
MEAN FIELD CONTROL PROBLEMS FOR VACCINE
DISTRIBUTION∗

WONJUN LEE † , SITING LIU† , WUCHEN LI ‡ , AND STANLEY OSHER†

Abstract. With the invention of the COVID-19 vaccine, shipping and distributing are crucial
in controlling the pandemic. In this paper, we build a mean-field variational problem in a spatial
domain, which controls the propagation of pandemics by the optimal transportation strategy of vac-
cine distribution. Here, we integrate the vaccine distribution into the mean-field SIR model designed
in [28]. Numerical examples demonstrate that the proposed model provides practical strategies for
vaccine distribution in a spatial domain.

1. Introduction. The COVID-19 pandemic has affected society significantly.
Various actions are taken to mitigate the spread of the infections, such as the travel
ban, social distancing, and mask-wearing. The recent invention of the vaccine yields
breakthroughs in fighting against this infectious disease. According to the recent ef-
fectiveness study [17], vaccines including Pfizer, Moderna, and Janssen (J&J) show
approximately 66%-95% efficacy at preventing both mild and severe symptoms of
COVID-19. Therefore, the deployment of COVID-19 vaccines is an urgent and timely
task. Many countries have implemented phased distribution plans that prioritize the
elderly and healthcare workers getting vaccinated. Meanwhile, the shipping of vac-
cines is expensive due to the cold chain transportation [30]. An effective distribution
strategy is necessary to eliminate infectious diseases and prevent more death.

In this work, we propose a novel mean-field control model based on [28]. We
consider two approaches (controls) to control the pandemic: relocation of populations
and distribution of vaccines. The first one has been discussed thoroughly in [28],
where we address the spatial effect in pandemic modeling by introducing a mean-
field control problem into the spatial SIR model. By applying spatial velocity to the
classical disease model, the model finds the most optimal strategy to relocate the
different populations (susceptible, infected, and recovered), controlling the epidemic’s
propagation. We considered several aspects of the vaccine in our model for vaccine
distribution, including manufacturing, delivery, and consumption. Our goal is to find
an optimal strategy to move the population and distribute vaccines to minimize the
total number of infectious, the amount of movement of the people, and the trans-
portation cost of the vaccine with limited vaccine supply. To tackle this question,
we ensemble these two controls and propose the following constrained optimization
problem:

min
(ρi,vi)i∈{S,I,R,V },f

G
(
(ρi, vi)i∈{S,I,R,V }, f

)
(G defined from (2.8))
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subject to

∂tρS +∇ · (ρSvS) = −βρSK ∗ ρI +
η2
S

2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ · (ρIvI) = βρSK ∗ ρI − γρI +
η2
I

2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ · (ρRvR) = γρI +
η2
R

2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ · (ρV vV ) = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

and 
0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory
ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

In our model, different populations are described using ρi (i ∈ {S, I,R}), rep-
resenting the susceptible, infectious, and recovered. The term ρV (x, t) describes the
density distribution of the vaccine over the spatial domain at location x and time t.
The control variables vi (i ∈ {S, I,R}) create velocity fields over time-space domain
that move the corresponding populations. As for vaccines, the control variable vV rep-
resents the vaccine’s transportation strategy, and the control variable f(t, x) describes
how many vaccines are produced at a specific time and location. The optimization
objective function G is the sum of terminal costs Efinal and running costs Erunning.
The terminal costs Efinal represent the goal of our control to achieve at the terminal
time, such as minimizing the total number of infectious individuals and maximizing
the total number of recovered (immune) persons. The running costs Erunning include
the costs of transportation of vaccines and different classes of the populations, etc. We
will discuss more details of cost functionals in Section 2.3. As for constraints of our
optimization problem, the five partial differential equations of ρi, vi (i ∈ {S, I,R, V })
describe the dynamics of the different classes of population and vaccines in terms of
densities and velocities. The inequalities of f(t, x) model the limitation of vaccine
manufacturing. Vaccines are produced at particular factory locations Ωfactory with a
daily maximal production rate fmax. The dynamics of the vaccine density ρV share
some similar aspects to the unnormalized optimal transport [27]. Specifically, they
both study mass transportation with a source term that creates masses.

We solve the main problem using the algorithm based on the first-order Primal-
Dual Hybrid Gradient (PDHG) method [6, 7]. Due to the multiplicative interaction
terms, ρSK ∗ρI , ρIK ∗ρS , ρV ρS , the optimization problem is based on nonlinear PDE
constraints, whereas the PDHG only considers linear constraints. We use the exten-
sion of the PDHG [10] that solves nonsmooth optimization problems with nonlinear
operators between function spaces. We extend the method utilizing the precondition-
ing operator from [21] which provides a suitable choice of variable norms to achieve
a convergence rate independent of the nonlinear operator. As a result, the algorithm
converges to the saddle point locally with step length parameters independent of the
finite-difference mesh size; see Section 3.1 for details.

Lots of mathematical models have been invented to predict the future of COVID-
19 epidemics. Recently proposed models take more real-world situations into consider-
ation and tend to be more effective in quantitative forecasting. Specifically, there have
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been studies on the impact of actions such as lockdown, social distancing, wearing a
mask [13, 12, 16]. Data-driven approach and machine learning techniques are also in-
tegrated to estimate the parameters for the epidemic better and boost the prediction
of the trend of the pandemic model [35, 32]. Meanwhile, optimal control serves as an
important tool in pandemic control. They seek the optimal strategy to minimize the
total number of infected people while keeping certain costs at a minimum. There are
work focused on mitigating the epidemic with limited medical supply, such as ICU
capacity [8], face masks [31], and vaccines [37, 19, 24, 29, 22]. In [22], an optimal
vaccine distribution strategy is proposed with a limited total amount of vaccines and
maximal daily supply. [29] first uses an inverse problem to determine the parameters
of the SIR model. Then it formulates two optimal control problems, with mono- and
multi-objective, and solves for the optimal strategy of vaccine administration. Other
non-pharmaceutical interventions are also considered in the scope of optimal control
of epidemics, including social distancing, closing schools, and lockdown [18, 23, 36].
[23] computes the optimal non-pharmaceutical intervention strategy based on an ex-
tended SEIR model with the absence of the vaccine. The mean-field control problem
can be viewed as a particular type of optimal control applied to an individual in terms
of population density.

Mean-field game (control), introduced by [20, 26], describes the deterministic
(stochastic) differential games as the number of players tends to infinity, where a
given player interacts through the distribution of all players in the state-space. It
is a thriving research direction with applications in economics, crowd motion, indus-
trial engineering, and more [3, 14, 25]. Numerical methods are invented to obtain
quantitative information of such mean-field game (control) models, especially when
the state-space is in high dimensions [1, 2, 5, 34]. Multi-population mean-field game
(control) problems have also drawn lots of attention [4, 9, 15]. This type of problem
studies the interactions on two levels: between agents of the same population and
between populations. Our model is a multi-population mean-field control problem
with population dynamics described using reaction-diffusion equations adopted from
the epidemic model and the controls over the vaccine production and distribution.
Therefore, we obtain a novel mean-field control problem.

The rest of the paper is organized as follows. Section 2 proposes a novel multi-
population mean-field control model and explains how population movement and vac-
cine distribution are integrated into a constrained optimization problem. Section 3
discusses the challenges in numerically solving this mean-field control model, proposes
a first-order primal-dual algorithm to solve it, and shows the local convergence of the
algorithm. Lastly, in Section 4, we present numerical experiments with different model
parameter choices and discuss their implications on mean-field controls.

2. Models. In this section, we review the classical SIR model. Based on it, we
formulate the spatial SIR dynamics with vaccine distribution, namely SIRV dynamics.
We then introduce a variational problem to control the SIRV dynamics.
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2.1. Classical SIR model. The SIR epidemic model describes an infectious
disease epidemic via an ordinary differential equation system

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI.

The population is divided into three classes: susceptible, infected and recovered.
While assuming a closed population without births or deaths, the model uses S(t), I(t),
and R(t) to represent the number in each compartment at time t. The SIR model
has two parameters: β is the effective contact rate of the susceptible individual being
infected and γ is the recovery rate of the infected individual. The simplicity of this
model allows people to predict an infectious disease epidemic by only estimating a few
parameters. However, it has limitations by assuming the population is homogeneous-
mixing, which means that every individual has an equal probability of disease-causing
contact. As a result, the predictions will lack spatial information and may not help
the (local) governments make policies or relocate medical resources. Therefore, we
are motivated to study the spatial SIR model. On the other hand, the SIR model
does not consider the latent period between when a person is exposed to a disease
and when they become infected. This leads to the extension of the SIR model, such
as the SEIR model. Our proposed model has a flexible structure and can naturally
be generalized to such epidemiological models.

2.2. Spatial SIR variational problem with vaccine distribution. In [28],
we add the spatial dimension to the S, I, R functions. Let Ω ⊂ Rd be a bounded
domain. Consider the following density functions

ρS , ρI , ρR : [0, T ]× Ω→ [0,∞).

Here, ρS , ρI , and ρR represent susceptible, infected, and recovered populations distri-
bution, respectively. We assume ρi for each i ∈ {S, I,R} moves over a spatial domain
Ω with a velocity vi. Here vi, i ∈ {S, I,R} are our controls variables. With change of
variables mi = ρivi, we define the momentum

mS ,mI ,mR : [0, T ]× Ω→ Rd

that govern the corresponding density flows. In the following, instead of using control
variables vi, we replace them with mi

ρi
and regard mi as the control variables.

We can describe the flows of the densities by the following continuity equations.

(2.1)



∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2
S

2
∆ρS

∂tρI +∇ ·mI = βρIK ∗ ρS − γρI +
η2
I

2
∆ρI

∂tρR +∇ ·mR = γρI +
η2
R

2
∆ρR

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

This system of continuity equations describes the flows of three groups of densities
while satisfying the SIR model. The nonnegative constants ηi (i ∈ {S, I,R}) are the
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coefficients for viscosity terms. These terms can also be understood as noise terms
generated by the data. K = K(x, y) is a symmetric positive definite kernel with
(K ∗ ρ)(x, t) =

∫
Ω
K(x, y)ρ(y, t) dy. In this model, we consider the Gaussian kernel

K(x, y) =
1√

(2π)d

d∏
k=1

1

σk
exp

(
−|xk − yk|

2

2σ2
k

)
.

The kernel convolution describes the spreading rate of infectious disease over the
spatial domain. In addition, we assume the Neumann boundary conditions on ∂Ω.
Since we don’t consider birth or death in our model, the total population is conserved
for all time t ∈ [0, T ], which leads to the following equality

∂

∂t

∫
Ω

ρS(t, x) + ρI(t, x) + ρR(t, x)dx = 0.

In this paper, we consider the optimization problem for the distribution of vac-
cines. We add an extra function ρV : [0, T ]×Ω→ [0,∞) which represents the vaccine
density in Ω at each time t ∈ [0, T ]. The vaccine distribution will be described as the
following PDE:

(2.2)
∂tρV = f(t, x)− θ2ρV ρS t ∈ (0, T ′)

∂tρV +∇ ·mV = −θ2ρV ρS t ∈ [T ′, T ), 0 < T ′ < T,

where mV : [T ′, T ) × Ω → Rd is a momentum, θ2 represents the utilization rate of
vaccines, and f : (0, T ′) × Ω → [0,∞) represents the production rate of vaccines in
x ∈ Ω at 0 < t < T ′. During 0 < t < T ′, the vaccines are produced with a production
rate f and used at a rate θ2ρV ρS . During T ′ ≤ t < T , the vaccines are delivered
to the area where the susceptible population is located, and they are used at a rate
of θ2ρV ρS . In summary, the first part of the PDE describes vaccines’ production,
and the second part describes the delivery of vaccines. For all time 0 < t < T , the
susceptible population is vaccinated if the vaccines are available in the same area.
Now we are ready to introduce the new system of equations for the SIRV model.

(2.3)



∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2
S

2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI +
η2
I

2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2
R

2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρV (0, ·) are given.

In the first and third equations, we add the terms−θ1ρV ρS and +θ1ρV ρS , respectively.
The constant θ1 represents the vaccine efficiency and θ1ρV (t, x)ρS(t, x) represents the
vaccinated population at (t, x) ∈ (0, T ) × Ω. We denote a set S := {S, I,R, V } and
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define a nonlinear operator A as follows

A((ρi,mi)i∈S, f) := (∂tρS +∇ ·mS −
η2
S

2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

∂tρI +∇ ·mI −
η2
I

2
∆ρI − βρSK ∗ ρI + γρI ,

∂tρR +∇ ·mR −
η2
R

2
∆ρR − γρI − θ1ρSρV ,

∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ2ρSρV ),

(2.4)

where XC : [0, T ]→ R is a step function that equals 1 on C and 0 otherwise.

2.3. The cost functional. The cost functional we propose in this paper is the
extension of [28]. We design the cost functional so that the solution (ρi,mi), i ∈ S
satisfies the following criteria:

(i) minimize the transportation cost for moving each population;
(ii) minimize the total number of infected people and the total number of sus-

ceptible people by maximizing the usage of the vaccines at time T ;
(iii) maximize the total number of recovered people at time T ;
(iv) avoid high concentration of population and vaccines at each time t ∈ (0, T );
(v) minimize the amount of vaccines produced during t ∈ (0, T ′);

(vi) minimize the transportation cost for delivering vaccines during t ∈ (T ′, T ).

Item (i) can be described by∫ T

0

∫
Ω

Fi(ρi(t, x),mi(t, x))dx dt,

for i ∈ {S, I,R} where

(2.5) Fi(ρi,mi) =


αi|mi|2

2ρi
if ρi > 0

0 if ρi = 0 and |mi| = 0

∞ if ρi = 0 and |mi| > 0,

which is convex, lower semi-continuous, and 1-homogeneous with respect to (ρi,mi).
The parameter αi characterizes the cost of moving ρi with velocity mi

ρi
. Larger αi

means it is more expensive to move ρi. Note that this function comes from the
quadratic kinetic energy. To see this, we use the definition mi = ρivi and plug into
the formula (2.5):

Fi(ρi,mi) =
αi|mi|2

2ρi
=
αi
2
ρi|vi|2.

Item (ii) and (iii) can be described by the terminal costs of the cost functional

Ei(ρi(T, ·)) =

∫
Ω

ei(ρi(T, x)) dx (i = S, I, V ),

ER(ρR(T, ·)) =

∫
Ω

eR (1− ρR(T, x)) dx,

where functions e : [0,∞) → [0,∞) are convex and lower semi-continuous functions.
We also minimize the terminal cost for ρV because maximizing the usage of vaccines
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is equivalent to minimizing the number of vaccines left at the terminal time T . The
total number of the recovered can be maximized by penalizing the density at the
terminal time if the value of ρR(T, x) is far away from 1 for x ∈ Ω. In this paper, we
use a quadratic cost function

(2.6) ei(t) =
ai
2
t2, (t ∈ [0,∞))

where ai is some constant.
For Item (iv), the cost functional for the concentration of the total population

and vaccines can be represented by∫ T

0

GP (ρS(t, ·) + ρI(t, ·) + ρR(t, ·)) dt,
∫ T

0

GV (ρV (t, ·)) dt,

where

(2.7) GP (u) =

∫
Ω

gP (u(x)) dx, GV (u) =

∫
Ω

gV (u(x)) dx,

for u : Ω→ [0,∞) and convex and lower semi-continuous functions gP , gV : [0,∞)→
[0,∞). Similar to ei (2.6) from Item (ii), we use quadratic functions for gP and gV .

Items (v) and (vi) are criteria specific to the vaccine distribution. From the
PDE (2.2), the vaccines are produced during 0 < t < T ′ by a function f . We use the
similar functional (2.7) to minimize the amount of vaccines produced by f . Thus, we
set the functional ∫ T ′

0

G0(f(t, ·)) dt =

∫ T ′

0

∫
Ω

g0(f(t, x)) dx dt

where g0 : [0,∞)→ [0,∞) is a convex and lower semi-continuous function.
The vaccines are delivered during T ′ < t < T . Similar to the Item (i), we set∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt,

where FV has the same definition as (2.5).
The total cost functional we consider is then

G((ρi,mi)i∈S, f) =
∑
i∈S
Ei(ρi(T, ·))

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

GP ((ρS + ρI + ρR)(t, ·)) + GV (ρV (t, ·)) dt

+

∫ T ′

0

G0(f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f2 +
∑
i∈S

ρ2
i + |mi|2 dx dt.

(2.8)

In the perspective of a control problem, the first term at the right-hand side in (2.8)
is the terminal cost, while the rest of the terms accounts for the running costs. The
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quadratic terms in the last line is a λ-strongly convex functional. The functional F
is λ-strongly convex if for any u = ((ρi,mi)i∈S, f), F satisfies

F (ũ) ≥ F (u) + ∂F (u)(ũ− u) +
λ

2
‖ũ− u‖2L2 , for all ũ = ((ρ̃i, m̃i)i∈S, f̃)

where ‖ũ− u‖2L2 is defined as∫ T

0

∫
Ω

(f̃ − f)2 +
∑
i∈S

(ρ̃i − ρi)2 + |m̃i −mi|2 dx dt

and ∂F denotes the convex subdifferential of F . Since Ei, Fi, Gi are convex and lower-
semicontinuous, G is λ-strongly convex as the sum of convex and λ-strongly convex
functionals. The strong convexity of G is important as the algorithm of the paper
requires the objective cost functional to be strongly convex (Theorem 3.3).

2.4. Constraints for vaccine production. In addition to the constraint from
(2.3), we adapt the following constraints to reflect the limited vaccination coverage:

(2.9)

0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory
ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced and fmax
is a nonnegative constant representing the maximum vaccine production rate. In the
third inequality, a nonnegative constant Cfactory limits the total number of vaccines
produced during 0 < T < T ′.∫ T ′

0

∫
Ω

ρV (t, x) dx dt ≤ CfactoryT ′|Ωfactory|.

The constraints (2.9) can be imposed by having the following functionals for GV and
G0.

(2.10)

GV (ρV (t, ·)) =

∫
Ω

gV (ρV (t, x)) dx+ i[−∞,Cfactory)(ρV (t, ·))

G0(f(t, ·)) =

∫
Ω

g0(f(t, x)) + iΩfactory
(x)f(t, x) dx+ i[−∞,fmax)(f(t, ·))

where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced. The
functionals i[−∞,Cfactory] and i[−∞,fmax] are defined as

i[a,b](u) =

{
0, a ≤ u(x) ≤ b for all x ∈ Ω

∞, otherwise

where a, b are constants and u : Ω → R is a function. The function iΩfactory
(x) is

defined as

iΩfactory
(x) =

{
0, x ∈ Ωfactory

∞, x ∈ Ω\Ωfactory.

This function forces f(t, x) = 0 if (t, x) ∈ (0, T ′) × (Ω\Ωfactory), thus vaccines are
produced only in Ωfactory.
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Remark 2.1. The formulation is not limited to SIR epidemic model. For example,
we can describe the SIRD (Susceptible-Infected-Recovered-Deceased) epidemic model
by adding an extra population ρD for the deceased population with a mortality rate
µ. 

∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2S
2 ∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI − µρI +
η2I
2 ∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2R
2 ∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρD = µρI +
η2D
2 ∆ρD (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρD(0, ·), ρV (0, ·) are given.

2.5. Properties. From the definition of the cost functional and the constraint (2.3),
we have the following minimization problem:

inf
(ρi,mi)i∈S,f

{
G((ρi,mi)i∈S, f) : subject to (2.3)

}
.(2.11)

We first define the inner product of vectors of functions in L2. Given vectors of
functions u = (u1(t, x), u2(t, x), · · · , uk(t, x)) and v = (v1(t, x), v2(t, x), · · · , vk(t, x))
with ui, vi : [0, T ]× Ω→ R, the L2 inner product of vectors u and v and L2 norm of
u are defined by

(2.12) 〈u, v〉L2 =

k∑
i=0

(ui, vi)L2 , ‖u‖2L2 = 〈u, u〉L2

where (·, ·)L2([0,T ]×Ω) is a L2 inner product such that

(u, v)L2([0,T ]×Ω) =

∫ T

0

∫
Ω

u(t, x)v(t, x) dx dt.

We introduce dual variables (φi)i∈S for each continuity equation from (2.4). Using the
dual variables and the definitions of the inner products, we convert the minimization
problem into a saddle point problem.

(2.13) inf
(ρi,mi)i∈S,f

sup
(φi)i∈S

L((ρi,mi, φi)i∈S, f),

where L is the Lagrangian functional defined as

L((ρi,mi, φi)i∈S, f)

= G((ρi,mi)i∈S, f)− 〈A((ρi,mi)i∈S, f), (φi)i∈S〉L2

= G((ρi,mi)i∈S, f)

−
∫ T

0

∫
Ω

φS

(
∂tρS +∇ ·mS + βρSK ∗ ρI + θ1ρSρV −

η2
S

2
∆ρS

)
dx dt

−
∫ T

0

∫
Ω

φI

(
∂tρI +∇ ·mI − βρSK ∗ ρI + γρI −

η2
I

2
∆ρI

)
dx dt
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−
∫ T

0

∫
Ω

φR

(
∂tρR +∇ ·mR − γρI − θ1ρSρV −

η2
R

2
∆ρR

)
dx dt

−
∫ T

0

∫
Ω

φV
(
∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ2ρSρV

)
dx dt.

For brevity, we denote

u = ((ρi,mi)i∈S, f), p = (φi)i∈S.

We can rewrite the Lagrangian as

(2.14) L(u, p) = G(u)− 〈A(u), p〉L2

where the nonlinear operator A(u) is defined as

(2.15) A(u) = (AS(u), AI(u), AR(u), AV (u))

AS(u) = ∂tρS +∇ ·mS −
η2
S

2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

AI(u) = ∂tρI +∇ ·mI −
η2
I

2
∆ρI − βρIK ∗ ρS + γρI ,

AR(u) = ∂tρR +∇ ·mR −
η2
R

2
∆ρR − γρI ,

AV (u) = ∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ1ρSρV .

As noted in [28], the dual gap, the difference between the primal solution and dual
solution, may not be zero because the nonconvex functions (ρS , ρI) 7→ ρSK ∗ ρI and
(ρS , ρV ) 7→ ρSρV make the feasible set nonconvex. We circumvent the problem by
linearizing the nonlinear operator at a base point ū

A(u) ≈ Āū(u) = A(ū) + [∇A(ū)](u− ū).

In our formulation, the linearlized operator Āū(u) can be written as follows.

Āū(u) = (ĀSū(u), ĀIū(u), ĀRū(u), ĀV ū(u))

ĀSū(u) = ∂tρS +∇ ·mS −
η2
S

2
∆ρS + βρSK ∗ ρ̄I + θ1ρS ρ̄V ,

ĀIū(u) = ∂tρI +∇ ·mI −
η2
I

2
∆ρI − βρIK ∗ ρ̄S + γρI ,

ĀRū(u) = ∂tρR +∇ ·mR −
η2
R

2
∆ρR − γρ̄I ,

ĀV ū(u) = ∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ1ρV ρ̄S

where ū = u = ((ρ̄i, m̄i)i∈S, f̄). We define a linearized Lagrangian as

(2.16) L̄ū(u, p) = G(u)− 〈Āū(u), p〉L2 .

In the paper [10], the author developed a primal-dual algorithm using the linearized
Lagrangian (Algorithm (3.5)) and proves that the sequence (u(k), p(k))∞k=1 from the
algorithm converges to the saddle point (u∗, p∗) (in Section 3.1, we prove the local
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convergence to the saddle point given (u(0), p(0)) is sufficiently close to the saddle
point). By the first-order optimality conditions (also known as Karush-Kuhn-Tucker
(KKT) conditions), the saddle point satisfies

[∇A(u∗)]
T p∗ ∈ ∂G(u∗)

A(u∗) = 0.
(2.17)

In the next proposition, we present the equations derived from the KKT condi-
tions (2.17).

Proposition 2.2 (Mean-field control SIRV system). By KKT conditions, the
saddle point ((ρi,mi, φi)i∈S, f) of (2.13) satisfies the following equations.

∂tφS −
αS
2
|∇φS |2 +

η2
S

2
∆φS +

δGP
δρ

(ρS + ρI + ρR) + β(φI − φS)K ∗ ρI

+ ρV
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (0, T )× Ω

∂tφI −
αI
2
|∇φI |2 +

η2
I

2
∆φI +

δGP
δρ

(ρS + ρI + ρR)

+ βK ∗ (ρS(φI − φS)) + γ(φR − φI) = 0 (t, x) ∈ (0, T )× Ω

∂tφR −
αR
2
|∇φR|2 +

η2
R

2
∆φR +

δGP
δρ

(ρS + ρI + ρR) = 0 (t, x) ∈ (0, T )× Ω

∂tφV +
δGV
δρ

(ρV ) + ρS
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (0, T ′)× Ω

∂tφV −
αV
2
|∇φV |2 +

δGV
δρ

(ρV ) + ρS
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (T ′, T )× Ω

∂tρS −
1

αS
∇ · (ρS∇φS) + βρSK ∗ ρI + θ1ρSρV −

η2
S

2
∆ρS = 0 (t, x) ∈ (0, T )× Ω

∂tρI −
1

αI
∇ · (ρI∇φI)− βρSK ∗ ρI + γρI −

η2
I

2
∆ρI = 0 (t, x) ∈ (0, T )× Ω

∂tρR −
1

αR
∇ · (ρR∇φR)− γρI − θ1ρSρV −

η2
R

2
∆ρR = 0 (t, x) ∈ (0, T )× Ω

∂tρV − f + θ2ρSρV = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV −
1

αV
∇ · (ρV∇φV ) + θ2ρSρV = 0 (t, x) ∈ (T ′, T )× Ω

δG0

δf
(f) + φV = 0 (t, x) ∈ (0, T ′)× Ω

φi(T, ·) =
δEi

δρ(T, ·)
(ρi(T, ·)), i ∈ S.

The terms δGP
δρ , δGV

δρ , δGP
δρ , δG0

δf , and δEi
δρ(T,·) are the functional derivatives. In other

words, given F : H → R be a smooth functional where H is a separable Hilbert space
and ρ ∈ H, we say a map δF

δρ is the functional derivative of F with respect to ρ if it
satisfies

lim
ε→0

F (ρ+ εh)− F (ρ)

ε
=

∫
Ω

δF

δρ
(ρ(x))h(x) dx,

for any arbitrary function h : Ω→ R.
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The dynamical system models the optimal vector field strategies for S, I, R populations
and the vaccine distribution. It combines both strategies from mean field controls and
SIRV models. For this reason, we call it Mean-field control SIRV system. The proof
of Proposition 2.2 can be found in the Appendix.

3. Algorithms. In this section, we propose an algorithm to solve the proposed
SIRV variational problem. We use the primal-dual hybrid gradient (PDHG) algo-
rithm [6, 7]. The PDHG can solve the following convex optimization problem.

min
u

f(Au) + g(u)

where f and g are convex functions and A is a continuous linear operator. The
algorithm solves the problem by converting the problem into a saddle point problem
by introducing a dual variable p.

min
u

max
p

g(u) + 〈Au, p〉L2 − f∗(p)

with L2 inner product is defined in (2.12) and

f∗(p) = sup
u
〈u, p〉L2 − f(u)

is the Legendre transform of f . The method solves the saddle point problem by
iterating

(3.1)

u(k+1) = arg min
u

g(u) + 〈u,AT p(k)〉L2 +
1

2τ
‖u− u(k)‖2L2

ũ(k+1) = 2u(k+1) − u(k)

p(k+1) = arg max
p
〈Aũ(k+1), p〉L2 − f∗(p)− 1

2σ
‖p− p(k)‖2L2 .

The scheme converges if the step sizes τ and σ satisfy

(3.2) τσ‖ATA‖L2 < 1,

where ‖ · ‖ is an operator norm in L2. However, the SIRV variational problem has a
nonlinear function A for the constraint. Thus, we use the extension of the algorithm
from [10] which solves the nonlinear constrained optimization problem.

(3.3) min
u

max
p

g(u) + 〈A(u), p〉L2 − f∗(p),

where A is a nonlinear function. The scheme iterates the algorithm (3.1) with a linear
approximation of A at a base point ū

A(u) ≈ A(ū) + [∇A(ū)](u− ū).

Denote Au := ∇A(u). We have a linearized saddle point problem

(3.4) min
u

max
p

g(u) + 〈A(ū) +Aū(u− ū), p〉L2 − f∗(p)

and the scheme iterates

u(k+1) = arg min
u

g(u) + 〈u,ATu(k)p
(k)〉L2 +

1

2τ (k)
‖u− u(k)‖2L2

ũ(k+1) = 2u(k+1) − u(k)

p(k+1) = arg max
p
〈A(u(k)) +Au(k)(ũ(k+1) − u(k)), p〉L2 − f∗(p)− 1

2σ(k)
‖p− p(k)‖2L2

(3.5)
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The paper [10] proves that the sequence {u(k), p(k)}∞k=0 of the algorithm converges to
some saddle point (u∗, p∗) that satisfies (2.17). However, the scheme converges if the
step sizes satisfy

σ(k)τ (k)‖∇A(u(k))‖2L2 < 1, k = 1, 2, · · · .
Suppose we use an unbounded operator that depends on the grid size, for example,
A = ∇. The discrete approximation of the operator norm of A increases as the grid
size increases (Figure 1 illustrates the relationship between the norm of an unbounded
operator and grid sizes). Thus, the scheme can result in a very slow convergence if we
use a fine grid resolution. To circumvent the problem, we use the General-proximal
Primal-Dual Hybrid Gradient (G-prox PDHG) method from [21] which is another
variation of the PDHG algorithm. This variant provides an appropriate choice of
norms for the algorithm, and the authors prove that choosing the proper norms allows
the algorithm to have larger step sizes than the vanilla PDHG algorithm. The G-prox
PDHG iterates
(3.6)

u(k+1) = arg min
u

g(u) + 〈u,ATu(k)p
(k)〉L2 +

1

2τ (k)
‖u− u(k)‖2L2

ũ(k+1) = 2u(k+1) − u(k)

p(k+1) = arg max
p
〈A(u(k)) +Au(k)(ũ(k+1) − u(k)), p〉L2 − f∗(p)− 1

2σ(k)
‖p− p(k)‖2H(k) .

where the norm ‖ · ‖H(k) is defined as

‖p‖2H(k) = ‖ATu(k)p‖2L2 .

By choosing the proper norms, the step sizes only need to satisfy

σ(k)τ (k) < 1, k = 1, 2, · · ·

which are clearly independent of the grid size.

3.1. Local convergence of the algorithm. In this section, we show the it-
erations from the algorithm (3.6) locally converges to the saddle point. The local
convergence theorem in this paper is mainly based on the Theorem 2.11 from [10].
However, we add a preconditioning operator from the G-prox PDHG method. We
show that the method converges locally to the saddle point with the step sizes inde-
pendent of the nonlinear operator A.

From the algorithm (3.6), (u(k+1), p(k+1)) satisfies the following first-order opti-
mality conditions

0 ∈ ∂g(u(k+1)) +ATu(k)p
(k) +

1

τ (k)
(u(k+1) − u(k))

0 ∈ A(u(k)) + 2Au(k)(u(k+1) − u(k))− ∂f∗(p(k+1))− 1

σ(k)
Au(k)ATu(k)(p

(k+1) − p(k))

(3.7)

which can be rewritten as

0 ∈ Hu(k)(q(k+1)) +M (k)(q(k+1) − q(k))(3.8)

with q = (u, p). Here, the monotone operator Hū is defined as

Hū(q) :=

(
∂g(u) +ATū p

∂f∗(p)−A(ū)−Aū(u− ū)

)
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(a) u(x) = e−20|x|2

250 500 750 1000 1250 1500 1750 2000
Grid size

3.14

3.15

3.16

3.17

3.18

3.19

|∇
u|

2 L2

(b) Operator norm vs. grid sizes

Fig. 1: The image (a) shows u on a unit square domain [−0.5, 0.5]2. The plot (b) shows the
discrete approximation of ‖∇u‖2L2 =

∫
Ω
|∇u(x)|2 dx with respect to grid sizes. It shows that

in the discrete approximation, the norm of an unbounded operator ∇ increases as grid size
increases.

and

M (k) :=

(
1
τ(k) Id −AT

u(k)

−Au(k)
1

σ(k)Au(k)ATu(k)

)
where Id is an identity operator.

Recall that from (2.17), the saddle point q∗ = (u∗, p∗) has to satisfy

0 ∈ Hu∗(u∗, p∗).

Throughout, we assume that

(3.9) ‖∇A(u∗)‖ > 0 and u 7→ A(u) is continuous.

Lemma 3.1. There exists constants 0 < c < C and R > 0 such that

c ≤ ‖∇A(u)‖ ≤ C, (‖u− u∗‖L2 ≤ R)

where ‖ · ‖ is an operator norm.

Proof. This follows immediately from (3.9) and the fact that the derivative∇A(u)
is continuous with respect to u.

Lemma 3.2. Suppose (3.9) holds and let τ (k)σ(k) < 1. Then there exist constants
0 < θ < Θ such that

θ2‖q‖2L2 ≤ 〈q,M (k)q〉 ≤ Θ2‖q‖2L2

where
‖q‖2L2 = ‖u‖2L2 + ‖p‖2L2 .

A proof of Lemma 3.2 is provided in the appendix.
With the above Lemmas, we can use the Theorem 2.11 from [10] to show the local

convergence of the algorithm.
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Theorem 3.3. Let (u∗, p∗) ∈ L2 ×H(∗) be a solution to (2.17) where ‖p‖2H(∗) =

‖ATu∗p‖
2
L2 . Let the step sizes τ (k) and σ(k) satisfy τ (k)σ(k) < 1 for all k. Then there

exists δ > 0 such that for any initial point (u(0), p(0)) ∈ L2 ×H(0) satisfying

‖u(0) − u∗‖2L2 + ‖p(0) − p∗‖2L2 < δ2,

the iterates (u(k), p(k)) from (3.6) converges to the saddle point (u∗, p∗).

Proof. By Lemma 3.1, Lemma 3.2, and strong convexity of the functional G
from (2.8), we can use [10, Theorem 2.11], which proves the theorem.

Remark 3.4. [10, Theorem 2.11] requiresHu∗ to satisfy the condition called metric
regularity. In our formulation, the constraint A(u) = 0 makes Hu∗ metrically regular
by [11, Section 5.3]. We refer readers to [10, 11, 33] for further details about metric
regularity.

3.2. Implementation of the algorithm. To implement the algorithm to the
minimization problem (2.8), we set

u = ((ρi,mi)i∈S, f)

p = (φi)i∈S

g(u) = G(u)

f(A(u)) =

{
0 if A(u) = 0

∞ otherwise

f∗(p) = 0.

We use (2.15) for the definition of the operator A. Define the Lagrangian functional
as

L(u, p) := G(u)− 〈A(u), p〉L2

where 〈·, ·〉L2 is defined in (2.12). We summarize the algorithm as follows.

Algorithm 3.1 G-prox PDHG for mean-field control SIRV system

Input: ρi(0, ·) (i ∈ S)
Output: ρi,mi, φi (i ∈ S), f

While relative error > tolerance For i ∈ S

ρ
(k+1)
i = arg min

ρ
L((ρ,m(k), f (k)), φ(k)) +

1

2τ
‖ρ− ρ(k)

i ‖
2
L2

m
(k+1)
i = arg min

m
L((ρ(k+1),m, f (k)), φ

(k)
i ) +

1

2τ
‖m−m(k)

i ‖
2
L2

f (k+1) = arg min
f
L((ρ(k+1),m(k+1), f), φ(k)) +

1

2τ
‖f − f (k)‖2L2

φ
(k+1)
i = arg max

φ
L((2ρ(k+1) − ρ(k), 2m(k+1) −m(k), 2f (k+1) − f (k)), φ)

− 1

2σ
‖φ− φ(k)

i ‖
2

H
(k)
i
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Here, L2 and H
(k)
i norms are defined as

‖u‖2L2 = (u, u)L2 =

∫ T

0

∫
Ω

u2dx dt, ‖p‖2
H

(k)
i

= ‖[∇Ai(u(k))]T p‖2L2 , i ∈ S

for any u : [0, T ]× Ω→ [0,∞). Moreover, the relative error is defined as

relative error =
|G(ρ

(k+1)
i ,m

(k+1)
i )−G(ρ

(k)
i ,m

(k)
i )|

|G(ρ
(k)
i ,m

(k)
i )|

.

In the section 4, We use quadratic functions for Ei (i ∈ {S, I, V }), GP , GV , G0. With
the definitions (2.10), we use

Ei(ρi(T, ·)) =

∫
Ω

ai
2
ρi(T, x)2 dx, i = S, I, V

GP (ρ(t, ·)) =

∫
Ω

dP
2
ρ(t, x)2 dx

GV (ρ(t, ·)) =

∫
Ω

dV
2
ρ(t, x)2 dx+ i[−∞,Cfactory](ρ(t, ·))

G0(f(t, ·)) =

∫
Ω

d0

2
f(t, x)2 + iΩfactory

(x)f(t, x) dx+ i[−∞,fmax](f(t, ·))

Thus, we can write the cost functional as follows

G((ρi,mi)i∈S, f) =

∫
Ω

∑
i=S,I,V

ai
2
ρi(T, ·)2 dx

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

∫
Ω

dP
2

(ρS + ρI + ρR)2 +
dV
2
ρ2
V dx dt

+

∫ T ′

0

∫
Ω

d0

2
f2 + iΩfactory

f dx dt

+

∫ T

0

i[−∞,Cfactory](ρV (t, ·)) + i[−∞,fmax](f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f2 +
∑
i∈S

ρ2
i + |mi|2 dx dt.

(3.10)

where ai, dP , dV , d0 are nonnegative constants. With this cost functional, we find

explicit formula for each variable ρ
(k+1)
i ,m

(k+1)
i , φ

(k+1)
i (i ∈ S), f (k+1).

Proposition 3.5. The variables ρ
(k+1)
i ,m

(k+1)
i , φ

(k+1)
i (i ∈ S), and f (k+1) from

the Algorithm 3.1 satisfy the following explicit formulas:

ρ
(k+1)
S = root+

(
τ

1 + τ(dP + λ)

(
∂tφ

(k)
S +

η2
S

2
∆φ

(k)
S −

1

τ
ρ

(k)
S + β

(
φ

(k)
I − φ

(k)
S

)
K ∗ ρ(k)

I

+ ρ
(k)
V

(
θ1(φ

(k)
R − φ

(k)
S )− θ2φ

(k)
V

)
+ dP (ρ

(k)
I + ρ

(k)
R )

)
, 0,−

ταS |m(k)
S |2

2(1 + τ(dP + λ))

)
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ρ
(k+1)
I = root+

(
τ

1 + τ(dP + λ)

(
∂tφ

(k)
I +

η2
I

2
∆φ

(k)
I −

1

τ
ρ

(k)
I + βK ∗

(
ρ

(k)
S (φ

(k)
I − φ

(k)
S )
)

+ γ(φ
(k)
R − φ

(k)
I ) + dP (ρ

(k)
S + ρ

(k)
R )

)
, 0,−

ταI |m(k)
I |2

2(1 + τ(dP + λ))

))

ρ
(k+1)
R = root+

(
τ

1 + τ(dP + λ)

(
∂tφ

(k)
R +

η2
R

2
∆φ

(k)
R −

1

τ
ρ

(k)
R + dP (ρ

(k)
S + ρ

(k)
I )

)
, 0,−

ταR|m(k)
R |2

2(1 + τ(dP + λ))

)

ρ
(k+1)
V = min

(
Cfactory,

τ

1 + τ(dV + λ)

(
−∂tφ(k)

V − ρ
(k)
S (θ1(φ

(k)
R − φ

(k)
S )− θ2φ

(k)
V ) +

1

τ
ρ

(k)
V

))
,

(t, x) ∈ [0, T ′]× Ω

ρ
(k+1)
V = root+

(
τ

1 + τ(dV + λ)

(
∂tφ

(k)
V + ρS(θ1(φR − φS)− θ2φV )− 1

τ
ρ

(k)
V

)
, 0,−

ταV |m(k)
V |2

2(1 + τ(dV + λ))

)
,

(t, x) ∈ (T ′, T ]× Ω

m
(k+1)
i =

ρ
(k+1)
i

ταi + (1 + τλ)ρ
(k+1)
i

(
m

(k)
i − τ∇φ

(k)
i

)
, (i ∈ S)

f (k+1) = min

(
fmax,

τ

1 + τ(d0 + λ)

(
1

τ
f (k) − φ(k)

V

))
XΩfactory

(x)

φ
(k+ 1

2 )

S = φ
(k)
S + σ(ASA

T
S )−1

(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I − θ1ρ

(k+1)
S ρ

(k+1)
V +

η2
S

2
∆ρ

(k+1)
S

)
φ

(k+ 1
2 )

I = φ
(k)
I + σ(AIA

T
I )−1

(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
S K ∗ ρ(k+1)

I − γρ(k+1)
I +

η2
I

2
∆ρ

(k+1)
I

)
φ

(k+ 1
2 )

R = φ
(k)
R + σ(ARA

T
R)−1

(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I + θ1ρ

(k+1)
S ρ

(k+1)
V +

η2
R

2
∆ρ

(k+1)
R

)
φ

(k+ 1
2 )

V = φ
(k)
V + σ(AVA

T
V )−1

(
−∂tρ(k+1)

V + f (k+1)X[0,T ′)(t)−∇ ·m
(k+1)
V X[T ′,T ](t)− θ1ρ

(k+1)
S ρ

(k+1)
V

)

where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx+ c = 0 and
we approximate the AiA

∗
i as follows

ASA
T
S = −∂tt +

η4
S

4
∆2 − (1 + (β + θ1)η2

S)∆ + (β + θ1)2

AIA
T
I = −∂tt +

η4
I

4
∆2 − (1 + (γ + β)η2

I )∆ + (γ + β)2

ARA
T
R = −∂tt +

η4
R

4
∆2 −∆

AVA
T
V = −∂tt −∆ + θ2

2.

We use FFTW library to compute (AiA
T
i )−1 (i ∈ S) and convolution terms by Fast

Fourier Transform (FFT), which is O(n log n) operations per iteration with n being the
number of points. Thus, the algorithm takes just O(n log n) operations per iteration.

4. Experiments. In this section, we present several sets of numerical experi-
ments using the Algorithm 3.1 with various parameters. We wrote C++ codes to run
the numerical experiments. Let Ω = [0, 1]2 be a unit square in R2 and the terminal
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time T = 1. The domain [0, 1]×Ω is discretized with the regular Cartesian grid below.

∆x1 =
1

Nx1

, ∆x2 =
1

Nx2

, ∆t =
1

Nt − 1

xkl = ((k + 0.5)∆x1, (l + 0.5)∆x2) , k = 0, · · · , Nx1 − 1, l = 0, · · · , Nx2 − 1

tn = n∆t, n = 0, · · · , Nt − 1

where Nx1
, Nx2

are the number of discretized points in space and Nt is the number of
discretized points in time. For all the experiments, we use the same set of parameters,

αS = 10, αI = 30, αR = 20, αV = 0.005

aS = 2, aI = 2, aR = 0.001, aV = 0.1

T ′ = 0.5, σ = 0.01, dP = 0.4, dV = 0.4, d0 = 0.01

θ2 = 0.9 ηi = 0.01 (i ∈ S).

By setting a higher value for αI , we penalize the infected population’s movement
more than other populations. Considering the immobility of the infected individuals,
this is a reasonable choice in terms of real-world applications. By setting T ′ = 1/2,
the solution will produce the vaccines during 0 ≤ t < 1/2 and deliver them during
1/2 ≤ t ≤ 1. Furthermore, we fix the parameters for the infection rate and recovery
rate

β = 0.8, γ = 0.1.

The paper [28] describes how the parameters β and γ affect the propagation of the
populations. In this paper, we focus on the vaccine productions and distributions.
Recall that from the formulation (3.10), we have terminal functionals

Ei(ρi(T, ·)) =

∫
Ω

ai
2
ρi(T, x)2 dx, i ∈ {S, I, V }.

Thus, the solution to the problem has to minimize the total number of susceptible,
infected, and vaccines at the terminal time T . The solution reduces the total number of
infected by recovering them with a rate γ and decreases the total number of susceptible
by transforming the susceptible to the infected with a rate β or to the recovered with
a rate θ1 (Figure 2). If the β is large and γ is small, the number of infected will grow
since there are more inflows from susceptible than the outflows to the recovered. To
minimize the total number of the infected, the solution has to vaccinate the susceptible
as much as possible to avoid the susceptible becoming infected. Thus, the vaccines
need to be produced and delivered to the susceptible efficiently while satisfying the
constraint conditions (2.9).

We present two experiments that demonstrate how the various factors in the
formulation affect the production and the distribution of vaccines.

4.1. Experiment 1. In this experiment, we show that Algorithm 3.1 converges
independent of grid sizes when we use the preconditioning operator defined in Propo-
sition 3.5. Consider the initial densities for the ρi (i ∈ S) and the factory location
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S I R

βρSρI γρI

θ1ρSρV

Fig. 2: Visualization of the flow of three populations. The susceptible transforms to the
infected with a rate β and the recovered with a rate θ1. The infected transforms to the
recovered with a rate γ.

Ωfactory as

(4.1)

ρS(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.5

)
+

ρI(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.1(0.3, 0.3)

where (x)+ = max(x, 0) and Br(x) is a ball of a radius r centered at x. Figure 3
shows the images of initial conditions (4.1). We compute the solution of the SIRV

Fig. 3: Experiment 1: Initial densities of ρS (left) and ρI (right). The green circle indicates
Ωfactory.

variational problem (2.11) with the above initial conditions using Algorithm 3.1. For
simplicity, we assume recovered population density ρR does not move. Thus, we use
an arbitrary large number for a parameter αR = 104 to penalize when |mR| > 0. The
rest of the parameters are identical to the parameters defined in the preceding section.
We ran four simulations with same initial conditions and same step sizes (τ = 0.05,
σ = 0.2) with four different grid sizes:

Nx1
Nx2

Nt
32 32 32
64 64 32
128 128 32
256 256 32
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The result of the experiment is depicted in Figure 4. The figure shows the convergence
plot of the algorithm with respect to the number of iteration for each grid size. The x-
axis indicates the iteration number and the y-axis indicates the value of the following
Lagrangian functional:

L̃((ρi,mi, φi)i∈S, f) =

∫
Ω

∑
i=S,I,V

ai
2
ρi(T, ·)2 dx

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

∫
Ω

dP
2

(ρS + ρI + ρR)2 +
dV
2
ρ2
V dx dt+

∫ T ′

0

∫
Ω

d0

2
f2 dx dt

−
∫ T

0

∫
Ω

φS

(
∂tρS +∇ ·mS + βρSK ∗ ρI + θ1ρSρV −

η2
S

2
∆ρS

)
dx dt

−
∫ T

0

∫
Ω

φI

(
∂tρI +∇ ·mI − βρSK ∗ ρI + γρI −

η2
I

2
∆ρI

)
dx dt

−
∫ T

0

∫
Ω

φR

(
∂tρR +∇ ·mR − γρI − θ1ρSρV −

η2
R

2
∆ρR

)
dx dt

−
∫ T

0

∫
Ω

φV
(
∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ2ρSρV

)
dx dt.

Note that this Lagrangian functional L̃ is different from (2.8) and (2.13). The terms
with indicator functions iΩfactory

, i[−∞,t] are removed to avoid representing +∞ nu-

merically. The absence of the terms may explain that the value L̃ increases in the first
500 iterations and then decreases afterwards. Figure 5 shows the computed solutions
at iteration 3000 from four different spatial grid sizes (32 × 32, 64 × 64, 128 × 128,
256× 256). Each row of the figure shows the evolution of a vaccine density ρV from
time t = 0 to t = 1 computed from each grid size. These figures clearly show that the
algorithm converges to the same saddle point independent of the grid sizes.

4.2. Experiment 2. In this experiment, we show how the parameters related
to the vaccine density variable ρV (θ1, θ2, fmax, Cfactory) affect the solution. We use
the same initial densities for ρi (i ∈ S) and f as in Experiment 1. With the initial
densities (4.1), we run two simulations with different values for θ1, θ2, and fmax.

Parameters Sim 1 Sim 2 Description

θ1 0.5 0.9 Vaccine efficiency
fmax 0.5 10 Maximum production rate of vaccines

Cfactory 0.5 2
Maximum amount of vaccines that can be
produced at x ∈ Ω during 0 ≤ t ≤ 1

2

Figure 6 shows the comparison between the results from the simulation 1 and the
simulation 2. The first three plots (Figure 6a) show the total mass of ρi (i = S, I,R),
i.e. ∫

Ω

ρi(t, x) dx, i = S, I,R, t ∈ [0, 1].

and the last plot (Figure 6b) shows the total mass of ρV during 0 ≤ t ≤ 1
2∫

Ω

ρV (t, x) dx, t ∈
[
0,

1

2

]
.
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Fig. 4: Convergence plot of the algorithm for each grid size (Nx1 = Nx2 =
32, 64, 128, 256) with the same step sizes (τ = 0.05, σ = 0.2). The plot shows that the
convergence of the algorithm is independent of grid sizes.

The total number of vaccines produced from the simulation 1 is smaller than that
from the simulation 2 because the solution cannot produce a large amount of vaccines
due to the low production rate fmax. Furthermore, the solution from the simulation 1
cannot vaccinate a large number of susceptible due to a small θ1. Thus, there are
more susceptible and less recovered at the terminal time in the simulation 1.

4.3. Experiment 3. This experiment includes the spatial obstacles and shows
how the algorithm effectively finds the solution that utilizes the vaccine production
and distribution given spatial barriers. Denote a set Ωobs ⊂ Ω as obstacles. We use
the following functionals in the experiment.

GP (ρ(t, ·)) =

∫
Ω

∑
i∈{S,I,R}

di
2
ρ2
i (t, x) + iΩobs

(x)

 ∑
i∈{S,I,R}

ρi(t, x)

 dx

GV (ρ(t, ·)) =

∫
Ω

dV
2
ρ2
V (t, x) + iΩobs

(x)ρV (t, x) dx

Ei(ρ(1, ·)) =

∫
Ω

ai
2
ρ2
i (1, x) + iΩobs

(x)ρi(1, x) dx, i ∈ {S, I, V }

ER(ρ(1, ·)) =

∫
Ω

aR
2

(ρR(1, x)− 1)2 + iΩobs
(x)ρR(1, x) dx.

The densities ρi (i ∈ S) cannot be positive on Ωobs due to iΩobs
. Thus, the densities

transport while avoiding the obstacle Ωobs. We show two sets of experiments based
on this setup.
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Fig. 5: Computed solution of a vaccine density variable ρV from Experiment 1. Each row
shows the evolution of a vaccine density variable from time t = 0 to t = 1 with different grid
sizes. Row 1: 32× 32, Row 2: 64× 64, Row 3: 128× 128, Row 4: 256× 256.

4.3.1. Single factory. We set the initial densities and Ωfactory as follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.5)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.5)

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 7.
Figure 8 and Figure 9 show the evolution of densities with and without obsta-

cles, respectively. In both simulations, the density of vaccines ρV (the fourth row)
transports to the areas where the susceptible people are present. In Figure 9, ρV
transports while avoiding the obstacle at the right. Figure 10 shows the comparison
between these two solutions and how the presence of the obstacle affects the produc-
tion and delivery of vaccines quantitatively. Figure 10a shows the total mass of the
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(a) The total populations of ρS , ρI , ρR.

(b) The total mass of vaccines produced during 0 ≤ t ≤ 0.5.

Fig. 6: Experiment 2: The comparison between the results from the simulation 1 and the
simulation 2. The first three plots (a) show the total mass of ρi (i = S, I,R) and the fourth
plot (b) shows the total mass of ρV produced at the factory area during the production time
0 ≤ t < 0.5.

Fig. 7: Experiment 3: The initial densities ρS (left) and ρI (right), and the location of the
factory (indicated as a green circle).

vaccines in the factory area Ωfactory during the production time

∫
Ωfactory

ρV (t, x) dx, t ∈ [0, 0.5).

Figure 10b shows the total mass of the vaccines during the delivery time at the left
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ρS

ρI

ρR

ρV

Fig. 8: Experiment 3: The evolution of densities ρi (i ∈ S) without the obstacle over time
0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the infected density
ρI . The third row: the recovered density ρR. The fourth row: the vaccine density ρV .

side and the right side of the domain∫
Ω∩{x1<0.5}

ρV (t, x) dx, Left∫
Ω∩{x1≥0.5}

ρV (t, x) dx, Right

during t ∈ [0.5, 1]. When there is no obstacle, the vaccines are delivered more to
the right than to the left (Figure 10b). The number of susceptible people at the left
decreases very fast because there are infected people with a high infection rate. When
ρV starts to transport at time t = 0.5, the number of susceptible is lower at the left.
Thus, the solution distributes fewer vaccines to the left with less susceptible people.
When there is an obstacle, ρV has to bypass the obstacle to reach the susceptible
areas. Thus, the kinetic energy cost during the delivery time t ∈ [0.5, 1] increases
at the right. The solution cannot deliver the vaccines as much as the case without
the obstacle. It results in a fewer number of vaccines produced during t ∈ [0, 0.5)
(Figure 10a) and delivered to the right during t ∈ [0.5, 1] when there is an obstacle
(Figure 10b).
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ρS

ρI

ρR

ρV

Fig. 9: Experiment 3: The evolution of densities ρi (i ∈ S) with the obstacle (indicated as
a yellow block) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second
row: the infected density ρI . The third row: the recovered density ρR. The fourth row: the
vaccine density ρV .

4.3.2. Multiple factories. Similar to the previous experiment, we show how
the obstacles in the spatial domain affect the production and distribution of the
vaccines. We use more complex initial densities, an obstacle set Ωobs, and three
factory locations in this experiment. We set the initial densities and Ωfactory as
follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.8)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.3)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.8

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.2) ∪ B0.075(0.5, 0.5) ∪ B0.075(0.5, 0.8)
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(a) The total mass of ρV during t ∈ [0, 0.5)
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(b) The total mass of ρV during t ∈ [0.5, 1]

Fig. 10: Experiment 3: The left plot shows the total mass of vaccine density ρV during the
production time t ∈ [0, 0.5). The right plot shows the total mass of ρV at the left side of the
domain Ω ∩ {x1 < 0.5} and at the right side of the domain Ω ∩ {x1 ≥ 0.5}.

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 11.

Fig. 11: Experiment 3: The initial densities ρS (left) and ρI (right), and the location of the
factory (indicated as green circles).

Figure 12 and Figure 13 show the evolution of densities with and without obsta-
cles, respectively. The experiment demonstrates that even with the complex initial
densities, the algorithm successfully converges to the reasonable solution that coin-
cides with the previous experiments. The density of vaccines ρV (the fourth row)
transports to the areas where the susceptible people are present while avoiding the
obstacles.

Figure 14a shows the total mass of the vaccines produced during the production
time at each factory location. Without the obstacles, the total mass of ρV at the
middle is the lowest at time 0.5 because the factory at the middle is the farthest away
from the susceptible people. It is more efficient to produce the vaccines at the factories
closer to the susceptible (the top and the bottom) to reduce the kinetic energy cost
during the delivery time t ∈ [0.5, 1]. However, the vaccines are produced the most at
the middle factory with the obstacles. Since the obstacles block the paths between
the top and the bottom factories and the susceptible people, ρV has to bypass them
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ρS

ρI

ρR

ρV

Fig. 12: Experiment 3: The evolution of densities ρi (i ∈ S) without the obstacle over time
0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the infected density
ρI . The third row: the recovered density ρR. The fourth row: the vaccine density ρV .

to reach the target area. The pathways from the middle factory to the susceptible
people are not blocked as much as from the top and the bottom factories. Thus,
producing more vaccines at the middle factory is more efficient.

Figure 14b shows the total mass of the vaccines during the delivery time at dif-
ferent locations. The lines in the plot represent the following quantities:∫

Ω∩{x1<0.5}∩{x2≥0.5}
ρV (t, x) dx, Top Left

∫
Ω∩{x1≥0.5}∩{x2≥0.5}

ρV (t, x) dx, Top Right∫
Ω∩{x1<0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Left

∫
Ω∩{x1≥0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Right

over t ∈ [0.5, 1]. With the obstacles, the kinetic energy cost increases since ρV has
to bypass to reach to the targets when it transports from the top and the bottom
factories. As a result, the vaccines are not produced as much as the simulation
without the obstacles, and there are less vaccines reached to the targets.

4.4. Experiment 4. This experiment compares the vaccine production strategy
generated by the algorithm and the strategy with the fixed rates of production without
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Fig. 13: Experiment 3: The evolution of densities ρi (i ∈ S) with the obstacle (colored
yellow) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the
infected density ρI . The third row: the recovered density ρR. The fourth row: the vaccine
density ρV .

using the algorithm. The initial densities and Ωfactory are set as follows

ρS(0, x) =
(
4 exp(−15((x1 − 0.5)2 + (x2 − 0.55)2))− 1.6

)
+

ρI(0, x) =
(
4 exp(−15((x1 − 0.5)2 + (x2 − 0.55)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.04(0.1, 0.3) ∪ B0.04(0.5, 0.3) ∪ B0.04(0.9, 0.4).

We fix the parameters

θ1 = 0.9, fmax = 5, Cfactory = 1.

The initial densities and locations of factories are shown in Figure 15.
To fairly compare the effect of the optimal vaccine production strategy, we remove

the momentum of S, I, R groups; thus, removing the spatial movements defined by
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(a) The total mass of ρV during t ∈ [0, 0.5)

(b) The total mass of ρV during t ∈ [0.5, 1]

Fig. 14: Experiment 3: The top plot shows the total mass of vaccine density ρV at three
factory locations during the production time t ∈ [0, 0.5). The bottom plot shows the total
mass of ρV at the top left area of the domain Ω∩{x1 < 0.5}∩{x2 ≥ 0.5}, at the bottom left
area Ω ∩ {x1 < 0.5} ∩ {x2 < 0.5}, at the top right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 ≥ 0.5}, and at
the bottom right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 < 0.5} during the distribution time t ∈ [0.5, 1].

mS , mI , mR. We consider the following PDEs:

∂tρS = −βρSK ∗ ρI +
η2
S

2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI = βρSK ∗ ρI − γρI +
η2
I

2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR = γρI +
η2
R

2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω.

Furthermore, by taking out the momentum terms from S, I, R groups, the cost
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Fig. 15: Experiment 4: The initial densities ρS (left) and ρI (right), the location of the
factory (indicated as green circles), and the obstacle (colored yellow).

functional for this experiment is

G((ρi,mi)i∈S, f) =

∫
Ω

aV
2
ρV (T, ·)2 dx+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt+

∫ T

0

∫
Ω

dV
2
ρ2
V dx dt

+

∫ T ′

0

∫
Ω

d0

2
f2 + iΩfactory

f dx dt

+

∫ T

0

i{ρ(t,·)≤Cfactory}(ρ(t, ·)) + i{f(t,·)≤fmax}(f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f2 + ρ2
V + |mV |2 dx dt.

(4.2)

With the PDEs and the cost functionals above, we compare two results. The first
result is using the optimal vaccine production and distribution strategy generated by
the Algorithm 3.1. The second result is using the fixed vaccine production rate and
the algorithm’s distribution strategy. In the second result, the factory variable f is
fixed as

f(t, x) =

{
1.2, (t, x) ∈ [0, T ′]× Ωfactory

0, (t, x) ∈ [0, T ′]× Ω\Ωfactory.

Figure 16 shows the comparison between these two results. The result from the
fixed production rate is “without control”, and the result from the optimal vaccine
production strategy is “with control”. The labels “left”, “middle”, and “right” are the
locations of the factories in Figure 15. The solid lines, the result with the same fixed
rates of production, show that all three factories produce identical amounts of vaccines.
The dotted lines show the least amount of vaccines in the middle factory and much
more in the left and right factories. When vaccines produce at the middle factory,
one needs to pay more transportation costs because they bypass the obstacles. The
obstacle does not block the paths from the left and right factories to the susceptible.
Thus, it’s an optimal choice to utilize the left and right more than the middle to
minimize the transportation costs.

The table below is the quantitative comparison between the two results.
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Fig. 16: Experiment 4: The plot shows the total mass of vaccine densities
∫ t

0

∫
Ω
ρV dx dt

during production t ∈ [0, T ′] at each factory location: left, middle, and right. The dotted
lines are from the optimal strategy from the Algorithm 3.1, and the solid lines are from the
fixed production rates.

Quantity Description Algorithm 3.1 Fixed rates

∫
Ω
ρV ( 1

2 , x) dx
The total amount of vaccines pro-
duced.

7.997× 10−3 8.411× 10−3

∫
Ω
ρS(1, x) dx

The number of susceptible people
at the terminal time.

1.520× 10−2 1.525× 10−2

∫
Ω
ρI(1, x) dx

The number of infected people at
the terminal time.

5.133× 10−3 5.134× 10−3

∫ 1
1
2

∫
Ω
|mV |2
2ρV

dx dt
The transportation cost of vac-
cines.

7.339× 10−3 7.544× 10−3

The first row of the table shows that more vaccines are produced with a fixed rate of
production. However, the result of the fixed-rate vaccinizes fewer susceptible people;
as a result, more infected people at the terminal time. Furthermore, the result from
the fixed rate shows higher transportation costs. The algorithm finds the more efficient
strategy with fewer vaccines produced.

5. Appendix.

Proof of Proposition 2.2. From the saddle point problem (2.13), we can rewrite
the problem as

inf
(ρi,mi)i∈S,f

sup
φ

G((ρi,mi)i∈S, f)−
∫ T

0

∫
Ω

∑
i∈{S,I,R}

φi

(
∂tρi +∇ ·mi −

η2
i

2
∆ρi

)
dx dt

+

∫ T

0

Q((ρi, φi)i∈S) dt−
∫ T

0

∫
Ω

φV ∂tρV dx dt+

∫ T ′

0

∫
Ω

fφV dx dt−
∫ T

T ′

∫
Ω

φV∇ ·mV dx dt

(5.1)
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where a function Q : (0, T )× Ω→ R is defined as

Q((ρi, φi)i∈S) =

∫
Ω

βρS(φI−φS)K∗ρI+γρI(φR−φI)+ρSρV
(
θ1(φR−φS)−θ2φV )

)
dx.

If ((ρi,mi, φi)i∈S, f) is the saddle point of the problem, the differential of Lagrangian
with respect to ρi, mi, φi (i ∈ S), f and ρi(T, ·) (i ∈ {S, I, V }) equal to zero. Thus,
from δL

δφi
= 0 we have

∂tρi +∇ ·mi −
η2
i

2
∆ρi +

δQ
δφi

((ρi, φi)i∈S) = 0 (t, x) ∈ (0, T )× Ω, i = S, I,R

∂tρV − f +
δQ
δφV

((ρi, φi)i∈S) = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV +
δQ
δφV

((ρi, φi)i∈S) = 0 (t, x) ∈ (T ′, T )× Ω.

Using integration by parts, we reformulate the Lagrangian function (5.1) as follows.

L((ρi,mi, φi)i∈S, f)

=
∑
i∈S
Ei(ρi(T, ·)) +

∫ T

0

GP (ρS + ρI + ρR) + GV (ρV ) dt+

∫ T ′

0

G0(f(t, ·)) dt

+
∑

i=S,I,R

∫ T

0

∫
Ω

αi|mi|2

2ρi
+mi · ∇φi +

η2
i

2
ρi∆φi dx dt+

∑
i∈S

∫ T

0

∫
Ω

ρi∂tφi dx dt

+

∫ T

T ′

∫
Ω

αV |mV |2

2ρV
+mV · ∇φV dx dt+

∫ T ′

0

∫
Ω

fφV dx dt+

∫ T

0

Q((ρi, φi)i∈S) dt

+
∑

i=S,I,R,V

∫
Ω

ρi(0, x)φi(0, x)− ρi(T, x)φi(T, x)dx

From δL
δρi

= 0 (i ∈ {S, I,R}),

δGP
δρi

(ρS + ρI + ρR) +
δQ
δρi

((ρi, φi)i∈S)− αi|mi|2

2ρ2
i

+
η2
i

2
∆φi + ∂tφi = 0 (t, x) ∈ (0, T )× Ω

From δL
δρV

= 0,

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, φi)i∈S) + ∂tφV = 0 (t, x) ∈ (0, T ′)× Ω

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, φi)i∈S)− αV |mV |2

2ρ2
V

+ ∂tφV = 0 (t, x) ∈ (T ′, T )× Ω.

From δL
δρi(T,·) = 0 (i ∈ S),

δE
δρi(T, ·)

(ρi(T, ·)) = φi(T, ·).

From δL
δf = 0,

δG0

δf
(f) + φV = 0, (t, x) ∈ (0, T ′)× Ω.
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From δL
δmi

= 0 (i ∈ S),

αimi

ρi
= −∇φi (t, x) ∈ (0, T )× Ω, i ∈ {S, I,R}

αVmV

ρV
= −∇φV (t, x) ∈ (0, T ′)× Ω.

By replacing αimi

ρi
= −∇ρi in δL

δρi
= 0 and δL

δφi
= 0, we derive the result.

Proof of Lemma 3.2. Let q = (u, p). By the definition of M (k), we have

〈q,M (k)q〉 =
1

τ (k)
‖u‖2L2 +

1

σ(k)
‖p‖2H(k) − 2〈u,ATu(k)p〉L2 .

Using Young’s inequality and Lemma 3.1,

≤
(

1

τ (k)
+ 1

)
‖u‖2L2 +

(
1

σ(k)
+ 1

)
‖p‖2H(k)

≤
(

1

τ (k)
+ 1

)
‖u‖2L2 + C2

(
1

σ(k)
+ 1

)
‖p‖2L2 ≤ Θ2‖q‖2L2 .

We are left to show the lower bound. Let ε > 0 be such that τ (k)σ(k) = (1−ε)2. Then
using Hölder’s inequality,

〈q,M (k)q〉 ≥ 1

τ (k)
‖u‖2L2 +

1

σ(k)
‖p‖2H(k) − 2‖u‖L2‖p‖H(k)

=
1

τ (k)
‖u‖2L2 +

1

σ(k)
‖p‖2H(k) −

2(1− ε)√
τ (k)σ(k)

‖u‖L2‖p‖H(k) .

Again, using Young’s inequality and Lemma 3.1,

≥ ε

τ (k)
‖u‖2L2 +

ε

σ(k)
‖p‖2H(k) ≥

ε

τ (k)
‖u‖2L2 +

c2ε

σ(k)
‖p‖2L2 ≥ θ2‖q‖2L2 .

This proves the claim.
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