
integrator and a holonomic system on the sphere S2.

Key words. Mean-field control, Hypoelliptic operators, Nonholonomic systems, Multi-agent
systems, Swarms, Semilinear PDE
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1. Introduction. In recent years, there has been much work on the construc-
tion of decentralized control laws for multi-robot systems using mean-field models
[23], in which a large collective of agents is treated as a continuum. Mean-field based
approaches for modeling and control have been used in the multi-agent control and
swarm robotics literature for problems such as consensus [66], flocking [33], task al-
location [10, 50], and cooperative transport [68]. Similar problems have also been
considered over the last two decades in the control and mathematics literature in
the context of mean-field games [43, 35], mean-field control [31, 56, 14], and optimal
transport [9].

One advantage of mean-field based approaches for decentralized control is that
the constructed control laws are identity-free, that is, the control laws do not depend
on the agents’ identities. The identity-free nature of the control laws simplifies some
aspects of their implementation on large swarms of homogeneous agents when com-
pared to control laws that are identity-dependent. For instance, suppose that a central
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supervisor observes the states of the agents via an overhead camera and uses these
measurements to update state-feedback control laws, which it periodically broadcasts
to the agents. If the control laws are identity-free, then the supervisor does not need
to expend computational power to distinguish between individual agents. Another
advantage of mean-field control approaches, from a theoretical point of view, is that
as the number of agents tends to infinity, the mean-field behavior of the swarm is
governed by a deterministic differential equation or difference equation model, even
though each agent might exhibit stochasticity in its dynamics. Such models are more
analytically tractable than models describing the dynamics of a large number of in-
dividual agents.

In this article, we consider a mean-field stabilization problem motivated by cov-
erage problems in multi-agent control. A classical approach to multi-agent coverage
is described in [19], which presents a distributed method for implementing Lloyd’s al-
gorithm for positioning multiple agents in a domain according to a given probability
density function.The stochastic task allocation problem considered in [10], where the
goal is to stabilize a swarm of agents evolving according to a continuous-time Markov
chain to a target distribution among a set of states (e.g., physical locations), can be
viewed as a mean-field version of this coverage problem. Stochastic task allocation
approaches have also been developed for swarms of agents that evolve according to
discrete-time Markov chains [1] and that follow control laws which depend on the
local density of agents [49, 24]. A drawback of Markov chain-based approaches to this
problem is that the state space of the agents needs to be discretized beforehand.

In [53, 52], the authors consider the problem of stabilizing a swarm of agents
with general controllable dynamics to a target distribution. This approach has been
extended to the case of holonomic agents on bounded domains [21, 26] and compact
manifolds without boundary [22]. In these extensions, the control is either a diffusion
coefficient or a velocity field in the Fokker-Planck partial differential equation (PDE)
[58] that determines the spatio-temporal evolution of the probability density of the
agents, each of which is governed by a reflected stochastic differential equation [64]. In
[12], similar stochastic control laws are constructed for agents evolving according to a
discrete-time deterministic nonlinear control system on a bounded Euclidean domain.

An advantage of the stochastic coverage approaches in [10, 1, 53, 52, 21, 26, 22, 12]
over the classical coverage strategy in [19] is that they only require each agent’s
control action to depend on its own state. The stochasticity designed into the system
ensures that the swarm reaches a target probability density. A disadvantage of these
approaches is that agents do not stop switching between states even after the swarm
has reached the target probability density, resulting in an unnecessary expenditure
of energy. Moreover, a large number of agents is required for the swarm density to
stabilize close to the target density. One way to resolve these issues is to design
control laws that are functions of the local swarm density. Such density-dependent
or mean-field feedback laws have been proposed for agents that evolve according to
Markov chains on discrete state spaces [49, 24], for agents that evolve according to
ordinary differential equations on Euclidean domains [28, 42], and for agents that
evolve according to stochastic or ordinary differential equations on compact manifolds
without boundary [22]. The works [28, 42, 22] assume that the agents are holonomic
and the target distribution is strictly positive everywhere on the domain.

In the context of these previous works, the main contributions of this article
are the following:

1. Extension of the stochastic multi-agent coverage approach developed by the
authors in [21, 26] to non-interacting agents with nonholonomic dynamics that
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evolve on a bounded subset of Rd or a compact manifold without boundary,
given a target probability density for the swarm that is bounded from below
by a positive constant.

2. Development of a stochastic multi-agent coverage approach for interacting
agents governed by the hybrid switching diffusion model introduced by the
authors in [25]. In this approach, a mean-field feedback law (i.e., a control
law that depends on the local swarm density) is constructed to asymptoti-
cally stabilize the swarm to any given target probability density, which is not
necessarily positive everywhere.

Contribution 1 is partially motivated by the fact that extension of multi-agent control
strategies designed for Euclidean state spaces to general manifolds [62, 11] is impor-
tant, given that many mechanical systems are naturally modeled on manifolds [17].
While the work [52], as in Contribution 1, does consider agents with general non-
holonomic dynamics, due to the assumption that the domain is unbounded, this work
requires assumptions on the behavior of the target probability density at infinity. The
extension of the coverage strategy presented in [21, 26] to the case of nonholonomic
agents evolving on manifolds is complicated by the fact that the associated PDEs are
not elliptic. Contribution 2 improves over existing work on mean-field feedback laws
[28, 42], since our approach does not make strong assumptions on the regularity of
solutions of the associated PDEs. Instead, we prove all the regularity required to en-
able the stability analysis, which makes the analysis much more technically involved.
Moreover, we are able to stabilize a larger class of probability densities than those
considered in [21, 26, 22, 28, 42], which require that the target probability density
is strictly bounded from below by a positive constant everywhere on the domain. A
control law similar to the one described in Contribution 2 was constructed by the
authors in [13] for a discrete-time control system. However, it is assumed in [13] that
the system is locally controllable within one time-step, and hence is fully actuated.
Moreover, in contrast to the mean-field feedback laws constructed in [28, 42, 22] in
which the control input is the agents’ velocity field, the control inputs that we design
in Contribution 2 are the transition rates of the hybrid switching diffusion process
that describes the agents’ dynamics.

This article is organized as follows. In Section 2, we establish notation and provide
some definitions that are used throughout the article. In Section 3, we present and
analyze the properties of the degenerate PDEs that describe the mean-field model in
the case where the agents do not interact with one another. In Section 4, we present a
semilinear PDE mean-field model for stabilizing the density of a swarm of interacting
agents and establish global asymptotic stability properties of the model. In Section
5, we validate the control strategies presented in Sections 3 and 4 with numerical
simulations.

2. NOTATION. We denote the n-dimensional Euclidean space by Rn. Rn×m
refers to the space of n ×m matrices, and R+ refers to the set of non-negative real
numbers. Given a vector x ∈ Rn, xi denotes the ith coordinate value of x. For a
matrix A ∈ Rn×m, Aij refers to the element in the ith row and jth column of A. For
a subset B ⊂ RM , int(B) refers to the interior of the set B. C, C−, and C̄− denote
the set of complex numbers, the set of complex numbers with negative real parts, and
the set of complex numbers with non-positive real parts, respectively. Z+ refers to
the set of positive integers.

We denote by Ω an open, bounded, and connected subset of an N -dimensional
smooth Riemannian manifold M [44, 45] with a Riemannian volume measure dx. The
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boundary of Ω is denoted by ∂Ω. We denote by
∫

Ω
f(x)dx the integral of a function

f : Ω→ R with respect to the Riemannian volume.
For each 1 ≤ p < ∞, we define Lp(Ω) as the Banach space of complex-valued

measurable functions over the set Ω whose absolute value raised to pth power has finite
integral. We define L∞(Ω) as the space of essentially bounded measurable functions
on Ω. The space L∞(Ω) is equipped with the norm ‖z‖∞ = ess supx∈Ω|z(x)|,
where ess supx∈Ω(·) denotes the essential supremum attained by its argument over
the domain Ω. The space L2(Ω) is a Hilbert space when equipped with the standard
inner product, 〈·, ·〉2 : L2(Ω)× L2(Ω)→ C, given by 〈f, g〉2 =

∫
Ω
f(x)ḡ(x)dx for each

f, g ∈ L2(Ω), where ḡ is the complex conjugate of the function g. The norm ‖ · ‖2
on the space L2(Ω) is defined as ‖f‖2 = 〈f, f〉1/22 for each f ∈ L2(Ω). For a function
f ∈ L2(Ω) and a given constant c, we write f ≥ c to imply that f is real-valued and
f(x) ≥ c for almost every (a.e.) x ∈ Ω.

Suppose eXt is the flow generated by a vector fieldX. ThenX defines a differential
operator on the set of smooth functions C∞(M) through the following action,

(2.1) (Xf)(x) = lim
t→0

f(etX(x))− f(x)

t

for all x ∈ Ω and all f ∈ C∞(Ω).
Note that definition (2.1) is the differential geometric definition from [44] of a

vector field X as an associated differential operator acting on the space of smooth
functions.

Let V = {X1, ..., Xm} be a collection of vector fields [44] with m ≤ N . Let [X,Y ]
denote the Lie bracket of the vector fields X and Y . For each i ∈ Z+, we define
Vi = {[X,Y ];X ∈ X,Y ∈ Vi−1}, with V0 = V. We will assume that the collection of
vector fields V satisfies the Chow-Rashevsky condition [4] (also known as Hörmander’s
condtion [15]), i.e., the Lie algebra generated by the vector fields V, given by ∪ri=0Vi,
has rank N , for sufficiently large r.

A horizontal curve γ : [0, 1] → Ω connecting two points x,y ∈ M is a Lipschitz
curve in Ω for which there exist essentially bounded functions ai(t) such that

(2.2) γ̇(t) =

m∑
i=1

ai(t)Xi(γ(t))

for almost every t ∈ [0, 1], where γ(0) = x and γ(1) = y. Then V defines a distance
d : Ω→ R≥0 on M as

d(x,y) = inf {
∫ 1

0

|γ̇(t)|dt; γ is a horizontal curve connecting x and y}(2.3)

Definition 2.1. The domain Ω ⊂ M is said to be ε − δ if there exist δ > 0,
0 < ε ≤ 1 such that for any pair of points p,q ∈ Ω, if d(p,q) ≥ δ, then there exists a
continuous curve γ : [0, T ]→ Ω such that γ(0) = p, γ(T ) = q, and∫ 1

0

|γ̇(t)|dt ≥ 1

ε
d(p, q)

d(z, ∂Ω) ≥ ε min(d(p, z), d(z, q)) ∀z ∈ {γ(t) : t ∈ [0, T ]}

The metric d on Ω is known as the sub-Riemannian or Carnot-Caratheodory metric
[2, 15]. The topology induced by this metric on d coincides with the usual Riemannian
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metric. We will assume that the radius r(Ω) of Ω, given by r(Ω) = sup{d(x,y);x,y ∈
M}, is finite.

Given a ∈ L∞(Ω), with a ≥ c for a positive parameter c > 0, we define the
weighted horizontal Sobolev space WH1

a(Ω) =
{
f ∈ L2(Ω) : Xi(af) ∈ L2(Ω) for 1 ≤

i ≤ m
}

. We equip this space with the weighted horizontal Sobolev norm ‖ · ‖WH1
a
,

given by ‖f‖WH1
a

=
(
‖f‖22 +

∑n
i=1 ‖Xi(af)‖22

)1/2

for each f ∈ WH1
a(Ω). Here, the

derivative action of Xi on a function f is to be understood in the distributional sense.
When a = 1, where 1 is the constant function that is equal to 1 everywhere, we will
denote WH1

a by WH1.
Let X be a Hilbert space with the norm ‖ · ‖X . The space C([0, T ];X) consists

of all continuous functions u : [0, T ]→ X for which ‖u‖C([0,T ];X) :=
max0≤t≤T ‖u(t)‖X < ∞ . If Y is a Hilbert space, then L(X,Y ) will denote the
space of linear bounded operators from X to Y . We will also use the multiplication
operator Ma : L2(Ω) → L2(Ω), defined as (Mau)(x) = a(x)u(x) for a.e. x ∈ Ω and
each u ∈ L2(Ω).

We will need an appropriate notion of a solution of the PDEs considered in this
paper. Toward this end, let A be a closed linear operator that is densely defined on
a subset D(A), the domain of the operator, of a Hilbert space H. We will define
spec(A) as the set {λ ∈ C : λI−A is not invertible in X}, where I is the identity map
on X. If A is a bounded operator, then ‖A‖op will denote the operator norm induced
by the norm defined on H. From [27], we have the following definition.

Definition 2.2. For a given time T > 0, a mild solution of the ODE

(2.4) u̇(t) = Au(t); u(0) = u0 ∈ H

is a function u ∈ C([0, T ];X) such that u(t) = u0 +A
∫ t

0
u(s)ds for each t ∈ [0, T ].

Under appropriate conditions satisfied by A, the mild solution of a PDE is given by
a strongly continuous semigroup of linear operators, (T (t))t≥0, that are generated by
the operator A [27].

Definition 2.3. A strongly continuous semigroup of linear operators (T (t))t≥0

on a Hilbert space X is called positive if u ∈ X such that u ≥ 0 implies that T (t)u ≥ 0
for all t ≥ 0.

3. Stabilization without Agent Interactions. Given the definitions in Sec-
tion 2, consider the following reflected stochastic differential equation (SDE) [57] con-
strained to a domain Ω ⊆M :

dZ(t) =

m∑
i=1

ui(Z(t))Xidt+
√

2

m∑
i=1

vi(Z(t))Xi ◦ dWi + n(Z(t))dψ(t),

Z(0) = Z0,(3.1)

where ψ(t) ∈ R is called the reflecting function or local time [57], a stochastic process
that constrains Z(t) to the domain Ω; n(x) is the normal to the boundary at x ∈ ∂Ω;
Wi are m copies of the one-dimensional Wiener process; and ui and vi are m feedback
laws. In the above SDE (3.1), the notation ◦ is used to mean that the SDE should
be interpreted in the sense of Stratonovich [38]. Let y(x, t) denote the probability
density of the random variable Z(t), defined as P(Z(t) ∈ A) =

∫
A
y(x, t)dx. In this

section, we consider the following control problem:
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Problem 3.1. Given a target probability density f on Ω, design control laws ui(x)
and vi(x) in Eq. (3.1) such that the probability density y(x, t)of the stochastic process
Z(t), which evolves according to Eq. (3.1), converges asymptotically to f .

The motivation for this problem comes from stochastic coverage applications in
swarm robotics that are framed as follows. Let the random variable Zj(t), j ∈
{1, ..., Np}, denote the position of the jth robot in a swarm of Np robots at time
t. This position evolves according to Eq. (3.1), in which ui and vi are control laws
that govern each robot’s control law. each robot follows the same control laws ui
and vi, then the random variables Zi(t) are independent and identically distributed.
Then, denoting by δx the delta distribution at x ∈ M , the empirical distribution
1
Np

∑Np

j=1 δZj(t), which represents the distribution of the robots in space, converges to

the density y(x, t) as Np →∞ due to the law of large numbers.
The stabilization problem 3.1 has been considered by the authors in [21] for the

case where the system is holonomic and the vector fields Xi = ∂
∂xi

are the standard
coordinate vector fields. The goal in this section is to extend the results in [21] to the
general case where the number of vector fields Xi is possibly less than the dimension
N of the state space M . Such density stabilization problems were first considered
for the case where the domain Ω is the whole of the Euclidean space Rn in [53, 52].
When time is discrete, and the system is controllable in one time step, this problem
has been considered in [12].

The main difficulty in extending the results from [21] is that when the number
of control vector fields, m, is less than the dimension of the state space M , the
generator

∑m
i=1(viXi)

2+uiXi of the stochastic process Z(t) is not elliptic which makes
standard results in literature of parabolic partial differential equations inapplicable.
In particular, let A =

∑m
i=1(viXi)

2. for all differentiable functions g. The associated
probability density y(x, t) of the process Z(t) evolves according to the PDE

yt = A∗y −∇ · (
m∑
i=1

ui(x)Xiy) in Ω× [0, T ]

y(·, 0) = y0 in Ω(3.2)

with zero flux boundary conditions, where ∇· denotes the divergence operation with
respect to the measure dx, and A∗ is the adjoint of the operator A. The stabilization
problem 3.1 is an open-loop control problem for the PDE (3.2), in which the goal is
to stabilize the solution y(x, t) of (3.2) to a target function f .

The operator A is not elliptic in general, but only hypoelliptic. Particularly, if
f ∈ C∞0 (Ω) has compact support K, then, due to the Chow-Rashvesky’s Lie rank
condition, if u is a function on Ω such that Au = f , then u is smooth on K [15].
Using this property of A, we will extend the stabilization results of [21, 26] to the case
where the agents have nonholonomic dynamics.

First, formally, we will provide a number of candidate control laws that are so-
lutions to Problem 3.1. Given these control laws, in Section 3.1 we will present a
stability analysis of a class of PDEs that coincide with (3.2) when the operators Xi

are formally skew-adjoint with respect to the volume form dx, that is, X∗i = −Xi.
Suppose that the operators Xi are formally skew-adjoint. Let f ∈ W 1,∞(Ω) be

a positive function that is bounded from below by a positive number and for which∫
Ω
f(x)dx = 1. If we set ui(·) = Xi(g)/g and vi(·) = 1 for each i ∈ {1, ...,m} and all
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t ≥ 0, then the PDE (3.2) becomes

yt =

m∑
i=1

X2
i y −∇ · (

m∑
i=1

Xif

f
Xiy) in Ω× [0, T ]

y(·, 0) = y0 in Ω(3.3)

Let ∇H be the horizontal gradient operator, which maps functions to vector fields and
is defined as ∇Hg =

∑m
i=1(Xig)Xi When the manifold M is a Lie group G and it is

unimodular, i.e., the left- and right-Haar measures [44] coincide, then we have that
∇ · ∇H(·) =

∑m
i=1X

2
i [3]. Hence, if we set y = f , then

(3.4)

m∑
i=1

X2
i y −∇ · (

m∑
i=1

Xi(f)

f
Xiy) =

m∑
i=1

X2
i g −∇ · (∇Hg) = 0

Thus, f is an equilibrium solution of the PDE (3.3). Our goal in Section 3.1 will
be to show that f is the globally exponentially stable equilibrium solution of PDE
(3.3) on the the set of square-integrable probability densities.

Let a = 1
f . Then the operator

∑m
i=1X

2
i −∇· (

∑m
i=1

Xi(f)
f Xi) can be alternatively

expressed as ∇ · ( 1
a(x)∇H(a(x)·)). Similarly, one can also consider the feedback laws

ui = 0 and vi = 1
f . In this case, the corresponding operator of interest is given by

(3.5) A∗ = ∇ · (a(x)∇H(a(x)·))

This control law is similar to the one presented in [21] for the case of holonomic
agents, where instead of the Stratonovich integral, we considered the Ito integral, and
the resulting generator was of the form ∇ · (∇H(a(x)·)).

3.1. Stability Analysis. The preceding discussion motivates us to study sta-
bility properties of PDEs associated with a class of hypoelliptic operators that have a
given probability densityas their equilibrium solution. In this section, we will provide
a semigroup theoretic analysis of a class of such PDEs. There have been a number
of works on semigroups generated by hypoelliptic operators on manifolds without
boundary [37], or manifolds with boundary under the Dirichlet boundary [67, 59].
Due to the term a(x), the operators that we consider are more general than those in
[67, 59]. There has also been work on long-term behavior of hypoelliptic diffusions to
uniform distributions for the special case of Carnot groups [60] and to more general
equilibrium distributions, as well as on more general state spaces, for certain examples
of hypoelliptic diffusions using log-Sobolev inequalities [7, 8, 30]. In comparison, our
results hold for a more general class of degenerate diffusions by establishing a spectral
gap for the generator, which can be guaranteed to exist for equilibrium distributions
that are bounded uniformly from above and below by positive numbers.

Before we present our stability analysis, we give some more preliminary defini-
tions. Given a, b ∈ L∞(Ω) such that a ≥ c and b ≥ c for some positive constant c,
and D(ωba) = WH1

a(Ω), we define the sesquilinear form ωba : D(ωba)×D(ωba)→ C as

(3.6) ωba(u, v) =

m∑
i=1

∫
Ω

b(x)Xi(a(x)u(x)) ·Xi(a(x)v̄(x))dx

for each u ∈ D(ωba). We associate with the form ωba an operator Aba : D(Aba)→ L2
a(Ω),

defined as Abau = v, if ωba(u, φ) = 〈v, φ〉a for all φ ∈ D(ωba) and for all u ∈ D(Aba) =
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{g ∈ D(ωba) : ∃f ∈ L2
a(Ω) s.t. ωba(g, φ) = 〈f, φ〉a ∀φ ∈ D(ωba)}. When the Xi are

formally skew-adjoint, the operator Aba is a weak formulation of the the second-order
partial differential operator

∑m
i=1X

∗
i (b(x)Xi(a(x) · )). An advantage of using this

weak formulation of the operator, rather than a strong formulation, is that one does
not need to establish that the domain D(Aba) contains twice (weakly) differentiable
functions, which might not be true in general, given the very weak regularity assumed
on the boundary of the domain Ω [36]. Formally, we will be studying properties of
the following PDE,

yt =

m∑
i=1

X∗i (b(x)Xi(a(x)y)) in Ω× [0, T ],(3.7)

Note that for b = 1/a, b = a, and b = 1, we recover the operators introduced in
the previous subsection.

The proofs of the results in this section follow closely to those for the elliptic case
considered by the authors in [26]. These results will be used extensively in Section
4, where we consider the case in which the agents have local interactions with one
another. For the sake of completeness, we have provided the proofs in Appendix A.
The main technical difference between the proofs in [26] and the proofs of the results
presented in this section is that here, we use the horizontal Sobolev spaces WH1(Ω) to
establish semigroup generation properties of the generator A, instead of the classical
Sobolev space H1(Ω). Due to the bracket generating property of the vector fields
V, it is known that the space WH1(Ω) has many properties similar to the classical
Sobolev space H1(Ω) [32, 54].

We will need the following assumption for the results in this section to hold true.

Assumption 3.2. Only one of the following conditions holds:
1. The domain Ω is ε− δ and M = Rn.
2. The manifold M is compact and without a boundary.
3. The boundary ∂Ω of the domain Ω is C1 and span{Xi(x)} = TxM for all

x ∈ Ω.

Lemma 3.3. The operator Aba : D(Aba) → L2
a(Ω) is closed, densely-defined, and

self-adjoint.

From the compactness of the embedding WH1(Ω) in L2(Ω), one can infer the following
result on the discreteness of the spectrum of the operator Aba.

Proposition 3.4. The operator Aba : D(Aba)→ L2
a(Ω) has a purely discrete spec-

trum.

In order to establish positivity properties of the semigroup T ba (t), we need the fact
that if f ∈ WH1(Ω), then |f | ∈ WH1(Ω). This result is known for the case where
Ω is a subset of Rn. The proof for the general case where Ω is a manifold follows
verbatim the results of [32, 54], since the proof only requires the density of the space
C∞(M) in WH1(Ω), which was already verified in the proof of Lemma 3.3.

Proposition 3.5. [32, 54] Given f ∈WH1(Ω), we have that |f | ∈WH1(Ω).

Using the above proposition and the established properties of the operator Aba,
we prove the following results on the semigroup generated by the operator −Aba con-
cerning its positivity and mass-conserving properties. These results will be used in
the analysis presented in Section 4.

Corollary 3.6. Let y0 ∈ L2
a(Ω). Then −Aba generates a semigroup of operators

(T ba (t))t≥0. The semigroup (T ba (t))t≥0 is positive. Furthermore, if a = b = 1 is the
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constant function equal to 1 everywhere, then ‖y0‖∞ ≤ 1 implies that ‖T ba (t)y0‖∞ ≤ 1
for all t ≥ 0.

Additionally, this semigroup has the following mass conservation property: if y0 ≥
0 and

∫
Ω
y0(x)dx = 1, then

∫
Ω

(T ba (t)y0)(x)dx =
∫

Ω
(T Ba (t)y0)(x)dx = 1 for all t ≥ 0.

Lastly, we establish the following important result on the long-term stability prop-
erties of the semigroups associated with the operators in

∑m
i=1X

∗
i (b(x)Xi(a(x) · )).

Theorem 3.7. (Exponential stability of semigroup)
The semigroup (T ba (t))t≥0 generated by the operator −Aba is analytic. Moreover, 0 is
a simple eigenvalue of the operators −Aba corresponding to the eigenvector f = 1/a.
Hence, if y0 ≥ 0 and

∫
Ω
y0(x)dx =

∫
Ω
f(x)dx = 1, then the following estimate holds

for some positive constants M0, λ and all t ≥ 0:

‖T ba (t)y0 − f‖a ≤ M0e
−λt‖y0 − f‖a(3.8)

4. Stabilization with Local Agent Interactions. In Section 3, the probabil-
ity densities that we stabilized were assumed to be uniformly bounded from below by
a positive number. Without this assumption, the semigroups that were constructed
would not be globally asymptotically stable. In this section, we will introduce a semi-
linear PDE model for stabilizing a swarm to probability densities that possibly have
supports that are disconnected.

As in Section 3, Ω will denote an open bounded subset of a manifold, and we
consider a collection of vector fields V = {X1, ..., Xm} satisfying the Chow-Rashevsky
condition. Let A := A1

1 be the operator defined in Section 3, where 1 denotes the
function that is equal to 1 almost everywhere on Ω. We will also need the spaces
L2(Ω) = L2(Ω) × L2(Ω) and L∞(Ω) = L∞(Ω) × L∞(Ω) with the standard norms
inherited from the spaces L2(Ω) and L∞(Ω).

We will consider the following PDE model,

(y1)t = −Ay1 − q1(x, t)y1 + q2(x, t)y2 in Ω× [0, T ]

(y2)t = q1(x, t)y1 + q2(x, t)y2 in Ω× [0, T ]

y(·, 0) = y0 in Ω

n · ∇y1 = 0 in ∂Ω× [0, T ].(4.1)

where y1 and y2 are non-negative functions and qi are reaction parameters. This PDE
model is the forward equation of a hybrid switching diffusion process (HSDP) [69].
In addition to a continuous spatial state Z(t), each agent is associated with a discrete
state Y (t) ∈ {0, 1} at each time t. The hybrid switching diffusion process (Z(t), Y (t))
can be represented as a system of SDEs of the form

dZ(t) =
√

2(1− Y (t))

m∑
i=1

Xi ◦ dWi + n(Z(t))dψ(t),

Z(0) = Z0.(4.2)

The PDE (4.1) is related to the SDE (4.2), for each k ∈ {0, 1}, through the relation
P(Y (t) = k,Z(t) ∈ Γ) =

∫
Γ
yk(x, t)dx for all t ∈ [0, T ] and all measurable Γ ⊂ Ω. The

transitions of the variable Y (t) from one discrete state to another is determined by
two functions qi : Ω→ [0,∞] in the following way,

P(Y (t+ h) = 1|Y (t) = 0) = q1(Z(t), t)h+ o(h)(4.3)

P(Y (t+ h) = 0|Y (t) = 1) = q2(Z(t), t)h+ o(h)(4.4)
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The state Y (t) = 0 corresponds to the state in which agents diffuse in space according
to the reflected SDE, and the state Y (t) = 1 corresponds to a state in which they are
motionless. Therefore, unlike the process considered in Section 3, each agent has two
discrete states, between which it jumps according to the transition rates qi(x, t) (also
called reaction parameters). We will treat the transition rates qi(x, t) as the control
inputs, instead of the velocity and diffusion parameters (vi, ui). Since we will allow the
control inputs to be functions of the density of the random variables (Z(t), Y (t)), this
reaction-based control mechanism results in the forward equation being a semilinear
PDE, rather than a fully nonlinear one.

We will consider the following problem in this section.

Problem 4.1. Let yd ∈ L∞(Ω) be a target probability density. Construct a mean-
field feedback law Ki : L2(Ω) → L∞(Ω) such that if ui(·, t) = Ki(y(t)) for all i ∈
{1, 2} and all t ≥ 0, then the system (4.1) is globally asymptotically stable about the
equilibrium yd = [0 yd]T .

Before we address this problem, we make some additional assumptions on the
domain Ω and the operator A. Toward this end, we present the following definitions.

Definition 4.2. We will say that Ω is a C1,1 domain if each point x ∈ ∂Ω has a
neighborhood N such that Ω∩N is represented by the inequality xn < γ(x1, ..., xn−1)
in some Cartesian coordinate system for some function γ : Rn−1 → R that is at least
once differentiable and has derivatives of order 1 that are Lipschitz continuous.

Definition 4.3. The domain Ω will be said to satisfy the chain condition if
there exists a constant C > 0 such that for every x, x̄ ∈ Ω and every positive n ∈ Z+,
there exists a sequence of points xi ∈ Ω, 0 ≤ i ≤ n, such that x0 = x, xn = x̄, and
|xi−xi+1| ≤ C

n |x− x̄| for all i = 0, ..., n− 1. Here | · | denotes the standard Euclidean
norm.

Note that every convex domain satisfies the chain condition.
In this section, we will make some stronger assumptions on the generator and the

domain Ω than those made in the previous section.

Assumption 4.4. Only one of the following conditions holds:
1. If Ω 6= M , then Ω is a bounded subset of RN , −A =

∑N
i=1 ∂

2
xi

= ∆ is the
Laplacian, and Ω is a C1,1 domain in the sense of Definition 4.2 and satisfies
the chain condition in Definition 4.3.

2. The set Ω is a compact manifold M without a boundary.

Given these assumptions, we have the following result due to Gaussian estimates
proved by [18] for the Laplacian ∆, and by [37] for sub-Laplacians. We will use this
result in the subsequent analysis.

Theorem 4.5. Let (T (t))t≥0 be the semigroup generated by the operator −A. Let
y0 ∈ L2(Ω) be non-negative. Then there exists a constant C > 0 and time T > 0,
independent of y0, such that T (t)y0 ≥ C‖y0‖1 for all t ≥ T .

In general, for the stability results of this section to remain true, the generator
A satisfying Assumption 4.4 could be replaced by any other operator that generates
a positive semigroup that is mass conserving and satisfies the Gaussian lower bound
property [55]. For example, the Gaussian lower bound property is also satisfied by the
heat equation on a geodesically convex subset of a Riemannian manifold [47].

In order to address Problem 4.1, we define the following maps Fi : L2(Ω)→ L2(Ω),
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i ∈ {1, 2},

(4.5) (Fi(f))(x) = ri(f(x)− yd(x))

for almost every x ∈ Ω and all f ∈ L2(Ω), where ri : R→ [0, c] are globally Lipschitz
functions for some positive number c, such that the functions r1 and r2 have supports
equal to the intervals [0,∞) and (−∞, 0], respectively. Our candidate mean-field
feedback law Ki for addressing Problem 4.1 will be Ki(y) = Fi(y1) for each i ∈ {1, 2}.
Then the resulting closed-loop PDE is given by

(y1)t = −Ay1 − F1(y2)y1 + F2(y2)y2 in Ω× [0, T ]

(y2)t = F1(y2)y1 − F2(y2)y2 in Ω× [0, T ]

y(·, 0) = y0 in Ω

n · ∇y1 = 0 in ∂Ω× [0, T ],(4.6)

where the Neumann boundary condition in the last equation is specified only for the
case where the boundary ∂Ω is nonempty. Since the transition rates are a functions
of the distribution of the random variable, the relation between the system of SDEs
(4.2) and PDEs (4.6) is no longer straightforward. For the choice of control law Fi,
the SDE becomes a stochastic process of Mckean-Vlasov type [51, 41], and further
analysis is required to establish a rigorous connection between the two systems (4.1)
and (4.6). Such an analysis is beyond the scope of this article, and is left for future
work.

Our main goal in this section will be to establish the asymptotic stability of the
PDE (4.6) given Assumption 4.4. Before we begin the stability analysis of the above
PDE model, we point out that standard approaches to stability analysis, such as
linearization-based approaches or Lyapunov functional arguments, are not immedi-
ately applicable, as we demonstrate in the following two remarks.

Remark 4.6. (Lack of exponential stability) Consider the linearization of
the PDE (4.6) about the target equilibrium density yd = [0 yd]T . It can be verified
that the (Fretćhet) derivative of the nonlinear operators Fi derivative about the yd is
the 0 operator. Therefore, the linearization of the PDE about the equilibrium yd is:

(ỹ1)t = −Aỹ1 in Ω× [0, T ]

(ỹ2)t = 0 in Ω× [0, T ]

ỹ(·, 0) = ỹ0 in Ω

n · ∇ỹ1 = 0 in ∂Ω× [0, T ].(4.7)

Clearly, this PDE is not exponentially stable since the spectrum of its generator,

(4.8) Ay =

[
Ay1

0

]
,

has an infinite number of eigenvalues at 0. Hence, the PDE (4.6) cannot be locally
exponentially stable about the equilibrium yd.

Remark 4.7. (Difficulty in using Lasalle’s principle) Another standard ap-
proach to establish asymptotic stability of dynamical systems is LaSalle’s invariance
principle [39]. However, the application of LaSalle’s invariance principle for stability
analysis of infinite-dimensional dynamical systems, such as the PDE (4.6), requires
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that the trajectories of the system remain in a compact set for all time [34]. The com-
pactness of trajectories for solutions of parabolic PDEs is usually inferred from the
regularizing effect of the diffusion component of the dynamics. This is not straight-
forward to establish for solutions y of the PDE (4.6) due to the fact that the diffusion
operator A acts only on the first state y1, and therefore it cannot be guaranteed that
the state y2 lies in a Sobolev space.

Due to the technical issues pointed out in Remarks 4.6 and 4.7, we will use an
alternative approach to establish asymptotic stability of the PDE (4.6) based on the
monotonicity properties of the PDE. In order to perform stability analysis of the
PDE (4.6), we will need a suitable notion of a solution. Toward this end, we use the
following definition.

Definition 4.8. Let (T (t))t≥0 be the semigroup generated by the operator −A.
We will say that the PDE has a local mild solution if there exist T > 0 and
y ∈ C([0, T ];L2(Ω)) such that

y1(·, t) = T (t)y0
1 −

∫ t

0

T (t− s)
(
F 1(y2(·, s))y1(·, s)

)
ds

+

∫ t

0

T (t− s)
(
F 2(y2(·, s))y2(·, s)

)
ds,

y2(·, t) = y0
2 +

∫ t

0

F 1(y2(·, s))y1(·, s)ds−
∫ t

0

F 2(y2(·, s))y2(·, s)ds(4.9)

for all t ∈ [0, T ].
We will say that the PDE (4.6) has a unique global solution if it has a unique

local mild solution for every T > 0.

In order to establish the existence of solutions of the PDE (4.6), we define the
map G : L2(Ω)→ L2(Ω) as

G(f) =

[
−F1(f2)f1 + F2(f2)f2

+F1(f2)f1 − F2(f2)f2

]

for each f ∈ L2(Ω). We will also need the operator A : D(A) :→ L2(Ω), defined as

Ay =

[
Ay1

0

]

for all y ∈ D(A) = D(A)× L2(Ω).
Then we have the following result.

Lemma 4.9. The map G is locally Lipschitz continuous everywhere on L2(Ω).

Proof. We only show that the map y 7→ F1(y2)y1 from L2(Ω) to L2(Ω) is locally
Lipschitz everywhere on L2(Ω). The rest of the proof is a straightforward extension.
Let R > 0 and y0,p,q ∈ L2(Ω) with ‖p − y0‖2 ≤ R and ‖q − y0‖2 ≤ R. Then we
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have that

‖F1(p2)p1 − F1(q2)q1‖22 =∫
Ω

|r1(p2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))q1(x)|2dx

≤
∫

Ω

|r1(p2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))p1(x)|2dx

+

∫
Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))p1(x)|2dx

Since r1 is a globally Lipschitz function that is bounded from above by a constant c,
and from below by 0, we can conclude that

‖F1(p2)p1 − F1(q2)q1‖22

≤ C‖r1(p2(·)− yd(·)− r1(q2(·)− yd(·))‖∞
∫

Ω

|p1(x)|2dx

+ C

∫
Ω

|r1(q2(x)− yd(x))|2dx
∫

Ω

|p1(x)− q1(x)|2dx

≤ C
∫

Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x)|2dx
∫

Ω

|p2(x)|2dx

+ C

∫
Ω

|r1(q1(x)− yd(x))|2dx
∫

Ω

|p1(x)− q1(x)|2dx

≤ C
∫

Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))|2dx

+ C

∫
Ω

|p1(x)− q1(x)|2dx

≤ C
∫

Ω

|p2(x)− q2(x)|2dx + C

∫
Ω

|p1(x)− q1(x)|2dx

for some C > 0 depending only on the constants R and c.

Using Lemma 4.9, we can prove the following theorem on the existence of a mild
solution of the PDE (4.6) by applying standard results on the existence of solutions
of semilinear PDEs [48][Theorem 7.1.2].

Theorem 4.10. Let y0 ∈ L2(Ω) in the PDE (4.6). There exists a unique local
mild solution of this PDE.

Proof. We have shown that the map G is locally Lipschitz everyhwhere on L2(Ω).

Our next goal will be to construct global solutions of the PDE (4.6). Further
ahead, we will show that the solutions of the PDE (4.6) remain essentially bounded
if the initial condition is essentially bounded. Toward this end, we first establish this
property for a related autonomous linear PDE.

Lemma 4.11. Suppose y ∈ L∞(Ω). Let a ∈ L∞(Ω) be non-negative. Consider
the linear bounded operator B : L2(Ω)→ L2(Ω) defined by

(By)(x) =

[
−a1(x)y1(x) + a2(x)y2(x)
a1(x)y1(x)− a2(x)y2(x)

]
for almost every x ∈ Ω and all y ∈ L2(Ω). Let (T C(t))t≥0 be the semigroup generated
by the operator C = −A + B. Then ‖T C(t)y0‖∞ ≤ e‖a‖∞t‖y0‖∞ for all t ≥ 0.
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Proof. We know that the operator A generates a semigroup (T A(t))t≥0 given by

(4.10) T A(t) =

[
T (t) 0
0 I

]
for all t ≥ 0. Moreover, the semigroup (T A(t))t≥0 satisfies ‖T A(t)y0‖∞ ≤ ‖y0‖∞ for
all y0 ∈ L∞(Ω) and t ≥ 0 (Corollary 3.6). Additionally, we know that the semigroup
(T B(t))t≥0 generated by the bounded operator B satisfies the estimate
‖T B(t)y0‖∞ ≤ e‖a‖∞t‖y0‖∞. Then the result follows from the Lie-Trotter product
formula [27][Corollary III.5.8], by noting that T C(t) = limN→0(T A( tN )T B( tN ))N ,
where the limit holds in the strong operator topology, for all t ≥ 0.

Now we can show that the L∞− estimate proved in Lemma 4.11 can be extended
to a class of non-autonomous linear systems that can be treated as autonomous linear
systems over certain intervals of time.

Lemma 4.12. Suppose y0 ∈ L∞(Ω), c > 0 and T > 0. Let a1, a2 ∈
L2(0, T ;L2(Ω)) be non-negative and piecewise constant with respect to time, with
‖a1(t)‖∞ ≤ c and ‖a2(t)‖∞ ≤ c for all t ∈ [0, T ]. Then suppose y ∈ C([0, T ];L2(Ω))
is given by

y1(·, t) = T (t)y0
1 −

∫ t

0

T (t− s)
(
a1(·, t)y1(·, s)

)
ds

+

∫ t

0

T (t− s)
(
a2(·, t)y2(·, s)

)
ds

y2(·, t) = y0
2 +

∫ t

0

a1(·, s)y1(·, s)ds−
∫ t

0

a2(·, s)y2(·, s)ds(4.11)

for all t ∈ [0, T ]. Then

(4.12) ‖T C(t)y0‖∞ ≤ ect‖y0‖∞

for all t ∈ [0, T ].

Proof. Let (ti)
m
i=0 be a finite sequence of length m+ 1 ∈ Z+ of strictly increasing

time instants, with t0 = 0, such that the functions a1 and a2 are constant over the
intervals [ti−1, ti), i ∈ {1, ...,m}. Then, for each i ∈ {1, ...,m}, consider the bounded
operators Bi : L2(Ω)→ L2(Ω) and Ci : D(A)→ L2(Ω)

(Biy)(x) =

[
−a1(x, ti−1)y1(x) + a2(x, ti−1)y2(x)
a1(x, ti−1)y1(x)− a2(x, ti−1)y2(x)

]
(4.13)

for almost every x ∈ Ω and all y ∈ L2(Ω), and Ci = A + Bi, respectively. Then for
each i ∈ {1, ...,m}, y is given by

(4.14) y(·, t) = T Ci(t− ti)T Ci−1(ti − ti−1)...T C1(t1)

for all t ∈ [ti−1, ti]. Then the result follows from Lemma 4.11.

Lemma 4.13. Suppose y0 ∈ L∞(Ω), c > 0, and T > 0. Let the functions a1, a2 ∈
L2(0, T ;L2(Ω)) be non-negative with ‖a1(t)‖∞ ≤ c and ‖a2(t)‖∞ ≤ c for almost every
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t ∈ [0, T ], Then suppose y ∈ C([0, T ];L2(Ω)) is given by

y1(·, t) = T (t)y0
1 −

∫ t

0

T (t− s)
(
a1(·, s)y1(·, s)

)
ds

+

∫ t

0

T (t− s)
(
a2(·, s)y2(·, s)

)
ds,

y2(·, t) = y0
2 +

∫ t

0

a1(·, s)y1(·, s)ds−
∫ t

0

a2(·, s)y2(·, s)ds

for all t ≥ 0. Then

(4.15) ‖y(·, t)‖∞ ≤ ect‖y0‖∞

for all t ∈ [0, T ].

Proof. Given that a1, a2 ∈ L2(0, T ;L2(Ω)), we know that there exists a se-
quence of piecewise (with respect to time) non-negative functions (ai1)∞i=1, (a

i
2)∞i=1

in L2(0, T ;L2(Ω)) such that limi→∞ ‖aij − aj‖L2(0,T ;L2(Ω)) = 0, for j = 1, 2

[61][Proposition 1.36]. Moreover, for each j ∈ {1, 2}, we can assume that ‖aij(t)‖∞ ≤ c
for all t ∈ [0, T ] and all i ∈ Z+. Consider the corresponding sequence (y)∞i=1 in
C([0, T ];L2(Ω)) defined by

yi1(·, t) = T (t)y0
1 −

∫ t

0

T (t− s)
(
ai1(·, s)yi1(·, s)

)
ds

+

∫ t

0

T (t− s)
(
a2(·, s)yi2(·, s)

)
ds,

yi2(·, t) = y0
2 +

∫ t

0

ai1(·, s)yi1(·, s)ds−
∫ t

0

ai2(·, s)yi2(·, s)ds(4.16)

for each i ∈ Z+. Let ei ∈ C([0, T ];L2(Ω)) be given by ei = yi − y for each i ∈ Z+.
Then, from equations (4.15) and (4.16), we know that ei satisfies

ei1(·, t) = −
∫ t

0

T (t− s)
(
ai1(·, s)yi1(s, ·)

)
ds+

∫ t

0

T (t− s)
(
ai2(·, s)yi2(s, ·)

)
ds

+

∫ t

0

T (t− s)
(
a1(·, s)y1(·, s)

)
ds−

∫ t

0

T (t− s)
(
a2(·, s)y2(·, s)

)
ds

= −
∫ t

0

T (t− s)
(

(ai1(·, s)− a1(·, s))yi1(·, s)
)
ds

+

∫ t

0

T (t− s)
(
a1(·, s)(y1(·, s)− yi1(s, ·))

)
ds

+

∫ t

0

T (t− s)
(

(ai2(·, s)− a2(·, t))yi2(·, s)
)
ds

−
∫ t

0

T (t− s)
(
a2(·, s)(y2(·, s)− yi2(·, s))

)
ds

for all t ∈ [0, T ]. Considering the fact that the semigroup T (t) is contractive (Corollary
3.6), and that aij and yij are uniformly bounded in L∞((0, T ) × Ω), we can conclude
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that there exists a constant α > 0 such that

‖ei1(·, t)‖2 ≤ α‖ai2 − a2‖L2(0,T ;L2(Ω))‖yi1‖L2(0,T ;L2(Ω))

+ α‖a1‖L2(0,T ;L2(Ω))‖ei1‖L2(0,T ;L2(Ω))

+ α‖ai2 − a2‖L2(0,T ;L2(Ω))‖yi2‖L2(0,T ;L2(Ω))

+ α‖a2‖L2(0,T ;L2(Ω))‖ei2‖L2(0,T ;L2(Ω))(4.17)

for all t ∈ [0, T ]. Similarly, we can obtain the estimate

‖ei2(·, t)‖2 ≤ α‖ai1 − a1‖L2(0,T ;L2(Ω))‖yi1‖L2(0,T ;L2(Ω))

+ α‖a1‖L2(0,T ;L2(Ω))‖ei1‖L2(0,T ;L2(Ω))

+ α‖ai2 − a2‖L2(0,T ;L2(Ω))‖yi2‖L2(0,T ;L2(Ω))

+ α‖a2‖L2(0,T ;L2(Ω))‖ei2‖L2(0,T ;L2(Ω))(4.18)

for all t ∈ [0, T ].
Then, by considering the sum ‖ei2(·, t)‖2 + ‖ei1(·, t)‖2, combining the two inequal-

ities (4.17) and (4.18), and applying the integral form of Gronwall’s inequality [29],
we have that

(4.19) ‖ei2(·, t)‖2 + ‖ei1(·, t)‖2 ≤ Ci2(1 + Ci1te
Ci

1t)

for all t ∈ [0, T ], where Ci1 = max{2‖a2‖L2(0,T ;L2(Ω)), 2‖a2‖L2(0,T ;L2(Ω))} and Ci2 =
2‖a1 − ai1‖L2(0,T ;L2(Ω))‖y1‖L2(0,T ;L2(Ω)) + 2‖a2 − ai2‖L2(0,T ;L2(Ω))‖y2‖L2(0,T ;L2(Ω)), for
all i ∈ Z+. From the inequality (4.19), we can infer that

lim
i→∞

‖ei‖C([0,T ];L2(Ω)) = 0

Considering the estimate (4.12), we can conclude that y satisfies the estimate (4.15).

From the above lemma, we can conclude the following theorem on global existence
of solutions of the PDE (4.6).

Theorem 4.14. Suppose y0 ∈ L∞(Ω). Then the PDE (4.6) has a unique global
mild solution.

Next, our goal will be to prove that yd is the globally asymptotically stable equi-
librium of the system (4.6). Toward this end, we first prove the following preliminary
results.

Lemma 4.15. Suppose y0 ∈ L∞(Ω) and T > 0. Let a ∈ L∞(Ω) be non-negative.
Consider the multiplication operator B : L2(Ω)→ L2(Ω) defined by

(By)(x) = −a(x)y(x)

for all x ∈ Ω and all y ∈ L2(Ω). Let (T C(t))t≥0 be the semigroup generated by the
operator C = −A+B. Then ‖T C(t)y0‖∞ ≤ ‖y0‖∞ for all t ≥ 0.

Proof. We know that if (T (t))t≥0 is the semigroup generated by the operator −A,
then from Corollary 3.6, ‖T C(t)y0‖∞ ≤ ‖y0‖∞ for all t ≥ 0. Moreover, B generates
the multiplication semigroup (e−a(·)t)t≥0. Then the result follows from the Lie-Trotter
formula [27].
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Lemma 4.16. Let T > 0. Let f, a ∈ L2(0, T ;L2(Ω)) be non-negative functions
defined such that ‖f(t)‖∞ and ‖a(t)‖∞ are bounded by a constant C > 0 almost
everywhere on t ∈ [0, T ]. Suppose e ∈ C([0, T ];L2(Ω)) is given by

e(·, t) = −
∫ t

0

T (t− s)
(
a(·, s)e(·, s)

)
ds+

∫ t

0

T (t− s)f(·, s)ds

for all t ∈ [0, T ]. Then e(·, t) is non-negative for all t ∈ [0, T ].

Proof. Since the proof follows a similar line of argument as the proof of Lemma
4.13, we only sketch an outline of the proof here. As in the proof of Lemma 4.13, for a
given a ∈ L2(0, T ;L2(Ω)) we can construct a sequence (ai)∞i=1 in L2(0, T ;L2(Ω)) that
is piecewise constant in time and converges in L2(0, T ;L2(Ω)), with ‖ai(t)‖∞ bounded
almost everywhere on [0, T ] by C > 0. Let the sequence (ei)

∞
i=1 in C([0, T ];L2(Ω)) be

given by

ei(·, t) = −
∫ t

0

T (t− s)
(
ai(·, s)e(·, s)

)
ds+

∫ t

0

T (t− s)f(·, s)ds

for all t ∈ [0, T ]. Using Lemma 4.15, we can conclude that (ei)
∞
i=1 is non-negative

for each i ∈ Z+. Then, using the fact that the sequences (ei)
∞
i=1 and (ai)

∞
i=1 are

uniformly bounded in the spaces C([0, T ];L2(Ω)) L2(0, T ;L2(Ω)), respectively, and
applying Gronwall’s lemma, the result follows.

We can use Lemma 4.16 prove the following result, which will enable us to show
further on that the rate of convergence of the solution y of the PDE (4.6) towards 0
can be controlled by the rate of convergence of the solution of a related linear PDE.

Theorem 4.17. (Comparison Principle)
Let T > 0. Let y0 ∈ L2(Ω) and f, g ∈ L2(0, T ;L2(Ω)) be non-negative such that
‖f(t)‖∞ and ‖g(t)‖∞ are bounded by a constant C1 > 0 almost everywhere on t ∈
[0, T ]. Define C = −A− ‖g‖∞I. Let y(·, t) be given by

(4.20) y(·, t) = T (t)y0 −
∫ t

0

T (t− s)
(
g(·, s)y(·, s)

)
ds+

∫ t

0

T (t− s)f(·, s)ds

for all t ∈ [0, T ]. Then y(·, t) ≥ T C(t)y0 for all t ∈ [0, T ], where (T C(t))t≥0 is the
semigroup generated by the operator C.

Proof. Let ỹ(·, t) = T C(t)y0 for all t ≥ 0. Then, we know that ‖g‖∞ be

(4.21) ỹ(·, t) = T (t)y0 −
∫ t

0

T (t− s)‖g‖∞ỹ(·, s)ds
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for all t ∈ [0, T ]. Let e = y − ỹ. Then we have that

e(·, t) = −
∫ t

0

T (t− s)
(
g(·, s)y(·, s)

)
ds

+

∫ t

0

T (t− s)f(·, s)ds+

∫ t

0

T t− s)‖g‖∞ỹ(·, s)ds

= −
∫ t

0

T (t− s)
(

(g(·, s)− ‖g‖∞)e(·, s)
)
ds+

∫ t

0

T (t− s)f(·, s)ds

−
∫ t

0

T (t− s)
(
g(·, s)− ‖g‖∞)e(·, s)

)
ds

+

∫ t

0

T (t− s)
(

(‖g‖∞ − g(·, s))ỹ(·, s)
)
ds

for all t ∈ [0, T ]. Then the result follows from the non-negativity of e, which is a
consequence of Lemma 4.16.

Theorem 4.18. (Positive Lower Bound on Solutions) Let T > 0. Let y0 ∈
L2(Ω) and f, g ∈ L2(0, T ;L2(Ω)) be non-negative such that ‖f(t)‖∞ and ‖g(t)‖∞ are
bounded by a constant C1 > 0 almost everywhere on t ∈ [0, T ]. Let y(·, t) be given by

y(·, t) = T (t)y0 −
∫ t

0

T (t− s)
(
g(·, s)y(·, s)

)
ds+

∫ t

0

T (t− s)f(·, s)ds(4.22)

for all t ∈ [0, T ]. Then there exist constants τ, ε, δ > 0, independent of y0 and T > 0,
such that if τ + δ < T , then y(·, t) ≥ ε‖y0‖1 for all t ≥ [τ, τ + δ].

Proof. We know from Theorem 4.5 that there exists a constant k > 0 and time
T > 0, independent of y0, such that T (t)y0 ≥ k‖y0‖1 for all t ≥ T . Let C =
−A − ‖g‖∞I. Then the semigroup (T C(t)) generated by the operator C is given by
T (t) = e−‖g‖∞tT (t) for all t ≥ 0. The result then follows from Theorem 4.17.

The following theorem states the fundamental result that the PDE (4.6) conserves
mass and maintains positivity.

Theorem 4.19. Let y ∈ L∞(Ω) be non-negative. Then the unique global mild
solution of the PDE (4.6) is non-negative, and ‖y(·, t)‖1 = ‖y0‖ for all t ≥ 0.

Proof. The conservation of mass is a simple consequence of taking the inner prod-
uct of the solution of (4.6) with a constant function. The positivity property of so-
lutions follows from [20][Theorem 1] by noting that, if λ > 0 is large enough, then
G(y) + λy ≥ 0 for all y ∈ L2(Ω) that are non-negative.

From here on, we will require some additional notation. For a function f ∈ L2(Ω),

we define f+ := |f |+f
2 , the projection of f onto the set of non-negative functions in

L2(Ω), and f− := − |f |−f2 , the projection of f onto the set of non-positive functions in
L2(Ω). Given these definitions, we have the following result on partial monotonicity
of solutions of the PDE (4.6).

Proposition 4.20. (Partial Monotonicity of Solutions) Let y ∈ L∞(Ω) be
positive. Then the unique global mild solution of the PDE (4.6) satisfies

(yd − y2(·, t))+ ≤ (yd − y2(·, s))+(4.23)

(yd − y2(·, t))− ≥ (yd − y2(·, s))−(4.24)

for all t ≥ s ≥ 0.
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Proof. We will only prove the first inequality (4.23). Since y0 ∈ L∞(Ω), we know
that y2 ∈ C([0, 1];L2(Ω)) and ‖y2(t)‖∞ is uniformly bounded over [0, T ]. Assume
that yd − y0

2 is non-zero and non-negative on a set Ω1 ⊆ Ω of positive measure. For
the sake of contradiction, suppose that there exists t2 ∈ (0, T ] such that y2(·, t2) is
greater than yd on a subset of Ω1 that has positive Lebesgue measure. Then, due to
the fact that y2 ∈ C([0, T ];L2(Ω)), there must exist t1 ∈ (0, t2) and a measurable set
Ω2 ⊂ Ω1 of positive Lebesgue measure, such that for each s ∈ [t1, t2], y2(x, s) ≥ yd(x)
for almost every x ∈ Ω2, with y2(x, t2) 6= y2(x, s) for almost every x ∈ Ω2 and a
subset of [t1, t2] with positive Lebesgue measure. However, we know that

y2(·, t) = y2(·, t1) +

∫ t

s

F1(y2(·, τ))y1(·, τ)dτ −
∫ t

s

F2(y2(·, τ))y1(·, τ)dτ(4.25)

for all t ∈ [t1, t2] This implies that

y2(x, t) = y2(x, t1) +

∫ t

s

F1(y2(x, τ))y1(x, τ)dτ −
∫ t

s

F2(y2(x, τ))y1(x, τ)dτ

= y2(x, t1)−
∫ t

s

r2(y2(x, τ)− yd(x))y1(x, τ)dτ

for almost every x ∈ Ω2 and for all t ∈ [t1, t2]. Since the functions y1 and r2 are both
non-negative, we arrive at the contradiction that y2(x, t) ≤ y2(x, t1) for almost every
x ∈ Ω1 and for all t ∈ [t1, t2]. Hence, we must have that

(4.26) y2(x, t) = y2(x, t1) +

∫ t

s

r1(y2(x, τ)− yd(x))y1(x, τ)dτ

for almost every x ∈ Ω1 and for all t ∈ [0, T ]. This implies that y2 is non-decreasing
with time, and is less than or equal to yd almost everywhere on Ω1. This proves the
first inequality (4.23).

Using a similar argument, based on the fact that r1 and r2 are non-negative
bounded functions, we can arrive at the second inequality (4.24).

Using the above proposition, we will establish global asymptotic stability of the
system (4.6) in the L1 norm. Towards this end, we first establish marginal stability
of the system about the equilibrium distribution yd.

Theorem 4.21. (L1-Lyapunov Stability) Let y0 ∈ L∞(Ω) be positive and∫
Ω
y0(x)dx = 1. For every ε > 0, if

(4.27) ‖y0 − yd‖1 ≤ ε,

then the solution y(·, t) of the system (4.6) satisfies

(4.28) ‖y(·, t)− yd‖1 ≤ 2ε

for all t ≥ 0.

Proof. We know that the solution y satisfies∫
Ω

y(·, t)dx =

∫
Ω

y1(·, t)dx +

∫
Ω

y2(·, t)dx = 1
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for all t ∈ [0, T ]. From Proposition 4.20, we know that ‖y2(·, t)−yd‖1 is non-decreasing
with time t. Hence, ‖y2(·, t)− yd‖1 ≤ ε for all t ≥ 0. Then, we have that

(4.29)

∫
Ω

y1(x, t)dx +

∫
Ω

(y2(x, t)− yd(x))dx = 1−
∫

Ω

yd(x)dx

for all t ≥ 0. This implies that∫
Ω

y1(x, t)dx ≤ −
∫

Ω

(y2(x, t)− yd(x))dx ≤ ‖y2(·, t)− yd‖1 ≤ ε

for all t ≥ 0. This concludes the proof.

Proposition 4.22. Let y0 ∈ L∞(Ω) be non-negative and ‖y0‖1 = 1. Then the
solution y of the PDE (4.6) satisfies limt→∞ ‖(y1(·, t)− yd)+‖∞ = 0.

Proof. Suppose that, for the sake of contradiction, this is not true. Then, due
to the partial monotonicity property of the solution y stated in Proposition 4.20,
there exists a subset Ω1 ⊆ Ω of positive measure, and a parameter ε > 0, such that
y1(x, t)− yd(x) ≥ ε for almost every x ∈ Ω1 and all t ≥ 0. However, we know that

y2(x, t) = y2(x, t1)−
∫ t

s

F 2(y2(x, τ))y2(x, τ)dτ

= y2(x, t1)−
∫ t

s

r2(y2(x, τ)− yd(x))y2(x, τ)dτ

for almost every x ∈ Ω1 and for all t ≥ 0. We know that the function r2 is non-zero
and continuous on the open interval t ∈ (0,∞). Hence, there must exist δ > 0 such
that

y2(x, t) ≤ y2(x, 0)−
∫ t

0

δy2(x, τ)dτ ≤ y2(x, 0)− δ
∫ t

0

(yd(x) + ε)dτ(4.30)

for almost every x ∈ Ω1 and for all t ≥ 0. This leads to a contradiction.

Finally, we can establish attractivity of the equilibrium point yd ∈ L∞(Ω). To-
wards this end, we first prove in the lemma below that the density of the agents in the
state Y (t) = 0 (i.e. the state of motion, given by y1, must converge to 0 eventually.

Lemma 4.23. Let y0 ∈ L∞(Ω) be non-negative and ‖y0‖1 = 1. Then

lim
t→∞

‖y1(·, t)‖ = 0.

Hence,

lim
t→∞

‖y2(·, t)‖ = 1.

Proof. Suppose that, for the sake of contradiction, this is not true. Then there
exists ε1 > 0 and a sequence of increasing time instants (ti)

∞
i=1 such that limi→∞ ti =

∞ and ‖y(·, ti)‖1 ≥ ε1 for all i ∈ Z+. From Theorem 4.18, we know that this
implies that there exist constants τ, ε2, δ > 0 such that y(·, t) ≥ ε2‖y0‖1 ≥ ε1ε2 for
all t ≥ [ti, ti + δ], for all i ∈ Z+. Without loss of generality, we can assume that
ti+1 − ti > δ for all i ∈ Z+. Let Ω1 ⊆ Ω be the subset of largest measure such that
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y0
2(x) ≥ yd(x) for all x ∈ Ω1. Then, from the partial monotonicity property of the

solution y (Proposition 4.20), we have that, for each i ∈ Z+,

y2(x, ti + δ) = y2(x, 0) +

∫ ti+δ

0

F1(y2(x, τ))y1(x, τ)dτ

≥ y2(x, 0) +

i∑
j=1

∫ ti+δ

ti

r1(y2(x, τ)− yd(x))y1(x, τ)dτ

for almost every x ∈ Ω1. This implies that limi→∞ ‖(y1(·, ti) − yd)−‖∞ = 0. How-
ever, we know that ‖y(·, t)‖1 = 1 for all t ≥ 0. This, along with the fact that
limt→∞ ‖(y1(·, t)−yd)+‖∞ = 0 (Lemma 4.23) and the assumption that ‖y(·, ti)‖1 ≥ ε1
for all i ∈ Z+, leads to a contradiction.

Now, using the partial monotonicity property of solutions established in Propo-
sition 4.20 and the result in Lemma 4.23, we obtain the following global asymptotic
stability result.

Theorem 4.24. (L1-Global Asymptotic Stability) Let y0 ∈ L∞(Ω) be non-
negative and ‖y0‖1 = 1. Then limt→∞ ‖y(·, t)−yd‖1 = 0, and hence the system (4.6)
is globally asymptotically stable about the target equilibrium distribution yd.

Proof. Let Ω1 = {x ∈ Ω; y0
2(x) ≥ yd(x)}. Let Ω2 = Ω− Ω1. From Lemma 4.23,

we know that limt→∞ ‖y(·, t)|Ω1 − yd|Ω1‖∞ = 0, where ·|Ω denotes the restriction
operation. This implies that limt→∞ ‖y(·, t)|Ω1 − yd|Ω1‖1 = 0. We also know from
Lemma 4.23 that

(4.31) lim
t→∞

∫
Ω1

(
y2(x, t)− yd(x)

)
dx +

∫
Ω2

(
y2(x, t)− yd(x)

)
dx = 0

This implies that

(4.32) lim
t→∞

∫
Ω2

(
y2(x, t)− yd(x)

)
dx = 0

From Proposition 4.20, we know that y2(·, t) ≤ yd almost everywhere on Ω2 and for
all t ≥ 0. Hence, we can conclude that

lim
t→∞

‖y2(·, t)− yd‖1 = lim
t→∞

∫
Ω1

|y2(x, t)− yd(x)|dx +

∫
Ω2

|y2(x, t)− yd(x)|dx = 0

From this, along with the fact that limt→∞ ‖y1(·, t)‖1 = 0, we arrive at our result.

5. SIMULATIONS. In this section, we validate the control laws presented in
Sections 3 and 4 with numerical simulations. The SDEs (3.1) and (4.2) were simulated
using the method of Wong-Zakai approximations [65]. The diffusion and reaction
parameter values used in each simulation were chosen with the goal of shortening the
duration of the simulation on a case-by-case basis. Hence, different parameter values
were chosen for each of the examples below. In practice, these parameters would need
to be chosen according to the physical constraints on the system and the objectives of
the user, such as optimizing the rate of convergence to the target density or controlling
the variance of the agent density around the target density.
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5.1. Density Control without Agent Interactions.
In this subsection, we simulate the control approach presented in Section 3. In each
of the following examples, we simulate the SDE (3.1) with the control laws vi = 0
and ui(x) = D/yd(x), where D is a diffusion coefficient. The generator of the process
is given by the operator in (3.5).

Example 5.1. Brockett integrator

In this example, we consider the case where each agent’s motion evolves according to
the Brockett integrator, which has been well-studied in the control theory literature
[16, 5]. The control vector fields for this system are the following:

X1(x) =
∂

∂x1
− x2

∂

∂x3
, X2(x) =

∂

∂x2
+ x1

∂

∂x3
(5.1)

The Lie bracket of the two vector fields is given by

[X1, X2](x) = X1X2 −X2X1 = 2
∂

∂x3
(5.2)

for all x ∈ RN . Hence, we have that

(5.3) span {X1(x), X2(x), [X1, X2](x)} = TxR3

and therefore, the system is bracket generating. We define the domain Ω = [0, 100]3.
The target distribution yd is given by

(5.4) yd = c [

8∑
i=1

1Bxi
+ 0.001],

where c > 0 is a normalization constant that makes yd a probability density, 1S
denotes the indicator function of a set S, and Bxi denotes a ball of radius 12.5 centered
at xi, i = 1, ..., 8, defined as

{x1, ...,x8} = {[25 25 25]T , [25 25 75]T , [25 75 75]T , ..., [75 75 75]T }.

The positions of Np = 10, 000 agents are generated from a stochastic simulation of
the SDE (3.1) and plotted at three times t in Fig. 1. The figure shows that at time
t = 100 s, the distribution of the swarm over the sphere is close to the target density.

Example 5.2. Nonholonomic system on SO(3)

In this example, the agents evolve according to a nonholonomic system on the spe-
cial orthogonal group of rotation matrices, denoted by SO(3) = {B ∈ R3×3;BTB =
I, detB = 1}}. The tangent space of SO(3) at the origin, the Lie algebra correspond-
ing to this Lie group, is denoted by so(3). A basis of so(3) is given by the following
matrices:

B1 =

0 −1 0
1 0 0
0 0 0

 , B2 =

 0 0 1
0 0 0
−1 0 0

 , B3 =

0 0 0
0 0 −1
0 1 0

 .(5.5)

Each of these matrices defines a left-invariant vector field Xi given by

(5.6) (Xif)(x) = lim
t→0

f(etBix)− f(x)

t
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(a) t = 0 s (b) t = 10 s (c) t = 100 s

Fig. 1. (Brockett integrator) Stochastic coverage by Np = 10, 000 agents (in red) at different
times t, following the linear diffusion model (3.7).

for all x ∈ SO(3) and all f ∈ C∞(SO(3)). We assume that each agent can control its
motion along the vector fields {X1, X2}. It can be verified that

span {X1(x), X2(x), [X1, X2](x)} = span {X1(x), X2(x),−X3(x)} = TxSO(3)

The target density (with respect to the Haar measure) is given by

(5.7) yd(A) = c(A2
11 +A2

22 +A2
33)

for all A ∈ SO(3), where c > 0 is the normalization constant such that yd is a
probability density.

Since SO(3) is a 3-dimensional manifold and cannot be embedded in R3, visu-
alizing the agent positions and the target probability density is not straightforward.
We adopt the approach suggested in [46] for such a visualization. Any element of
O ∈ SO(3) acts on an element e of the 2-dimensional sphere S2 = {x ∈ R3; xTx = 1}
through matrix-vector multiplication, resulting in an element Oe ∈ S2. If Z(t) is the
solution to the process (3.1), then Z(t)ei is a process on the sphere. Let e1 = [1 0 0]T ,
e2 = [0 1 0]T , and e3 = [0 1 0]T . Note that Oei is the ith column of O. If the
density of Z(t) converges to yd, then the density of Z(t)ei must converge to the target
density on the sphere S2 given by ydi (x) =

∫
Oei=x

yd(O)dO for all x ∈ S2. The

action of the matrices Zj(t) on the vectors −e2 and e3 is shown in Fig. 2 and Fig. 3,
respectively. The target densities y1

d and y2
d, shown in Fig. 2 and Fig. 3, are depicted

on the surface of the sphere using a color density plot. Blue regions are assigned a low
target density of agents, while yellow regions are assigned a high target density. The
agent positions are superimposed on the density plot to enable comparison between
the actual and target densities. As Fig. 2 and Fig. 3 show, at time t = 100 s, the
distribution of the swarm over the sphere is close to the target density.

5.2. Density Control with Agent Interactions. In this subsection, we sim-
ulate the control approach presented in Section 4. The functions ri in Eq. (4.5) are
chosen to be

(5.8) ri(x) =

{
kx if x > 0

0 if x = 0

for all x ∈ Ω, where k is a positive scaling constant. Since we simulate a finite
number of agents, instead of the density y1, the agents use the empirical measure
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(a) t = 0 s (b) t = 10 s (c) t = 100 s

Fig. 2. (Nonholonomic system on SO(3)) Stochastic coverage of SO(3) by N = 5, 000 agents
(in red) at different times t, following the linear diffusion model (3.7). This plot shows the time
evolution of the action of the agents’ matrices Zj(t) on −e2 = [0 − 1 0]T on the sphere S2.

(a) t = 0 s (b) t = 10 s (c) t = 100 s

Fig. 3. (Nonholonomic system on SO(3)) Stochastic coverage of SO(3) by N = 5, 000 agents
(in red) at different times t, following the linear diffusion model (3.7). This plot shows the time
evolution of the action of the agents’ matrices Zj(t) on e3 = [0 0 1]T on the sphere S2.

1
Np

∑Np

i=1 δxi(t) to compute their transition rates. However, the empirical measure is

not absolutely continuous with respect to the Riemannian volume and does not have
a density. Therefore, the agents use the regularized approximation of the measure
1
Np

∑Np

i=1 δxi(t), given by

(5.9) ρ̃(x, t) = c(ε)
1

Np

Np∑
i=1

Kε(x,xi(t))

for all x ∈M , where the kernel function Kε is chosen such that limε→0 c(ε)Kε(·,y) =
δy for each y ∈ Ω, and the function c(ε) is a normalization parameter defined such
that c(ε)

∫
M
Kε(x,y)dx = 1. For each of the examples below, we will specify the

kernel function used. The positions of each agent are generated according to the SDE
(4.2). The transition rates qi(x, t) of the agents are defined as

(5.10) qi(x, t) = ri

(
c(ε)

1

Np

Np∑
i=1

Kε(x,xi(t))− yd(x)
)
.

Example 5.3. Brockett integrator

In this example, each agent moves according to Eq. (4.2) with the control vector
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(a) t = 5 s (b) t = 50 s (c) t = 500 s

Fig. 4. (Brockett integrator) Stochastic coverage of R3 by N = 1, 000 agents at different times
t, following the semilinear PDE model (4.6). Blue agents are in the state of motion; red agents are
in the motionless state.

fields as defined in Example 5.1. The kernel function is given by:

(5.11) Kε(x,y) =

{
exp −1

1−(|x−y|/ε)2 if |x− y| < ε

0 otherwise

for all x,y ∈ R3. The target density is set to the following function, similar to the
one defined for the Brockett integrator in Example 5.1:

yd = c

8∑
i=1

1Bxi

where c is a normalization parameter. Note that in this example, the probability
density is allowed to take value equal to 0 in certain regions of the the domain, unlike
in Example 5.1. The parameter of the kernel in (5.11) is defined as ε = 5. The
positions of Np = 1, 000 agents are generated from a stochastic simulation of the SDE
(4.2) and plotted in Fig. 4 at three times t. As can be seen in this figure, at time
t = 500 s, the swarm is uniformly distributed over the sets Bxi according to the target
density. At t = 500 s, there are only 40 agents in the state of motion. In contrast,
when using the control approach without agent interactions (Section 3), all agents
are constantly in motion. While the interacting-agent control approach, unlike the
control approach without interactions, enables agents to stop moving once the target
density is reached (and therefore stop unnecessarily expending energy), the time until
the interacting agents converge to the target density was found to be sensitive to the
reaction constant k in Eq. (5.8). Lower values of k, e.g. k = 10, resulted in a slower
rate of agent transitions to the motionless state. On the other hand, if the value of k
was chosen too large, some of the agents prematurely transitioned to the motionless
state in regions close to their initial positions. The performance of the interacting-
agent control law was also affected by the parameter ε. If ε was taken to be too small,
for example ε = 0.1, the agents did not converge to any distribution, but instead
remained in a state of motion. This can be attributed to the fact that given a fixed

value of Np, the sum c(ε) 1
Np

∑Np

i=1Kε(x,xi(t)) becomes a less accurate approximation

of the density y(x, t) as the value of ε is decreased. On the other hand, if ε is taken
to be too large, then the agent density converges to a regularized approximation of
the target density, rather than the target density itself. Due to space limitations, we
do not include numerical results on the effects of these parameters here.
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(a) t = 0 s (b) t = 10 s (c) t = 100 s

Fig. 5. (Fully actuated system on S2) Stochastic coverage of S2 by N = 1, 000 agents
at different times t, following the semilinear PDE model (4.6). White agents are in the state of
motion; red agents are in the motionless state.

Example 5.4. Fully actuated system on the sphere

In this example, we consider a system on the 2-dimensional sphere embedded in R3

given by S2 = {x ∈ R3; xTx = 1}. Each of the matrices Bi in (5.5) defines a vector
field X̃i on S2 given by

(5.12) (X̃if)(x) = lim
t→0

f(etBix)− f(x)

t

for all x ∈ S2 and all functions f ∈ C∞(S2). We assume that each agent can control
its motion along the vector fields X̃1, X̃2. Note that in this case, the system is fully
actuated, or holonomic, since S2 is a 2-dimensional manifold and the dimension of
span {X̃1(x), X̃2(x)} is 2 for all x ∈ S2.

The kernel function is defined as

(5.13) Kε(x,y) =

{
exp −1

1−(acos(xTy)/ε)2
if acos(xTy) < ε

0 otherwise

for all x,y ∈ S2. The target density yd : S2 → R≥0 (with respect to the Haar
measure) is given by

(5.14) yd(x) =

{
c if x2

i ≥ 0.75 for i ∈ {1, 2, 3}
0 otherwise

for all x,y ∈ S2, where c is a normalization parameter chosen such that this function
integrates to 1. We set ε = 0.1. The positions of Np = 1, 000 agents are generated
from a stochastic simulation of the SDE (4.2) and plotted in Fig. 5 at three times t.
The target density yd is depicted on the surface of the sphere using a color density plot,
as for the example in which the agents evolve in SO(3) (Figs. 2 and 3). Blue regions
are assigned a low target density of agents, while yellow regions are assigned a high
target density. The agent positions are superimposed on the density plot to enable
comparison between the actual and target densities. Figure 5 shows that at time
t = 100 s, the distribution of the swarm over the sphere is close to the target density.
As for the case of the Brockett integrator in Example 5.3, only a small fraction of the
swarm (62 agents) is in the state of motion once the swarm has converged closely to
the target density (t = 100 s in this example).
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6. CONCLUSION. In this article, we have generalized our diffusion-based
multi-agent coverage approach to the case where the agents have nonholonomic dy-
namics. We established exponential stability of the resulting Kolmogorov forward
equation, whose generator is a hypoelliptic operator. In addition, we constructed a
hybrid switching diffusion process of mean-field type such that the probability density
of the random variable that represents the distribution of a swarm can be stabilized
to a target density that is not necessarily positive everywhere on the domain. Possi-
ble directions for future work includes investigating the tradeoff between control laws
with interaction and without interaction. One could also investigate the convergence
of the N -agent system of hybrid switching diffusion processes to the solution of the
semilinear PDE.

Appendix A. Proof of results in Section 3.

Proof of Lemma 3.3 Consider the associated form ωba. This form is closed , i.e., the
space D(ωa) equipped with the norm ‖ · ‖ωb

a
, given by ‖u‖ωb

a
= (‖u‖2a + ωba(u, u))1/2

for each u ∈ D(ωba), is complete. This is true due to the fact that the multiplication
map u 7→ a · u is an isomorphism from WH1

a(Ω) to WH1(Ω) and WH1(Ω) is a Ba-
nach space. Moreover, the space WH1

a(Ω) is dense in L2
a(Ω). This follows from the

inequality ‖au− av‖2 ≤ ‖a‖∞‖u− v‖2 for each u, v ∈ L2(Ω), the fact that the spaces
L2
1(Ω) and L2

a(Ω) are isomorphic, and the fact that WH1(Ω) is dense in L2(Ω). For
the case when the domain is ε − δ (Definition 2.1) and M = Rn, the density of the
space WH1(Ω) in L2(Ω) has been established [Theorem 1.13][32]. For the case when
M is compact, the density of the space follows trivially from the fact that the set
of smooth functions on M is dense in L2(Ω). A similar result is also true for the
case when the operator is elliptic, since WH1(Ω) coincides with the usual Sobolev
space [Theorem 2.9][6]. In addition, it follows from the definition of the form ωba
that ωba is symmetric, meaning that ωba(u, v) = ωba(v, u) for each u, v ∈ D(ωa). The
form ωba is also semibounded, i.e., there exists m ∈ R such that ωba(u, u) ≥ m‖u‖2a
for each u ∈ D(ωba). In particular, this inequality is true for m = 0 since ωba(u, u) is
non-negative for all u ∈ D(ωba). Hence, it follows from [63][Theorem 10.7] that the
operator Aba is self-adjoint. �

Proof of Proposition 3.4 To establish the discreteness of the spectrum of Aba, we
need to establish that the space WH1

a(Ω) is compactly embedded in L2
a(Ω) whenever

one of the conditions 1-3 in the statement of the proposition is true. This is true if
WH1(Ω) is compactly embedded in the space L2(Ω), which is known to be true when
Ω is a subset of Rn and an ε-δ domain [Theorem 1.27][32] or when span{Xi(x)} = TxM
[Theorem 2.33][6]. For the case when M is a compact manifold without a boundary,
we note that u ∈ D(A1

1) implies that u lies in some fractional Sobolev space Hr(Ω)
with its fractional Sobolev norm uniformly bounded [Localization lemma][40]. Since
the fractional Sobolev space Hr(Ω) is compactly embedded in L2(Ω) whenever the
exponent r is positive, we can infer that WH1

a(Ω) is compactly embedded in L2
a(Ω).

This implies that when WH1
a(Ω) = D(ωa,b) is equipped with the norm ‖ · ‖ωa,b

, then
it is also compactly embedded in L2

a(Ω). From [63][Proposition 10.6], it follows that
Aba has a purely discrete spectrum. �

Proof of Corollary 3.6 First, we note that the operator −Aba is dissipative, i.e.,
‖(λ + Aba)u‖a ≥ λ‖u‖a for all λ > 0 and all u ∈ D(Aba), since ωa(u, u) ≥ 0 for all
u ∈ D(ωba). Next, we note that −Aba is self-adjoint, and hence the adjoint operator
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−(Aba)∗ is dissipative as well. It follows from a corollary of the Lumer-Phillips theorem
[27][Corollary II.3.17] that −Aba generates a semigroup of operators (T ba (t))t≥0 that
solve the PDE (3.7) in the mild sense.

From Proposition 3.5, we have that v ∈ WH1(Ω) implies that |v| ∈ WH1(Ω)
whenever v is only real-valued. This implies that if u ∈ D(ωa), then |Re(u)| ∈ D(ωba),
where Re(·) denotes the real component of its argument. Then the positivity of the
semigroup follows from [55][Theorem 2.7].

To prove the last statement in the corollary, consider the closed convex set
C = {u ∈ L2(Ω); Re(u) = u, u(x) ≤ 1 a.e. x ∈ Ω}. The projection of a func-
tion u ∈ L2

a(Ω) onto the set C can be represented by the (nonlinear) operator P ,
given by Pu = Re(u) ∧ 1/a = 1

2Re(u) + 1
2 |Re(u) − 1|. If u ∈ D(ωa), then it follows

from the chain rule that ∇(Pu) = 1
2 sign(Re(u) − 1)∇(Re(u)) + 1

2∇(Re(u)). Hence,
it follows that ω1

1(Pu, Pu) ≤ ω1
1(u, u) for all u ∈ D(ω1

1). According to [55][Theorem
2.3], this implies that the set C is invariant under the positive semigroup (T 1

1 (t))t≥0;
therefore, we can conclude that if ‖y0‖∞ ≤ 1, then ‖T 1

1 (t)y0‖∞ ≤ 1 for all t ≥ 0. �

Proof of Theorem 3.7 The operator Aba is self-adjoint. Hence, its spectrum lies
in [0,∞). From this, it follows that the corresponding semigroup generated by −Aba
is an analytic semigroup [48][Chapter II]. Let

∫
Ω
y0(x)dx = 1 such that y0 ∈ L2

a(Ω).

Then
∫

Ω
(y(x, t) − y0(x))dx = −

∫
Ω
Aba(

∫ t
0
y(x, s)ds)dx = −ωba(

∫ t
0
y(x, s)ds, 1/a) = 0

for all t ≥ 0. Hence, the integral preserving property of the semigroup holds.
In order to establish the stability properties of the semigroup, we will identify the

eigenvectors associated with the eigenvalue 0. In the proof of the corresponding result
in [26], we used the Poincaré inequality to establish the uniqueness of the eigenvector
of constant functions, corresponding to the eigenvalue 0 of the Laplacian ∆. It is not
clear whether the Poincaré inequality holds for the operator −Aba for condition 2 in
Assumption 3.2. Hence, instead of using a Poincaré inequality, we will prove that the
kernel of the operator −Aba consists only of constant functions. Suppose u ∈ D(A)
is such that Au = 0, where A := A1

1. Since the operator A satisfies the Lie rank
condition, from regularity results due to Hörmander [59, 15], we can infer that u is
locally smooth everywhere in Ω. Then we know that, for a given horizontal curve
γ : [0, 1]→ Ω,

(A.1) u(γ(1))− u(γ(0)) =

∫ 1

0

m∑
i=1

ai(t)Xiu(γ(t))dt = 0

where ai(t) are the essentially bounded functions associated with the curve γ(t) ac-
cording to (2.2). Note that we require the local smoothness of u in order to make

sense of the term
∫ 1

0

∑m
i=1 ai(t)Xu(γ(t))dt. Since V is bracket generating, we can

choose γ(t) such that γ(0) and γ(1) are the given initial and final conditions in Ω.
Hence, we have that u is constant everywhere on Ω. This implies that A1 = 0, and
hence Abaf = 0 due to the assumption that a, b are uniformly bounded from below by
a positive constant. �
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Carathéodory spaces and the existence of minimal surfaces, Communications on Pure and
Applied Mathematics, 49 (1996), pp. 1081–1144.

[33] T.-T. Han and S. S. Ge, Styled-velocity flocking of autonomous vehicles: A systematic design,
IEEE Transactions on Automatic Control, 60 (2015).

[34] D. Henry, Geometric theory of semilinear parabolic equations, vol. 840, Springer, 2006.
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