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Abstract An important area of microfluidics is the creation and manipulation
of small droplets. This is commonly done using microchannels or electrowet-
ting. Recently a new method is proposed to create templated droplets using
cup-shaped microparticles. These particles are observed to hold nearly identi-
cal volumes of aqueous liquid when dispersed in an oil-water mixture. However
a theory for this behavior is lacking. In this paper we present a mathematical
model for such minimal surface configurations in the case of axisymmetry. We
obtain a volume-energy graph by finding the minimal surface for various vol-
umes and develop a theory regarding the exchange of fluid between multiple
particles.
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1 Introduction

The creation and manipulation of fixed sized miniature droplets is an im-
portant area of study in microfluidics, enabling highly sensitive biological and
chemical assays. A benefit of such technology is that by compartmentaliz-
ing a larger volume into sub-components, individual cells or molecules can
be analyzed more precisely. This is because the secretion of molecules from
a cell, or the products of reactions of individual molecules, can quickly accu-
mulate to high concentrations when confined in small volumes. Conventional
technologies are focused on droplet formation and manipulation via flow in
microchannels [1,2,3] or in electrowetting devices [4,5,6]. Another approach,
recently developed, is the creation of tiny solid particles with complex geome-
tries and hydrophilic parts that allow for the capture of uniform sized droplets
simply by having favored conditions related to their surface energy [7,8] (Fig.
1). These microparticles can result in stable isolated volumes on the nanoliter
or sub-nanoliter scale, when simply mixed. Molecules accumulating in these
small volumes at high concentration can also bound to the solid phase of the
particle, enabling analysis with standard equipment like flow cytometers. This
can lead to “lab on a particle” technologies in which experiments can be done
on thousands of individual cells, to study phenomena at the cellular level.

A theory behind this new technology is lacking though. We are interested
in understanding two problems: (a) the optimal surface energy configuration
for specific microparticle designs; and (b) the optimal energy configuration for
a multi-particle system. We calculate the energy related to surface tensions
only, since it is the dominant contributor at the microscale compared to other
forces, for example buoyancy.

Finding a configuration that minimizes surface tension while maintaining
a certain volume is a classical problem in geometry [10,11]. One especially well
documented case is the problem of a liquid bridge between two axisymmetric
surfaces. A common example of such surfaces are spheres [12,13,14] and planes.
The planes are in various shapes that either expand to infinity [15,16,17,
18,19], are finite [20,21,22,23,24,25,26,27], or a mix of both conditions [28].
Results with more general shapes are well documented in [29].

In this paper we investigate minimal surface configurations for more com-
plex axisymmetric solids (Fig. 2) for which there exists experimental data [9,
30]. In this case the ensuing minimization problem is reduced to a 1D problem
and is relatively straightforward so rigorous results are derived. Moreover, such
symmetry often corresponds to simplified manufacturing technologies for pro-
ducing such particles in bulk. It is possible to achieve minimal surfaces without
the axisymmetric assumption using 3D simulations as in [7]. However this is
computationally expensive compared to 1D simulations. Once we obtain the
minimal surface of a single particle we study how particles interact with each
other by distributing a fixed volume of fluid. We solve this by distributing the
fluid so that the total surface energy is minimized. Under this assumption we
develop a theory for the minimal energy configuration of multi-particle systems
for a given total volume. Simulations of such interactions help us understand
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(a) (b)

Fig. 1: Experimental photos of “dropicles”. In both images water is captured
inside the the particles which are surrounded by oil. In (a) the particles are
those in [7], which are not axisymmetric and have a fully 3D structure. The
particles in (b) are those in [9] and are shaped as in Fig 2b. (b) is a false color
image, with the particle colored red and water colored blue. The surrounding
oil appears dark.

(a) Two parallel flat planes (b) Hollow sphere (c) Hollow Cylinder

Fig. 2: Shapes of axisymmtric microparticles. A cross-section of (b) and (c)
are shown in Fig. 3b and 3c respectively.

the minimal energy configurations achieved through pairwise interactions and
develop ideas for efficient particle design.

Our paper is organized as follows. In section 2, we explore three micropar-
ticle configurations of interest: planar surfaces, hollow spheres, and hollow
cylinders (Fig. 2). We deduce the shape of the minimal surface and calculate
the volume-energy graph for each particle. In section 3, we develop rigorous
theory regarding the minimal configuration for a multi-particle system. We can
predict the minimal energy distribution of multi-particle systems by observing
properties of the volume-energy graph of a single dropicle. In section 4 and 5,
we simulate the interaction between two and multiple particles respectively.
The simulation verify the results in section 3 and also suggest guidelines for
particle design. Through out the paper we follow the terminology in [7,8], by
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(a) (b) (c)

Fig. 3: Examples of water droplets adhering to solid surfaces. (a) is a droplet
(blue) on an infinite flat surface (black). (b) and (c) are cross sections of a
hollow sphere and a hollow cylinder, respectively, with the axis of symmetry
shown as a dotted vertical line. The solids are colored in black. In (b), R and
r are the radius of the outer and inner spheres respectively, and d is the offset
between the tip of the particle and the center of the inner sphere. In the figure
the parameters are R = 1.18, r = 1, and d = 0.5. In (c), h is the height
and R and r are the inner and outer radius of the cylinder. In the figure the
parameters are R = 0.9, r = 0.7 and h = 3.

denoting the target liquid as water, the surrounding liquid as oil. We denote
the water-particle complex as a “dropicle”.

2 Energy minimizing surfaces

In this section we focus on finding the minimal energy surface configuration
for a given particle and volume. By repeating these calculations for different
volumes, we draw a volume-energy graph (V-E graph) of a particle.

Denote the fixed solid region by S, the finite volume of water by Ω, the
water-solid interface by ∂ΩWS and the water-oil interface by ∂ΩWO. Note that
∂Ω = ∂ΩWS ∪ ∂ΩWO (Fig. 3a). The interfacial tension energy of the dropicle
is

E(Ω) = σWO|∂ΩWO|+ σWS |∂ΩWS |+ σOS(|∂S| − |∂ΩWS |)
= σWO|∂ΩWO|+ (σWS − σOS)|∂ΩWS |+ σOS |∂S| (1)

where |∂S| is the surface area of the solid, |∂ΩWO| and |∂ΩWS | are the water-
oil and water-solid surface areas of Ω respectively, σWS , σWO and σOS are
surface tensions between water-solid, water-oil and oil-solid respectively. We
assume the solid is hydrophilic and partial wetting happens, i.e.

σWO > σOS − σWS > 0. (2)

Throughout this paper we use the surface tensions values σWO = 1, σWS = 0.1,
and σOS = 0.9, unless stated otherwise. This choice is consistent with the use
of hydrophilic materials for the solids in the experiments [7,9,8]. Qualitatively
the results do not change much with modest variation in these parameters
(c.f. Section 4.2). We note that the last term in (1) only depends on ∂S and is
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independent of the water domain Ω so we ignore it as far as the minimal energy
calculation is concerned. Also we note that the energy equation does not take
any dynamics around the dropicle into account, and therefore our model is a
static fluid model. We need to find an Ω that minimizes the energy (1) under
the volume constraint |Ω| = V . Since the ratio of surface energies determine
the static problem the energy can be dimensionless. Throughout this paper we
assume that for each dropicle Ω is an open bounded and connected domain.

Solving (1) is well documented in [29] chapter 2. The minimizing surface is a
constant mean curvature surface, with a prescribed contact angle α satisfying,

cosα = (σOS − σWS)/σWO (3)

called the Duprè-Young condition for smooth solid surfaces. For sharp surfaces
(e.g. tips of Fig. 3b) we consider a range of contact angles rather than a single
choice. The range depends on α and the angle of the sharp solid. A way to
understand this is by smoothing the sharp surface locally and applying the
condition in (3) to a specific point in the smoothed area.

The physical cases of interest here are all axisymmetric connected solids
(Fig. 2b and 2c), with simply connected axisymmetric water domains. Under
these assumptions the water-oil interface ∂ΩWO of problem (1) is part of a
sphere.

Theorem 1 Assume the surface tensions satisfy the partial wetting condition
(2) and the solid is axisymmetric and connected. Also assume that the water
domain is bounded, simply connected and axisymmetric. Then the water-oil
interface that minimizes (1) is part of a sphere.

Proof. This theorem summarizes results discussed in detail in [29] chapter
2.4.4.

The rest of this section uses this theoretical result to compute the energy-
volume curves for the particle shapes of interest. We start with the classical
case of two parallel planes, which are well-studied in the literature, to contrast
with the hollow particle shapes that are less well-studied.

2.1 Two parallel planes

The parallel plane case is well-known [18]. In this case there are two types
of geometries to consider for Ω: (a) a droplet that only touches one of the
planes or (b) a bridge between the two planes.

Spherical cap: For the case where the water only comes into contact with
one of the planes, since the surface is connected and axisymmteric, we obtain
a spherical cap as the minimizer by applying Theorem 1. The size and shape
of the sphere is decided from the volume constraint and the Duprè-Young
condition.
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Spherical Cap (b)
Liquid Bridge (c)
Minimum energy

(a)

(b)

(c)

Fig. 4: Parallel plane dropicles. (a) is the V-E graph of parallel planes, while (b)
and (c) are cross sections of the spherical cap and the liquid bridge through the
axis of symmetry shown as a vertical arrow. The blue ◦ dots in (a) indicate the
energy when the water is on one side and forms part of a sphere as in (b). The
orange ∗ dots indicate the energy when the water forms a bridge connecting
both sides as in (c). The unit volume is (2a)3 where 2a is the distance between
the parallel planes. The black solid line is the minimum of the two dotted lines
and represents the V-E graph. The surface tensions are σWO = 1, σWS = 0.1,
σOS = 0.9.

Liquid bridge : For the case when water connects both planes of distance
2a, using calculus of variations, it is known [18] that an axisymmetric bridge
forms with shape profile f(x) between −a and a satisfying,

f ′′

(1 + (f ′)2)3/2
− 1

f(1 + (f ′)2)1/2
= 2H (4)

where H is the Lagrange multiplier corresponding to the volume constraint,
with Neumann boundary conditions

f ′(−a) =
σ√

1− σ2
, f ′(a) = − σ√

1− σ2
(5)

where σ = (σWS − σOS)/σWO (Fig. 4c). The boundary conditions that arise
are identical to those given by the Duprè-Young condition.

Fig. 4a shows the V-E graph of the spherical cap and the liquid bridge.
The blue ◦ dotted line represents the V-E graph for the spherical cap attached
to one of the planes, which was calculated by minimizing (1) under the vol-
ume constraint using basic calculus. The orange ∗ dotted lines represent the
energy of the liquid bridge which is calculated by solving the ODE (4) and (5)
numerically using the shooting method for a given range of H. The minimum
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Fig. 5: Hollow sphere dropicle. (a) is the V-E graph of hollow sphere particle.
The minimum is obtained when the water-oil interface is flat. (b) and (c)
are cross sections of the dropicle through the axisymmetric axis. The volume
contained in each image corresponds to the volumes V1 and V2 indicated on
the graph. The parameters of the particle are those given in Fig. 3b. The unit
volume is given as VIS = 4

3πr
3. The surface tensions are σWO = 1, σWS = 0.1,

σOS = 0.9.

energy configuration for a given volume is the minimum of the two graphs,
shown as the black solid line. This indicates that there is a transition from a
spherical cap to a liquid bridge as we increase the volume.

2.2 Hollow sphere

Next we consider a particle shaped as in Fig. 2b, a larger sphere with a
smaller inner sphere carved out to form an exposed cavity, which we call the
hollow sphere. The parameters related to such a shape are given in Fig. 3b. We
assume that the water-oil surface is axisymmetric with respect to the common
axis of the two spheres (Fig. 5). By Theorem 1 the shape of the minimal water-
oil surface is itself a spherical cap with a curvature that can differ from those
of the particle surfaces. To precisely compute the V-E graph we follow the
procedure as outlined below.

1. For a given water volume and circular triple junction (contact line), there
exists one spherical surface. We compute the surface energy of the entire
system for this chosen contact line.

2. Fix the volume and find the contact line which minimizes the energy of the
system.
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Fig. 6: Hollow cylinder dropicle. (a) is the V-E graph of hollow cylinder parti-
cle. The blue ∗ represents an approximation of the non-axisymmetric surface
by a surface of a cap (Fig. 4). The red ◦ represents the V-E graph when ax-
isymmetry is forced. The black solid line is the minimum of these two cases
which is close to the actual V-E graph. The minimum of the black line is
obtained when the top and bottom water-oil interfaces are flat. (b) and (c)
are cross sections of the dropicle through the axisymmetric axis. The water
volume corresponds to the volumes V1 and V2 indicated on the graph. The
parameters of the particle are given in Fig. 3c. The unit volume is given as the
volume of the inner cylinder VIC = πr2h. The surface tensions are σWO = 1,
σWS = 0.1, σOS = 0.9.

3. Repeat the calculation for different volumes.

Fig. 5a shows the V-E graph of a hollow sphere particle with cross section
shown in Fig. 3b. For small volumes of water, we see a decrease in energy as the
volume increases, until the water volume is large enough so that it reaches the
outer edge of the hollow sphere and forms a flat surface. Two special volumes
of interest are V1, the smallest volume for which the water droplet reaches the
edge of the hollow sphere, and V2, the largest such volume. Once the water
volume exceeds V2 the minimal surface wets the outside sphere. When the
contact line is away from the sharp tip, the Duprè-Young condition holds for
the minimal surface. However for the sharp corner the minimizing surface does
not necessarily satisfy the condition.
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2.3 Hollow cylinder

The particle we consider in this section is an empty cylinder with a finite
wall width (Fig. 2c), which we call a hollow cylinder. The shape parameters
are given in Fig. 3c. Again we assume that the water-oil surface is axisymmet-
ric about the axis of the cylinder. By Theorem 1, the shape of the water-oil
surface is part of a sphere. The V-E graph is calculated by a similar method
as in 2.2. The difference is that the water-oil interface is comprised of two
disjoint surfaces, top and bottom, that need to be determined. We determine
the minimal energy configuration by calculating the energy of different com-
binations of top and bottom interfaces that contain the given volume. The
results are plotted in Fig. 6a as red ◦. Similar to the hollow sphere, V1 and
V2 denote the smallest and largest volumes for which the contact line of the
droplet are edges of the hollow cylinder. When the contact line is away from
the edges, again the Duprè-Young condition holds for the minimal surface, but
not necessarily for the sharp corners. One should note that for small enough
volumes the water domain that minimizes (1) is not axisymmetric. For such
small volumes (as V → 0) the water domain is similar to a spherical drop in-
side one side of the cylinder. For simplicity, we approximate this as a spherical
cap on a flat plane, which we use for the minimal energy configuration for very
small water drops inside a cylinder (blue ∗ in Fig. 6a). We do not focus on
this detail though, because it is outside the range of interest for interacting
dropicles. For this reason we need not compute it precisely and ignore this
approximation for future simulations. The black solid line denotes the lowest
energy configuration, of the red and blue graph. A phase change from axisym-
metric to non-axisymmetric happens near the volume where the two intersect,
as in the flat plane case (Fig. 4).

3 Rigorous theory of minimizing surface

In this section we answer how the V-E graphs can be used to analyze the
interactive behavior between dropicles. We develop a theory for the minimal
energy water distribution among multiple dropicles. First we consider two
identical particles and a fixed total volume of water. The first derivative of the
graph is key in understanding how to split the water between the particles to
achieve energy minimum. Extending this idea we prove a theorem for systems
with more than two particles. Throughout this paper we assume each dropicle
contains only one particle, i.e. no two particles are connected by the same
water droplet. In real physical systems, sometimes one observes coalescence of
these dropicles. However this is beyond the scope of our current analysis.

3.1 Droplet splitting between two particles

For a particle along with its V-E graph, E(V ), we address the question of
the optimal water distribution between two identical particles, given a fixed
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Fig. 7: What is the optimal way to split a volume of water between two par-
ticles?

total water volume VT . Does the water droplet split into two smaller drops or
remain intact (Fig. 7)? We formulate this as an optimization problem

V = arg min
0≤V≤VT

{E(V ) + E(VT − V )}. (6)

This optimization problem minimizes the sum of the static energy function
E(V ). For this paper we only consider functions E(V ) that are continuously
differentiable.

By the symmetry of the problem we get two values of V that represent
identical situations. We denote the smaller volume as VS and the larger one
as VL. Without lost of generality finding solutions of V is identical to finding

VS = arg min
0≤V≤VT /2

{E(V ) + E(VT − V )}. (7)

Since the domain is compact, there exists a minimizer either on the boundary
(VS = 0 and VS = VT /2) or when the first derivative is 0,

E′(VS) = E′(VT − VS). (8)

We need to know how VS changes with respect to the total volume VT .

3.1.1 Convex and Concave V-E graphs

For convex and concave E(V ), VS is trivial.

Theorem 2 Assume E(V ) ∈ C1[0,∞). If E(V ) is a convex function, VS =
VT /2. If E(V ) is a concave function, VS = 0. If E(V ) is strictly convex or
strictly concave, the minimizer is unique.
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Proof. If E(V ) for 0 ≤ V ≤ VT is a convex function the total energy function
E(V ) + E(VT − V ) is also a convex function. The minimum of the convex
function is obtained where the first derivative is 0. This is satisfied for VS =
VT /2. If E(V ) is strictly convex this minimizer is unique.

If E is a concave function, by using concavity twice we obtain

E(0) + E(VT ) ≤ E(V ) + E(VT − V ), (9)

for all 0 ≤ V ≤ VT , hence VS = 0. If E(V ) is strictly concave the inequality is
strict.

Classical example A simple example of the concave case is an isolated water
droplet in the absence of a solid particle. Since the minimal surface of a water
drop in oil is a sphere, the energy graph obeys E(V ) = σWO(6

√
πV )2/3, so the

graph is strictly concave. Consequently any two spherical drops have surface
area greater than that of a single sphere with the combined volumes.

3.1.2 General V-E graphs

For hollow sphere and hollow cylinder particles certain properties of E(V )
lead to guaranteed bounds on the size of VS .

Theorem 3 Consider two particles with the same V-E graph E(V ). Suppose
E(V ) ∈ C1[0,∞) has the following properties.

1. For some 0 < V1 < V2, E′(V ) decreases for 0 ≤ V ≤ V1, strictly increases
for V1 ≤ V ≤ V2 and again strictly decreases for V2 ≤ V .

2. lim
V→∞

E′(V ) = 0.

3.
∫ V2

0
E′(U)dU = E(V2)− E(0) ≤ 0.

For water of total volume VT the following are true for VS defined in (7),

1. If 0 ≤ VT ≤ V1, then VS = 0 i.e. the minimal surface energy configuration
is one particle containing all water.

2. There exist Vb ≥ V2, so that if 2Vb ≤ VT , then V1 ≤ VS ≤ V2 i.e. there
exists a particle containing a water volume in the range [V1, V2].

The second result of the above theorem is important because it results in
fairly uniform size volumes (between V1 and V2) associated with a particle.
With many particles a similar result holds in which all but one particle have a
volume of water between these two bounds (cf. Fig. 14). A particle with a V-E
graph that yields V1 close to V2 should trap a droplet with a specific volume
between the two and this is a design feature of the system.

Proof. Fig. 8a is an example of a function that satisfies the conditions of
the theorem. The first conclusion follows from the fact that since E′(V ) is
decreasing for 0 ≤ V ≤ V1, therefore E(V ) is concave in this range. We
conclude from Theorem 2 that VS = 0.
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The second conclusion is proved as follows. Recall that VS , if it is not 0,
should satisfy equation (8). If VT ≥ 2V2 this leads to E′(VT−V ) > 0. Therefore
in this case the first condition in the theorem restricts us as having at most
four possible candidates of VS , which are V = 0, 0 < Vα < V1, V1 ≤ Vβ ≤ V2
and V = VT /2. We show that the energy of Vβ is smaller than the rest when
VT is greater than 2Vb for some Vb.

(a) Compare V = 0 and V1 ≤ Vβ ≤ V2 :
We show that

E(VT ) + E(0)− E(VT − Vβ)− E(Vβ) ≥ 0

for any V1 ≤ Vβ ≤ V2 that satisfies (8). If we write each component of the
left hand side as an integral of E′, it is identical to∫ VT

VT−Vβ
E′(U)dU −

∫ Vβ

0

E′(U)dU

which is greater or equal than

−
∫ Vβ

0

E′(U)dU.

The inequality comes from the fact that E′(U) > 0 for U > V2. Since
E′(VT − Vβ) > 0 and Vβ satisfies equation (8), E′(Vβ) > 0. This with
the fact that E′(V ) increases in the domain Vβ < U < V2, from the first
condition of the theorem, indicates that for such U , E′(U) > 0. Therefore

−
∫ Vβ

0

E′(U)dU ≥ −
∫ V2

0

E′(U)dU ≥ 0 (10)

by the third condition of the theorem.
(b) Compare 0 < Vα < V1 and V1 ≤ Vβ ≤ V2 :

Following the steps in the previous comparison it is sufficient to show

−
∫ Vβ

Vα

E′(U)dU ≥ 0.

From the fact that Vα satisfies equation (8) and that E′(V ) decreases for
0 < U < Vα, gives E′(U) > 0 for such U . Therefore combining this with
(10), we deduce

−
∫ Vβ

Vα

E′(U)dU ≥ −
∫ V2

0

E′(U)dU ≥ 0.

(c) Compare V = VT /2 and V1 ≤ Vβ ≤ V2 :
Again we show

−
∫ VT−Vβ

VT /2

E′(U)dU +

∫ VT /2

Vβ

E′(U)dU ≥ 0.
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Note that

−
∫ VT−Vβ

VT /2

E′(U)dU ≥ −
∫ VT−Vβ

VT /2

E′(VT /2)dU = −
∫ VT /2

Vβ

E′(VT /2)dU

therefore, showing ∫ VT /2

Vβ

E′(U)− E′(VT /2)dU ≥ 0

is sufficient. Now we pick Vb. Since there exists a W0 between V1 and V2
that E′(W0) = 0 (W0 is the minimum of E(V ) graph). This comes from
the first and third condition of E(V ). Also since E′ strictly increases before
V2 and strictly decreases after V2 converging to 0, we have a one to one
correspondence between V and W which satisfies E′(V ) = E′(W ) lying
in the domain W0 ≤ W ≤ V2 and V2 ≤ V . We pick a Vb so that the Wb

corresponding to Vb satisfies∫ Wb

W0

E′(Vb)dU ≤
∫ Vb

Wb

E′(U)− E′(Vb)dU (11)

is satisfied. Such Vb exists because the left hand side goes to 0 as Vb goes
to infinity, while the right hand side increases from a nonzero value (cf.
Fig. 8a).
Then for VT ≥ 2Vb∫ VT /2

Vβ

E′(U)− E′(VT /2)dU

≥
∫ Wb

Vβ

E′(U)− E′(Vb)dU +

∫ VT /2

Wb

E′(U)− E′(VT /2)dU (12)

≥
∫ Wb

W0

E′(U)− E′(Vb)dU +

∫ Vb

Wb

E′(U)− E′(Vb)dU (13)

≥ −
∫ Wb

W0

E′(Vb)dU +

∫ Vb

Wb

E′(U)− E′(Vb)dU ≥ 0.

The inequality between (12) and (13) hold since an inequality holds be-
tween the first and second integrals of (12) and (13) respectively. The
inequality between the first integral is obtained from the fact that for
U ∈ [W0, Vβ ], E′(U) ≤ E′(Vb). For the inequality between the second
integral we use E′(Vb) > E′(VT /2) and the fact that they each they rep-
resent the area of E′(V ) above the horizontal line of height E′(VT /2) and
E′(Vb) respectively.

Remark 1
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(a) V − E′ graph of hollow sphere (b) V − E′ graph of hollow cylinder

Fig. 8: Derivatives of the V-E graph for the hollow sphere and hollow cylin-
der (Fig. 5 and 6). In (a), Vb is chosen so that (11) is satisfied. The area in
light red and dark blue represents the value of the left and right hand side of
(11) respectively. The shape of the dropicle with water volume V1 and V2 are
represented in Fig. 5a. In (b) the V1, V2 and V3 are chosen to correspond to
Theorem 4. The shape of the dropicle with water volume V1 and V2 are shown
in Fig. 5 and 6 respectively. The unit volumes are VIS and VIC respectively.
The surface tensions are σWO = 1, σWS = 0.1, σOS = 0.9.

1. The proof demonstrates a tighter bound W0 ≤ VS ≤ Wb than V1 ≤ VS ≤
V2. Note that W0 is the minimum energy volume of the particle.

2. For the case of the V-E graph of a dropicle, as the volume increases the
influence of the particle decreases and the energy of the dropicle asymptotes
to that of a sphere. Therefore the second condition of the theorem

lim
V→∞

E′(V ) ≈ lim
V→∞

CV −1/3 = 0

is justified.
3. For our purposes we deal with an excess amount of total volume, therefore
Vb being small as possible is beneficial. We notice from the proof that Vb
is small if E′(V ) increases rapidly between V1 and V2. This condition has
another advantage that V1 and V2 are close to each other, which narrows
the range in which VS exists.

Application to the hollow sphere The derivative of the V-E graph of the hollow
sphere is given in Fig. 8a. We have numerically calculated the values of V1, V2
and Vb. Theorem 3 predicts that when two hollow spheres are present the
minimal surface energy configuration of a large volume of water is when one
of the particles contains water of volume between V1 and V2 while the other
contains the rest.

We can relax the conditions of Theorem 3 and get a similar result.
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Theorem 4 Let E(V ) ∈ C1[0,∞) satisfy the same conditions as in Theorem
3 with a relaxation of condition 1 to

1’. There exists 0 < V1 < V2 < V3 so that E′(V ) decreases for 0 ≤ V ≤
V1, increases for V1 ≤ V ≤ V2 and strictly decreases for V3 ≤ V . Also
E′(V ) > 0 for all V > V2.

Then for a total water of volume VT the following are true,

1. If 0 ≤ VT ≤ V1, then VS = 0 i.e. the minimal surface energy configuration
is all water contained in one particle.

2. There exist a Vb ≥ V3 so that if 2Vb ≤ VT , then V1 ≤ VS ≤ V2 i.e. there is
a dropicle containing a drop in the volume range [V1, V2].

Proof. Fig. 8b is an example of a function that satisfies the conditions of
the theorem. Most of the proofs are identical of that of Theorem 3. Only a
modification of the proof is required for the second conclusion. In the second
part of our proof the number of candidates do not change if we pick our total
volume to be large enough that no volume in the range [V2, V3] satisfies the (8).
The comparisons between the candidates are identical except the comparison
between V1 ≤ Vβ ≤ V2 and V = VT /2, which we present here.

Following the steps of the previous proof we want to show

∫ VT /2

Vβ

E′(U)− E′(VT /2)dU ≥ 0.

For large enough V there is a unique W between V1 and V2 that E′(W ) =
E′(V ). Let W0 be between V1 and V2 that satisfies E′(W0) = 0. We pick a Vb
so that the Wb corresponding to Vb satisfies

∫ Wb

W0

E′(Vb)dU ≤
∫ Vb

Wb

E′(U)− E′(Vb)dU. (14)

Such Vb exists since min
V2<V<V3

E′(V ) > 0, and therefore for a large enough Vb

increasing Vb results the left hand side of (14) going to 0 while the right hand
side increases and stays positive. The rest of the proof is following the same
steps of the previous proof.

Application to the hollow cylinder Differentiating the V-E graph of the hollow
cylinder (Fig. 8b) shows Theorem 4 is applicable. If there are two such particles
and a large enough volume of water, the energy minimum is obtained when a
volume between V1 and V2 is trapped in one of the particles.
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3.2 Droplet splitting between many particles

In cases when we have more than two particles there is also a theorem
about the minimum energy distribution. This is formulated as solving the
optimization problem

W = arg min
ΣWi=WT ,Wi≥0

{ΣE(Wi)}. (15)

where W is a vector with N entries representing N particles and Wi being the
water volume in i-th particle. The next theorem describes the water distribu-
tion on concave domains or convex domains of E(V ).

Theorem 5 For an energy function E(V ) and 0 < a < b, the minimization
problem (15) has the following properties.

1. If E(V ) is concave in (a, b), then at most one of the entries of W is in
(a, b).

2. If E(V ) is convex in [a, b], then all the entries of W in the domain [a, b]
are equal.

Proof. 1. Suppose not, i.e. there are two entries of the vector W , Wi and Wj ,
that are between a and b. Then we can reduce the energy in (15) by in-
creasing the difference between Wi and Wj , while keeping the total volume
constant. By the definition of concave functions the energy decreases as we
increase the difference between Wi and Wj to W ′i and W ′j (cf. (9)).

2. Suppose not, then there are two entries of W , Wi and Wj , that are in [a, b]
and are different. Since E(V ) is convex in domain [a, b], we can reduce the
energy of the system by reducing the difference between the two entries.
This is a contradiction, hence the entries with values in the domain [a, b]
are identical.

If E(V ) satisfies the conditions in Theorem 3, the value of the distribution
W is proved rigorously, for sufficiently large total volume WT .

Theorem 6 Let E(V ) satisfy the conditions in Theorem 3 and let the total
volume of water in the system WT be larger than NVb, then N − 1 entries of
W are between V1 and V2.

Proof. By Theorem 5 there are four possible values of the entries of W : 0,Vl,Vm
and Vu, where 0 < Vl < V1 < Vm < V2 < Vu. We show that out of these values
Vm and Vu are the only allowable ones. Notice by the total volume constraint
there is an entry Vu, since otherwise all the entries of W are less then Vb which
means that the total volume of water is less than NVb. A second application
of Theorem 5 shows us that there is only one entry with value Vu.

Suppose that entry i and j have water volume 0 and Vu respectively. Then
Wi +Wj = Vu > 2Vb, by a total volume argument similar to above. Applying
Theorem 3 to the two particle system with particle i and j, shows that the
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distribution is not in the minimum energy state. Therefore W does not have
any 0 entries. Similarly the case with an entry Vl is leads to a contradiction.

The above theorem assures that in the lowest energy state, the particles
have the same volume of water precisely when E(V ) is convex, except possibly
one particle attached to a large volume, when the total volume is large enough
(Section 5).

4 Numerical simulations of two particle splitting graphs

In this section we simulate pairwise interactions of a multi-particle system,
in which fluid can be exchanged in a pairwise fashion to minimize the pairwise
surface energy. The method randomly picks two particles, each with their
own fluid volume, and redistributes the volume between the particles so as
to minimize the surface energy of that two-particle system. This process is
repeated until the ensemble reaches a steady state.

First we simulate the minimum energy distribution for two particles as a
function of the total fluid volume. These simulations result in splitting graphs
that show how the fluid is distributed. These results are consistent with the
rigorous theory from the previous section. In [7], actual dynamic splitting
experiments are done in the laboratory showing that the theoretical results are
a reasonable approximation. However dynamic splitting is known to sometimes
lead to local energy minima rather than the global minimizer.

4.1 Simulation of two particle system

First we consider the interaction of two identical particles. This corresponds
to solving the optimization problem in section 3, which we restate here

VS = arg min
0≤V≤VT /2

{E(V ) + E(VT − V )}. (16)

Once we specify E(V ), we can calculate E(V ) + E(VT − V ) for any given
VT and find VS . We plot this optimal volume VS as VT varies, which we call
the splitting graph. The splitting graphs of the hollow sphere and the hollow
cylinder are given in Fig. 9.

Fig. 9a is the splitting graph of the hollow sphere (whose energy curve is
plotted in Fig. 5a). The blue and red lines represent the volume of water in
the two particles, while the dotted horizontal lines are the volumes V1 and V2
in Theorem 3. For small total volumes VS = 0 , while for large total volumes
the smaller volume VS is between V1 and V2. This agrees with Theorem 3.
Note that the theorem does not provide a prediction in the intermediate range
(domain that the droplets split evenly) which is straightforward to compute
numerically.
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(a) Hollow sphere (b) Hollow cylinder

Fig. 9: Optimal splitting volume VS of (16) with respect to VT . (a) and (b)
are the hollow spheres and hollow cylinders V-E graph respectively (Fig. 5a
and 6a). VL and VS indicate the larger and smaller volume of the droplets
(VL = VT −VS), while the dotted horizontal lines V1 and V2 correspond to the
volumes in theorems 3 and 4. The unit volumes are VIS and VIC respectively.
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Fig. 10: Splitting graphs of the experiments and simulations [30]. The lines
correspond to the simulations while the dots and bars correspond to the exper-
iment data. The surface tensions for these graphs are matched to the materials
in the experiments and therefore differ from the graphs in Fig. 9.

Fig. 9b is the splitting graph of the hollow cylinder (whose energy curve is
plotted in Fig. 6a). Similar to the results of Fig. 9a the splitting graph agrees
with Theorem 4.

The simulated splitting graph is compared to macroscale experiments [30].
The experiments use a hollow sphere and hollow cylinder particle about 10mm
in diameter, with densities of the fluids closely matched. The particles are
initially close together sharing the same aqueous volume. They are slowly
pulled apart to minimize the effect of dynamics. To plot the splitting graph
we need the surface tension of the particle. This is achieved by measuring
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(a) (b) (c)

Fig. 11: Splitting graphs of various hollow sphere shapes. (a) is the particle
that has a V-E graph of Fig. 5a. The shape is chosen so that r and R are
fixed and d is 0.5, 0.8 and 0.9 for (a),(b) and (c) (parameters are in Fig. 3b).
The unit volume is VIS and the surface tensions are σWO = 1, σWS = 0.1,
σOS = 0.9.

the contact angle and using (3). The results are shown in Fig. 10 which the
theoretical splitting graph and the experiment results agree considerably.

In Fig. 9 we observe that the splitting graph of the cylindrical particle has
a domain [Vα, Vβ ] where both particles contain water of volume greater than
V2. This is a disadvantage for our purposes, since we need a larger total volume
than the spherical particle case to produce a water droplet of volume inside
the range [V1, V2]. This indicates that the hollow sphere is a more promising
particle geometry for achieving uniform droplets and as such we explore the
spherical geometry for all subsequent simulations.

4.2 Different geometries and surface tensions

In this section we calculate the splitting graphs of the hollow sphere for
different geometries and surface tensions. So far our computations are based
on a specific shape of a hollow sphere and hollow cylinder with fixed surface
tension values. In this case the splitting graph has two properties, (a) for small
total volumes there is only one particle that contains water and (b) for large
total volumes there is a volume range that one particle contains an amount
of water volume within that range. We show that such results are robust in
a sense that for a range of geometries and surface tensions the particles still
possess these properties.

Fig. 11 shows the splitting graphs for spherical dropicles for three differ-
ent geometries. The splitting graphs have the key features stated above. This
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(a) σOS=0.5 (b) σOS=0.7 (c) σOS=0.9

Fig. 12: Splitting graphs of hollow spheres with different surface tensions. The
shape of the particle is given in Fig.3b. Each graph has a different value of
σOS , oil-solid surface tension. The surface tensions are 0.5, 0.7 and 0.9 for
(a),(b) and (c) respectively. The other surface tensions are kept constant as
σWS = 0.1 and σWO = 1. The unit volume is VIS .

demonstrates that qualitative results are robust with respect to the geometry
of the hollow sphere. We also observe a trend that the difference between V1
and V2 decreases as the opening of the particle becomes smaller. This suggests
that it may be desirable to have a hollow sphere with a small opening to cre-
ate more uniform volumes amongst a set of particles. However, practically if
the opening is too small, it might be difficult for the fluid to exchange readily
and the tip of the particle might be fragile and easy to break. Fig. 12 shows
the splitting graphs as we change the surface tension between oil and solid,
σOS , within the range of partial wetting. Such changes have almost no effect
on the splitting graph, compared to the changes in the shape of the particle.
This indicates that experiments are expected to behave similarly for a range
of solid and fluid materials with different surface tensions.

5 Numerical simulations of multi-particle systems

For the multi-particle case we need to solve the optimization problem (15)
which we restate here,

W = arg min
ΣWi=WT ,Wi≥0

{ΣE(Wi)}. (17)

If E(V ) satisfies the conditions of Theorems 3 and 4, together with Theo-
rem 5, we predict that all except one of the nonzero entries of W have the
same volume, as long as we start with sufficiently large total volume. Here we
show numerically that this lowest energy state is achieved by repeated pair-
wise interactions. We consider a set of N dropicles that interact pairwise. The
dropicles are chosen at random and fluid is exchanged between the pair to
achieve the lowest energy state for that two particle system. The process is
repeated with a different randomly chosen pair of particles. This randomized
interaction is the simplest model to imitate the exchanging of fluid between
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(a) Initial stage (b) Intermediate stage (c) Final stage

Fig. 13: The volume in each of the 20 spherical particles as they interact
according to the randomized procedure. The initial condition is shown in (a)
with all of the water in the first particle. (b) shows the result after 400 = 202

iterations. (c) shows the end state after 4000 = 10 ∗ 202 iterations. In each
figure the particle number is reordered in descending order. The unit volume
is VIS .

particles colliding at random during an agitation process leading to emulsi-
fication. For the geometries considered here, exclusively pairwise interactions
are reasonable since not many dropicles can interact simultaneously with any
other dropicle at a given time.

Randomized procedure

1. Initialize volume vector W , so that the sum of the entries is WT . The
initial state is a volume vector for N particles with all the water in the
first particle.

2. Repeat the following until a fixed distribution of WF is obtained.
(a) Pick particles i and j at random and solve (15) for VT = Wi +Wj .
(b) Update Wi = VS and Wj = VT − VS .

Fig. 13 shows how the distribution changes as we increase the number of
iterations. The volume that was initially attached to one particle distributes
to other particles as they interact. Once the system reaches state Fig. 13c
the minimum energy distribution is achieved (Theorem 6) and any additional
interaction of the particles does not change the fixed distribution.

The fixed distributions WF of a 100 particle system is shown in Fig. 14. The
total volume of Fig. 14a and Fig. 14b are less than 100V1 and more than 100V2
respectively (V1 and V2 are those in Theorem 3). For the smaller total volume
(Fig. 14a), the dropicles that are non empty have an identical amount of water.
For the larger total volume (Fig. 14b), there is one dropicle that contains an
excess amount of water while all the other dropicles have an identical amount.
For both cases the identical amount of water is within the volume range of
Theorem 3. Notice that in both cases most of the non-empty dropicles have
a water volume between [V1, V2], in agreement with Theorem 5 and 6. It is
important to note that this volume range only depends on E(V ) and not the
total volume of water.
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(a) (b)

Fig. 14: Fixed distribution of a 100 spherical particle systems. The total volume
of (a) and (b) are 60 and 120 respectively. V1 and V2 are shown in red and green
dotted horizontal lines. The y axis of (a) and (b) are in linear and logarithmic
scale respectively. In each figure the particle number is reordered in descending
order. The unit volume is VIS .
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Fig. 15: Standard deviation of the volume vector W with respect to the number
of iterations of pairwise interactions. Simulations are performed for systems
with 20, 100, and 500 particles, each for two different total volumes. The red
and blue lines correspond to the total volume of 0.6N and 1.4N respectively,
whereN is the number of particles. Each line shows the mean of 20 simulations.
The number of iterations is normalized by N2, and the standard deviation is
normalized by VIS

√
N , as the initial standard deviation scales with

√
N .

Another question is how many iterations are needed to achieve a final
distribution. In physical experiments this corresponds to how much mixing
is needed to distribute the water between all the particles. We numerically
calculate the standard deviation of W as we increase the number pairwise of
interactions (Fig. 15). We observe a decreasing trend and that it flattens out
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once the system is fixed. Note that the number of iterations required is larger
in the case of volume 0.6N compared to 1.4N . This is due to the fact that
the system with total volume 0.6N needs to fill less particles compared to
the system with total volume 1.4N . Also notice that the curves with different
numbers of particles overlap for total volume 0.6N and 1.4N . This indicates
that there is a general trend that determines the number of interactions.

6 Conclusion

This paper develops a fundamental theory for the distribution of fluid be-
tween microscale “dropicles” in the case of axisymmetry. Previous work on
the minimal energy state of multi phase fluid-solid interactions was limited
to the classic problem of a catenoidal liquid bridges [28]. This work develops
the necessary theory for modern “dropicle” interactions that are of particular
interest in emerging “lab on a particle” technologies [7,9]. Using the generated
minimal energy volume curves, we predict that randomized pairwise interac-
tions between multiple dropicles has a long-time equilibrium distribution with
effectively uniform water volumes adhering to each particle, except for a sole
dropicle with excess volume.

As we have explored in section 4.2, as long as the shape and surface tension
of the particles are within the range of physical interest, we get a water droplet
of size within the range [V1, V2], as specified in Theorem 3 and 4. Here we
consider minimizing the interval size [V1, V2] to better uniformize the water
droplet size. Likewise minimizing Vb in Theorem 3 and 4 reduces the size of
the excess volume needed to guarantee this distribution. Further work could
(a) define a quantitative measure that estimates the effectiveness of a particle
to achieve high droplet uniformity and reduction of the required excess total
volume and (b) optimize the particle to maximize this measure.

Another question is to understand the number of iterations needed to ob-
tain the final distribution. This is related to the degree of physical mixing
required to achieve a good distribution in practice. We propose the standard
deviation of the volume vector W (Fig. 15) as a way of determining if W is a
fixed distribution. However this method requires expensive computations. In-
stead we would like a inexpensive method of calculating the required number
of iterations.

Comparing our simulations to the experimental data we find that they
agree to a large extent (Fig. 10). However there are assumptions in our model
that contribute to the discrepancy between simulations and physical exper-
iments. For example, two particle experiments may achieve a local energy
minimum rather than a global one, including the possibility of the formation
of satellite drops as shown in experiments on capillary breakup [31].

Theorem 1 enables us to explore other axisymmetric particles other than
hollow spheres and cylinders. However many axisymmetric shapes are difficult
to manufacture at the microscale. An alternative non-axisymmetric shape is
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considered in [7] and the V-E energy graph argument is used, albeit with much
more computationally expensive fully 3D simulations for the energy.
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