
A New Anisotropic Fourth-Order Diffusion
Equation Model Based on Image Feature for

Image Denoising

Ying Wen∗ Jiebao Sun † Zhichang Guo‡

Abstract

Image denoising has always been a challenging task. For that, one of the
most effective methods is variational PDE. Inspired by the LLT model, we first
propose a new adaptive LLT model by adding a weighted function and then
propose a class of fourth-order diffusion equations based on the new functional.
Because of the adaptive function, the new functional is better than the LLT
model and other fourth-order models in edge preserving. Generalizing the
Euler-Lagrange equation of the new functional, we discuss a new fourth-order
diffusion framework for image denoising. Different from the other fourth-
order diffusion models, the new diffusion coefficients depend on the first-order
and second-order derivatives, which can preserve edges and smooth image,
respectively. In the numerical aspects, we first design an explicit scheme for the
proposed model. However, fourth-order diffusion equations require more strict
stability conditions and the number of iteration is considerable. Consequently,
we apply the fast explicit diffusion (FED) to our proposed explicit scheme
for reducing the time consumption. Furthermore, a semi-implicit scheme for
the new equation is discussed and is accelerated by the additional splitting
(AOS) algorithm. The AOS algorithm is most efficient in our all algorithms.
Finally, compared with other models, the new model shows the effectiveness
and efficiency.

Keywords: image denoising; adaptive functional; fourth-order diffusion equa-
tion

1 Introduction
Image denoising has always been an essential and challenging task in the field of image
processing because the result of denoising renders the later phases. The noise can be
considered as unpredictable and subject to a random error of a specific probability
distribution, which can be described by the probability distribution function and
probability density function. The additive noise is independent of the input signal.
∗School of Mathematics, Harbin Institute of Technology, Harbin, China.

wenyinghitmath@gmail.com
†School of Mathematics, Harbin Institute of Technology, Harbin, China. sunjiebao@hit.edu.cn
‡School of Mathematics, Harbin Institute of Technology, Harbin, China. mathgzc@gmail.com

1

Giving a noisy image f : Ω → R, which is defined on the domain Ω ⊂ Rd, the
additive noise model is

f = u+ η,

where u is the true image and η is the additive noise. Image denoising is used to
recover the true image u from an observed noisy image f .

During the last three decades, a variety of methods have been developed to deal
with the above inverse problem. Among these, variational method [1, 2, 3, 4, 5]
and partial differential equation (PDE) method [6, 7, 8] are most extensively used
techniques. In 1992, Rudin, Osher, and Fatemi [1] propose a nonlinear total variation
model for noise removal, which indicates this issue is equivalent to the following
minimisation problem (TV),

min
u

E(u) =

∫
Ω

|∇u|+ λ

∫
Ω

(u− f)2 , (1.1)

where λ > 0 is a tuning parameter. The first term, the total variation of u, is a
regularizer. The second term is a fidelity term which ensures that denoised image
u will be close to the original image f . This total variational regularizer helps
to prevent the noise from staying in the denoised image u because the noise part
yields a sizeable total variation of u. At the same time, this regularizer also allows
discontinuities of u.

In 2000, Chen, Marquina, and Mulet [9] describe the phenomenon that TV model
preserves edges well, but the images resulting from the application of this technique
in the presence of noise are often piecewise constant, thus the more delicate details in
the original image may not be recovered satisfactorily, and ramps (affine regions) will
give stairs (piecewise constant regions). Therefore they propose an improved model
that adds a nonlinear fourth-order diffusive term to the Euler-Lagrange equations of
the TV model.

Some properties of the fourth-order PDEs show its unique advantages in image
processing by theoretical analysis in [10, 11]. Fourth-order PDE model can efficiently
overcome the staircase effects. As in [12], one can prove that the solution of fourth-
order PDE model converges to a piecewise harmonic image in a specific condition.
There are many denoising methods based on fourth-order PDE. In 2003, Lysaker,
Lundervold, and Tai [2] propose a fourth-order noise removal model (LLT),∫

Ω

|uxx|+ |uyy| dxdy + λ

∫
Ω

(u− f)2 (1.2)

or ∫
Ω

√
|uxx|2 + |uxy|2 + |uyx|2 + |uyy|2dxdy + λ

∫
Ω

(u− f)2 . (1.3)

LLT model tries to minimize the total variational norm of ∇u instead of u [2]. The
parabolic equation obtaioned by the LLT model is

∂u

∂t
= −

(
uxx
|uxx|

)
xx

−
(
uyy
|uyy|

)
yy

− λ (u− u0) , (1.4)

or

∂u

∂t
= −

(
uxx
|D2u|

)
xx

−
(

uxy
|D2u|

)
xy

−
(

uyx
|D2u|

)
yx

−
(

uyy
|D2u|

)
yy

− λ (u− u0) , (1.5)

2

where |D2u| =
(
|uxx|2 + |uyx|2 + |uxy|2 + |uyy|2

)1/2
. The LLT model handles smooth

signals better than the TV model (1.1), and has no staircase effect. However, it
seems to be hard for the LLT model to maintain discontinuities in the jump areas of
the image.

There are much research pursuing to dealing with the problem that fourth-order
equation models could not preserve edges well. For that purpose, Lysaker and Tai
[13] uses a weighting function in an iterative way to combine the solutions of the
LLT model and the TV model in 2006. However, the weighting function in [13]
is not easy to construct. Base on that, Li, Shen, Fan, and Shen [14] construct
an energy functional combining the LLT model and TV model by two weighted
functions in 2007. There are also some adaptive fourth-order models [15] introducing
a diffusivity function to adaptively manipulates the amount of smoothing. Most of
these models focus on the LLT model (1.3) rather than (1.2). However, because (1.3)
has cross-derivative terms, (1.3) is more complicated than (1.2), which causes more
strict CFL condition and extra computation cost. Another classical fourth-order
model is [16] proposed by You and Kaveh in 2000, which approximates the noisy
image with a piecewise planar image by seeking to minimize a functional which is is
an increasing function of the absolute value of Laplacian of the image and deduces
an anisotropic fourth-order diffusion equation. But the model of [16] would leave
speckle pixels, which cause bad vision [17]. Inspired by [16], many researchers try
to design more rational anisotropic fourth-order equations [8, 18]. At the same
time, some researchers further employ the fourth-order diffusion term to other image
processing tasks, image inpainting [19, 20, 21, 22], image restoration [23, 24], image
zooming [25] and image reconstruction [26, 27]. Although fourth-order equation
based image denoising models has been thoroughly investigated for many years,
technical challenges remain.

In this paper, inspired by the LLT model, we propose a new fourth-order diffusion
equation for image denoising. First, using the gradient module of the image to design
a weighted function, we recommend an adaptive LLT model. The weighted function
indicated where is the edge in the image, thus the new model can preserve edge in this
region. The developing equations of the proposed adaptive LLT model are deduced,
and a 1D experiment shows the essential difference between the LLT model and our
adaptive LLT model in edge preserving. Second, we generalize the model to a class of
fourth-order diffusion equations. A new fourth-order diffusion framework is proposed
for image denoising, and the diffusion coefficient is designed by the first-order and
second-order derivatives of the image to make full use of image feature, which the
first-order derivative could better detect edges with anti-performance, and the part
of second-order derivative is the core to overcome staircase effect. At last, we design
some algorithms for numerical implementation. We propose a finite difference explicit
scheme and semi-implicit scheme for the proposed fourth-order diffusion equations.
And then using the idea of the fast explicit scheme (FED) and additional operator
splitting (AOS) to accelerate these schemes. Some of them are proved to be very
efficient.

The paper is organised as followed. In section 2, the proposed adaptive LLT
model is presented. Section 3 gives the details of our new fourth-order PDE noise
removal model. A series of numerical methods of our novel model are discussed in
section 4. Finally, section 5 is devoted to some experimental results for demonstrating
the new model.

3

2 The New Proposed Functional
In this section, we firstly propose a new adaptive LLT model. For better preserve
structures of the image, the new model does different processing in edges and
homogeneous areas. We also prove that the result of new adaptive LLT model
is piecewise planar, and it is the reason why our model could preserve structures
without staircase effect like the TV model. Secondly, we deduce the developing
equations of the proposed functional. Moreover, 1D experiments confirm that new
fourth-order diffusion equation is essentially different from the LLT model in structure
preservation, edges and flat areas preservation, compared with other fourth-order
PDE models.

2.1 The New Adaptive LLT Model

Inspired by the LLT model, we propose the following adaptive LLT model

E (u) =

∫
Ω

α(f) (|uxx|+ |uyy|) dxdy + λ

∫
Ω

(u− f)2 dxdy, (2.1)

where α (f) is a feature detection function,

α (f) =
1

1 + (|∇Gσ ∗ f | /K)2 , (2.2)

Gσ(·) = 1
2πσ2 exp(− |·|

2

2σ2) denotes Gaussian function with standard deviation σ, and K
is a parameter to adjust the contrast of features. In addition, the equation (2.2) is
usually used as a diffusion coefficient in diffusion equations [7]. In our model, we
only describe the model for 2-D problems. The generalization to d-D can be given by

E (u) =

∫
Ω

α (f)

(
d∑
i=1

|uxixi |

)
dx+ λ

∫
Ω

(u− f)2 dx.

From equation (2.2), notice that the function α (f) is limited in [0, 1]. For given
K, α (f) tends to 0 at the points where |∇Gσ ∗ f | is very large. It represents edge
regions in the image, and we denote it as Γ . α (f) approaches to 1 at the points
where |∇Gσ ∗ f | tends to 0. It represents homogeneous regions, and we denote it as
Ωh.

Consider the following functional,

Ẽ (u) = E1 (u) + E2 (u) , (2.3)

where
E1 (u) =

∫
Ωh

(|uxx|+ |uyy|) dxdy + λ

∫
Ωh

(u− f)2 dxdy,

and
E2 (u) = λ

∫
Γ

(u− f)2 dx.

In ideal case, α(f) = 0, as x ∈ Γ , and α(f) = 1, as x ∈ Ωh. So the functional (2.3)
can be expressed as

Ẽ (u) =

∫
Ω

α(f) (|uxx|+ |uyy|) dxdy + λ

∫
Ω

(u− f)2 dx. (2.4)

4

which imply that Ẽ(u) = E(u). Therefore, the functional (2.1) and (2.3) is equivalent.
Since E1 and E2 are two independent sub-problems, minimizing Ẽ(u) is equivalent to
minimizing E1(u) and E2(u), respectively. Minimizing the functional E2 (u) means
that u is the original image f in the points (x, y) ∈ Γ , so the edges can be preserved.
At the same time, E1 is the LLT model (1.2) restricted to Ωh, and the LLT model is
famous for its ability that removes noise well without staircase effects in flat areas.
As a result, our new model could smooth noise in homogeneous regions Ωh like the
LLT model and preserve jumps in edge regions Γ .

Similar to [12] and [16], we give the following theorem.

Theorem 1. Suppose that u is piecewise smooth. Then u is piecewise planar if and
only if ∫

Ω

α(f) (|uxx|+ |uyy|) dxdy = 0. (2.5)

Proof. (⇒)Let u be piecewise planar as following

u(x, y) =
n∑
i=1

ui(x, y), (2.6)

where Ωi, i = 1, 2, 3, · · · , n is a partition of Ω and

ui(x, y) =

{
planar, (x, y) ∈ Ωi,
0, otherwise.

Let us denote the interior and the boundary of Ωi by Ωo
i and ∂Ωi, respectively. Define

Γij = ∂Ωi ∩ ∂Ωj, the edge between neighboring subregions Ωi and Ωj. Then

|uxx| = |uyy| = 0, ∀(x, y) ∈ Ωo
i , i = 1, 2, · · · , n. (2.7)

and the range of α(f) is [0, 1]. On the other hand, ∇ui are constant vectors on each
Ωi, i = 1, · · · , n, and

∇ui 6= ∇uj, ∀(x, y) ∈ Γi,j, i, j = 1, · · · , n, (2.8)

So we have among of |uxx(x, y)|, |uyy(x, y)| is infinite, ∀(x, y) ∈ ∪ijΓij. At the
same time, ∪ijΓij represents edge regions, and α(f) = 0 in edge regions. Therefore
α(f) (|uxx|+ |uyy|) is bounded (0 or finite value), ∀(x, y) ∈ ∪ijΓij, which indicates
that the vaule of |uxx| and |uyy| is not constrained in edge regions. Note that ∪ijΓij
is a set of measure zero. Hence the formula (2.5) is established.

(⇐)Let u be piecewise smooth and satisfy (2.5). Then |uxx|, |uyy| must be zero
at least at all interior points of the subregions in which u is smooth, which implies
that u is piecewise planar. This completes the proof.

The above Theorem 1 proves that the piecewise planar image is the only minimizer
of new proposed functional (2.1) without fidelity term, which theoretically shows
adaptive functional (2.1) could preserve structures. However, the minimizer of the
LLT model without fidelity term is the only globally planar from [12], which indicates
the LLT model would convert jumps to slops. These illustrate that our model is
essentially different from the LLT model.

5

2.2 The Fourth-Order Diffusion Equation Based on Functional
(2.1)

The Euler-Lagrange equation of the functional (2.1) is as follows,(
α(f)

uxx
|uxx|

)
xx

+

(
α(f)

uyy
|uyy|

)
yy

+ λ (u− f) = 0, in Ω,

and the boundary conditions are given as

∂u

∂−→n
= 0, on ∂Ω(

α(f)
uxx
|uxx|

)
x

n1 +

(
α(f)

uyy
|uyy|

)
y

n2 = 0, on ∂Ω
(2.9)

where −→n = (n1, n2) is the outward normal direction on ∂Ω. To solve Euler-Lagrange
equation, we consider the gradient descent flow,

∂u

∂t
= −

(
α(f)

uxx
|uxx|

)
xx

−
(
α(f)

uyy
|uyy|

)
yy

− λ (u− f) , in Ω× (0, T)

∂u

∂−→n
= 0, on ∂Ω× (0, T)(

α(f)
uxx
|uxx|

)
x

n1 +

(
α(f)

uyy
|uyy|

)
y

n2 = 0, on ∂Ω× (0, T)

u (x, y, 0) = f(x, y), on Ω.

(2.10)

Next, we do some experiments for better verifing the essential difference between
our new functional (2.1) and the LLT model. In fairness, we condiser 1D case and
set λ = 0 in both the LLT model (1.2) and the new adaptive LLT model (2.1). The
developing equations of both without fidelity term are given as follows, respectively,

∂u

∂t
= −

(
uxx
|uxx|

)
xx

, in Ω× (0, T)

∂u

∂n
= 0, on ∂Ω× (0, T)(
uxx
|uxx|

)
x

n = 0, on ∂Ω× (0, T)

u (x, 0) = f(x), on Ω,

(2.11)

and
∂u

∂t
= −

(
α(f)

uxx
|uxx|

)
xx

, in Ω× (0, T)

∂u

∂n
= 0, on ∂Ω× (0, T)(

α(f)
uxx
|uxx|

)
x

n = 0, on ∂Ω× (0, T)

u (x, 0) = f(x), on Ω,

(2.12)

where Ω ⊂ R, n is the outward normal direction on ∂Ω.

6

(a) (b)

(c) (d)

Figure 1: Comparison of adaptive the LLT and the LLT in 1D. (a) Original 1D
signal. (b) Noisy 1D signal. (c) Result of the LLT model (2.11). (d) Result of the
adaptive LLT model (2.12).

(a) (b) (c)

(d) (e) (f)

Figure 2: Details of Fig. 1(a). (a) Detail of 1. (b) Detail of 2. (c) Detail of 3. (d)
Detail of 4. (e) Detail of 5. (f) Detail of 6.

7

The numerical implementation of the LLT model (2.11) in this experiment is the
finite difference scheme given in paper [2], and we extend it to our adaptive LLT
model (2.12). Because it is easy to deduce, we do not give it here.

The test signal is shown in Fig. 1(a), and it includes several jumps and flat
lines. The noisy signal is displayed in Fig. 1(b). Denoising results of the LLT model
(2.11) and the adaptive LLT model (2.12) are plotted in Fig. 1(c) and Fig. 1(d),
respectively. Generally, both models can remove noise. However, from the details
of the denoising results (Fig. 2(a) - Fig. 2(d)), all of the jumps are recovered by
slop line through the LLT model, and the edges are destroyed. The LLT model can
not preserve the edges as the TV model. Not only the LLT model, but also many
other fourth-order models can not preserve edges. From theorem 1, the solution of
our adaptive LLT model is piecewise planar because of the weighted function α(f).
Thus our adaptive LLT model rescues the effect of the LLT model, which can also
be demonstrated by Fig. 2(a) - Fig. 2(d).

The equation (2.10) is a fourth-order diffusion equation, which is different from
the origianl LLT model because of the feature detection function (2.2). There are
many similar improvements [14, 15]. Different from these, we are more concerned
about (1.2) rather than (1.3). Because (1.2) has no cross derivative, the model
(1.3) is more complicated than model (1.2), and the CFL condition of (1.5) is more
stringent than (1.4). Thus, the model (1.3) needs extra computation cost. At the
same time, the model (1.4) has strong anisotropic which is necessary for image
denoising. Furthermore, the other contribution is the new fourth-order diffusion
equation framework based on the new functional.

3 The New Fourth-Order Diffusion Equation
In this section, we present a new fourth-order diffusion framework for image denoising.
In this framework, the diffusion coefficient depends on both first-order and second-
order derivatives of the image for better preserving edges and other details. Because
of making full use of image features, first-order and second-order derivatives, the new
model overcomes the weakness that fourth-order PDE models could not preserve
structures of the image well.

3.1 The New Fourth-Order Diffusion Equation Framework

Generalizing the fourth-order diffusion equation (2.10), a new fourth-order diffusion
equation framework for denoising is given as follows

∂u

∂t
= −

(
Φ(|∇u|)
|uxx|

uxx

)
xx

−
(

Φ(|∇u|)
|uyy|

uyy

)
yy

, in Ω× (0, T)

∂u

∂−→n
= 0, on ∂Ω× (0, T)(

Φ(|∇u|)
|uxx|

uxx

)
x

n1 +

(
Φ(|∇u|)
|uyy|

uyy

)
y

n2 = 0, on ∂Ω× (0, T)

u (x, y, 0) = f(x, y), on Ω

(3.1)

where Φ(|∇u|)
|uxx| ,

Φ(|∇u|)
|uyy | are diffusion coefficients, and Φ(|∇u|) is an adaptive coefficient.

The boundary condition is similar to (2.9), and initial value is selected as the noisy

8

image. In our new fourth-order diffusion equation framework (3.1), the diffusion
behavior dominated by the diffusion coefficients. For better smoothing noise and
preserving structure, the image feature information should be fully utilized to design
the diffusion coefficients, which is the reason why diffusion coefficients, Φ(|∇u|)

|uxx| and
Φ(|∇u|)
|uyy | , depend on both first-order and second-order derivatives. On the one hand,

because of the second-order dirivative part, our framework could overcome staircase
effect. On the other hand, the first-order derivative can better detect edges even
with strong noise, so Φ(|∇u|) plays a role in preserving structures in our framework.

About the adaptive coefficient Φ(|∇u|), it is α(f) in equation (2.10). In the
framework (3.1), we replace α(f) with more general edge detection function. α(f)
only depends on the Gaussian convolution of noisy image. But, with the evolution
of the fourth-order equation, the result u at time t is more precious than G ∗ f .
Therefore, we consider a function of u rather than f to measure the degree of jumps.
More efficient edge detection functions are exploied in the next section.

We choose the noisy image f as the initial value. In addition, there is no source
term −λ (u− f) in our new fourth-order diffusion equation framework (3.1), which
is equivalent to no fidelity term λ

∫
Ω

(u− f)2 dxdy in the corresponding functional.
As indicated in [28] and [29], the parameter λ mostly decide the influence of source
term which controls the fidelity of the solution to the input image, however, the
parameter λ is susceptible to the noise. Thus, how to choose the parameter λ for an
excepted result in the experiment is not easy. Moreover, in the theory of nonlinear
diffusion equation, adding a fidelity term results in the resultant image close to the
original image which may cause the noise not sufficiently removed. Therefore, we
take the source term −λ (u− f) away to make the model easy to analyse and reduce
the number of parameters.

3.2 The Proposed Model

We recommed two adaptive coefficients:

Φa =
1√

1 + (|∇Gσ ∗ u| /K)2
.

and
Φb =

1

1 + (|∇Gσ ∗ u| /K)2 ,

where K is a parameter. As shown in Fig. 3(a), with same K, mapping functions of
Φa and Φb are different, and Φb is more sensitive to edges compared with Φa, which
leads to subtle differences in the denoising results. However, these options have a
common feature in general. Φa and Φb are all bounded between 0 and 1. In the
points at the edge, adaptive coefficient Φ attends to 0 for reducing the smoothing and
protecting jump, and Φ attend to 1 for smoothing noise in the flat area. That is the
same as the original intention introduced in subsection 2.1 and we generalize it using
evolving result u instead of noise image f . From Fig. 3(b), the sensitive interval of
Φa to |∇G ∗ u| is different with different K. Specifically, the reaction interval of Φa

is becoming bigger, as the increase of K. Φb also has the same property about K.
Note that all of the coefficients in the above options are related to the first-order
derivative, and the reason for this is detailed in the next subsection.

9

|∇Gσ ∗ u|

Φ

Φb

Φa

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

(a)

|∇Gσ ∗ u|

Φa

K = 1

K = 9

K = 20

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

(b)

Figure 3: Analysis of Φb and Φa. (a) Mapping of Φb and Φa, K = 1. (b) Mapping of
Φa with different K.

Both Φa and Φb detect the edge of the image by |∇Gσ ∗ u|. The reason for
convoluting image u with Gaussian function is inhibiting the influence of noise and
obtaining a more precious edge. Because the adaptive coefficient would self-correct
during the evolution process, utilizing more accurate coefficient makes the diffusion
process less ’detours’. Thus, the evolution rate would be accelerated with accurate
edge detection results, |∇Gσ ∗ u|, compared with |∇u|.

In conclusion, the proposed models are as follows,

∂u

∂t
= −

(
Φa

uxx
|uxx|

)
xx

−
(

Φa
uyy
|uyy|

)
yy

, in Ω× (0, T)

∂u

∂−→n
= 0, on ∂Ω× (0, T)(

Φa
uxx
|uxx|

)
x

n1 +

(
Φa

uyy
|uyy|

)
y

n2 = 0, on ∂Ω× (0, T)

u (x, y, 0) = f(x, y), on Ω.

(3.2)

and
∂u

∂t
= −

(
Φb

uxx
|uxx|

)
xx

−
(

Φb
uyy
|uyy|

)
yy

, in Ω× (0, T)

∂u

∂−→n
= 0, on ∂Ω× (0, T)(

Φb
uxx
|uxx|

)
x

n1 +

(
Φb

uyy
|uyy|

)
y

n2 = 0, on ∂Ω× (0, T)

u (x, y, 0) = f(x, y), on Ω.

(3.3)

3.3 Edge Preservation

The choice of diffusion equation in the fourth-order PDE-based denoising method has
been discussed. The opinion of [18] proposed by Hajiaboli is that using a function

10

(a) (b) (c)

Figure 4: Comparison of edge detection operators in synthetic image. (a) Synthetic
image. (b) Gradient of synthetic image. (c) Laplace of synthetic image.

of the gradient modulus is more proper than Laplace map of the image. In this
subsection, we detailedly analyse the two categories of edge detection operators,
gradient and Laplace. Because we apply the edge detection to the diffusion coefficient,
directions of the edge are not discussed here. The following are two specific operator
expressions. The modulus of the gradient is

|∇f(x, y)| =

√(
∂f(x, y)

∂x

)2

+

(
∂f(x, y)

∂y

)2

,

and the absolute value of the Laplacian is

|∆f(x, y)| =
∣∣∣∣∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

∣∣∣∣ .
Let’s compare the edge detection capabilities of the gradient operator and the

Laplace operator (Fig. 4 and Fig. 5). It should be noted that the gradients and
Laplaces in Fig. 4 and Fig. 5 are all normalized to [0, 1]. Fig. 4(a) is a synthetic image
with a weak edge. We can easily see that the gradient operator could successfully
detect the weak edges. However, the result of Laplace is two margin of weak edge.
The Laplace operator has a bilateral effect and can’t do anything about weak edges.
Secondly, a natural image is taken for testing in Fig. 5, and the edges detected by
the gradient operator have a stronger contrast than Laplace’s. The second row in
Fig. 5 is a noisy situation. When the standard deviation of noise is 20, the Laplace
operator will lose the ability to detect the edge, yet we could find edges easily in Fig.
5(e). For the Laplace operator, the response to isolated pixels is stronger than the
edge or line. The above confirms the view that the Laplace operator is sensitive to
the noise and only applicable to noise-free images.

Form the above analysis, we can know that the gradient function is better than
the Laplace operator in edge detection. The advantages include three aspects: (a)
the ability of weak edge detection, (b) the high intensity of detected edge, and (c) the
anti-noise performance. In conclusion, gradient function is preferable and suitable to
detect edges. That is the reason why we choose functions with gradient in section
3.2.

Images shown in Fig. 6 are coefficients of the LLT model and our proposed
model. The images of the first row are to original pepper image Fig. 5(a), and the

11

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Comparison of edge detection operators in natural image. (a) Original
image. (b) Noisy, σn = 5. (c) Noisy, σn = 10. (d) Noisy, σn = 20. (e) Gradient of
original image. (f) Gradient of noisy image, σn = 5. (g) Gradient of noisy image,
σn = 10. (h) Gradient of noisy image, σn = 20. (i) Laplace of noisy image. (j)
Laplace of noisy image, σn = 5. (k) Laplace of noisy image, σn = 10. (l) Laplace of
noisy image, σn = 20.

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Comparison of diffusion coefficients of proposed model and the LLT model.
Φ = Φb, K = 1. (a) 1

|uxx| . (b)
1
|uyy | . (c)

1
|uxx| , σn = 5. (d) 1

|uyy | , σn = 5. (e) Φb
|uxx| . (f)

Φb
|uyy | . (g)

Φb
|uxx| , σn = 5. (h) Φb

|uyy | , σn = 5.

second row are to noisy image whose noise level is 5. In these images, the higher
the grey value, the larger the coefficient. On the one hand, these images indicate
that the coefficients of the LLT model are generally larger than the coefficients of
our model. In other words, Fig. 6(a) - Fig. 6(d) seem more brightness than Fig.
6(e) - Fig.6(h). On the other hand, the edges in the coefficient images of the LLT
model are thinner. It illustrates that our model processes edges and other areas
more differently. The noisy case has the same phenomenon. Therefore, putting the
first-order derivative to the original second-order diffusion coefficients is helpful to
restore edges and structures.

4 Numerical Implementation
For numerical solving the proposed diffusion equation (3.1), we design two different
finite difference schemes, finite difference explicit scheme and semi-implicit scheme,
and develop fast explicit diffusion algorithm (FED) and additional operator splitting
algorithm (AOS) to reduce computational efficiency, respectively.

4.1 The Finite Difference Explicit Scheme

Assuming space grid size of h, h = 1 for digital image, and the space discretization
mesh is

x = ih, i = 0, 1, ...I

y = jh, j = 0, 1, ...J.

13

where I × J is the size of image support. The time step by is τ , t = nτ , n = 0, 1,
Thus uni,j = u(ih, jh, nτ). The finite diffusion explicit scheme is given as follows,

un+1
i,j = uni,j − τ

[
Dxx

(
Φx

(
(uσ)ni,j

)
αε
(
uni,j
)
Dxxu

n
i,j

)
+Dyy

(
Φy

(
(uσ)ni,j

)
βε
(
uni,j
)
Dyyu

n
i,j

)]
, (4.1)

where
Dxx (ui,j) = (ui−1,j + ui+1,j − 2ui,j) /h

2,

Dyy (ui,j) = (ui,j−1 + ui,j+1 − 2ui,j) /h
2,

αε (ui,j) = 1/ (|Dxx (ui,j)|+ ε) ,

βε (ui,j) = 1/ (|Dyy (ui,j)|+ ε) ,

uσ = Gσ ∗ u,

and as in [2], the ε > 0 is introduced to avoid zero in the numerical format for the
denominator. For the discretization of coefficient Φ, we draw on the discretization
scheme of PM equation [7]. When discretize x direction, data in the y direction is
not considered. It is same as the discretization of y direction. Thus the scheme is
more anisotropic. When the efficient is taken as Φa, the discretizations are

Φx ((uσ)i,j) = 1

/√
1 +

(
(uσ)i+1,j − (uσ)i−1,j

2h

)2

,

Φy ((uσ)i,j) = 1

/√
1 +

(
(uσ)i,j+1 − (uσ)i,j−1

2h

)2

.

and when it is Φb,

Φx ((uσ)i,j) = 1

/(
1 +

(
(uσ)i+1,j − (uσ)i−1,j

2h

)2
)
,

Φy ((uσ)i,j) = 1

/(
1 +

(
(uσ)i,j+1 − (uσ)i,j−1

2h

)2
)
,

And the discretization of initial condition is u0
i,j = fi,j. To incorporate the

boundary conditions, the approximations at the boundaries need to be treated
properly. We summarized as follows,

ui−1,j = u0,j if i = 0,

ui+1,j = uI,j if i = I,

ui,j−1 = ui,0 if j = 0,

ui,j+1 = ui,J if j = J,

and
Φx(u

n
i−1,j)αε(u

n
i−1,j)Dxxu

n
i−1,j = Φx(u

n
0,j)αε(u

n
0,j)Dxxu

n
0,j if i = 0,

Φx(u
n
i+1,j)αε(u

n
i+1,j)Dxxu

n
i+1,j = Φx(u

n
I,j)αε(u

n
I,j)Dxxu

n
I,j if i = I,

Φy(u
n
i,j−1)βε(u

n
i,j−1)Dyyu

n
i,j−1 = Φy(u

n
i,0)βε(u

n
i,0)Dyyu

n
i,0 if j = 0,

Φy(u
n
i,j+1)βε(u

n
i,j+1)Dyyu

n
i,j+1 = Φy(u

n
i,J)βε(u

n
i,J)Dyyu

n
i,J if j = J.

14

Furthermore, we introduce a notation Un ∈ RIJ which represents a vector
containing the values at each pixel when the time level is n and E ∈ RIJ×IJ is the
unit matrix. The explicit shceme of matrix form can be written as:

Un+1 = (E + τA (Un))Un. (4.2)

There is no calculation of matix inversion, so that it’s easy in each iteration.
Unfortunately, this explicit scheme (4.1) has a serious drawback that the time

step permitted has a strict limit for stability reasons due to the high nonlinearity
and stiffness. So the number of iterations evolving to the target image is too large,
which renders the numerical scheme inefficient. Therefore, it is desirable to find more
efficient tools to accelerate the implementation of our model. One possibility is the
Fast Explicit Diffusion (FED) scheme.

4.2 FED Scheme

In this section, in order to solve the problem of low efficiency of explicit format
(4.1), FED algorithm that could significantly improve computing speed is applied to
accelerate calculation.

FED has been presented and investigated by Grewenig et al. [30] in 2010, was
further elaborated in 2013 [31] and is a widely applicable algorithm. FED scheme is
similar to the method under the name Super Time Stepping (STS) by Gentzsch et
al.[32][33]. FED is a slight modification of the explicit finite difference discretisation,
which can boost the efficiency of the explicit scheme by several orders of magnitude.
The way that FED promotes the calculation speed is that they perform cycles of
explicit diffusion schemes with varying time step sizes. Since within each cycle up to
50 percent of all steps may violate the stability condition, one can achieve very large
diffusion times.

In the following, the algorithm of FED schemes was generalised in a straightfor-
ward way to our explicit scheme. After we obtain the equations (4.2) representing
the explicit scheme from the above deduction, a cycle of varying time step size τi
needs to be calculated,

τi =
2

µmax (A)
· 1

2cos2
(
π· 2i+1

4n+2

) , i = 0, 1, 2, ..., nc − 1, (4.3)

where µmax represents the largest modulus of the eigenvalues of A, nc is the number
of iteration in each cycle and A corresponds to the A (Un) in (4.2). The corresponding
total time of this cycle is

tnc =
nc−1∑
i=0

=
h2

2

(
nc + 1

2

)
. (4.4)

Because the proposed models are nonlinear equations, the matrix A changes depend-
ing on Un. In order to apply cyclic schemes, in the same way as [28], we use a priori
estimate for the values µmax for the numerical stability. Using the Gershgorin’s
theorem in [34], one can easily obtain that µmax (A) 6 32

ε
.

It can be proved that the scheme is stable in each complete cycle. From (4.3),
it is obvious that near half of the time step size τi in (4.3) far exceeds the stability
condition for the explicit scheme with a constant time step size [31], and that is the
reason of FED could significantly improve computational efficiency.

The FED algorithm of our model can be expressed as Algorithm 1.

15

Algorithm 1 FED Algorithm of Proposed Models
Require: Original image f , stopping time T , number M of outer FED cycles, new

fourth order model’s parameters.
1: Compute the samllest nc how to calculate nc so that the stopping time tnc of one

FED cycle fulfils tnc ≥ T/M , and define q = T/ (M · tnc).
2: Compute the time step sizes τ̃i = q · τi according to (4.3).
3: Choose a suitable ordering for the step size τ̃i according to [35] for numerical

stability reasons.
4: Initialize U0,0 = f .
5: while k = 0, 1, ...,M − 1 do
6: for i = 0, 1, ..., nc − 1 do
7: Calculate the corresponding matrix A

(
Uk,i

)
.

8: Compute Uk,i+1 =
(
I + τ̃iA

(
Uk,i

))
Uk,i.

9: end for
10: Uk+1,0 = Uk,nc .
11: end while

4.3 The Semi-Implicit Scheme

In this subsection, we give a semi-implicit scheme,

un+1
i,j = uni,j−τ

[
Dxx

(
Φx

(
(uσ)ni,j

)
αε
(
uni,j
)
Dxxu

n+1
i,j

)
+Dyy

(
Φy

(
(uσ)ni,j

)
βε
(
uni,j
)
Dyyu

n+1
i,j

)]
.

(4.5)
Boundary condition is as same as the one of explicit scheme (2.9).

Next, we give a theorem to prove the unconditional stability of the semi-implicit
scheme (4.5) using Fourier method.

Theorem 2. The semi-emplicit scheme (4.5) is unconditionally stable.

Proof. Setting (Fx)
n
i,j = Φx

(
(uσ)ni,j

)
αε
(
uni,j
)
, (Fy)

n
i,j = Φy

(
(uσ)ni,j

)
βε
(
uni,j
)
, the

scheme (4.5) is rewritten as

un+1
i,j = uni,j − τ

[
Dxx

(
(Fx)

n
i,j Dxxu

n+1
i,j

)
+Dyy

(
(Fy)

n
i,j Dyyu

n+1
i,j

)]
.

The semi-implicit scheme can be expanded as

un+1
i,j +

τ

h4

(
(Fx)

n
i−1,j u

n+1
i−2,j +

(
−2 (Fx)

n
i,j − 2 (Fx)

n
i−1,j

)
un+1
i−1,j

+
(

(Fx)
n
i−1,j + (Fx)

n
i+1,j + 4 (Fx)

n
i,j

)
uni,j

+
(
−2 (Fx)

n
i,j − 2 (Fx)

n
i+1,j

)
un+1
i+1,j + (Fx)

n
i+1,j u

n+1
i+2,j

)
+

τ

h4

(
(Fy)

n
i,j−1 u

n+1
i,j−2 +

(
−2 (Fy)

n
i,j − 2 (Fy)

n
i,j−1

)
un+1
i,j−1

+
(

(Fy)
n
i,j−1 + (Fy)

n
i,j+1 + 4 (Fy)

n
i,j

)
uni,j

+
(
−2 (Fy)

n
i,j − 2 (Fy)

n
i,j+1

)
un+1
i,j+1 + (Fy)

n
i,j+1 u

n+1
i,j+2

)
= uni,j (4.6)

Next, we try to verify that the semi-implicit scheme (4.5) is unconditionally
stable using Fourier method (introduced in many numerical analysis books). Set

16

(Fx)
n
i,j = F̄x and (Fy)

n
i,j = F̄y, then (4.6) becames

un+1
i,j +

τ

h4

(
F̄xu

n+1
i−2,j − 4F̄xu

n+1
i−1,j + 6F̄xu

n
i,j − 4F̄xu

n+1
i+1,j + F̄xu

n+1
i+2,j

)
+

τ

h4

(
F̄yu

n+1
i,j−2 − 4F̄yu

n+1
i,j−1 + 6F̄yu

n
i,j − 4F̄yu

n+1
i,j+1 + F̄yu

n+1
i,j+2

)
= uni,j.

Perform Fourier analysis on both ends of the above equation,

Ûn+1(k)
(

1 +
τ

h4
F̄x
(
e−i2kh − 4e−ikh + 6− 4eikh + ei2kh

)
+
τ

h4
F̄y
(
e−iI2kh − 4e−iIkh + 6− 4eiIkh + ei2Ikh

))
= Ûn(k),

where the i in above equation is an imaginary unit. And the growth factor is

G (τ, k) = 1
/(

1 +
τ

h4
F̄xCx +

τ

h4
F̄yCy

)
,

Cx =
(
e−i2kh − 4e−ikh + 6− 4eikh + ei2kh

)
,

Cy =
(
e−iI2kh − 4e−iIkh + 6− 4eiIkh + ei2Ikh

)
.

Therefore,
Cx = 6 + 2 cos (2kh)− 8 cos (kh)

= 4 (cos (kh)− 1)2 ≥ 0.

With the same reason we have

Cy = 4 (cos (Ikh)− 1)2 ≥ 0.

With F̄x > 0 and F̄y > 0, we get G (τ, k) ≤ 1. This semi-implicit scheme is
unconditional stable that (4.5) satisfieds all discrete scale-space requirements for all
time step size τ > 0.

Theorem 2 shows that the stability of our numerical scheme (4.5) is not subjected
to the step size τ . Thus, using this semi-implicit scheme, we could increase the
computational efficiency by increasing the step size.

Different from (4.1), numerical discretization of diffusion main items at semi-
implicit (4.5) employs the (n+ 1)th time level values. This scheme dosen’t give the
solution un+1

i,j directly, hence, we have to solve a linear system first.
The semi-implicit scheme results in a linear simultaneous equations that could

be expressed in matrix vector form can be rewritten as

Un+1 = Un + τAnUn+1, (4.7)

where An is sparse, and the solution of (4.7) is formally given by

Un+1 = (E − τAn)−1 Un. (4.8)

Compute the linear system (4.8) is expensive [36, 37]. In the 2-D case, the matrix
An reveal a larger banwidth, and from (4.6) the matrix is a nine diagonal one. By
observing the formula (4.8), we find that we have to solve a large matrix whose
dimension is IJ × IJ . For higher dimensions, the computational effort could be
more massive. Using direct algorithms such as Gaussian elimination or Jacobian

17

iteration would lead to large storage and computation effort. Moreover, when τ is
larger, the condition number of the system matrix is larger, so, classical iterative
algorithms will be very slow. Therefore, it is desirable to find more efficient tools to
accelerate the implementation of our scheme.

In the next section, we focus on a splitting-based alternative. Additional operator
splitting (AOS) algorithm is a possible method. It is simple and doesn’t require to
specify any additional parameters.

4.4 AOS Scheme

In this section, we apply a convenient and efficient algorithm, additional operator
splitting (AOS)[36, 37, 38], to solve the semi-implicit scheme (4.5). The reason for
improving the computing efficiency is that transform a high-dimensional problem
into several one-dimensional problems. That could directly avoid calculation of
complicated matrix. Different from traditional multiplicative splittings such as ADI
[39, 40, 41, 42], LOD [43, 44, 45, 46] or D’yakonov splitting, all axes are treated in
the same manner, and additional possibilities for efficient realizations on parallel
and distributed architectures appear. Under typical accuracy requirements, AOS
schemes are ten times more efficient than the semi-implicit schemes at least.

The following we directly apply AOS method to the semi-implicit (4.7). That
could be divided into two sub-steps. First, we do one-dimensional diffusion of rows
and columns, separately, and get two intermediate results Un+1

1 and Un+1
2 . Set Ax

is rows processing coefficient matrix, and Ay is columns matrix. What needs to be
calculated is that:

(E − 2τAnx)Un+1
1 = Un, (4.9)

(
E − 2τAny

)
Un+1

2 = Un. (4.10)

At the last, calculate the average of the two as a result of a complete iteration,

Un+1 =
Un+1

1 + Un+1
2

2
.

The AOS scheme of (4.8) is

Un+1 =

[
(E − 2τAnx)−1 +

(
E − 2τAny

)−1
]
Un

2
.

Since the final result Un+1 is independent of the calculation order of Un+1
1 and

Un+1
2 , this algorithm satisfies rotation invariance.The dimension solving (4.9) and

(4.10) is IJ × IJ ,and the matrix calculated is five diagonal. Even if that, in the
pratical solving process, we comput by row (column). For (4.9), it is composed of
I independent sub-eqations, and each of the sub-equations is a linear simultaneous
equations whose elements are columns of Un+1

1 . Hence, just need to solve the
equations whose dimension is I and J . For example, the sub-equations of i-th row
in (4.9) could be written as(

E − 2τAnx,i
)
Un+1

1,i = (Un
x)i ,

where Anx,i represents the i-th row of Anx, U
n+1
1,i represents the i-th row of Un+1

1 , and
(Un

x)i is the i-th row of Un. This could also reduce memory consumption in the

18

computer numerical operation. The calculation of (4.10) is same as (4.9), and we
will not repeate here.

In summary, the AOS algorithm could significantly increase computational effi-
ciency while reducing memory costs. The AOS algorithm of the new fourth-order
denoising model is summarized as Algorithm 2.

Algorithm 2 AOS Algorithm of Proposed Models
Require: Original image f , number N of iterative, time step size τ , new fourth

order model’s parameters.
1: Initialize u0

i,j = fi,j, and arrange u0
i,j into U0.

2: for n = 1, ..., N do
3: Calculate (Fx)

n
i,j and (Fy)

n
i,j, for all i = 1, 2, ..., I and j = 1, 2, ..., J .

4: for i=1,2,...,I do
5: Calculate the elements on five diagonals of matrix

(
E − 2τAnx,i

)
.

6: Solve Un+1
1,i from

(
E − 2τAnx,i

)
Un+1

1,i = (Un
x)i.

7: end for
8: for j=1,2,...,J do
9: Calculate the elements on five diagonals of matrix

(
E − 2τAny,j

)
.

10: Solve Un+1
2,j from

(
E − 2τAny,j

)
Un+1

2,j =
(
Un
y

)
j
.

11: end for
12: Calculate Un+1 =

(
Un+1

1 + Un+1
2

)/
2.

13: end for

5 Experiment Results
In this section, we show some experiment results of our algorithms presented in this
paper, and compare these models with various classic and recent stat-of-art denoising
methods, including TV [1], AFD [8], LLT (1.2) [2], MC [4] and BM3D [47]. Note, in
this section, denoising results of the MC model [4] are obtained through multigrid
algorithm which is proposed in [5]. Furthermore, we present the results of the explicit
scheme (4.1), the FED algorithm (Algorithm 1), and the AOS algorithm (Algorithm
2) with two coefficient options, Φa and Φb. To simplify the notation, the explicit
scheme algorithm using Φb is denoted as E-b, and other algorithms are denoted as
E-a, FED-b, FED-a, AOS-b, AOS-a. For the evaluations, we have used 8 images
shown in Fig. 7, including 2 synthetic images: geometry (300× 300 pixels, piecewise
constant image) and slope (128× 128 pixels, piecewise planar image), and 6 natural
images: piggy (341×199 pixels), butterfly (256×256 pixels), castle (321×481 pixels),
lena (371 × 302 pixels), starfish (256 × 256 pixels), and parrot (256 × 256 pixels).
Each noisy image is generated by adding gaussian noise to original image according
to the additive noise model.

In order to quantify the quality of the denoising results, which is comparing
the similarity between the noise-free image and the restored image, we utilize
measurements: PSNR (peak signal to noise ratio) and SSIM (structural similarity
index). For fairness, all the methods are settled with proper parameters for maximum
PSNR [48] and SSIM [49].

19

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 7: Test images. (a) geometry, synthetic image, piecewise constant image. (b)
slope, synthetic image, piecewise planar image. (c) piggy. (d) butterfly. (e) castle. (f)
lena. (g) starfish. (h) parrot.

5.1 Synthetic Images Denoising

In Fig. 8, we first consider the piecewise constant image with five blocks (Fig. 7(a))
which contains different geometric shapes. The original clean image, the noisy image
with σn = 40, and the restored images by TV, AFD, LLT, MC, FED-a, and AOS-a
are listed. From the results, the noise can be efficiently eliminated by all of the
models. In this group of experiments, parameters are σ = 0.5 and K = 0.1 for both
FED-a and AOS-a. As expected, the proposed algorithms, FED-a and AOS-a, lead
to clearer edges and flatter flat areas. Though there are only terms of x direction
and y direction of our proposed discretized scheme, jumps of every direction can be
preserved well. In Fig. 9(b), we also show a column of signals of denoised images by
LLT, FED-a, AOS-a where the red line is located in Fig. 9(a). Same as the result
of the one-dimensional experiment in subsection 2.1, our proposed algorithms can
better preserve edges and restore smoother flat areas than the LLT model. In more
detail, the restored image of AOS-a is smoother on the basis of preserving edges,
and the restored image of FED-a is more sharpen. For TV and AFD edges can be
preserved well, but the restored images are not smooth enough in flat areas. And
from Fig. 8, the resultant image of AFD are not clean, which contain many speckles
around edges. The resultant images of the LLT model and the MC model look patchy
in smooth regions and blur in edges. Different from PDE methods, BM3D shows
artificial effects, especially around edges. The contrast of the image through BM3D
is also changed because the bright irregular shape is darkened. The PSNR and SSIM
are shown in Table 1, and the PSNR of FED-a and AOS-a is 1.7dB and 1dB higher
than other comparison models at least, respectively. The SSIM of AOS-a is 0.315
higher than other comparison models. For FED-a, the SSIM is 0.005 higher than
other models at least. Because there are some speckles in FED-a result, the SSIM is
not particularly high as PSNR. These all illustrate the performance of our proposed
algorithms.

20

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: geometry (300× 300), σn = 40. (a) Noisy, σn = 40. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) BM3D. (g) FED-a. (h) AOS-a.

To further compare the edge preserving ability, another test is performed on the
slope image, a piecewise planar image with four blocks in Fig. 10. The noise level of
the noisy slope is 20. The parameters used in FED-a and AOS-a are σ = 0, K = 1.
From the results, all of the models can eliminate the noise efficiently. Our algorithms
can allow planar, while the TV model yields staircase effects. Note that the results of
our algorithm are very smooth in slop areas, which is almost the same as the original
image. However, the restored images by TV, AFD, MC, and BM3D are not clean
enough and generate edges that do not exist. As discussed before, the LLT model
is not good at restoring sharp edges and smooth flat areas. We can also see the
difference by the residual images in Fig. 11. The way we get residuals is f − u+ 128.
The residuals from AFD, BM3D and our algorithms are almost uniform which we
cannot see the information of the image. However, edges can be vaguely seen from
the residuals of TV and MC. Notably, the four edges in the residual from LLT are
obvious, which also illustrates the difference between our model and the LLT model.

These two synthetic images experiments (Fig. 8 and Fig. 10) demonstrate that
our algorithms can remove noise for smooth results, and also preserve edges well. Our
algorithms perform well both in vision and PSNR, SSIM indicators. In fact, from
Theorem 1, the result of the adaptive LLT model without fidelity term is piecewise
planar, and our fourth-order diffusion equation is a generalization of the adaptive
LLT model (2.1). Thus, out algorithms perform well both in flat area smoothing and
edge preserving.

21

(a) (b)

Figure 9: Plot of a column signal. (a) Location of the signal. (b) Plots of signals of
original image and denoised images by LLT, FED-a, AOS-a.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: slope (128 × 128), σn = 20. (a) Noisy, σn = 20. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) BM3D. (g) FED-a (h) AOS-a

Table 1: PSNR (dB) and SSIM results of denoising results of synthetic images by
different methods.

σn Images TV LLT AFD MC BM3D FED-a AOS-a

40 geometry
32.873 27.400 32.343 29.691 28.691 34.831 34.147
0.188 0.145 0.190 0.168 0.186 0.202 0.512

20 slope
37.158 33.023 38.900 34.513 38.918 42.080 43.221
0.714 0.640 0.764 0.631 0.712 0.802 0.863

22

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Difference of denoised slope (128 × 128), σn = 20. (a) Noise added to
slope, σn = 20. (b) TV. (c) LLT. (d) AFD. (e) MC. (f) BM3D. (g) FED-a (h) AOS-a

5.2 Parameter Setting and Analysis

In our algorithms, there are several parameters, mainly step size τ , σ, K, number of
iteration N , and ε for avoiding zero in the denominator. For explicit scheme, the step
size τ needs to be set to a small value in order to guarantee the stability. To be on
the safe side, we set τ = 0.01 in our explicit scheme with Φa and Φb, and experiments
illustrate the stability of the explicit scheme. For FED algorithm (Algorithm 1),
we fix T = 2M for stability and convenient. Also, experiments show that FED can
still accelerate the algorithm in this case from Table 4. More relaxed parameters τ ,
T and M can also guarantee the stability. However, because of the unconditional
stability from Theorem 2, the step size τ in the semi-implicit scheme can be taken
arbitrarily. In our experiments, we set τ = 2 for Algorithm 2.

Now, let us explore the influence of parameters σ and K to the models. Firstly,
we want to illustrate that out models can yield good results with a great range
of σ and K. For this purpose, we conduct parametric experiments for E-a where
parameter σ belongs to {0, 0.1, 0.1, ..., 1.9, 2} and K belongs to {1, 2, ..., 19, 20}. Fig.
12(a) is a scatter plot showing 420 values of PSNR sorted from big to small, and
the value of black dotted line corresponds to the PSNR value of the TV model
for the same noisy image which is 26.304 dB (from Table 2). Fig. 12(b) is a hot
map showing the value of PSNR with different σ and K. We can observe that the
proposed algorithm E-a achieves better performance with most pairs of σ and K.
The rate that PSNR value of FED-a is higher than the one of TV is about 87.38%
(the number of PSNR higher than 26.304, 367 divided by the total number 420). In
Fig. 12(c), we show the hot map of the number of iteration changing with σ and K,
which indicate that the number of iteration decreases as σ and K increase.

In order to show the visual difference of different σ and K, several results of

23

0 100 200 300 400
25.8

26

26.2

26.4

26.6

P
SN

R
(d

B
)

(a)

0 0.5 1 1.5 2

5

10

15

20

σ

K

26

26.2

26.4

(b)

0 0.5 1 1.5 2

5

10

15

20

σ

K

0.5

1

·104

(c)

Figure 12: Robustness of parameters. (a) Scatter plot of PSNRs sorted form big to
small from parametric experiments. (b) Hot map of values of PSNR with different σ
and K. (c) Hot map of number of iterations with different σ and K.

the parametric experiment are depicted in Fig. 13. Fig. 13(f) - Fig. 13(h) are
the denoising results of fixed σ, σ = 6, and these indicate that the smaller the K,
the smoother the flat area is and the shaper the edge is in the large-scale sense.
In other words, the restored image tends to be more cartoon image with small K.
As illustrated in Fig. 3(b), the sensitive area of Φa changes with the difference of
K. Specifically, Φa with K = 1 varies faster as |∇Gσ ∗ u| < 5, and it is small and
maintains a relatively gentle change as |∇Gσ ∗ u| > 5. However, for K = 20, the
change of Φa is very uniform in |∇Gσ ∗ u| < 60 at least, and our model (3.3) is
close to the LLT model as K tends to infinity. That is the reason why denoising
results of our model look like more cartoon image when K is small, and look like
the results of the LLT model when K is very large. In Fig. 13(i) - Fig. 13(l), we fix
parameter K = 9 to investigate the influence of σ. From these images, we can see
that a small σ tends to a result with clear edge and smooth flat. When σ is large,
the result is not smooth enough in the place that should be flat area. The reason
is that if σ is too large, G ∗ u would be too blurred which may destroy the edge
information of the original image. In this case, adaptive coefficient does not fully
utilize the feature information, causing the result tends to the resultant image of the
LLT model. Therefore, we should avoid choosing K and σ too large, and suggest
that 0.5 ≤ σ ≤ 1.5 and K ≤ 16.

5.3 Natural Images Denoising

For each natural image (Fig. 7(c) - Fig. 7(h)), we add Gaussian noise with σn belongs
to {10, 20, 30, 40, 50}. Table 3 lists the average PSNR and SSIM results of our
proposed fourth-order algorithms and competing methods on the six natural images.
Without a doubt, BM3D achieve the best PSNR and SSIM results. Compared with
PDE and variation based methods, our proposed algorithms perform better. As we
can see, on average, PSNR of TV is higher than PSNRs of LLT, AFD, and MC,
and SSIM of AFD is higher than SSIMs of TV, LLT, and MC. Our fourth-order
algorithms outperform TV by 0.28dB to 0.46dB in PSNR, and outperform AFD by
0.01 to 0.02 in SSIM. The PSNR and SSIM results of different algorithms on the
6 test images are shown in Table 2. It can be seen that BM3D yields the highest
PSNR and SSIM on most of images. However, for image "piggy", SSIMs of our
proposed fourth-order algorithms is 0.03 to 0.1 higher than the SSIM of BM3D,

24

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13: starfish(256× 256), σn = 30. (a) Noisy, σn = 30. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) E-a, σ = 0.6, K = 1. (g) E-a, σ = 0.6, K = 15. (h) E-a, σ = 0.6,
K = 20. (i) E-a, σ = 0, K = 9. (j) E-a, σ = 0.7, K = 9. (k) E-a, σ = 1.3, K = 9.
(l) E-a, σ = 2, K = 9.

25

which indicates the superiority in handling images with large smooth areas.
Fig. 14 - Fig.17 illustrate the visual results of different methods. As we can see

that all of the methods can smooth noise well in a large range of noise level, and the
TV model and our proposed models can preserve edges well. However, the staircase
effects of the TV model is obvious, which derives false edges. The results of BM3D
is very smooth with excellent visual effect. For the LLT model, the edges become
blurred with the evolution progress. We can also observe that the LLT model and the
MC model cannot recover flat regions well, and it leaves some ’picks’ and ’valleys’,
causing a bad visual effect. All of the proposed fourth-order algorithms perform well
for both of two coefficients. There are still some differences between these proposed
models. For example, E-b could preserve more features than E-a, and the results of
the AOS algorithm is smoother.

5.4 The Effectiveness of FED and AOS

The FED algorithm and the AOS algorithm can improve calculation efficiency and
reduce the time spent, and these experiments of natural image denoising are all
implemented in Matlab R2016b executed on a desktop PC whose processor is Intel(R)
Core(TM) i7-7700K CPU @4.20GHz 4.20 GHz. The average CPU time is shown
in Table 4. Specifically, because of the singularity of the fourth-order diffusion
equation, the acceleration capability of the FED algorithm is limited, which is about
1.5 to 2 times faster on average. However, the implicit scheme can overcome some
singularity of the proposed equation. The step size could be immense because of
the unconditional stability, and the multiple of acceleration is about 3. At the same
time, it should be noted that FED and AOS are very convenient to implement and
do not increase the number of parameters.

6 Conclusion
Based on the LLT model, we have proposed an adaptive LLT model for image
denoising. The experiments of 1D signal illustrate the superiority of adaptive model
in preserving jumps. And then, from the perspective of the diffusion equation,
the proposed adaptive LLT model has been generalized to a fourth-order diffusion
framework. Different from other fourth-order models, the diffusion coefficients
contain both first-order and second-order derivatives. Thus, the information of
images is utilized fully. In the numerical implementation, we have designed an
explicit scheme and a semi-implicit scheme, and employed the FED algorithm and
the AOS algorithm to accelerate the efficiency, respectively. Finally, the experimental
results have demonstrated the advantage of our models in edge preservation and flat
area recovery.

References
[1] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation

based noise removal algorithms. Physica D-nonlinear Phenomena, 60(1-4):259–
268, 1992.

26

Table 2: PSNR (dB) and SSIM results of denoising results of natural images by
different methods.
σn Images TV LLT AFD MC BM3D E-a E-b FED-a FED-b AOS-a AOS-b

10

piggy 38.328 37.305 38.418 37.222 40.535 39.505 38.855 39.571 39.250 39.763 39.360
0.614 0.555 0.629 0.505 0.627 0.657 0.652 0.649 0.645 0.670 0.668

butterfly 32.716 32.194 32.231 32.473 33.257 33.158 33.067 33.074 32.964 33.143 33.0459
0.812 0.795 0.812 0.797 0.830 0.821 0.821 0.818 0.817 0.823 0.8223

castle 32.705 32.140 31.834 32.131 34.089 32.940 32.941 32.787 32.770 32.803 32.781
0.563 0.554 0.548 0.550 0.626 0.561 0.562 0.559 0.554 0.562 0.565

lena 32.926 33.061 32.535 33.019 34.513 33.370 33.345 33.230 33.203 33.386 33.336
0.719 0.726 0.706 0.731 0.743 0.724 0.725 0.715 0.714 0.730 0.730

starfish 32.224 32.368 31.651 32.190 33.305 32.805 32.757 32.720 32.672 32.684 32.605
0.827 0.835 0.825 0.835 0.844 0.839 0.839 0.835 0.835 0.839 0.836

parrot 32.362 31.787 31.592 31.766 33.365 32.505 32.467 32.376 32.308 32.434 32.378
0.693 0.686 0.693 0.674 0.745 0.706 0.701 0.705 0.685 0.695 0.687

20

piggy 34.776 33.147 34.775 33.691 36.572 35.896 35.409 35.942 35.306 36.101 35.894
0.541 0.460 0.560 0.432 0.531 0.606 0.595 0.595 0.587 0.617 0.626

butterfly 28.628 27.698 28.486 28.647 29.575 29.033 28.964 29.054 28.942 29.196 29.041
0.741 0.700 0.748 0.721 0.775 0.754 0.755 0.758 0.751 0.758 0.758

castle 28.986 28.038 28.369 28.287 30.482 29.080 29.057 29.018 28.984 29.047 29.015
0.437 0.420 0.440 0.431 0.506 0.452 0.441 0.443 0.435 0.446 0.441

lena 29.567 29.582 29.416 29.592 31.314 29.990 29.944 29.941 29.895 30.070 30.043
0.589 0.604 0.589 0.606 0.643 0.607 0.606 0.603 0.603 0.612 0.613

starfish 28.342 28.307 28.065 28.344 29.655 28.777 28.713 28.740 28.678 28.782 28.713
0.725 0.737 0.725 0.742 0.752 0.744 0.743 0.741 0.741 0.745 0.745

parrot 28.725 27.863 28.240 28.257 29.749 28.906 28.826 28.864 28.768 28.937 28.876
0.579 0.567 0.595 0.576 0.611 0.605 0.594 0.600 0.595 0.603 0.598

30

piggy 32.805 31.089 33.046 31.812 34.099 33.896 33.650 33.923 33.333 34.104 34.041
0.498 0.427 0.528 0.405 0.490 0.553 0.546 0.554 0.540 0.574 0.582

butterfly 26.345 25.334 26.424 26.591 27.648 26.856 26.732 26.826 26.713 27.017 26.793
0.691 0.646 0.697 0.679 0.730 0.710 0.700 0.704 0.701 0.710 0.708

castle 26.979 25.834 26.548 26.177 28.454 26.996 26.941 26.973 26.900 27.032 27.002
0.376 0.351 0.390 0.367 0.441 0.399 0.390 0.414 0.387 0.417 0.397

lena 27.841 27.685 27.735 27.740 29.489 28.189 28.115 28.171 28.073 28.183 28.269
0.514 0.531 0.519 0.535 0.574 0.536 0.535 0.534 0.532 0.540 0.542

starfish 26.305 26.111 26.152 26.149 27.525 26.563 26.506 26.540 26.479 26.622 26.554
0.639 0.652 0.643 0.657 0.684 0.659 0.658 0.659 0.657 0.662 0.662

parrot 26.677 25.633 26.432 26.271 27.616 26.876 26.774 26.858 26.746 26.947 26.848
0.509 0.494 0.526 0.509 0.531 0.539 0.527 0.537 0.524 0.539 0.531

40

piggy 31.204 29.491 31.406 30.134 31.773 32.193 32.117 32.207 32.014 32.151 32.387
0.466 0.413 0.506 0.367 0.452 0.527 0.516 0.522 0.513 0.523 0.560

butterfly 24.837 23.764 24.995 25.077 26.097 25.396 25.318 25.423 25.302 25.435 25.408
0.646 0.601 0.656 0.644 0.688 0.668 0.666 0.667 0.665 0.668 0.667

castle 25.672 24.460 25.379 24.780 26.923 25.619 25.639 25.671 25.602 25.699 25.636
0.325 0.299 0.341 0.316 0.380 0.343 0.356 0.360 0.367 0.368 0.367

lena 26.657 26.381 26.528 26.479 28.139 26.938 26.863 26.925 26.844 26.975 26.977
0.452 0.469 0.460 0.472 0.515 0.479 0.478 0.478 0.476 0.481 0.483

starfish 24.962 24.734 24.785 24.697 25.907 25.189 25.143 25.171 25.124 25.237 25.151
0.585 0.600 0.589 0.600 0.627 0.609 0.607 0.608 0.606 0.612 0.611

parrot 25.318 24.286 25.270 24.966 25.904 25.640 25.528 25.622 25.507 25.739 25.613
0.459 0.452 0.479 0.469 0.476 0.494 0.488 0.489 0.487 0.489 0.494

50

piggy 30.071 28.470 30.225 28.882 29.625 30.977 30.977 31.053 30.892 30.944 31.167
0.446 0.399 0.472 0.342 0.439 0.490 0.496 0.492 0.491 0.497 0.524

butterfly 23.581 22.625 23.872 23.926 24.465 24.189 24.151 24.169 24.135 24.258 24.277
0.608 0.563 0.626 0.610 0.643 0.634 0.635 0.633 0.634 0.637 0.634

castle 24.870 23.713 24.662 23.967 25.678 24.903 24.927 24.883 24.907 24.916 24.980
0.285 0.262 0.302 0.276 0.330 0.313 0.322 0.308 0.316 0.307 0.334

lena 25.720 25.308 25.505 25.389 26.866 25.873 25.779 25.864 25.745 25.847 25.888
0.407 0.422 0.409 0.421 0.456 0.426 0.427 0.424 0.427 0.433 0.432

starfish 23.966 23.781 23.783 23.779 24.348 24.144 24.110 24.128 24.094 24.191 24.122
0.532 0.553 0.535 0.557 0.554 0.555 0.553 0.554 0.552 0.559 0.556

parrot 24.302 23.222 24.385 23.931 24.401 24.629 24.527 24.639 24.513 24.715 24.643
0.412 0.412 0.429 0.426 0.424 0.443 0.438 0.442 0.437 0.444 0.448

27

Table 3: Average PSNR (dB) and SSIM of 6 natural images
σn TV LLT AFD MC BM3D E-a E-b FED-a FED-b AOS-a AOS-b

10 33.544 33.142 33.044 33.134 34.844 34.047 33.905 33.960 33.861 34.036 33.918
0.705 0.692 0.702 0.682 0.736 0.718 0.717 0.714 0.708 0.720 0.718

20 29.837 29.106 29.559 29.470 31.224 30.280 30.152 30.260 30.096 30.355 30.264
0.602 0.581 0.610 0.585 0.637 0.628 0.622 0.623 0.619 0.630 0.630

30 27.825 26.948 27.723 23.534 29.138 28.229 28.120 28.215 28.041 28.317 28.251
0.538 0.517 0.551 0.450 0.575 0.566 0.559 0.567 0.557 0.574 0.570

40 26.442 25.519 26.394 26.022 27.457 26.829 26.768 26.836 26.732 26.873 26.862
0.489 0.472 0.505 0.478 0.523 0.520 0.518 0.521 0.519 0.524 0.530

50 25.419 24.520 25.405 24.979 25.897 25.786 25.745 25.789 25.714 25.812 25.846
0.448 0.435 0.462 0.439 0.474 0.477 0.478 0.475 0.476 0.479 0.488

Average 28.613 27.847 28.425 27.428 29.712 29.034 28.938 29.012 28.889 29.079 29.028
0.556 0.539 0.566 0.527 0.589 0.582 0.579 0.580 0.576 0.585 0.587

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14: piggy (341 × 199), σn = 30. (a) Noisy, σn = 30. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) BM3D. (g) E-a. (h) E-b. (i) FED-a. (j) FED-b. (k) AOS-a. (l)
AOS-b.

28

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15: butterfly (256× 256), σn = 30. (a) Noisy, σn = 30. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) BM3D. (g) E-a. (h) E-b. (i) FED-a. (j) FED-b. (k) AOS-a. (l)
AOS-b.

Table 4: Comparison of CPU time
σn E-b FED-b AOS-b E-a FED-a AOS-a
10 3.643 1.486 1.397 4.083 2.333 1.922
20 8.140 4.318 2.591 13.863 6.509 4.222
30 15.676 9.087 5.053 28.385 21.427 9.419
40 31.110 22.347 12.199 44.120 32.749 19.449
50 50.638 23.857 19.879 63.855 32.065 15.770

29

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16: lena (371× 302), σn = 40. (a) Noisy, σn = 40. (b) TV. (c) LLT. (d) AFD.
(e) MC. (f) BM3D. (g) E-a. (h) E-b. (i) FED-a. (j) FED-b. (k) AOS-a. (l) AOS-b.

30

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 17: parrot (256 × 256), σn = 50. (a) Noisy, σn = 50. (b) TV. (c) LLT. (d)
AFD. (e) MC. (f) BM3D. (g) E-a. (h) E-b. (i) FED-a. (j) FED-b. (k) AOS-a. (l)
AOS-b.

31

[2] Marius Lysaker, Arvid Lundervold, and Xue-Cheng Tai. Noise removal using
fourth-order partial differential equation with applications to medical magnetic
resonance images in space and time. IEEE Transactions on image processing,
12(12):1579–1590, 2003.

[3] Marius Lysaker, Stanley Osher, and Xue-Cheng Tai. Noise removal using
smoothed normals and surface fitting. IEEE Transactions on Image Processing,
13(10):1345–1357, 2004.

[4] Wei Zhu and Tony Chan. Image denoising using mean curvature of image
surface. SIAM Journal on Imaging Sciences, 5(1):1–32, 2012.

[5] Carlos Brito-Loeza and Ke Chen. Multigrid algorithm for high order denoising.
SIAM Journal on Imaging Sciences, 3(3):363–389, 2010.

[6] Francine Catté, Pierre-Louis Lions, Jean-Michel Morel, and Tomeu Coll. Image
selective smoothing and edge detection by nonlinear diffusion. SIAM Journal
on Numerical analysis, 29(1):182–193, 1992.

[7] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on pattern analysis and machine
intelligence, 12(7):629–639, 1990.

[8] Mohammad Reza Hajiaboli. An anisotropic fourth-order diffusion filter for
image noise removal. International Journal of Computer Vision, 92(2):177–191,
2011.

[9] Tony Chan, Antonio Marquina, and Pep Mulet. High-order total variation-based
image restoration. SIAM Journal on Scientific Computing, 22(2):503–516, 2000.

[10] Andrea Bertozzi and John Greer. Low-curvature image simplifiers: Global
regularity of smooth solutions and laplacian limiting schemes. Communications
on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 57(6):764–790, 2004.

[11] Andrea Bertozzi, John Greer, Stanley Osher, and Kevin Vixie. Nonlinear regu-
larizations of tv based pdes for image processing. Contemporary Mathematics,
371:29–40, 2005.

[12] Seongjai Kim and Hyeona Lim. Fourth-order partial differential equations for
effective image denoising. Electron J Differ Equ, 17:107–121, 2009.

[13] Marius Lysaker and Xue-Cheng Tai. Iterative image restoration combining total
variation minimization and a second-order functional. International journal of
computer vision, 66(1):5–18, 2006.

[14] Fang Li, Chaomin Shen, Jingsong Fan, and Chunli Shen. Image restoration
combining a total variational filter and a fourth-order filter. Journal of Visual
Communication and Image Representation, 18(4):322 – 330, 2007.

[15] Xinwu Liu, Lihong Huang, and Zhenyuan Guo. Adaptive fourth-order partial
differential equation filter for image denoising. Applied Mathematics Letters,
24(8):1282 – 1288, 2011.

32

[16] Y-L You and Mostafa Kaveh. Fourth-order partial differential equations for
noise removal. IEEE Transactions on Image Processing, 9(10):1723–1730, 2000.

[17] XY Liu, C-H Lai, and Kyriacos A Pericleous. A fourth-order partial differential
equation denoising model with an adaptive relaxation method. International
Journal of Computer Mathematics, 92(3):608–622, 2015.

[18] Mohammad Reza Hajiaboli. A self-governing hybrid model for noise removal.
In Pacific-Rim Symposium on Image and Video Technology, pages 295–305.
Springer, 2009.

[19] Peiying Chen and Yuandi Wang. Fourth-order partial differential equations for
image inpainting. In Audio, Language and Image Processing, 2008. ICALIP
2008. International Conference on, pages 1713–1717. IEEE, 2008.

[20] Peiying Chen and Yuandi Wang. A new fourth-order equation model for image
inpainting. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth
International Conference on, volume 5, pages 320–324. IEEE, 2009.

[21] Peng Li, Shuai-Jie Li, Zheng-An Yao, and Zu-Jin Zhang. Two anisotropic
fourth-order partial differential equations for image inpainting. IET Image
Processing, 7(3):260–269, 2013.

[22] Shuaijie Li and Xiaohui Yang. Novel image inpainting algorithm based on adap-
tive fourth-order partial differential equation. IET Image Processing, 11(10):870–
879, 2017.

[23] Bibo Lu and Qiang Liu. Image restoration with surface-based fourth-order
partial differential equation. In Visual Communications and Image Processing
2010, volume 7744, page 774424. International Society for Optics and Photonics,
2010.

[24] Weili Zeng, Xiaobo Lu, and Xianghua Tan. A class of fourth-order telegraph-
diffusion equations for image restoration. Journal of Applied Mathematics, 2011,
2011.

[25] Peng Li, Yang Zou, and Zhengan Yao. Fourth-order anisotropic diffusion
equations for image zooming. Journal of Image and Graphics, 18(10):1261–1269,
2013.

[26] Konstantinos Papafitsoros and Carola-Bibiane Schönlieb. A combined first
and second order variational approach for image reconstruction. Journal of
mathematical imaging and vision, 48(2):308–338, 2014.

[27] Yadunath Pathak, KV Arya, and Shailendra Tiwari. Fourth-order partial
differential equations based anisotropic diffusion model for low-dose ct images.
Modern Physics Letters B, 32(25):1850300, 2018.

[28] Zhenyu Zhou, Zhichang Guo, Gang Dong, Jiebao Sun, Dazhi Zhang, and Boying
Wu. A doubly degenerate diffusion model based on the gray level indicator
for multiplicative noise removal. IEEE Transactions on Image Processing,
24(1):249–260, 2015.

33

[29] Kehan Shi, Dazhi Zhang, Zhichang Guo, and Boying Wu. A linear reaction-
diffusion system with interior degeneration for color image compression. SIAM
Journal on Imaging Sciences, 11(1):442–472, 2018.

[30] Sven Grewenig, Joachim Weickert, and Andrés Bruhn. From box filtering to
fast explicit diffusion. In Joint Pattern Recognition Symposium, pages 533–542.
Springer, 2010.

[31] Joachim Weickert, Sven Grewenig, Christopher Schroers, and Andrés Bruhn.
Cyclic schemes for pde-based image analysis. International Journal of Computer
Vision, 118(3):275–299, 2016.

[32] W Gentzsch and A Schlüter. Über ein einschrittverfahren mit zyklischer schrit-
tweitenänderung zur lösung parabolischer differentialgleichungen. Zeitschrift für
angewandte Mathematik und Mechanik, page T415, 1978.

[33] W Gentzsch. Numerical solution of linear and non-linear parabolic differential
equations by a time-discretisation of third order accuracy. In Proceedings of the
third GAMM—Conference on Numerical Methods in Fluid Mechanics, pages
109–117. Springer, 1980.

[34] Richard S Varga. Matrix iterative analysis, volume 27. Springer Science &
Business Media, 2009.

[35] D Calvetti and L Reichel. Adaptive richardson iteration based on leja points.
Journal of computational and applied mathematics, 71(2):267–286, 1996.

[36] Joachim Weickert, BM Ter Haar Romeny, and Max A Viergever. Efficient and
reliable schemes for nonlinear diffusion filtering. IEEE transactions on image
processing, 7(3):398–410, 1998.

[37] Joachim Weickert. Applications of nonlinear diffusion in image processing and
computer vision. Acta Math. Univ. Comenianae, 70(1):33–50, 2001.

[38] T Lu, P Neittaanmaki, and X-C Tai. A parallel splitting-up method for partial
differential equations and its applications to navier-stokes equations. ESAIM:
Mathematical Modelling and Numerical Analysis, 26(6):673–708, 1992.

[39] Donald W Peaceman and Henry H Rachford, Jr. The numerical solution of
parabolic and elliptic differential equations. Journal of the Society for industrial
and Applied Mathematics, 3(1):28–41, 1955.

[40] Thomas P Witelski and Mark Bowen. Adi schemes for higher-order nonlinear
diffusion equations. Applied Numerical Mathematics, 45(2-3):331–351, 2003.

[41] Willem Hundsdorfer and Jan G Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33. Springer Science & Business
Media, 2013.

[42] Luca Calatroni, Bertram Düring, and Carola-Bibiane Schönlieb. Adi splitting
schemes for a fourth-order nonlinear partial differential equation from image
processing. arXiv preprint arXiv:1305.5362, 2013.

34

[43] Jim Douglas and James E Gunn. A general formulation of alternating direction
methods. Numerische Mathematik, 6(1):428–453, 1964.

[44] Guri I Marchuk. Splitting and alternating direction methods. Handbook of
numerical analysis, 1:197–462, 1990.

[45] Andrew Ronald Mitchell and David Francis Griffiths. The finite difference
method in partial differential equations(book). Chichester, Sussex, England and
New York, Wiley-Interscience, 1980. 281 p, 1980.

[46] Nikolaj Nikolaevič Janenko. The method of fractional steps: the solution of
problems of mathematical physics in several variables. Springer, 1971.

[47] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE
Transactions on image processing, 16(8):2080–2095, 2007.

[48] Sylvain Durand, Jalal Fadili, and Mila Nikolova. Multiplicative noise removal
using l1 fidelity on frame coefficients. Journal of Mathematical Imaging and
Vision, 36(3):201–226, 2010.

[49] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image qual-
ity assessment: from error visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612, 2004.

35

	Introduction
	The New Proposed Functional
	The New Adaptive LLT Model
	The Fourth-Order Diffusion Equation Based on Functional (2.1)

	The New Fourth-Order Diffusion Equation
	The New Fourth-Order Diffusion Equation Framework
	The Proposed Model
	Edge Preservation

	Numerical Implementation
	The Finite Difference Explicit Scheme
	FED Scheme
	The Semi-Implicit Scheme
	AOS Scheme

	Experiment Results
	Synthetic Images Denoising
	Parameter Setting and Analysis
	Natural Images Denoising
	The Effectiveness of FED and AOS

	Conclusion

