
1

A Neural Network Approach for
High-Dimensional Optimal Control

Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher, and Lars Ruthotto

Abstract— We propose a neural network approach for
solving high-dimensional optimal control problems arising
in real-time applications. Our approach yields controls in
a feedback form and can therefore handle uncertainties
such as perturbations to the system’s state. We accomplish
this by fusing the Pontryagin Maximum Principle (PMP) and
Hamilton-Jacobi-Bellman (HJB) approaches and parame-
terizing the value function with a neural network. We train
our neural network model using the objective function of
the control problem and penalty terms that enforce the
HJB equations. Therefore, our training algorithm does not
involve data generated by another algorithm. By training on
a distribution of initial states, we ensure the controls’ op-
timality on a large portion of the state-space. Our grid-free
approach scales efficiently to dimensions where grids be-
come impractical or infeasible. We demonstrate the effec-
tiveness of our approach on several multi-agent collision-
avoidance problems in up to 150 dimensions. Furthermore,
we empirically observe that the number of parameters in
our approach scales linearly with the dimension of the con-
trol problem, thereby mitigating the curse of dimensionality.

Index Terms— collision avoidance, Hamilton-Jacobi-
Bellman equation, high-dimensional control, neural net-
works, optimal control

I. INTRODUCTION

Decision-making for complex systems using optimal control
(OC) has become increasingly relevant yet remains challeng-
ing, especially when the state dimension is high and decisions
are needed in real-time. Examples include controlling a swarm
of quadcopters [1] while avoiding collision and controlling
an unmanned aerial vehicle [2]–[4] while reacting to possible
wind interference during flight.

We consider real-time OC applications that lead to determin-
istic, finite time-horizon control problems. In particular, we are

This work was supported in part by NSF award DMS 1751636,
AFOSR Grants 20RT0237 & FA9550-18-1-0167, AFOSR MURI
FA9550-18-1-0502, Binational Science Foundation Grant 2018209, US
DOE Office of Advanced Scientific Computing Research Field Work
Proposal 20-023231, ONR Grants No. N00014-18-1-2527 & N00014-
20-1-2093, a gift from UnitedHealth Group R&D, and a GPU donation
by NVIDIA Corporation. (Corresponding author: Lars Ruthotto)

D. Onken is with the Department of Computer Science, Emory Uni-
versity, Atlanta, GA, USA (e-mail: donken@emory.edu)

L. Nurbekyan, S. Wu Fung, and S. Osher are with the De-
partment of Mathematics, UCLA, Los Angeles, CA, USA (e-mails:
swufung@math.ucla.edu; sjo@math.ucla.edu; lnurbek@math.ucla.edu)

X. Li and L. Ruthotto are with the Department of Mathematics,
Emory University, Atlanta, GA, USA (e-mails: xingjian.li@emory.edu;
lruthotto@emory.edu)

interested in problems where the dimensionality of the state-
space is in the tens or hundreds. However, finding a policy
that is effective for a large portion of the high-dimensional
state-space is challenging for existing numerical schemes.

Two of the most common strategies to solve OC prob-
lems are the Pontryagin Maximum Principle (PMP) [5] and
Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE) [6]. The PMP is often suitable for high-dimensional
problems (Sec. III-C). A local solution method, the PMP finds
the optimal policy for a single initial state, so deviations of the
system from the optimal trajectory require re-computation of
the solution. In contrast, the HJB approach is a global solution
method suitable for real-time applications. It is based on
solving the HJB PDE to obtain the value function (Sec. III-D).
However, state-of-the-art HJB solvers, e.g., ENO/WENO [7],
are grid-based and can suffer from the curse of dimensionality
(CoD) [6], meaning that costs increase exponentially with
dimension. For OC problems with a state-space dimension
exceeding four, the CoD renders using grid-based HJB solvers
infeasible.

We fuse the principles of the PMP and HJB methods to
formulate a neural network (NN) approach that is semi-global
while mitigating CoD. In particular, we begin by parameteriz-
ing the value function with an NN, which circumvents CoD by
approximating the solution to the HJB PDE in the underlying
parameter space. Thus, our method is grid-free and suitable
for high-dimensional problems. Using the PMP, we express
the control in feedback form. We train the NN approximation
of the value function by minimizing the expected cost on a
distribution of initial states. As we minimize the cost function
directly, our approach does not require generating solutions via
an existing algorithm for training—i.e., it is not supervised.
Training the NN on a distribution of initial states ensures
the controls’ optimality on a large portion of the state-space;
hence, our approach is semi-global. As we demonstrate, the
controls are robust to moderate perturbations or shocks to the
system, such as wind interference (Sec. V-B.4). The controls
are obtained in a feedback form via prior offline training, so the
feedback form can be applied efficiently during deployment.
Lastly, we improve the NN training by adding residual penalty
terms derived from the HJB PDE, similar to [8]–[10].

This paper extends a preliminary conference version of the
approach [11] with more extensive and thorough experiments.
Specifically, we add experiments where agents swap posi-
tions with each other and one involving a nonlinear control-
affine quadcopter with complicated dynamics. Additionally,

2

we include experiments that investigate the sensitivity of NN
hyperparameters, thoroughly compare the semi-global nature
of the NN model against thousands of baseline solutions, and
test the influence of CoD on the NN.

While our formulation is applicable to a wide range of
OC problems, we focus on centrally controlled multi-agent
systems, which are typical examples of challenging high-
dimensional OC problems. Indeed, for n agents in a q-
dimensional space we obtain a d=n · q-dimensional OC prob-
lem. Thus, even moderate n, q yield problems out of reach for
traditional HJB solvers.

In our experiments, we solve a series of multi-agent
OC problems whose state-space dimensions range from four
(n=2, q=2) to 150 (n=50, q=3). First, we solve a two-agent
corridor problem with a smooth obstacle terrain (Sec. V-B).
Second, we investigate a two-agent problem where agents
swap positions while avoiding hard obstacles and a 12-agent
unobstructed version found in [12] (Sec. V-C). Third, we
experiment with a 50-agent swarm of three-dimensional agents
obstructed by rectangular prisms inspired by [1] (Sec. V-D).
Finally, we solve a 12-dimensional single-agent quadcopter
problem with complicated dynamics from [13] (Sec. V-E).
Accompanying videos of our NN’s solutions to these problems
reside at https://imgur.com/a/eWr6sUb.

Using the corridor problem, we test our model’s robustness
to external shocks (random additive perturbations) that occur
during deployment. We perform an example shock (Fig. 3)
and compare the NN’s response against a baseline method
(Sec. V-A). Furthermore, we compare the solutions from the
NN approach and the baseline on thousands of initial points
(Fig. 5). In this example, the NN reacts approximately opti-
mally to moderate shocks. For large shocks, the NN control
is suboptimal but still drives the agents towards the targets.

As one indicator that our approach effectively mitigates
the CoD, we demonstrate using a numerical example that
increasing the state-space dimension does not lead to an
exponential growth in computational costs. Specifically, we
obtain approximately optimal controls by increasing the num-
ber of NN parameters linearly while keeping all other settings,
including the batch size and number of optimization steps,
fixed (Fig. 9). We also show that we are able to solve a 150-
dimensional problem in less than one hour on a single graphics
processing unit (GPU).

II. RELATED WORK

In recent years, many new numerical methods and machine
learning approaches have been developed for solving high-
dimensional OC problems. We discuss deterministic (Sec. II-
A) and stochastic (Sec. II-B) settings separately because they
differ considerably. In Sec. II-C, we survey the state-of-the-art
in the application domain that motivates our experiments.

A. High-Dimensional Deterministic Optimal Control
A common difficulty in solving high-dimensional OC prob-

lems is the CoD. Exceptions are convex OC problems for
which high-dimensional solvers can be devised via primal-dual
methods and Hopf-Lax representation formulae [13]–[20].

Kang and Wilcox [21] alleviate the CoD by introducing
a sparse grid in the state-space and use the method of
characteristics to solve boundary value problems over each
sparse grid point. To approximate the feedback control at
arbitrary points, they interpolate the solutions of the grid
using high-order polynomials. The authors solve up to six-
dimensional control problems. Nakamura-Zimmerer et al. [22]
also attempt to alleviate CoD by learning a closed-form value
function. First, trajectories are generated in a similar manner as
in [21]. Using a supervised learning approach, the NN is then
trained to match the generated trajectories. The trajectories
(training data) are generated adaptively using information
about the adjoint and by combining progressive batching with
an efficient adaptive sampling technique.

Our work stems from the same framework as [23], which
approximates the feedback control with an NN then opti-
mizes the control cost on a distribution of initial states. The
authors also provide a theoretical analysis of OC solutions
via NN approximations. We extend the framework to finite
horizon problems with non-quadratic costs and parameterize
the value function instead of the feedback function. This
extension enables penalization of the HJB conditions, which
empirically improves numerical performance for solving high-
dimensional mean-field games, mean-field control, and nor-
malizing flows [8]–[10]. We demonstrate similar advantages
for OC problems considered in this work, which make similar
use of NNs to parameterize the value function.

B. High-Dimensional Stochastic Optimal Control
In the seminal works [24], [25], the authors solve high-

dimensional semilinear parabolic PDE problems by the
method of (stochastic) characteristics. To overcome CoD, they
approximate the gradient of the solution at different times by
NNs and introduce a loss function that measures the deviation
from the correct terminal condition in the characteristic equa-
tions. In particular, they solve high-dimensional stochastic OC
problems by solving the corresponding viscous HJB equation.
This method recovers the gradient of the solution as a function
of space and time and can be considered a global method.
Nevertheless, loss functions employed in [24], [25] consider
only one initial point at a time, and the generalization depends
on how well the generated random trajectories fill the space.
The variance of the trajectories increases as time grows.
Finally, in the deterministic limit the method becomes local
as there is no diffusion to enforce the trajectories to explore
the whole space. Similar techniques are applied in [26]–[28]
based on different loss functions.

In [29], the authors solve stochastic OC problems by directly
approximating controls and using the control objective as a
loss function. As in [24], [25], the loss function considers a
single initial point.

C. Multi-Agent Path-Finding
Multi-Agent Path-Finding (MAPF) [30]–[32] methods are

methods tailored for multi-agent control problems. These
methods tend to focus on collision avoidance rather than
optimality. Among these are Conflict-Based Search (CBS)

https://imgur.com/a/eWr6sUb

3

methods [33], [34], which are two-level algorithms. At the
low level, optimal paths are found for individual agents, while
at the high-level, a search is performed in a constraint tree
whose nodes include constraints on time and location for a
single agent. Decoupled optimization approaches [1], [35] first
compute independent paths and then try to avoid collision
afterwards. These methods are often combined with graph-
based methods [36], sub-dimensional expansions [37], and
CBS approaches [38], [39]. Another approach phrases the
MAPF problem as a differential game [12]. Provided certain
assumptions, this differential game strategy guarantees that the
agents reach their targets while avoiding collisions. Machine
learning approaches for multi-agent control have also been
successfully applied in [40] where supervised learning is used
to imitate non-machine-learning solutions generated by [1].
Our approach differs from these methods in that we do not
have a data generation and fitting/imitation phases; instead,
we directly solve for the control objective. Additionally, lo-
calization and interaction modeling techniques such as in [41]
can be incorporated in our model in a straightforward manner.

III. MATHEMATICAL FORMULATION

We briefly discuss the general OC framework, derive the
multi-agent control problems with collision avoidance used in
the experiments, and review the theoretical foundations of the
NN approach, primarily following [42, Chapters I-II].

A. Optimal Control Formulation
We consider deterministic, finite time-horizon OC problems.

For a fixed time-horizon [0, T], we have system dynamics

∂szt,x(s) = f(s,zt,x(s),ut,x(s)), zt,x(t) = x, (1)

for t ≤ s ≤ T . Here, x ∈ Rd is the initial state, and t ∈ [0, T]
is the initial time of the system. Next, zt,x(s) ∈ Rd is the
state of the system at time s ∈ [t, T] with initial data (t,x),
and ut,x(s) ∈ U ⊂ Ra is the control applied at time s. The
function f : [0, T] × Rd × U → Rd models the evolution
of the state zt,x : [t, T] → Rd in response to the control
ut,x : [t, T]→ U .

Next, we suppose that the control ut,x : [t, T]→ U and the
trajectory zt,x : [t, T]→ Rd satisfying (1) yield a cost∫ T

t

L
(
s, zt,x(s),ut,x(s)

)
ds + G

(
zt,x(T)

)
, (2)

where L : [0, T] × Rd × U → R is the running cost or the
Lagrangian, and G : Rd → R is the terminal cost. We assume
that f, L,G,U are sufficiently regular (see [42, Sec. I.3, I.8-9]
for a list of assumptions). The goal of the OC problem is to
find an optimal control u∗t,x that incurs the minimal cost, i.e,

Φ(t,x) = inf
ut,x

{∫ T

t

L
(
s, zt,x(s),ut,x(s)

)
ds

+G
(
zt,x(T)

)}
s.t. (1),

(3)

where Φ is called the value function. A solution u∗t,x of
(3) is called an optimal control. Accordingly, the z∗t,x which
corresponds to u∗t,x is called an optimal trajectory.

We also define the Hamiltonian of the system by

H(t, z,p) = sup
u∈U
{−p · f(t, z,u)− L(t, z,u)}

= sup
u∈U
H(t, z,p,u),

(4)

where p ∈ Rd is called the adjoint state. The Hamiltonian
is a key ingredient in the Pontryagin Maximum Principle [5]
(Sec. III-C) and also appears in the Hamilton-Jacobi-Bellman
PDE [6] (Sec. III-D), which together form the foundation of
our numerical solution approach.

B. Collision-Avoiding Multi-Agent Control Problems
While our NN approach is applicable to a broad range of

OC problems, our numerical examples are motivated by multi-
agent control with collision avoidance. Optimal decision-
making for this class of problems is complicated due to the
high-dimensionality of the control problem and the interac-
tions between the agents. These difficulties are exacerbated in
the presence of random shocks and other forms of uncertainty.
Here, we describe the generic set up of these problems and
refer to Section V for specific instances.

We seek to control a system of n agents with initial states
x(1), . . . , x(n) ∈ Rq . We denote the initial joint-state of the
system by concatenating the agents’ initial states, i.e.,

x =
(
x(1), x(2), . . . , x(n)

)
∈ Rd. (5)

Thus, the dimension of the joint-state of the system is d = q·n.
Similarly, we denote the joint-state of the system at time s by

zt,x(s) =
(
z

(1)
t,x(s), z

(2)
t,x(s), . . . , z

(n)
t,x (s)

)
, (6)

where, for a fixed s ∈ [t, T], z(i)
t,x(s) ∈ Rq is the state of the

ith agent. Also, we represent the control as

ut,x(s) =
(
u

(1)
t,x(s), u

(2)
t,x(s), . . . , u

(n)
t,x(s)

)
. (7)

Hence, both the dimension of the state and the control space
are proportional to the number of agents.

In the numerical experiments, the terminal costs depend on
the distance between the agents’ final positions and their given
target states. We denote the target joint-state of the system by
the vector y ∈ Rd, obtained by concatenating the target states
for all the agents as in (5), and consider the terminal cost

G
(
zt,x(T)

)
=
α1

2
‖zt,x(T)− y‖2. (8)

The Lagrangian can be written as

L
(
s, z,u

)
= E

(
u
)

+ α2Q
(
z
)

+ α3W
(
z
)
, (9)

where the scalar weighting parameters α1,α2,α3 are problem-
specific and model the trade-off between the individual terms.

The first term in (9), E : U → R, is the energy term, which
is the total consumption cost comprised of individual ones

E
(
ut,x

)
=

n∑
i=1

Ei

(
u

(i)
t,x

)
. (10)

In our experiments, we use Ei(u)= 1
2‖u‖

2 +κ with a problem-
dependent constant κ ∈ R, which simplifies the Hamiltonian

4

computation in (4). Unlike the other terms, this first term
depends explicitly on the control.

The second term in (9), Q : Rd → R, models obstacles by
penalizing agents at certain spatial locations (e.g., a terrain
function) and decouples into

Q
(
zt,x

)
=

n∑
i=1

Qi

(
z

(i)
t,x

)
, (11)

where Qi : Rq → R models the ith agent’s spatial preferences.
The third term in (9), W : Rd → R, models interactions

among the individual agents. For example, this term can
penalize proximity among agents to avoid collisions, i.e,

W (zt,x) =
∑
j 6=i

w
(
z

(i)
t,x, z

(j)
t,x

)
(12)

for function w : Rq ×Rq → R,

w
(
z(i), z(j)

)
=

{
exp

(
−‖z

(i)−z(j)‖22
2r2

)
,
∥∥z(i)−z(j)

∥∥
2
< 2r,

0, otherwise.
(13)

Here, r > 0 is the radius of an agent’s safety region or space
bubble. While not guaranteed, this w term can in practice
prevent the overlapping of the agents’ space bubbles, thus
avoiding collisions, when α3 is sufficiently large. Our ap-
proach straightforwardly extends to non-symmetric interaction
costs and heterogeneous agents.

We note that the presence of the terrain function Q and
the interaction potential W render the objective function non-
convex in z. However, in our experiments, the function is
strongly convex (in fact, quadratic) in u, which simplifies
evaluations of the Hamiltonian (4) under certain assumptions
on f . Our framework can be directly applied to other choices
of G, E, Q, and W as long as H can be computed efficiently.

C. The Pontryagin Maximum Principle
The Pontryagin Maximum Principle (PMP) provides a set

of necessary first-order optimality conditions for the optimal
control u∗t,x(·) and trajectory z∗t,x(·) originating from fixed
initial data (t,x). Since a new instance of the problem needs
to be solved when the initial data change or the system’s state
deviates from the optimal curve, the PMP can be considered
a local solution method.

Theorem 1 (Theorem I.6.3 [42]): Assume that (z∗t,x,u
∗
t,x)

is a pair of an optimal trajectory and optimal control that
solve (1). Furthermore, assume that pt,x : [t, T] → Rd is the
solution of the adjoint equation{

∂spt,x(s) = ∇zH
(
s, z∗t,x(s),pt,x(s),u∗t,x(s)

)
,

pt,x(T) = ∇zG
(
z∗t,x(T)

)
,

(14)

for t ≤ s ≤ T . Then

u∗t,x(s) ∈ arg max
u∈U

H
(
s,z∗t,x(s),pt,x(s),u

)
(15)

for almost all s ∈ [t, T]. �
Theorem 1 provides necessary conditions, and hence does not
guarantee that the computed solutions are optimal.

In general, finding u∗t,x, z
∗
t,x,pt,x that satisfy the PMP is

difficult. Simultaneously solving the initial value problem (1)

and the terminal value problem (14) gives the system a
particularly challenging forward-backward structure [21], [43].

As we show below, the PMP can be applied more readily
when the value function Φ is differentiable at (t,x). First,
in this case, the conditions in Theorem 1 are sufficient [44,
Theorem 7.3.9]. [44, Theorems 7.3.10, 7.4.20] provide a
similar result with slightly weaker assumptions. Second, as we
outline below, the solution of (14) can be obtained from Φ.
The following is a standing assumption throughout the paper.

Assumption 1: Assume that (15) admits a unique continu-
ous closed-form solution

u∗(s, z,p) = arg max
u∈U

H
(
s, z,p,u

)
(16)

for every s ∈ [t, T] and z,p ∈ Rd. �
A closed-form solution for the optimal control exists in a wide
variety of OC problems. Importantly, the PMP can also be
applied efficiently when (16) does not admit a closed-form
solution but can be computed efficiently.

The next theorem states that the value function Φ contains
complete information about the optimal control and we can
easily recover u∗t,x and pt,x from Φ when Assumption 1 holds.

Theorem 2 (Theorem I.6.2 [42]): Assume that u∗t,x is a
right-continuous optimal control and Φ is differentiable at
(s, z∗t,x(s)) for t ≤ s < T . Then

pt,x(s) = ∇zΦ
(
s, z∗t,x(s)

)
(17)

solves (14). Also, (15) simplifies to

u∗t,x(s) = u∗
(
s, z∗t,x(s),∇zΦ

(
s, z∗t,x(s)

))
(18)

for almost all s ∈ [t, T]. �
Note that enforcing or computationally verifying the differen-
tiability condition is virtually impossible. However, in many
cases including our applications, the value function is expected
to be differentiable almost everywhere. Even if Φ is not
differentiable at (t,x) and the optimal control is not unique,
pt,x can be recovered from the super differential ∂+

xΦ [44,
Theorem 7.3.10, 7.4.20].

Theorem 2 characterizes optimal controls in a feedback form
(18). This means that no further optimization is necessary to
find the optimal controls when the value function is known.
Feedback form representations are valuable in real-world ap-
plications. If ∇Φ can be quickly calculated, optimal controls
are readily available at any point in space and time. As such,
the feedback form avoids recomputing the optimal controls at
new points in scenarios when sudden changes to the initial
data or the system’s state occur.

We can also use Assumption 1 to simplify the computation
of the trajectories. Using the envelope formula [45, Sec. 3.1,
Theorem 1], we see that

∇zH
(
t, z,p,u∗(t, z,p)

)
= ∇zH(t, z,p)

∇pH
(
t, z,p,u∗(t, z,p)

)
= ∇pH(t, z,p).

(19)

Hence, assuming the value function is known, we can express
the optimal trajectory as{

∂sz
∗
t,x(s) = −∇pH

(
s, z∗t,x(s),∇zΦ(s, z∗t,x(s))

)
,

z∗t,x(t) = x,
(20)

5

for s ∈ (t, T]. These dynamics do not explicitly contain the
control, which reduces the problem to the state variables only.
Recall the optimal control can be computed via (18).

The above derivation outlines how to obtain the optimal
control and trajectory from the value function under some
smoothness assumptions. Once the value function Φ is known,
this procedure can be applied for any initial data and also adapt
the trajectory when the system is perturbed. Therefore, if Φ is
computed, we have a global solution method. The key issue
that we address next is the computation of Φ.

D. Hamilton-Jacobi-Bellman PDE
In the previous section, we reviewed that the solution to the

the OC problem (3) for all initial data can be inferred from
the value function Φ. In our approach, we exploit the fact
that the value function satisfies the Hamilton-Jacobi-Bellman
(HJB) PDE to help train our NN approximation of Φ.

Theorem 3 (Theorems I.5.1, I.6.1 [42]): Assume that the
value function Φ ∈ C1([0, T]×Rd). Then Φ satisfies the HJB
equations (also called the dynamic programming equations)

− ∂sΦ(s, z) +H
(
s,z,∇zΦ(s, z)

)
= 0, Φ(T, z) = G(z)

(21)
for all (s, z) ∈ [t, T) × Rd. Conversely, assume that Ψ ∈
C1([0, T]×Rd) is a solution of (21) and u∗t,x is such that

u∗t,x(s) ∈ arg max
u∈U

H
(
s, z∗t,x(s),∇zΨ

(
s, z∗t,x(s)

)
,u
)

(22)

for almost all s ∈ [t, T]. Then Ψ = Φ, and u∗t,x is an optimal
control. �
The differentiability of Φ can be relaxed to differentiability
almost everywhere in the framework of viscosity solutions [42,
Chap. II].

The HJB PDE (21) admits robust existence, uniqueness,
and stability theory in the framework of viscosity solutions
because (21) is a convex constraint on Φ [46]. Well-established
numerical methods, such as ENO/WENO [7], benefit from
convergence guarantees when solving (21). However, these
methods rely on grids and therefore are affected by the CoD.
Mitigating this limitation motivates our NN approach.

We note that the PMP is the method of characteristics [45,
Sec. 3.2] for the HJB equation (21). To be precise, we can
compute Φ along the trajectory zt,x from (20) by solving

∂sφt,x(s) = H
(
s, z∗t,x(s),pt,x(s)

)
−pt,x(s) · ∇pH

(
s, z∗t,x(s),pt,x(s)

)
φt,x(T) = G(z∗t,x(T)).

We then have that φt,x(s) = Φ(s,z∗t,x(s)).

IV. NEURAL NETWORK APPROACH

Our approach seeks to minimize (2) subject to (1) for initial
states sampled from a probability distribution in Rd whose
density we denote by ρ. Hence, it aims at solving the problem
for all states along the optimal trajectories originating from
those points. Since the optimal trajectories given by the PMP
are characteristics of the HJB equation, our method blends
these two approaches. To enable high-dimensional scalability,

our method parameterizes the value function with an NN and
computes the controls using (18) and (20). The NN is trained
in an unsupervised fashion by minimizing the sum of the
expected cost that results from the trajectories and penalty
terms that enforce the HJB equations along the trajectories
and at the final-time.

A. Main Formulation

We consider the semi-global version of the control problem
and seek an approximately optimal control for initial states
x ∼ ρ. We do so by approximating the value function Φ(·)
with an NN with parameters θ, which we denote by Φ(· ;θ).
Thus, we can write the controls in feedback form and the loss
in terms of the parameters. In particular, we solve

min
θ

Ex∼ρ
{
`x(T) +G(z0,x(T)) + β1cHJt,x(T)

+β2cHJfin,x + β3cHJgrad,x

}
,

(23)

subject to

∂s

 z0,x(s)

`x(s)

cHJt,x(s)

 =

−∇pH(s,z0,x(s),∇zΦ(s, z0,x(s);θ))

Lx(s)

PHJt,x(s)

 ,

(24)

where `x(0) = cHJt,x(0) = 0 and s ∈ [0, T]. Here, `
accumulates the Lagrangian cost L along the trajectories, the
terms cHJt,x, cHJfin,x, cHJgrad,x, PHJt,x penalize violations of
the HJB, and the scalar penalty weights β1,β2,β3 > 0 are
assumed to be fixed. The remainder of this section defines
and discusses these terms in more detail.

The term `(T) corresponds to the time integral in (2). To
compute L at a given time, we use (4) and (19) and reformulate
the Lagrangian in terms of the NN parameters θ as

Lx(s) = −H
(
s, z0,x(s),∇zΦ(s, z0,x(s);θ)

)
+∇zΦ

(
s, z0,x(s);θ

)
· ∇pH

(
s, z0,x(s),∇zΦ(s, z0,x(s);θ)

)
.

(25)

We use HJB penalty terms cHJt,x, cHJfin,x, and cHJgrad,x

derived from the HJB PDE (21) as follows:

PHJt,x(s) =∣∣∂sΦ(s,z0,x(s);θ)−H
(
s, z0,x(s),∇zΦ(s, z0,x(s);θ)

)∣∣
cHJfin,x = |Φ(T, z0,x(T);θ)−G(z0,x(T)) |

cHJgrad,x =| ∇zΦ(T, z0,x(T);θ)−∇zG(z0,x(T)) |. (26)

The HJt penalizer arises from the first equation in (21),
whereas HJfin and HJgrad are direct results of the final-time
condition in (21) and its gradient, respectively. Penalizers
prove helpful in problems similar to (23) [8]–[10], [47].
These penalizers improve the training convergence (Sec. V-
B.3) without altering the solution of (23). The PHJt,x penalizer
is accumulated along the trajectory similar to L. The scalar
terms β1,β2,β3 weight the importance of each HJB penalizer
and are hyperparameters of the NN (Sec. IV-D, Sec. V-C.4).

Our approach does not require first solving for sample
trajectories to generate training data and thus differs from the
supervised training approaches presented in [22]. Instead, it
aligns more with model-based reinforcement learning [48].

6

TABLE I: Variables and hyperparameters inherent to the problem itself (shared for NN and baseline) and the hyperparameters
tuned for the NN approach. All α values are determined relative to the α-less E term in the problem definition. The β
hyperparameters are tuned relative to the α values.

Problem Definition NN-specific Hyperparameters

n d α1 α2 α3 m β1 β2 β3 nt nt

agents dim. on G on Q on W width on HJt on HJfin on HJgrad training validation

Corridor 2 4 100 104 300 32 0.02 0.02 0.02 20 50
Swap 2 [12] 2 4 300 106 105 16 1 1 3 20 50
Swap 12 [12] 12 24 300 - 105 32 5 2 5 20 50
Swarm [1] 50 150 900 107 25000 512 2 1 3 26 80
Quadcopter [13] 1 12 5000 - - 128 0.1 0 0 26 50

TABLE II: NN Statistics. All timings are approximate from
training on a shared NVIDIA Quadro RTX 8000 GPU.

Params # Iters Batch Time (s)
Iter

Training
Size Time (min)

Corridor 1,311 1800 1024 0.32 10
Swap 2 [12] 415 4000 1024 0.56 37
Swap 12 [12] 2,196 4000 2048 0.26 17
Swarm [1] 342,654 6000 1024 0.57 57
Quadcopter [13] 18,576 6000 1024 0.72 72

B. Value Function Approximation

To enable scalability to high dimensions, we approximate
the value function Φ with an NN. While our formulation
supports a wide range of NNs, we design a specific model
that enables efficient computation.

We parameterize the value function as

Φ(s;θ) = w>N(s;θN) +
1

2
s>(A>A)s+ b>s+ c,

where θ = (w,θN ,A, b, c).
(27)

Here, s=(x, t) ∈ Rd+1 are the inputs corresponding to space-
time, N(s;θN) : Rd+1 → Rm is an NN, and θ contains
the trainable weights: w ∈ Rm, θN ∈ Rp, A ∈ Rγ×(d+1),
b ∈ Rd+1, c∈R, where rank γ= min(10, d) limits the number
of parameters in A>A. Here, A, b, and c model quadratic po-
tentials, i.e., linear dynamics; N models nonlinear dynamics.

In our experiments, for N , we use a simple two-layer
residual neural network (ResNet) [49]

a0 = σ(K0s+ b0)

N(s;θN) = a0 + σ(K1a0 + b1),
(28)

for θN=(K0,K1, b0, b1) where K0 ∈ Rm×(d+1), K1 ∈
Rm×m, and b0, b1 ∈ Rm. We use the element-wise nonlinear-
ity σ(x) = log(exp(x)+exp(−x)), which is the antiderivative
of the hyperbolic tangent, i.e., σ′(x) = tanh(x) [8], [10].

C. Numerical Implementation

We solve the ODE-constrained optimization problem (23)
using the discretize-then-optimize approach [50], [51], in
which we define a discretization of the ODE, then optimize
on that discretization. The forward pass of the model uses a
Runge-Kutta 4 integrator with nt time steps to eliminate the
constraints (24). The objective function is then computed, and
automatic differentiation [52] calculates the gradient of the

objective function with respect to θ. We use the ADAM opti-
mizer [53], a stochastic subgradient method with momentum,
to update the parameters θ. We iterate this process a selected
maximum number of times. For the learning rate (step size)
provided to ADAM, we follow a piece-wise constant decay
schedule. For instance, in the experiment in Fig. 2, we divide
the learning rate by 10 every 800 iterations.

To produce an NN that generalizes to the state-space, we
must define initial points in a manner to promote model
generalizability. We assume the initial points are drawn from
a distribution with density ρ. We train the NN on one batch
at a time of independent and identically distributed samples
from the distribution. After training a number of iterations on
that batch, we resample the distribution to define a new batch
and train additional iterations on that batch. We repeat this
process until we hit the maximum number of iterations. We
commonly choose batches of 1024 or 2048 samples which are
re-sampled every 25–100 iterations. We found no noticeable
empirical difference in solution quality across those ranges.
Through this process, the model uses few data points at each
iteration, but does not overfit to a specific set of data points.

D. Hyperparameters

In contrast to the model parameters θ learned from the
data, NN hyperparameters are values selected a priori to
training. These include the number of time steps nt, the
ResNet width m, ResNet depth (the number of layers, tuned to
equal 2), and the multipliers β1, β2, β3. Additionally, each OC
problem has defined α1, α2, α3, which both the baseline and
NN use; changing these values alters the problem (Table I). For
reproducibility, we include all hyperparameters and settings
with a publicly available Python implementation at https:
//github.com/donken/NeuralOC. Training on a sin-
gle NVIDIA Quadro RTX 8000 GPU requires between ten
minutes and a little over one hour for the considered OC
problems (Table II).

V. NUMERICAL EXPERIMENTS

We solve and analyze five OC problems and compare the
NN against a baseline method described in Sec. V-A. In
Sec. V-B to V-D, we present four examples where the problem
dimensionality ranges from 4 to 150. In Sec. V-E, we consider
a quadcopter experiment to demonstrate the NN’s ability to
solve problems with complicated dynamics.

https://github.com/donken/NeuralOC
https://github.com/donken/NeuralOC

7

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50Ttime t

(a) The baseline solution for initial state x0.

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50Ttime t

(b) For initial state x0 (depicted), the NN learns a similar solution as the baseline. The NN approach is solved for multiple initial states.

Fig. 1: Solutions for the two-agent corridor problem where two agents (orange and blue) pass in between two smooth hills.
Taking the terrain into account, the agents seek shortest paths from the initial joint-state x0 to target y (marked with red
crosses) while avoiding collision with each other’s space bubble (indicated by circles with radius r).

TABLE III: Comparison of solution values for the two-agent
corridor problem and single instance x0 shown in Fig. 1.

Method `+G ` G

Baseline 61.33 61.02 0.31
NN 62.19 61.98 0.21

A. Baseline: Optimization for a Single Initial State

For comparison with the NN approach, we provide a local
solution method that solves the OC problem for a fixed initial
state x0. To this end, we obtain an optimization problem by
applying forward Euler to the state equation and a midpoint
rule to the integrals, which leads to

min
{u(k)}

G (znt
) + h

nt−1∑
k=0

L (sk, zk,uk)

s.t. zk+1 = zk + h f
(
sk, zk,uk

)
, z0 = x0,

(29)

where h=T/nt. Here, we use zk to denote z0,x0
(sk), where

time point sk = hk. We use T=1 and nt=50 and solve (29)
using ADAM with initialization of the controls set as straight
paths from x0 to y with small added Gaussian noise.

We arrived at these training decisions empirically. First,
when solving (29) in our experiments, ADAM finds slightly
more optimal solutions (1−2% more optimal) in practice than
L-BFGS. Second, the initialization of the controls substantially
influences the solution. As a particular example, the baseline
solution depicted in Fig. 3c learns to send agent 2 around the
left side of the left obstacle, resulting in the lowest value of the
objective function. If initialized with controls that pass through
the right of that obstacle or through the corridor, the baseline
struggles to learn this optimal trajectory. As a response, we
initialize the controls uniformly that lead to a straight path

0 400 800 1200 1600 2000 2400
Iteration

103

104

ℓ+
G

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, HJgrad

Weight Decay
No Penalization

0 400 800 1200 1600 2000 2400
Iteration

10−2

10−1

100

G
/α

1

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, HJgrad

Weight Decay
No Penalization

Fig. 2: For the corridor problem (Sec. V-B), we train the
same model architecture six times using different combinations
of the penalty terms. Using all three HJB penalizers leads
to quick convergence and a low G value. Each curve is the
average of three training instances.

from x0 to y. Third, we add random Gaussian noise to the
initialization because doing so empirically helps avoid local
minima and overall achieves better results.

B. Two-Agent Corridor Example
We design a d=4-dimensional problem in which two agents

attempt to reach fixed targets on the other side of two hills

8

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(a) Minor shock ‖ξ‖ = 0.94
within the training space.

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(b) Major shock ‖ξ‖ = 6.2
outside of the training space.

x̂ = z0,x0
(0.1) + ξ,

s = [0.1, 1]

−4 −2 0 2 4

−4

−2

0

2

(c) Baseline solution for
(0.1,x̂) after major shock.

`+G ` G

following shock ‖ξ‖ = 0.94
Baseline 59.79 59.46 0.33
NN 60.54 60.34 0.20

following shock ‖ξ‖ = 6.2
Baseline 71.77 71.22 0.55
NN 151.67 150.63 1.03

(d) Solution comparison of the meth-
ods on s=[0.1, 1] following a shock.

Fig. 3: The NN handles a shock ξ at time s=0.1 (depicted with red arrows) along the trajectory for the depicted corridor
problem (Sec. V-B). The initial states used during training are depicted as blue and orange point clouds. It can be seen that
the major shock causes the system to leave the state-space used during training.

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(a) Minor shock ‖ξ‖ = 0.94
within the training space.

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(b) Major shock ‖ξ‖ = 6.2
outside of the training space.

Fig. 4: We solve the corridor problem with an NN trained
without HJB penalizers or weight decay. Comparable to Fig. 3,
we see that the penalizers do not alter the solution.

(Fig. 1). We design the hills in such a manner that one agent
must pass through the corridor between the two hills while
the other agent waits. For this example, the hills use a smooth
terrain, and we assess the resilience of the control to shocks.

1) Set-up: Suppose the two homogeneous agents
with safety radius r=0.5 start at x(1)=[−2,−2]> and
x(2)=[2,−2]> with respective targets y(1)=[2, 2]> and
y(2)=[−2, 2]>. Thus, the initial and target joint-states are
x0=[−2,−2, 2,−2]> and y=[2, 2,−2, 2]>. We sample from
ρ, which is a Gaussian centered at x0 with an identity
covariance. These sampled initial positions form the training
set X .

The running costs depend on the spatio-temporal cost func-
tion Qi. Throughout, obstacles are defined using the Gaussian
density function with mean µ ∈ Rq and covariance Σ ∈ Rq×q

η(z(i) ; µ,Σ) =
exp

(
− 1

2 (z(i) − µ)Σ−1(z(i) − µ)
)√

(2π)d det Σ
.

In this experiment, we define obstacles as

Qi

(
z(i)
)

= η

(
z(i) ;

[
−2.5

0

]
, 0.2I

)
+ η

(
z(i) ;

[
2.5
0

]
, 0.2I

)
+η

(
z(i) ;

[
−1.5

0

]
, 0.2I

)
+ η

(
z(i) ;

[
1.5
0.0

]
, 0.2I

)
.

The energy terms are given by

Ei

(
u(i)
)

=
1

2

∥∥u(i)
∥∥2
, (30)

and the dynamics are given by f(s, z,u) = u.
We compute the Hamiltonian (4) as

H(s, z,p) = sup
u∈U

{
− p>u− L

(
s, z,u

)}
= sup
u∈U

{
− p>u− E

(
u
)
− α2Q

(
z
)
− α3W

(
z
)}
.

(31)

We then can solve for the first-order necessary condition

0 = −p−∇uE
(
u
)

⇒ p = −∇u

(
n∑
i=1

1

2

∥∥u(i)
∥∥2

)
= −u

(32)

Using the closed-form solution for the controls (32), we
rewrite the Hamiltonian as

H(s, z,p) = ‖p‖2 − 1

2
‖p‖2 − α2Q

(
z
)
− α3W

(
z
)

=
1

2
‖p‖2 − α2Q

(
z
)
− α3W

(
z
)
,

(33)

where the characteristics are given by

∂szt,x(s) = −∇pH
(
s, zt,x(s),pt,x(s)

)
= −pt,x(s). (34)

2) Results: The baseline and the NN learn to wait for one
agent to pass through the corridor first, followed by the second
agent (Fig. 1). The NN performs marginally worse in L values
(Table III), which can be seen in the early stages of the
trajectories of agent 1 (Fig. 1b). The NN achieves a slightly
better G value than the baseline. Although we solve the NN
by optimizing the expectation value of a set of points in the
region, the NN achieves a near-optimal solution for x0.

9

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6 ||ξ||=5
||ξ||=4
||ξ||=3

||ξ||=2
||ξ||=1

target
 x0

(a) The initial points x0 + ξ for the corridor problem sampled from
the hyperspheres of radius ‖ξ‖.

0 1 2 3 4 5
Magnitude ||ξ||

0%

50%

100%

150%

200%

Su
bo

pt
im

al
ity

2 std dev
of ρ

mean
95% CI

(b) The mean suboptimality of the NN’s solution ` + G, where the
baseline solution for each initial point is considered optimal.

0 1 2 3 4 5
Magnitude ||ξ||

0.000

0.005

0.010

0.015

In
te

ra
ct

io
n

Co
st

s W

2 std dev
of ρ

Collision
Severity mean

95% CI

(c) NN interaction costs with comparable example collision severity
of two circular agents.

0 1 2 3 4 5
Magnitude ||ξ||

0%

10%

20%

30%

40%

Lik
el

ih
oo

d
of

 C
ol

lis
io

n

2 std dev
of ρ

mean
95% CI

(d) For initial points at each magnitude, we present the percentage of
those resulting in a collision of any severity when run with the NN.

Fig. 5: We compare one NN model with 10,001 baseline
models for 1000 initial points (0,x0 + ξ) at each magnitude
‖ξ‖. Confidence intervals are computed via bootstrapping
10,000 sub-samplings of size 500 from each set of 1000 points.

3) Effect of the HJB Penalizers: We experimentally assess
the effectiveness of the penalizers cHJt, cHJfin, cHJgrad in (23).
To this end, we define six models (various combinations of the
three HJB penalizers and one model with weight decay) and
train three instances of each on the corridor problem. Using
the HJB penalizers results in a quicker model convergence on
a hold-out validation set (Fig. 2).

HJt : We enforce the PDE (21) describing the time
derivative of Φ along the trajectories. Including this penalizer
improves regularity and reduces the necessary number of time
steps when solving the dynamics [8]–[10], [54].

HJfin : We enforce the final-time condition of the
PDE (21). The inclusion of this penalizer helps the network
achieve the target [8]. Experimentally, using HJfin correlates
with a slightly lower G value (Fig. 2).

HJgrad : We enforce the transversality condition
∇zΦ(T, z(T))=∇zG(z(T)) ∀z, a consequence of the
final-time HJB condition (21). Numerically, all conditions
are enforced on a finite sample set. Therefore, higher-order
regularization may help the generalization; i.e., achieving a
better match of Φ(T, ·) and G for samples not used during
training (the hold-out validation set). We observe the latter
experimentally; HJgrad impacts G more than HJfin (Fig. 2).
Nakamura-Zimmerer et al. [22] similarly enforce ∇Φ values.

4) Shocks: We use this experiment to demonstrate how our
approach is robust to shocks to the system’s state (Fig. 3).
Consider solving the control problem for s ∈ [0, T] as always.
Then for T = 1, we consider a shock ξ (implemented as a
random shift) to the system at time s = 0.1. Our method
is designed to handle minor shocks that stay within the
space of trajectories of the initial distribution about x0. Our
model computes a trajectory to y for many initial points.
Therefore, for point x̃ ∈ X , the model provides dynamics
f(s, zx̃(s),ux̃(s)) before the shock. After the shock, the state
picks up the trajectory of some other point x̂ ∈ X and
follows that trajectory to y (Fig. 3a). In this scenario, the
total trajectory contains two portions: before the shock and
after the shock. That is,

z0,x̃(0.1) =

∫ 0.1

0

f
(
s, z0,x̃(s),u0,x̃(s)

)
ds, and

z0,x̂(1) =

∫ 1

0.1

f
(
s, z0,x̂(s),u0,x̂(s)

)
ds, where

z0,x̂(0.1) = z0,x̃(0.1) + ξ,

respectively. We view a minor shock then as moving from one
trajectory to another (Fig. 3a). The NN and baseline achieve
similar results for the problem along s=[0.1, 1] (Fig. 3d).

Interestingly, our model extends outside the training re-
gion (Fig. 3b). Although the vast majority of NNs cannot
extrapolate, our NN still solves the control problem after a
major shock, demonstrating some extrapolation capabilities.
We note that the NN solves the original problem for x0 to near
optimality. After a large shock, the NN still drives the agents
to their targets, although suboptimally. In our example, we
compare the NN’s solution (Fig. 3b) with the baseline solution
for s=[0.1, 1] (Fig. 3c). The NN learned a solution in which
agent 2 passes through the corridor followed by agent 1. After

10

−10 0 10
−5

0

5
nt=8

−10 0 10

nt=16

−10 0 10

nt=24

−10 0 10

nt=25

−10 0 10

nt=32

−10 0 10

nt=40

−10 0 10

nt=50Ttime t

Fig. 6: Numerical results of the 12-agent swap experiment (Sec. V-C.2). The agents’ targets are indicated by red crosses,
and the space bubble or safety region around each agent is depicted with a circle. The agents aim to pairwise exchange their
positions while avoiding each other and minimizing the length of their trajectories.

−10 −5 0 5 10

−4

−2

0

2

4

−10 −5 0 5 10

−4

−2

0

2

4 Zoom In

Agents Cross

Fig. 7: Numerical results of swap experiment with hard-
boundary obstacles (Sec. V-C.1). The agents seek to exchange
their positions while keeping a safe distance (indicated by
circle) and avoiding the obstacles (white circles). The close-up
on the right shows agents at the time of minimal distance.

the major shock, the NN still applies these dynamics (Fig. 3b)
while the baseline finds a more optimal solution (Fig. 3c). The
NN is roughly 100% less optimal in this single shock example
(Fig. 3d).

We attribute the shock robustness to the NN’s semi-global
nature. Experimentally, the shock robustness of our model
(Fig. 3) does not noticeably differ from a model trained
without penalization (Fig. 4). Since the NN is trained offline
prior to deployment, it handles shocks in real-time. In contrast,
methods that solve for a single trajectory—e.g., the baseline—
must pause to recompute following a shock.

5) Semi-Global Capabilities of NN model: To provide a more
thorough analysis of the NN, we assess one NN’s performance
for many different initial conditions (0,x0 + ξ). We sample
1000 random ξ for each magnitude ‖ξ‖ = 0.5, 1.0, . . . , 5.0.
For each (0,x0 + ξ), we train a baseline model and compute
the suboptimality of the trained NN (Fig. 5). This experiment
equivalently can be described as comparing the NN and
baseline on samples from concentric hyperspheres. Since a
shock can be phrased as picking up a trajectory from an initial
condition, testing the NN’s semi-global capabilities and shock-
robustness are synonymous.

We observe that the NN suboptimality grows as ‖ξ‖ in-
creases (Fig. 5). Specifically, for the corridor experiment, the
NN performs near optimality within ‖ξ‖ ≤ 2. Since the
NN was trained on ρ which was a Gaussian about x0 with
covariance I . The bound ‖ξ‖ ≤ 2 then equates to being within
two standard deviations of x0.

C. Multi-Agent Swap Examples
We present experiments inspired by [12], where agents

swap positions while avoiding each other. All agents are
two-dimensional, and the formulation mostly matches that
presented in the corridor example (Sec. V-B). Specifically, we
only alter x0, y, and Q for the swap experiments.

1) 2-Agent Swap: We begin with two agents that swap
positions with each other while passing through a corridor with
hard edges. To enforce these hard edges, we enforce a space
bubble around obstacles similar to how we implement multi-
agent interactions (13). Therefore, we train with this space
bubble but evaluate and plot the results without it. The actual
obstacles (two circles with radius 2) are formulated as follows.
Let Ωobs = {z | ‖z − µ1‖ < 2 or ‖z − µ2‖ < 2}, then

Qi

(
z(i)
)

=

{
1, if z(i) ∈ Ωobs,

0, otherwise,

where µ1 =

[
0
4

]
and µ2 =

[
0
−3.5

]
. However, for training,

we encode this as

Qi,trn

(
z(i)
)

=

{∑2
j=1 η

(
z(i) ; µj , I

)
, if z(i) ∈ Ωobs,trn,

0, otherwise,

where Ωobs,trn = {z | ‖z − µ1‖ < 2.2 or ‖z − µ2‖ <
2.2}. By training with Gaussian repulsion—which has gradient
information within the obstacles—we incentivize the model to
learn trajectories avoiding the obstacles. Additionally, Ωobs,trn

contains an obstacle radial bound ten percent more than in
Ωobs because we found this additional training buffer allevi-
ates collisions during validation. We use the same obstacle
definitions for the baseline and NN approaches.

For initial and target states, we choose x0=[10, 0,−10, 0]>

and y=[−10, 0, 10, 0]>. These values are a scaled down
version of those in [12] for ease of visualization. For the two-
agent problem, the agents successfully switch positions while
avoiding each other (Fig. 7). In validation, the obstacle Q and
interaction costs W are exactly 0, so we can confirm that
the agents avoid collisions. Qualitatively, our method learns
trajectories with shorter arclength than those in [12].

2) 12-Agent Swap: We also replicate the 12-agent case in
[12]. For this experiment, six pairs of agents swap positions
across the same space. Since there are no obstacles, Q=0. In
our setup, the problem is slightly adjusted as our semi-global
approach solves for a fixed y but with initial conditions in ρ,

11

instead of just x0. We display the solution for the single initial
case x0 (Fig. 6).

3) Impact of ResNet Width: We demonstrate the influence
of the ResNet width m by observing the results of models
with varied width for the 12-agent swap experiment (Fig. 8a).
We select several m values in the range 12–64 and train three
model instances for each while controlling for the rest of the
architecture. We then compute the suboptimality of the NN
solution relative to the baseline (Sec. V-A) for objective func-
tion (2) of a single initial point x0 (Fig. 8a). We observe that,
for the 12-agent swap experiment, the underlying manifold
exists somewhere near dimension 32 as values m ≥ 32 are
relatively stagnant. We note that smaller values of m perform
poorly. When m < d, we essentially ask the model to condense
the input to a lower dimensional manifold. For the 12-agent
swap problem, the d=24 dimensions, though coupled, present
no obvious method for reduction to a lower basis. Therefore,
we observe poor model performance for m < d.

Based on the experiment (Fig. 8a), we use a width of m =
32 to balance between a small model and performance. We
prefer smaller models as a model with few parameters is easier
to evaluate. However, due to the GPU parallelization, different
model widths in our experiment (Fig. 8a) have negligible
influence on time per training iteration.

4) Hamilton-Jacobi-Bellman Penalty Hyperparameters: In
general, we tune hyperparameters relative to each other and set
optimizer settings based on architecture design and hyperpa-
rameter choices. Thus, in a nuanced response to the findings
of Fig. 2, we find that, by training longer with an adjusted
learning rate scheme, one can achieve a similar NN solution
without any HJB penalizers (cf. Fig. 3,4). This holds because
the HJB penalizers do not mathematically alter the problem.

We design experiments to demonstrate the sensitivity of the
NN solution with respect to the hyperparameters β1, β2, β3

(Fig. 8). We train NNs to solve the 12-agent swap experiment
(Sec. V-C). We check the sensitivity of the NN solution with
respect to changing one β hyperparameter while keeping all
other tuned βs and hyperparameters fixed (Table I).
β1 : We observe best performance when β1 ∈ (1, 5)

(Fig. 8b). Since the β1 weights the HJt term, setting β1 too
high leads to model training that underprioritizes reaching the
target which can result in very suboptimal solutions.
β2 : We observe best performance when β2 ∈ (1, 2)

(Fig. 8c). Since the β2 weights the HJfin term, setting β2

too high leads to NN training that overprioritizes fitting the
Φ value at time T . Specifically, the training overprioritizes
fitting Φ rather than ∇zΦ, which more directly relates to the
dynamics.
β3 : We observe best performance when β3 ∈ (4, 10)

(Fig. 8d). Since the β3 weights the HJgrad term, setting β3

too high leads to model training that overprioritizes the model
reaching the target with less leeway in altering the trajectory
for a more optimal L. Alternatively, setting β3 too small leads
to an increase in suboptimality as the model is less likely to
satisfactorily reach the target.

5) Mitigating the CoD: We expand the 12-agent swap ex-
periment to demonstrate how the NN approach mitigates the
CoD (Fig. 9). We design four additional similar problems by

12 16 20 24 28 32 36 40 44 48 52 56 60 64
NN Width m

0%

10%

20%

30%

40%

Su
bo

pt
im

al
ity

m= d
tuned
mean
1 std dev

(a) Tuning ResNet width m while keeping all other settings fixed.

0.1 1 10 100
Hyperparameter β1

100%

200%

300%

Su
bo

pt
im

al
ity

tuned
mean
1 std dev

(b) Tuning the scalar hyperparameter β1 on the HJt term while
keeping all other settings fixed. The x-axis is log-scaled.

0.1 1 10 100
Hyperparameter β2

20%

40%

60%

80%

100%

Su
bo

pt
im

al
ity

tuned
mean
1 std dev

(c) Tuning the scalar hyperparameter β2 on the HJfin term while
keeping all other settings fixed. The x-axis is log-scaled.

0.1 1 10 100
Hyperparameter β3

20%

40%

60%

80%

100%

120%

Su
bo

pt
im

al
ity

tuned
mean
1 std dev

(d) Tuning the scalar hyperparameter β3 on the HJgrad term while
keeping all other settings fixed. The x-axis is log-scaled.

Fig. 8: Tuned hyperparameters for the 12-agent swap experi-
ment (Sec. V-C.2) where suboptimality is computed relative to
the baseline method (Sec. V-A). Each plotted point and bounds
are the mean and standard deviation of three model instances.

12

8 12 16 20 24
Problem Dimension d

200

400

600

800

1000

NN
 P

ar
am

et
er

s

8 12 16 20 24
Problem Dimension d

1000

1200

1400

1600

1800

2000

Tr
ai

ni
ng

 T
im

e
(s

)

Fig. 9: The NN’s number of parameters scales linearly with the
problem dimension as the computational cost remains mostly
unchanged, mitigating CoD. For each problem (subproblem of
the 12-agent swap experiment), we train the smallest NN that
achieves at least 10% suboptimality.

removing agents from the original 12-agent version. Thus,
we arrive at problems containing 2, 3, 4, 5, and 6 pairs of
agents that swap positions. We then determine the smallest
NN that is at most 10% suboptimal. We only tune the width
m, which dictates the number of NN parameters, and keep all
other settings, including the number of training samples and
iterations, fixed. The resulting NNs follow a linear growth of
number of parameters relative to the problem dimension d
(Fig. 9). Due to the parallelization of the GPU, the training
times of these NNs remain comparable.

D. Swarm Trajectory Planning Example
We demonstrate the high-dimensional capabilities of our

NN approach by solving a 150-dimensional swarm trajectory
planning problem in the spirit of [1]. The swarm problem
contains 50 three-dimensional agents that fly from initial
to target positions while avoiding each other and obstacles.
We construct Q to model two rectangular prism obstacles
[−2, 2] × [−0.5, 0.5] × [0, 7] and [2, 4] × [−1, 1] × [0, 4]. We
train with Gaussian repulsion inside the obstacles similar to the
swap experiment (Sec. V-C) and use the same dynamics (34).
Due to the complexity of the collision avoidance, we find it
beneficial to switch the weights on the HJB penalizers during
training—recall that the penalizers do not alter the solution
(Sec. V-B.3). For the first portion of training, we choose β1=2,
β2=1, and β3=3 (Table I); for the rest of training, we use
β1=β2=β3=0. This set-up focuses the model on solving the
control problem in the first portion of training as the final-time
penalizers help the agents reach their destinations. We then
reduce the weights of the penalizers for optimal fine-tuning.

In validation, we observe that the values for terrain Q and
interaction W are exactly 0. Thus, the NN learns to guide all
agents around the obstacles and avoid collisions (Fig. 10).

Fig. 10: The NN solution for the swarm with 50 agents in
R3 (Sec. V-D). The agents avoid the prism obstacles and each
other as they travel from one side of the obstacles to the other.

E. Quadcopter Trajectory Planning Example

In this experiment from [13], a quadcopter, i.e., a multirotor
helicopter, utilizes its four rotors to propel itself across space
from an initial state in the vicinity of x0 to target state y.
We choose values x0=[−1.5,−1.5,−1.5, 0, . . . , 0]> ∈ R12

and y=[2, 2, 2, 0, . . . , 0]> ∈ R12. Denoting gravity as g, the
acceleration of a quadcopter with mass m is given by

ẍ = u
m

(
sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)

)
ÿ = u

m

(
− cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ)

)
z̈ = u

m cos(θ) cos(ϕ)− g
ψ̈ = τψ

θ̈ = τθ

ϕ̈ = τϕ

,

(35)
where (x, y, z) is the spatial position of the quadcopter,
(ψ, θ, ϕ) is the angular orientation with corresponding torques
τψ , τθ, τϕ, and u is the main thrust directed out of the
bottom of the aircraft [55]. The dynamics can be written as
the following first-order system

ż = f(s, z,u) =⇒

ẋ = vx

ẏ = vy

ż = vz

ψ̇ = vψ

θ̇ = vθ

ϕ̇ = vϕ

v̇x = u
mf7(ψ, θ, ϕ)

v̇y = u
mf8(ψ, θ, ϕ)

v̇z = u
mf9(θ, ϕ)− g

v̇ψ = τψ

v̇θ = τθ

v̇ϕ = τϕ

, (36)

13

where
f7(ψ, θ, ϕ) = sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)

f8(ψ, θ, ϕ) = − cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ)

f9(θ, ϕ) = cos(θ) cos(ϕ)

.

(37)

Here, z = [x y z ψ θ ϕ vx vy vz vψ vθ vϕ]> ∈ R12 is the
state with velocities v, and u = [u τψ τθ τϕ]> ∈ R4 is the
control. For the energy term, we consider

E(u(s)) = 2 + ‖u(s)‖2

= 2 + u2(s) + τ2
ψ(s) + τ2

θ (s) + τ2
ϕ(s).

(38)

For this problem, we have no obstacles nor other agents, so
L(s, z,u) = E(u).

We consider the Hamiltonian in (4) where p =
[p1 p2 . . . p12]> ∈ R12. Noting the optimality conditions
of (4) for the quadcopter problem are obtained by

−∇uE(u)− p>∇uf = 0

⇒ −2

u
τψ
τθ
τφ

−

p7

p8

p9

p10

p11

p12

>
f7/m 0 0 0
f8/m 0 0 0
f9/m 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 = 0

⇒ −2

u
τψ
τθ
τφ

−

1
m (f7p7 + f8p8 + f9p9)

p10

p11

p12

 = 0,

(39)

we can derive an expression for the controls as

u =
−1

2m
(f7p7 + f8p8 + f9p9),

τψ =
−p10

2
, τθ =

−p11

2
, τϕ =

−p12

2
.

(40)

We therefore can compute the Hamiltonian

H(s, z,p) = −L(u)− [vx vy vz]

p1

p2

p3

− [vψ vθ vϕ]

p4

p5

p6

+

1

2m2

(
p7f7 + p8f8 + p9f9

)2
+ p9g +

1

2
(p2

10 + p2
11 + p2

12).

(41)

Finally, using (17) and (40), we compute the controls u using
the NN (Fig. 11e) with

u =
−1

2m

(
f7
∂Φ

∂vx
+ f8

∂Φ

∂vy
+ f9

∂Φ

∂vz

)
,

τψ = −1

2

∂Φ

∂vψ
, τθ = −1

2

∂Φ

∂vθ
, τϕ = −1

2

∂Φ

∂vϕ
.

(42)

The quadcopter contains highly coupled 12-dimensional
dynamics, which can lead to time-consuming model training
despite its dimension and lack of obstacles and interactions
(Table II). We find that the HJB terminal conditions offered
little impact on this problem as no obstacle or interaction costs
interfered with the terminal cost.

The NN approach learns similar controls (Fig. 11e) and
states (Fig. 12) as the baseline method. Both methods learn a

x

−2−10 1 2
y

−2 −1 0 1 2

z

−2
−1
0
1
2

(a) Baseline trajectory solved
using the four controls on
nt = 50.

x

−2−10 1 2
y

−2 −1 0 1 2

z

−2
−1
0
1
2

(b) NN trajectories, demon-
strating the NN’s usability for
many initial conditions.

−2 −1 0 1 2
x

−2

−1

0

1

2

y
(c) Baseline trajectory from
bird view.

−2 −1 0 1 2
x

−2

−1

0

1

2

y

(d) NN trajectories from bird
view.

0 0.5 T=1
Time (nt = 50)

−40

−20

0

20

40

60

Co
nt

ro
l

NN u
NN τψ
NN τθ
NN τϕ

Baseline u
Baseline τψ
Baseline τθ
Baseline τϕ

(e) Comparison of controls.

`+G ` G

Baseline 2,182.7 2,111.2 71.47
NN 2,184.9 2,122.0 62.90

(f) Comparison of loss values for single initial point x0.

Fig. 11: Quadcopter problem results and comparison.

similar flight path though the NN approach learns for many
initial conditions (Fig. 11). As with the corridor problem,
the NN learned a solution with better terminal cost, but less
optimal ` than the baseline (Fig. 11f).

VI. DISCUSSION

Our experiments demonstrate the effectiveness of our NN
approach for solving several high-dimensional control prob-
lems arising in multi-agent collision avoidance. Problems with
more complex dynamics and Lagrangians in the finite time-
horizon setting are also within reach, so long as Assumption 1
is satisfied, which means that Hamiltonians can be computed

14

0 0.5 T=1
Time (nt = 50)

−0.5

0.0

0.5

1.0

1.5
Va

lu
e

Baseline ψ
Baseline θ
Baseline ϕ
NN ψ
NN θ
NN ϕ

(a) Comparison of angular values.

0 0.5 T=1
Time (nt = 50)

0

2

4

6

8

Ve
lo

cit
y

NN vx
NN vy
NN vz

Baseline vx
Baseline vy
Baseline vz

(b) Comparison of spatial position velocities.

0 0.5 T=1
Time (nt = 50)

−6

−4

−2

0

2

4

Ve
lo

cit
y

NN vψ
NN vθ
NN vϕ

Baseline vψ
Baseline vθ
Baseline vϕ

(c) Comparison of angular velocities.

Fig. 12: Quadcopter comparison of the additional states as a
supplement to Fig. 11.

efficiently. Future work will extend our framework to infinite
time-horizon control problems such as the ones in [56]–[59].

In the CoD experiment, we observe linear scaling of the
NN’s parameters for problems of dimensions 8 to 24 (Fig. 9).
Recall that the number of parameters in a grid-based method
scales exponentially with the dimension, leading to prohibitive
computational complexity and memory costs. Since the NN
formulation leverages the GPU parallelization and we use the
same number of training samples and iterations regardless of
dimension, we observe little noticeable change in the time
cost across dimensions 8 to 24 (Fig. 9). Factors that influence
the training time stem more from the sequential nature of
solving the ODE constraints (24). In multi-agent problems,
the memory scales quadratically with the number of agents
due to the interaction costs W . Eventually, for a large enough

dimension d, the memory costs of the model may exceed the
GPU RAM, and implementation changes become necessary.

In our experiments, we show how the semi-global nature of
the NN optimally solves the problem within the relevant state-
space (Fig. 5). As with most machine learning approaches,
our method may fail to generalize, i.e., extrapolate beyond the
selected training space. Specifically, the NN often solves the
control problem outside the training space, but has potential
to do so suboptimally (Fig. 3b) or cause collisions (Fig. 5).

The ability of the NN to avoid collisions and the time
needed to train the model depend most crucially on the number
of time steps nt selected (Sec. IV-D). Large nt leads to high
computation and training time while reducing error; mean-
while, too small nt leads to overfitting to a refinement of the
time discretization of the trajectories. A coarsely discretized
approximation of the ODE constraints can result in the model
unrealistically jumping over obstacles or other agents. Thus,
we use large nt for the hold-out validation set (Table I) to
check for overfitting and that the agent movement is sensible.

VII. CONCLUSION

We formulate and demonstrate an efficient NN approach
for solving high-dimensional OC problems. Our method aims
at computing the optimal control in feedback form in the
relevant subset of the space-time domain. It combines the high-
dimensional scalability from the PMP and the global nature
from the HJB approach.

The numerical experiments show that our approach is effec-
tive for multi-agent problems with state dimension up to 150.
Moreover, our approach is robust to shocks and can handle
complicated interaction and obstacle terms. Since we tackle the
joint-state problem where the agents are coupled, a drawback
is that the dimension grows proportionately to the number of
agents. To mitigate this, we intend to further investigate the
use of distributed algorithms to decouple the state-space while
maintaining optimality via the HJB PDE.

REFERENCES

[1] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[2] S. J. Kim and G. J. Lim, “A real-time rerouting method for drone flights
under uncertain flight time,” Journal of Intelligent & Robotic Systems,
vol. 100, pp. 1355–1368, 2020.

[3] M. ElSayed and M. Mohamed, “The uncertainty of autonomous un-
manned aerial vehicles energy consumption,” in 2020 IEEE Transporta-
tion Electrification Conference & Expo (ITEC). IEEE, 2020, pp. 8–13.

[4] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “NanoMap: Fast,
uncertainty-aware proximity queries with lazy search over local 3D
data,” in IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 7631–7638.

[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes, ser.
Translated by K. N. Trirogoff; edited by L. W. Neustadt. Interscience
Publishers John Wiley & Sons, Inc. New York-London, 1962.

[6] R. Bellman, Dynamic Programming. Princeton University Press,
Princeton, N. J., 1957.

[7] S. Osher and C.-W. Shu, “High-order essentially nonoscillatory schemes
for Hamilton–Jacobi equations,” SIAM Journal on Numerical Analysis,
vol. 28, no. 4, pp. 907–922, 1991.

[8] L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung, “A
machine learning framework for solving high-dimensional mean field
game and mean field control problems,” Proceedings of the National
Academy of Sciences, vol. 117, no. 17, pp. 9183–9193, 2020.

15

[9] A. T. Lin, S. W. Fung, W. Li, L. Nurbekyan, and S. J. Osher, “APAC-net:
Alternating the population and agent control via two neural networks to
solve high-dimensional stochastic mean field games,” arXiv:2002.10113,
2020.

[10] D. Onken, S. W. Fung, X. Li, and L. Ruthotto, “OT-Flow: Fast
and accurate continuous normalizing flows via optimal transport,”
arXiv:2006.00104, 2020.

[11] D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto,
“A neural network approach applied to multi-agent optimal control,”
arXiv:2011.04757, 2020.

[12] T. Mylvaganam, M. Sassano, and A. Astolfi, “A differential game
approach to multi-agent collision avoidance,” IEEE Transactions on
Automatic Control, vol. 62, no. 8, pp. 4229–4235, 2017.

[13] A. T. Lin, Y. T. Chow, and S. J. Osher, “A splitting method for
overcoming the curse of dimensionality in Hamilton–Jacobi equations
arising from nonlinear optimal control and differential games with
applications to trajectory generation,” Communications in Mathematical
Sciences, vol. 16, no. 7, pp. 1933–1973, 2018.

[14] J. Darbon and S. Osher, “Algorithms for overcoming the curse of
dimensionality for certain Hamilton–Jacobi equations arising in control
theory and elsewhere,” Research in the Mathematical Sciences, vol. 3,
no. 1, p. 19, 2016.

[15] M. R. Kirchner, R. Mar, G. Hewer, J. Darbon, S. Osher, and Y. T.
Chow, “Time-optimal collaborative guidance using the generalized Hopf
formula,” IEEE Control Systems Letters, vol. 2, no. 2, pp. 201–206,
2018.

[16] M. R. Kirchner, G. Hewer, J. Darbon, and S. Osher, “A primal-dual
method for optimal control and trajectory generation in high-dimensional
systems,” in IEEE Conference on Control Technology and Applications
(CCTA), 2018, pp. 1583–1590.

[17] Y. Chow, J. Darbon, S. Osher, and W. Yin, “Algorithm for overcoming
the curse of dimensionality for certain non-convex Hamilton-Jacobi
equations, projections and differential games,” in Annals of Mathemat-
ical Sciences and Applications, vol. 3, no. 2. International Press of
Boston, 2018, pp. 369–403.

[18] Y. T. Chow, J. Darbon, S. Osher, and W. Yin, “Algorithm for overcoming
the curse of dimensionality for state-dependent Hamilton-Jacobi equa-
tions,” Journal of Computational Physics, vol. 387, pp. 376–409, 2019.

[19] C. G. Claudel and A. M. Bayen, “Lax–Hopf based incorporation of
internal boundary conditions into Hamilton–Jacobi equation. Part I:
Theory,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1142–1157, 2010.

[20] ——, “Lax–Hopf based incorporation of internal boundary conditions
into Hamilton-Jacobi equation. Part II: Computational methods,” IEEE
Transactions on Automatic Control, vol. 55, no. 5, pp. 1158–1174, 2010.

[21] W. Kang and L. C. Wilcox, “Mitigating the curse of dimensionality:
Sparse grid characteristics method for optimal feedback control and HJB
equations,” Computational Optimization and Applications, vol. 68, no. 2,
pp. 289–315, 2017.

[22] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, “Adaptive deep
learning for high dimensional Hamilton-Jacobi-Bellman equations,”
arXiv:1907.05317, 2019.

[23] K. Kunisch and D. Walter, “Semiglobal optimal feedback stabiliza-
tion of autonomous systems via deep neural network approximation,”
arXiv:2002.08625, 2020.

[24] W. E, J. Han, and A. Jentzen, “Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations,” Communications in Mathematics
and Statistics, vol. 5, no. 4, pp. 349–380, Nov 2017.

[25] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial dif-
ferential equations using deep learning,” Proceedings of the National
Academy of Sciences, vol. 115, no. 34, pp. 8505–8510, Aug 2018.

[26] N. Nüsken and L. Richter, “Solving high-dimensional Hamilton-Jacobi-
Bellman PDEs using neural networks: Perspectives from the theory of
controlled diffusions and measures on path space,” arXiv:2005.05409,
2020.

[27] J. Moon, “Generalized risk-sensitive optimal control and Hamilton-
Jacobi-Bellman equation,” IEEE Transactions on Automatic Control,
2020.

[28] S. Satoh, H. J. Kappen, and M. Saeki, “An iterative method for nonlinear
stochastic optimal control based on path integrals,” IEEE Transactions
on Automatic Control, vol. 62, no. 1, pp. 262–276, 2016.

[29] J. Han and W. E, “Deep learning approximation for stochastic control
problems,” arXiv:1611.07422, 2016.

[30] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker,
J. Li, D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” arXiv:1906.08291, 2019.

[31] G. Jing and L. Wang, “Multiagent flocking with angle-based formation
shape control,” IEEE Transactions on Automatic Control, vol. 65, no. 2,
pp. 817–823, 2019.

[32] S. Zhao, “Affine formation maneuver control of multiagent systems,”
IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4140–
4155, 2018.

[33] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[34] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2011, pp. 3260–3267.

[35] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, p. 477, 1987.

[36] T. Standley and R. Korf, “Complete algorithms for cooperative pathfind-
ing problems,” in International Joint Conference on Artificial Intelli-
gence (IJCAI), 2011, pp. 668–673.

[37] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[38] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and
E. Shimony, “ICBS: The improved conflict-based search algorithm for
multi-agent pathfinding,” in Eighth Annual Symposium on Combinatorial
Search. Citeseer, 2015.

[39] L. Cohen, T. Uras, T. K. S. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved solvers for bounded-suboptimal multi-agent path finding,” in
International Joint Conference on Artificial Intelligence (IJCAI), 2016,
pp. 3067–3074.

[40] B. Rivière, W. Hönig, Y. Yue, and S.-J. Chung, “GLAS: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-to-
end learning,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.
4249–4256, 2020.

[41] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
arXiv:2003.02992, 2020.

[42] W. H. Fleming and H. M. Soner, Controlled Markov Processes and
Viscosity Solutions, 2nd ed., ser. Stochastic Modelling and Applied
Probability. Springer, New York, 2006, vol. 25.

[43] W. Kang, Q. Gong, and T. Nakamura-Zimmerer, “Algorithms of data
development for deep learning and feedback design,” arXiv:1912.00492,
2019.

[44] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi
Equations, and Optimal Control, ser. Progress in Nonlinear Differential
Equations and their Applications. Boston, MA: Birkhäuser Boston,
Inc., 2004, vol. 58.

[45] L. C. Evans, Partial Differential Equations. American Mathematical
Society, 2010, vol. 19.

[46] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi
equations,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1–42, 1983.

[47] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman, “How to
train your neural ODE: the world of Jacobian and kinetic regularization,”
in International Conference on Machine Learning (ICML), 2020, pp.
3154–3164.

[48] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific Belmont, MA, 2019.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[50] A. Gholaminejad, K. Keutzer, and G. Biros, “ANODE: Unconditionally
accurate memory-efficient gradients for neural ODEs,” in International
Joint Conference on Artificial Intelligence (IJCAI), 2019, pp. 730–736.

[51] D. Onken and L. Ruthotto, “Discretize-optimize vs. optimize-
discretize for time-series regression and continuous normalizing flows,”
arXiv:2005.13420, 2020.

[52] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[54] L. Yang and G. E. Karniadakis, “Potential flow generator with L2

optimal transport regularity for generative models,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[55] L. R. G. Carrillo, A. E. D. López, R. Lozano, and C. Pégard, “Modeling
the quad-rotor mini-rotorcraft,” in Quad Rotorcraft Control. Springer,
2013, pp. 23–34.

[56] Y. Jiang and Z.-P. Jiang, “Global adaptive dynamic programming for
continuous-time nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 60, no. 11, pp. 2917–2929, 2015.

16

[57] K. Margellos and J. Lygeros, “Hamilton–Jacobi formulation for reach–
avoid differential games,” IEEE Transactions on Automatic Control,
vol. 56, no. 8, pp. 1849–1861, 2011.

[58] I. Michailidis, S. Baldi, E. B. Kosmatopoulos, and P. A. Ioannou,
“Adaptive optimal control for large-scale nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 11, pp. 5567–5577,
2017.

[59] V. G. Lopez, F. L. Lewis, Y. Wan, E. N. Sanchez, and L. Fan, “Solu-
tions for multiagent pursuit-evasion games on communication graphs:
Finite-time capture and asymptotic behaviors,” IEEE Transactions on
Automatic Control, vol. 65, no. 5, pp. 1911–1923, 2019.

	Introduction
	Related Work
	High-Dimensional Deterministic Optimal Control
	High-Dimensional Stochastic Optimal Control
	Multi-Agent Path-Finding

	Mathematical Formulation
	Optimal Control Formulation
	Collision-Avoiding Multi-Agent Control Problems
	The Pontryagin Maximum Principle
	Hamilton-Jacobi-Bellman PDE

	Neural Network Approach
	Main Formulation
	Value Function Approximation
	Numerical Implementation
	Hyperparameters

	Numerical Experiments
	Baseline: Optimization for a Single Initial State
	Two-Agent Corridor Example
	Set-up
	Results
	Effect of the HJB Penalizers
	Shocks
	Semi-Global Capabilities of NN model

	Multi-Agent Swap Examples
	2-Agent Swap
	12-Agent Swap
	Impact of ResNet Width
	Hamilton-Jacobi-Bellman Penalty Hyperparameters
	Mitigating the CoD

	Swarm Trajectory Planning Example
	Quadcopter Trajectory Planning Example

	Discussion
	Conclusion
	References

