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Abstract. We propose, analyze, and test a novel continuous data assimilation two-phase
flow algorithm for reservoir simulation. We show that the solutions of the algorithm, con-
structed using coarse mesh observations, converge at an exponential rate in time to the
corresponding exact reference solution of the two-phase model. More precisely, we obtain a
stability estimate which illustrates an exponential decay of the residual error between the
reference and approximate solution, until the error hits a threshold depending on the order
of data resolution. Numerical computations are included to demonstrate the effectiveness of
this approach, as well as variants with data on sub-domains. In particular, we demonstrate
numerically that synchronization is achieved for data collected from a small fraction of the
domain.

1. Introduction

1.1. Data assimilation. Data assimilation (DA) refers to a class of methodologies which
combines information from grain coarse observational data with simulation/dynamical model
in order to obtain a more accurate forecast. The method has a long history, with applications
in weather modeling and environmental forecasting [63], as well as the medical, environmental
and biological sciences, [56,58], imaging, traffic control, finance and oil exploration [6]. There
are a variety of data assimilation techniques, with which actual measured quantities over
time are incorporated in system models. One classical technique, which is based on a linear-
quadratic estimation, is known as the Kalman filter. This Bayesian approach gives exact
probabilistic predictions, although the underlying system and any corresponding observation
models are assumed to be linear. This approach has been modified to cover more general
cases in ensemble Kalman filter, extended Kalman filter and the unscented Kalman filter;
see [8, 31,60].

A major difficulty of applying a physical model to real life applications is that, usually
the initial condition cannot be known/measured exactly, and only an approximation over a
coarse spatial resolution is known. This imprecision in measuring the initial condition may
sometimes cause an exponential growing error in the solution of a nonlinear system. To
overcome this difficulty, a promising approach, known as the continuous data assimilation,
was proposed and analyzed by Azouani, Olson, and Titi in [10,11] based on techniques coming
from control theory. This approach introduces a feedback control term at the PDE level to
synchronize the computed solution with the true solution corresponding to the observed data.
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To describe the method, we consider a dynamical system

du

dt
= F(u) ,(1.1)

with insufficient/inaccurate knowledge of the initial state u(0), but with a solution u(t) on
a coarse grid that is believed to accurately reflect some aspects of the underlying physical
reality. Given observational data of the system at a coarse spatial resolution of size H,
i.e. ΠH(u(t)) from some given interpolation operator ΠH , the algorithm is to construct an
approximate solution v(t) from the observations that satisfies the auxiliary equation

dv

dt
= F(v)− µΠH (v − u) , v(0) = arbitrary ,(1.2)

where µ > 0 is a relaxation (nudging) parameter. The goal is to pick µ > 0 and H > 0 such
that

v(t)→ u(t)

as t → ∞ in a suitable spatial space. The above algorithm is designed to work for many
nonlinear dissipative dynamical systems of the form (1.1), with their solution well-known to
be unstable. Owing to this instability, it is expected that any small error in the initial data
could lead to an exponentially growing error in the solutions. In these cases, the dissipative
term (only) controls the small scales and instabilities occur at large scales. The feedback
term in (1.2) that is newly introduced then aims to stabilize the system and damp the error
term at large scales by forcing (nudging) the large spatial scales of the measured solution (of
the auxiliary equation) back to the reference solution.

In the context of the incompressible 2D Navier-Stokes equations, the authors in [10]
proved that, for large enough µ and small enough h, the approximate solution to (1.2),
v, converges exponentially fast to the exact solution u. Numerical experiments were car-
ried out successfully to test this algorithm for many nonlinear systems, for instance, the
2D Navier-Stokes equation [17, 43, 44, 50, 59], the Rayleigh-Bénard equations [7, 33], and the
Kuramoto-Sivashinsky equations [61]. Continuous data assimilation applied to other physical
phenomena and PDEs includes non-Newtonian fluids [21], magnetohydrodynamic equations
[15], Leray-α model of turbulence [52], quasi-geostrophic equation [52], Darcy’s equation [64],
KdV equations [51], primitive equations [70], and many others. While the aforementioned
works assume noise-free observations, the method is later extended to the case when only
noisy data can be obtained, e.g. in [12,41,49]. The authors refer the readers to other recent
literature on this topic; see, e.g. [9, 16,32,34,36–41,46,48,61,62,68,76].

1.2. Multi-phase flow. Thanks to the development of numerical reservoir simulation, oil-
field corporations have deeply benefited from the technology in terms of confidently predicting
oil recovery estimates and determining the selection of operations during the deployment of
specific recovery technologies. During the screening stage, numerical reservoir model is es-
tablished and simulations are run to determine the feasibility of many injection/production
options. This requires reservoir simulation to be accurate and time efficient. Furthermore,
for oil and gas reservoirs that are already in production, it is necessary to determine reservoir
parameters (e.g. permeability, porosity) with increasing certainty [1, 65]. As the oil field
matures, more effective practices such as production enhancement, chemical treatment or
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infill drilling can greatly extend the life of the oil reservoir, thereby increasing the overall
recovery rate.

A commonly used model in reservoir simulation is the multi-phase flow model [18,57,72,74].
In recent decades, both the mathematical analysis and numerical simulation of the two-phase
flows have been a focus of study for many researchers and practitioners, thanks to their
important applications in petroleum engineering and hydrology. The system of equations
governing two-phase immiscible incompressible flows in porous media consists of a nonlinear
elliptic Darcy-type equation for the global pressure and a nonlinear parabolic equation with
degenerate diffusion term for the saturation, which are coupled by means of the total velocity,
recuperated from Darcy’s equation [4, 23, 26].

Due to the nonlinear nature of the problem, the velocity of the fluid in different phases
highly depends on the saturation and the pressure of the respective phase. So as to obtain
an accurate simulation, we are required to have a good initialization of the model parameters
as well as an accurate initial condition of the saturation. While uncertainty quantification
(UQ) and parameter estimation have been used to predict reservoir parameters [55, 66, 67],
unfortunately it is not feasible to obtain accurate microscope data of saturation and pressure
at a particular time slice. Nonetheless, a coarse scale approximate of the saturation and
pressure field can be obtained using seismic waves data and well logs data. In this work,
we consider a simple two-phase model (3.8) and (3.10), and inject these coarse-scale data
directly into a system via our proposed data assimilation algorithm to control the error of
the solution without using any microscope initial condition.

1.3. Main result of this paper. While two-phase models have a long history of success
on certain problems, they tend to lose accuracy on more complicated problems due to the
insufficient and inaccurate knowledge of the initial state. Meanwhile, continuous data as-
similation (DA) has recently been used to improve accuracy by incorporating measurement
data into the simulation. In this work, we introduce a data assimilation model (4.1) which
combines the coarse grid saturation measurement data with the multi-phase flow problem.
For illustrative purpose, instead of a general multi-phase flow model, we only focus on an
immiscible incompressible two-phase flow model (3.7), (3.8), (3.9) and (3.10). After perform-
ing an error analysis for the data assimilation algorithm, we prove an exponentially decaying
error bound between the exact and approximate solutions until the error reaches a certain
level (Theorem 4.2). More precisely, for a given data resolution H, we find t0 in terms of H
such that synchronization is guaranteed for all t < t0 for large enough µ ∼ O(1/H). In this
case, coarser data resolution leads to a smaller t0 and visa versa.

In addition, we illustrate the efficacy of the algorithm by extensive computational studies.
We find that the nudging algorithm achieves synchronization with data that is much more
coarse than required by the rigorous estimates in Theorem 4.2. Furthermore, we demonstrate
numerically that observation on a small fraction of the domain suffices for global assimilation,
which may in practice indeed be the case for data collected on the smaller portion of the
whole domain.

Organization of this paper. In section 2, we briefly introduce basic notations and pre-
liminaries used in the analysis. Section 3 provides background on the two-phase model and
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revisits the existence and uniqueness argument of the model. Later, in sections 4, after in-
troducing the data assimilation algorithm, we state and prove our main results. We give
conditions under which the approximate solutions, obtained by the data assimilation algo-
rithm, converge to the solution of the two-phase model. In section 5, we present numerical
results to demonstrate the performance of our proposed data assimilation model.

2. Notation and Preliminaries

Let Ω ⊂ Rd be a bounded open domain. From what follows, we always write C as a generic
positive constant independent of the model parameters. Let p ∈ [1,∞], and the Lebesgue
space Lp(Ω) is the space of all measurable functions v on Ω with which

‖v‖Lp :=
( ∫

Ω

|v(x)|p dx
) 1
p <∞, if p ∈ [1,∞),

‖v‖L∞ := ess-supx∈Ω|v(x)| <∞, if p =∞.
The L2 norm and inner product will be denoted by ‖ · ‖ and (·, ·) respectively, while all other
norms will be labeled with subscripts. Let V be a Banach space of functions defined on Ω
with the associated norm ‖ · ‖V. We denote by Lp(a, b; V), p ∈ [1,∞], the space of functions
v : (a, b)→ V such that

‖v‖Lp(a,b;V) :=
( ∫ b

a

‖v(t)‖pV dx
) 1
p <∞, if p ∈ [1,∞),

‖v‖L∞(a,b;V) := ess-supt∈(a,b)‖v(t)‖V <∞, if p =∞.
From now on, for notational sake, we will denote an integral of a function f over a domain
Ω with one of the following three notations if no confusion will arise∫

Ω

f(x)dx ,

∫
Ω

fdx , and

∫
Ω

f .

In addition, we consider

V0 = {v ∈ H1(Ω)|
∫

Ω

v = 0} ,

V ∗0 = {v ∈ H−1(Ω)|
∫

Ω

v = 0}.

Definition 2.1. The bi-linear operator a(·, ·) and semi-norm | · |K are given as

a(u, v) =

∫
Ω

K ∇u · ∇v, ∀ u, v ∈ H1(Ω) ,

and
|u|2K = a(u, u).

Remark 2.1. Note that | · |K define a norm for V0.

Definition 2.2. The Green’s operator G : V ∗0 → V0 is given by

a(G(u), v) = (u, v).

We define the norm of V0 and V ∗0 respectively as ‖v‖V0 = |v|K and ‖u‖V ∗0 := ‖G(u)‖V0 for all
u ∈ V ∗0 , v ∈ V0.
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Our data assimilation method requires that the observational measurements ΠH(u) be
given as linear interpolant observables satisfying ΠH : L2(Ω)→ L2(Ω) such that

‖ΠHϕ‖ ≤ cI‖ϕ‖, ∀ϕ ∈ L2(Ω),

‖ϕ− ΠH ϕ‖ ≤ c0H‖ϕ‖H1(Ω), ∀ϕ ∈ H1(Ω).
(2.1)

An example of such interpolation operators can be given by a projection operator onto the
Fourier modes with wave numbers |k| ≤ 1/H. Other physical examples include the volume
elements and constant finite element interpolation [53].

3. A simple two-phase flow Model

In this section, we describe an immiscible incompressible two-phase flow model. In this
model, the flow of the fluids is governed by the Darcy law of the water and the oil phase.
More precisely, the velocity of phase α, ṽα, is described as

ṽα = −
krα

µα
K(∇pα), in (0, T )× Ω, α = o (oil), w (water),

where krα, µα, pα and ρα are the relative permeability, viscosity, pressure and density of phase
α, K is the absolute permeability, T is the final time and Ω is the reservoir domain. We
consider the capillary pressure pcow defined as

pcow := po − pw.
The saturation of phase α, denoted by Sα, is governed by the mass balance equation

∂(φραSα)

∂t
+∇(ραṽα) = ραq̃α, in (0, T )× Ω, α = o, w,

where q̃α is the volumetric input of phase α and φ is the porosity of the medium. The
saturation Sα then satisfies

(3.1) So + sw = 1.

To simplify the model, in our work, we only consider the case when the density ρα, the
viscosity µα, the absolute permeability K and the porosity φ are constant functions, and that
the relative permeability krα, the capillary pressure pcow are functions only depending on Sα.
Using (3.1), we have So = 1− sw and therefore krα and pcow can be written as a function of
sw. We then define the function κα as

κα(sw) =
krα(sw)

φµα
K.

We furthermore assume κα ∈ L∞(0, 1), K is a positive tensor and

∞ > κ ≥ (κw(sw) + κo(sw)) ≥ κ > 0,

∞ > K ≥ ξTKξ ≥ K > 0 ∀ξ ∈ Rd, ‖ξ‖ = 1,

for some constants κ, κ, K and K. Since φ, ρα are constants, the mass balance equations
can be simplified as

(3.2)
∂(Sα)

∂t
+∇(vα) = qα, in (0, T )× Ω, α = o, w,
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where qα =
q̃α

φ
and

vα = −καK(∇pα), in (0, T )× Ω, α = o, w.

We then obtain a pressure equation by summing the equations (3.2)

(3.3) −∇ ·
(
K(κo(∇po) + κw(∇pw))

)
= ∇(vo + vw) = qo + qw.

With this, the system can be simplified to

−∇ · ((κw + κo)K∇pw) = qt +∇ · (κo∇pcow),(3.4)

∂(sw)

∂t
+∇ · (κwK∇pw) = qw,(3.5)

where qt = qo + qw.

Global pressure. We recall how to reformulate the equations with the help of the concept
of global pressure. The global pressure, p, is defined as

p(S) = po(S) +

∫ S

0

fwβ(ξ)dξ,

where β = −
∂pcow

∂sw
, fi =

κi

κ
and κ =

∑
i=o,w κi. We may then check directly that

∇
(∫ S

0

fwβ(ξ)dξ

)
= fwβ∇S = −fw∇pcow.

Hence, we have κ∇p = κ∇po − κw∇pcow = κo∇po + κw∇pw.
Now define a function θ as

(3.6) θ(S) :=

∫ S

0

κw(ξ)κo(ξ)

κ(ξ)
β(ξ)dξ,

and obtain
κ(S)∇θ(S) = κw(S)κo(S)α(S)∇S = −κw(S)κo(S)∇pcow(S) .

We therefore have

∇θ + κw∇p =−
κoκw

κ
∇pcow +

κoκw

κ
∇po +

κ2
w

κ
∇pw

=κw∇pw = −K−1vw

and

−∇θ + κo∇p =
κoκw

κ
∇Pcow +

κ2
o

κ
∇po +

κoκw

κ
∇pw

=κo∇po = −K−1vo.

This leads to the equation

−∇(κ(S)K(x)∇p(S, x)) = qt(x), ∀x ∈ Ω,

where qt = qo + qw. We then define an inverse map T of θ, such that

T (θ(S)) = S .
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We notice that T is well-defined and θ is irreversible since θ is monotone. With the help of
the aforementioned notations, the system can be now rewritten as

−∇(κK∇p) = qt,(3.7)

∂t(S)−∇ ·
(
K∇θ(S) + κwK∇p

)
= qw;(3.8)

−∇(κK∇p) = qt,(3.9)

∂t(T (θ))−∇ ·
(
K∇θ + κwK∇p

)
= qw.(3.10)

3.1. Analysis of the two-phase model; Existence and Uniqueness results. In this
subsection, we first revisit some classical results of the two-phase model, and then review the
existence and uniqueness results of the weak solution of the problems (3.7) and (3.8) as in
[2, 3, 5, 19, 24]. The remaining analysis is proceed with the following common assumptions
[24,75].

A1. Ω ⊂ Rd for d ∈ {2, 3} is a connected Lipschitz domain.
A2. κα are continuous and κw(0) = κo(0) = 0

κo(So) > 0 if So > 0 ,

κw(sw) > 0 if sw > 0 .

A3. qw, qo ∈ L∞(0, T ;H−1(Ω)).
A4. κw and κo satisfy

κw(S) = CwS
1+ξw ,

κo(S) = Co(1− S)1+ξo ,

for some ξo, ξw, Cw, Co > 0.

A5. Denote b(S) =
κw(S)κo(S)

κ(S)
β(S), and then b(S) ≤ C0 for all 0 ≤ S ≤ 1.

A6. β(S) satisfies the bound

cα(S)−βw(1− S)−βo ≤ β(S) ≤ Cα(S)−βw(1− S)−βo ,

for some βo, βw, Cα, cα > 0.
A7. κ satisfies the inequality

|κ(S2)− κ(S1)| ≤ C(θ(S2)− θ(S1), S2 − S1)
1
2 , for S1, S2 ∈ [0, 1].

A8. p ∈ L∞(0, T,W 1,∞(Ω)).

Remark 3.1. Assumption A8 can also be derived directly from some mild assumptions given
in [24,75].

Proposition 3.2. With assumptions A4−A6, there are positive constants δ < 1/2, τi > and
Ci > 0 such that

C1S
τw ≤ b(S) ≤ C2S

τw , S ∈ [0, δ],

C3 ≤ b(S) ≤ C4, S ∈ [δ, 1− δ],
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C5(1− S)τo ≤ b(S) ≤ C6(1− S)τo , S ∈ [1− δ, 1],

where τw = 1 + ξw − βw, and τo = 1 + ξo − βo.

With the aforementioned assumptions, we arrive at the following lemma, which will be
important for our subsequent analysis.

Lemma 3.3. Assuming A4− A6, for any S1, S2 ∈ [0, 1], then we have

C̃(S2 − S1)2+τ ≤ (θ(S2)− θ(S1))(S2 − S1) ≤ C0(S2 − S1)2

where τ = max(τw, τo).

Proof. Without loss of generality, assume S2 ≥ S1, then by the definition of θ in (3.6), we
have

(θ(S2)− θ1(S1)) =

∫ S2

S1

b(S)dS ≤ C0

∫ S2

S1

dS ,

(θ(S2)− θ1(S1)) ≥ c

∫ S2

S1

(1− S)τoSτw ,

and therefore

C̃(S2 − S1)1+τ ≤ |θ(S2)− θ(S1)| ≤ C0(S2 − S1) .

�

We now state the well-posedness result for the model (3.7) and (3.8), equipped with Neu-
mann boundary conditions, although the results can be extended to more general boundary
conditions. The complete proof can be found in the above mentioned references. For the
readers’ convenience and in order to make the paper self-contained, we have included in a
short sketch of proof of some of the following properties. Readers may refer to [24] for further
details.

Theorem 3.4 (Existence and uniqueness of weak solutions of the two-phase flow
model). Let Ω ⊂ Rd for d ∈ {2, 3} is a connected Lipschitz domain. Assume sw(0) ∈ L2(Ω)
with homogeneous Neumann boundary conditions in (3.7). Problems (3.7) and (3.8) has a
unique weak solution on (0,∞) satisfying for all T > 0

sw = T (θ), ∂tsw ∈ L2(0, T ;H−1(Ω)), 0 ≤ θ(x, t) ≤ θ∗.

Moreover ∫
Ω

κ(sw)K∇p(t, ·)∇w =

∫
Ω

qtw, ∀w ∈ H1(Ω) ,∫ T

0

∫
Ω

(
∂tswv +K(∇θ(sw) + κw∇p) · ∇v

)
=

∫ T

0

∫
Ω

qwv, ∀v ∈ L2(0, T ;H1(Ω)).

(3.11)

Proof. The proof of existence starts with defining a discrete time solution of the problem.
Denote

∂ηv(t) =
v(t+ η)− v(t)

η
,

for any function v(t), where η = T/N . Next define
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Ii,η(V ) =
{
v ∈ L∞(0, T ;V ) : v is piece-wise polynomial with degree

i in time on each sub-interval Ji ⊂ J
}
,

where Ji = (ti, ti+1], ti = iη and tN = T . We then define the discrete time solution pη ∈
I0,η(H

1(Ω)) with ∫
Ω

pη(t, ·) = 0, and θη ∈ I1,η(H
1),

which satisfy

∫ T

0

∫
Ω

κ(sw)K∇pη · ∇w =

∫ T

0

∫
Ω

qtw ∀w ∈ I0,h(H
1(Ω)) ,∫ T

0

∫
Ω

(
∂η(T (θη))v + κwK∇pη · ∇v +K∇θη · ∇v

)
=

∫ T

0

∫
Ω

qwv ∀v ∈ I0,h(H
1(Ω)) .

(3.12)

We now need the following tow result, which are stated without proof.

Lemma 3.5. The discrete problems (3.12) are well-posed .

Lemma 3.6. Let d : R → R be an increasing function such that d(0) = 0 and {ci} be a
sequence of real numbers. Then for any number m > 0,

m∑
k=1

(d(ck)− d(ck−1))ck ≥ D(cm)−D(c0) ≥ −D(c0)

where

D(c) =

∫ c

0

(b(c)− b(ξ))dξ.

Next, we recall the following Lemma, which is important to our subsequent analysis.

Lemma 3.7. The discrete solution pη, θη satisfy

‖pη‖L∞(0,T ;H1(Ω)) + ‖θη‖L2(0,T ;H1(Ω)) ≤ C ,

where C is independent of η.

Proof. Since pη(t, ·) ∈ V0, set w = pη in (3.12) to obtain

κ(ti+1 − ti)|pη(t, ·)|2K ≤
∫ ti+1

ti

∫
Ω

κ(sw)K|∇pη(t, ·)|2 =

∫ ti+1

ti

∫
Ω

qt(t, ·)pη(t, ·)

≤ C(ti+1 − ti) ‖qt‖L∞(0,T ;H−1(Ω)) ‖pη‖L∞(0,T ;H1(Ω)).

Therefore, we have cK‖pη‖L∞(0,T ;V0) ≤ ‖pη‖L∞(0,T ;H1(Ω)) ≤ CK‖pη‖L∞(0,T ;V0) and

‖pη‖L∞(0,T ;H1) ≤ C2
Kκ
−1‖qt‖L∞(0,T ;H−1(Ω)) .

Then consider v = θη in (3.12) and obtain∫ T

0

∫
Ω

(
∂η(T (θη))θη + κwK∇pη · ∇θη +K|∇θη|2

)
=

∫ T

0

∫
Ω

qwθ
η .
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After using Lemma 3.6, we have∫ T

0

∫
Ω

(
∂η(T (θη))θη

)
≥ −

∫
Ω

∫ θ0

0

(T (c)− T (ξ))dξ ,

and ∫
Ω

T (θη)(t, ·)−
∫

Ω

T (θη)(0, ·) =

∫ t

0

∫
Ω

qw .

Hence, we obtain

|
∫

Ω

θη(t, ·)| ≤ C

(
|
∫

Ω

θη(0, ·)|+ |
∫ t

0

∫
Ω

qw |
)
,

and therefore

‖θη(t, ·)‖2
H1 ≤ C

(
‖θη(t, ·)‖2

V0
+
∣∣∣ ∫ t

0

∫
Ω

qw

∣∣∣2 +
∣∣∣ ∫

Ω

θη(0, ·)
∣∣∣2) .

With the above inequalities, one can arrive at

|θη|2L2(0,T ;H1) ≤ C |θη|2L2(0,T ;V0) +
∣∣∣ ∫ t

0

∫
Ω

qw

∣∣∣2 +
∣∣∣ ∫

Ω

θη(0, ·)
∣∣∣2

≤ C
(
‖qw‖2

L2(0,T ;H−1(Ω)) + ‖qt‖2
L2(0,T ;H−1(Ω)) +

∫
Ω

∫ θ0

0

(T (θ0)− T (ξ))dξ

+
∣∣∣ ∫ T

0

∫
Ω

|qw|
∣∣∣2 +

∣∣∣ ∫
Ω

θη(0, ·)
∣∣∣2 ).

(3.13)

�

�

From Lemma 3.6, and since pη and θη remains bounded, we have the following corollary.

Corollary 3.8. Let pη and θη be solutions to (3.12), then

(1) For any 2 ≤ r <∞, there exist a subsequence pη ⇀ p weakly in Lr(0, T ;H1(Ω)), and
θη ⇀ θ weakly in L2(0, T ;H1(Ω)).

(2) There is a subsequence θη → θ strongly in L2(0, T ;L2(Ω)).
(3) There is a subsequence θη → θ strongly in L2(0, T ;H1−α) for any 0 < α < 1/2, and

sη → s pointwise a.e. on (0, T ]× Ω where sη = T (θη).

In the rest of this section, we analyze the stability of the weak solution by bounding the
difference between the two solutions (si, pi), i = 1, 2 as follows.

Lemma 3.9. Let (si, pi), i = 1, 2 are two weak solutions to (3.11) given by Theorem 3.4.
Then we have

‖∇(p2 − p1)‖L2 ≤ C (‖κ(s2)− κ(s1)‖L2 + ‖qt,2 − qt,1‖L2) .

Proof. After subtracting the two equations, we have

−
∫ T

0

∫
Ω

κ(s1)K∇(p2 − p1) · ∇w =

∫ T

0

∫
Ω

(κ(s2)− κ(s1))K∇p2 · ∇w +

∫ T

0

∫
Ω

(qt,1 − qt,2)w.
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for all test function w ∈ V0. Set w = p1 − p2 to get

∫ T

0

‖∇(p2 − p1)‖2
L2 ≤ C

∫ T

0

∫
Ω

κ(s1)K|∇(p2 − p1)|2

=

∫ T

0

∫
Ω

(κ(s2)− κ(s1))K∇p2 · ∇(p1 − p2) +

∫ T

0

∫
Ω

(qt,1 − qt,2)(p1 − p2)

≤ C

∫ T

0

‖∇p2‖L∞‖κ(s2)− κ(s1)‖L2‖∇(p2 − p1)‖L2 +

∫ T

0

‖qt,1 − qt,2‖L2‖p2 − p1‖L2 .

(3.14)

And Since ‖p2 − p1‖L2 ≤ C ‖∇(p2 − p1)‖L2 , we obtain the result

‖∇(p2 − p1)‖L2 ≤ C (‖κ(s2)− κ(s1)‖L2 + ‖qt,2 − qt,1‖L2) .

�

With π to be the average operator π(u) =
1

|Ω|
∫

Ω
u, and e = (I−π)(s2−s1), one can prove

the following stability result.

Lemma 3.10. Let (si, pi), i = 1, 2 are two weak solutions to (3.11) given by Theorem 3.4.
With the assumptions A1− A8, we have

1

2
∂t

∫ t

0

‖e‖2
V ∗0

+

∫ t

0

(θ2 − θ1, s2 − s1)

≤
δpp
p

∫ t

0

‖s1 − s2‖pLp +
Cq

qδqp

(
‖π(s2 − s1)(0, ·)‖qLq + ‖qw,2 − qw,1‖qLq(0,t;Lq)

)
+ C

δ

2

∫ t

0

(
‖κ(s2)− κ(s1)‖2

L2 + ‖∇(p2 − p1)‖2
L2 + ‖qw,2 − qw,1‖2

L2

)
+ C

1

2δ

∫ t

0

‖∇G(e)‖2
L2

where
1

p
+

1

q
= 1, δ, δp > 0.

Proof. After subtracting the two equations, we get∫ t

0

∫
Ω

∂t(s2 − s1)v +K∇(θ2 − θ1) · ∇v + κw(s1)K∇(p2 − p1) · ∇v

=

∫ t

0

∫
Ω

(κw(s1)− κw(s2))K∇p2 · ∇v +

∫ t

0

(qw,1 − qw,2, v) ,

(3.15)

for all test functions v ∈ L2(0, T ;H1(Ω)). Using Definition 2.2, we have the following esti-
mates on the first two terms of the above equations∫

Ω

∂t(s2 − s1)G(e) =

∫
Ω

∂t(e)G(e) = a (G(∂t(e)) , G(e)) =
1

2
∂t‖G(e)‖2

V0
=

1

2
∂t‖e‖2

V ∗0
,

and ∫
Ω

K∇(θ2 − θ1) · ∇G(e) = a(θ2 − θ1, G(e)) = (θ2 − θ1, e)

= (θ2 − θ1, s2 − s1)− (θ2 − θ1, π(s2 − s1)) .
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By Holder’s inequality and Young’s inequality, we then obtain∫
Ω

K∇(θ2 − θ1) · ∇G(e) ≥ (θ2 − θ1, s2 − s1)− ‖θ2 − θ1‖Lp‖π(s2 − s1)‖Lq

≥ (θ2 − θ1, s2 − s1)−
δpp
p
‖θ2 − θ1‖pLp −

1

qδqp
‖π(s2 − s1)‖qLq .

Since p2 ∈ L∞(0, T,W 1,∞(Ω)), the term
∫ t

0

∫
Ω

(κw(s1) − κw(s2))K∇p2 · ∇G(e) in (3.15) can
be estimated as∫ t

0

∫
Ω

(κw(s1)− κw(s2))K∇p2 · ∇G(e) ≤ C‖p2‖L∞(0,T,W 1,∞)

∫ t

0

∫
Ω

|(κw(s1)− κw(s2))| · |∇G(e)|

≤ C

∫ t

0

‖κw(s1)− κw(s2)‖L2‖∇G(e)‖L2

≤ C

∫ t

0

(δ
2
‖κ(s2)− κ(s1)‖2

L2 +
1

2δ
‖∇G(e)‖2

L2

)
.

Similarly, the other two terms
∫ t

0
(qw,1 − qw,2, G(e)) and

∫ t
0

∫
Ω
κw(s1)K∇(p2 − p1) · ∇G(e) in

(3.15) can be bounded above as∫ t

0

(qw,1 − qw,2, G(e)) ≤
∫ t

0

δ

2
‖qw,1 − qw,2‖2

L2 +
1

2δ

∫ t

0

‖G(e)‖2
L2 ,

and ∫ t

0

∫
Ω

κw(s1)K∇(p2 − p1) · ∇G(e) ≤ C

∫ t

0

(
δ

2
‖∇(p2 − p1)‖2

L2 +
1

2δ
‖∇G(e)‖2

L2

)
.

After inserting the above estimates into (3.15), we obtain

1

2
∂t

∫ t

0

‖e‖2
V ∗0

+

∫ t

0

(θ2 − θ1, s2 − s1)

≤
δpp
p

∫ t

0

‖θ2 − θ1‖pLp +
1

qδqp

∫ t

0

‖π(s2 − s1)‖qLq + C
1

2δ

∫ t

0

(
‖∇G(e)‖2

L2 + ‖G(e)‖2
L2

)
+ C

δ

2

∫ t

0

(
‖κ(s2)− κ(s1)‖2

L2 + ‖∇(p2 − p1)‖2
L2 + ‖qw,1 − qw,2‖2

L2

)
,

for some constant C > 0. Since |θ2 − θ1| ≤ C|s2 − s1| and ‖e‖L2 ≤ C‖∇G(e)‖L2 , we have

1

2
∂t

∫ t

0

‖e‖2
V ∗0

+

∫ t

0

(θ2 − θ1, s2 − s1)

≤
δpp
p

∫ t

0

‖s2 − s1‖pLp +
1

qδqp

∫ t

0

‖π(s2 − s1)‖qLq + C
1

2δ

∫ t

0

‖∇G(e)‖2
L2

+ C
δ

2

∫ t

0

(
‖κ(s2)− κ(s1)‖2

L2 + ‖∇(p2 − p1)‖2
L2 + ‖qw,1 − qw,2‖2

L2

)
.
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Then consider v = π(s2 − s1) in (3.15), and obtain

1

q

(
‖π(s2 − s1)(t, ·)‖qLq − ‖π(s2 − s1)(0, ·)‖qLq

)
=

∫ t

0

∫
Ω

∂t(s2 − s1)(π(s2 − s1))q−1

=

∫ t

0

(qw,2 − qw,1, (π(s2 − s1))q−1).

Therefore, we have

1

q
‖π(s2 − s1)‖qLq(0,t;Lq) ≤ ‖π(s2 − s1)‖q−1

Lq(0,t;Lq)‖qw,2 − qw,1‖Lq(0,t;Lq) +
1

q
‖π(s2 − s1)(0, ·)‖qLq(Ω) ,

and

‖π(s2 − s1)‖qLq(0,t;Lq) ≤ Cq

(
‖π(s2 − s1)(0, ·)‖qLq + ‖qw,2 − qw,1‖qLq(0,t;Lq)

)
,

which proves the lemma. �

We will give the stability estimate and thus the uniqueness with the following theorem.

Theorem 3.11. Let (si, pi), i = 1, 2 are two weak solutions to (3.11) given by Theorem 3.4.
With the assumptions A1− A8, we have

‖(I − π)(s2 − s1)‖2
L∞(0,T ;V ∗0 ) ≤ CeCt

(
‖π(s2 − s1)(0, ·)‖q0Lq0 (Ω) + ‖qw,2 − qw,1‖q0Lq0 (0,T ;Lq0 (Ω))

+ ‖(I − π)(s2 − s1)(0, ·)‖2
V ∗0

+ ‖qw,2 − qw,1‖2
L2(0,T ;L2(Ω)) + ‖qt,2 − qt,1‖2

L2(0,T ;L2(Ω))

)
,

for some C > 0, τ defined as in Lemma 3.3, and q0 =
2 + τ

1 + τ
.

Proof. From Lemma 3.9, we have

‖∇(p2 − p1)‖2
L2 ≤ C

(
‖κ(s2)− κ(s1)‖2

L2 + ‖qt,2 − qt,1‖2
L2

)
.

Therefore, we observe that

1

2
∂t

∫ t

0

‖e‖2
V ∗0

+

∫ t

0

(θ2 − θ1, s2 − s1)

≤
δpp
p

∫ t

0

‖s1 − s2‖pLp +
Cq

qδqp

(
‖π(s2 − s1)(0, ·)‖qLq + ‖qw,2 − qw,1‖qLq(0,t;Lq)

)
+ C

δ

2

∫ t

0

(
‖κ(s2)− κ(s1)‖2

L2 + ‖qw,2 − qw,1‖2
L2 + ‖qt,2 − qt,1‖2

L2

)
+ C

1

2δ

∫ t

0

‖∇G(e)‖2
L2 .

Since |κ(s2)− κ(s1)| ≤ (θ2 − θ1)(s2 − s1), we have

1

2
∂t

∫ t

0

‖e‖2
V ∗0

+ (1−
Cδ

2
)

∫ t

0

(θ2 − θ1, s2 − s1)

≤
δpp
p

∫ t

0

‖s1 − s2‖pLp +
Cq

qδqp

(
‖π(s2 − s1)(0, ·)‖qLq + ‖qw,2 − qw,1‖qLq(0,t;Lq)

)
+ C

δ

2

∫ t

0

(
‖qw,2 − qw,1‖2

L2 + ‖qt,2 − qt,1‖2
L2

)
+ C

1

2δ

∫ t

0

‖∇G(e)‖2
L2 .
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By taking δ = C−1 in the above inequality, we obtain

∂t

∫ t

0

‖e‖2
V ∗0

+

∫ t

0

(θ2 − θ1, s2 − s1)

≤ 2

(
δpp
p

∫ t

0

‖s1 − s2‖pLp +
Cq

qδqp

(
‖π(s2 − s1)(0, ·)‖qLq + ‖qw,2 − qw,1‖qLq(0,t;Lq)

)

+
1

2

∫ t

0

(
‖qw,2 − qw,1‖2

L2 + ‖qt,2 − qt,1‖2
L2

)
+
C2

2

∫ t

0

‖∇G(e)‖2
L2

)
.

Since
∫ t

0
(θ2 − θ1, s2 − s1) ≥ C

∫ t
0

∫
Ω
|s2 − s1|2+τ , we can choose a δp > 0 such that

∂t

∫ t

0

‖e‖2
V ∗0

+
1

2

∫ T

0

(θ2 − θ1, s2 − s1)

≤ C
(
‖π(s2 − s1)(0, ·)‖q0Lq0 + ‖qw,2 − qw,1‖q0Lq0 (0,T ;Lq0 )

)
+ C

∫ t

0

‖∇G(e)‖2
L2 +

1

2
‖qw,2 − qw,1‖2

L2(0,T ;L2) +
1

2
‖qt,2 − qt,1‖2

L2(0,T ;L2) .

Then denote E = ‖∇G(e)‖2
L2 , and since

‖e‖2
V ∗0

=

∫
Ω

K|∇G(e)|2 ≥ c‖∇G(e)‖2
L2 = cE ,

and
‖∇G(e)‖qpLqp ≤ C‖∇G(e)‖qpL2 ,

we can get

E(t)− E(0) +
1

2

∫ t

0

(θ2 − θ1, s2 − s1)

≤ C

∫ t

0

E + C
(
‖π(s2 − s1)(0, ·)‖q0Lq0 (Ω) + ‖qw,2 − qw,1‖q0Lq0 (0,T ;Lq0 (Ω))

)
+

1

2

(
‖qw,2 − qw,1‖2

L2(0,T ;L2(Ω)) + ‖qt,2 − qt,1‖2
L2(0,T ;L2(Ω))

)
.

With that, we at last arrive at

E(t) ≤C eCt
(
‖π(s2 − s1)(0, ·)‖q0Lq0 + ‖qw,2 − qw,1‖q0Lq0 (0,T ;Lq0 ) + E(0)

+ ‖qw,2 − qw,1‖2
L2(0,T ;L2) + ‖qt,2 − qt,1‖2

L2(0,T ;L2)

)
,

where q0 =
2 + τ

1 + τ
. �

4. Data assimilation algorithm for the two-phase flow problem

In this section, we first describe the nudging algorithm for the two-phase flow equations
(3.7), (3.8), (3.9) and (3.10). The domain Ω is partitioned into a coarse partition TH , where
the observed data are collected. More precisely, we collect the data, denoted by Π∗H(sw), of
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the averaged water saturation sw in each coarse element containing {xi}Ni ⊂ Ω, where xi are
the points that physical measurements are performed. The data assimilation algorithm for
two-phase flow problem is defined as

−∇ · (κK∇p) = qt,

∂(s̃w)

∂t
+∇ ·

(
κw

κ
K∇p

)
+ µ (Π∗H(s̃w)− Π∗H(sw)) = qw,

(4.1)

where ΠH : H1(Ω)→ L2(Ω) is a linear interpolant operator satisfying

‖Π(s)− s‖ ≤ CH‖s‖H1 ,

‖Π(s)‖ ≤ C‖s‖,
(4.2)

which can naturally be extended to L2(Ω). The dual operator is given by Π∗H : L2(Ω) →
H−1(Ω) ∫

Ω

Π(s) v =

∫
Ω

sΠ∗(v), ∀v ∈ L2(Ω).

For instance, ΠH may be considered to be the L2 projection operator to the piece-wise
constant finite element space (for more details see [53]), namely,

Π(sw)(x) =

∫
Ki

sw, ∀x ∈ Ki,

where Ki is a course element in Ki, and in this case, we have

(4.3) Π∗H = ΠH .

Definition 4.1 (Weak solution to the data assimilation algorithm). Let (s, p) be
the solution to the two-phase problem from Theorem 3.4. The continuous data assimilation
equations (4.1) has a unique weak solutions (s̃, p̃) that satisfies for all T > 0

s̃w = T (θ), ∂ts̃w ∈ L2(0, T ;H−1(Ω)), 0 ≤ θ(x, t) ≤ θ∗,

and ∫
Ω

κ(s̃)∇p̃∇w =

∫
Ω

qtw, ∀w ∈ H1(Ω) ,∫ T

0

∫
Ω

(
∂ts̃ v + (∇θ̃ + κw(s̃)∇p̃) · ∇v + µΠ∗H(s̃− s)(v)

)
=

∫ T

0

∫
Ω

qwv, ∀v ∈ L2(0, T ;H1(Ω)).

(4.4)

Remark 4.1. Although the well-posedness of (4.4) is not the focus of this work, we speculate
that it can be proved by a usual compactness argument [24], or by the fixed-point argument
which has recently been suggested in [21] for a similar problem.

In the next theorem, we analyze the residual error coming from the data assimilation
algorithm with unknown initial condition, which is the main analytical result of this work.
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Theorem 4.2. Let Ω ⊂ Rd for d ∈ {2, 3} is a connected Lipschitz domain. Consider s be
a solution of the two-phase equations with initial data sw(0) ∈ L2(Ω), ensured by Theorem
3.4, and ΠH : L2(Ω) → L2(Ω) be a linear map satisfying (2.1). Let s̃ be a solution to the
data assimilation algorithm given by (4.1) with homogeneous Neumann boundary conditions.
Then for all H > 0, if

(4.5) µ := µ(γ̃, C̃, C2, H) = 2γ̃
(C2

C̄

)− 1
2
H−1 ,

the following bound holds for t < t0

(4.6) ‖(I − π)(s̃− s)‖2
V ∗0
≤ e−

µ
2
t

(
‖e(0, ·)‖2

V ∗0
+ 2C5‖π(s̃− s)(0, ·)‖

2+τ
1+τ

L
2+τ
1+τ

)
,

where t0 := t0(γ̃, C̃, C2, H) is given as

t0 = max
{

0 ≤ ζ < T, s.t. c∗H2+τ ≤ ‖s̃(t)− s(t)‖2τ+τ2

L2+τ , ∀ 0 ≤ t ≤ ζ
}
.(4.7)

Herein, C̃, C2, C5 are constants depending only on Ω, and c∗ := c∗(γ̃, C̃, C2) is a constant
appearing in (4.16), whereas γ̃ is a chosen constant of order 1 with respect to H.

Proof. Subtracting (3.11) and (4.4), the difference satisfies the following error equations

(4.8)

∫
Ω

κ(s̃)∇(p̃− p)∇w =

∫
Ω

(
κ(s)− κ(s̃)

)
∇p · ∇w, ∀w ∈ H1,

∫ T

0

∫
Ω

(
∂t(s̃− s)v +∇(θ̃ − θ) · ∇v + κw(s̃)∇(p̃− p) · ∇v + µ(s̃− s)ΠH(v)

)
=

∫ T

0

∫
Ω

(
κw(s)− κw(s̃)

)
∇p · ∇v, ∀v ∈ L2(0, T ;H1(Ω)).

(4.9)

Denote e = (I − π)(s̃− s) and set v = G(e) in (4.9). With that, we obtain∫ T

0

∫
Ω

(
∂t(s̃− s)G(e) +∇(θ̃ − θ) · ∇G(e) + µ(s̃− s)ΠH(G(e))

)
=

∫ T

0

∫
Ω

((
κw(s)− κw(s̃)

)
∇p · ∇G(e)− κw(s̃)∇(p̃− p) · ∇G(e)

)
.(4.10)

With a similar argument in the proof of Lemma 3.10, we obtain∫
Ω

∂t(s̃− s)G(e) =
1

2
∂t‖G(e)‖2

V =
1

2
∂t‖e‖2

V ∗ ,(4.11)

and ∫
Ω

∇(θ̃ − θ) · ∇G(e) = (θ̃ − θ, s̃− s)− (θ̃ − θ, π(s̃− s)).(4.12)

Then choose a test function v = p(π(s̃− s))p−1 in (4.9) to get

‖π(s̃− s)(t, ·)‖pLp(Ω) + pµ

∫ t

0

‖π(s̃− s)‖pLp(Ω) = ‖π(s̃− s)(0, ·)‖pLp(Ω),
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and

‖π(s̃− s)(t, ·)‖pLp(Ω) = e−pµt‖π(s̃− s)(0, ·)‖pLp(Ω),

for any p > 1. For any u ∈ V ∗, we have

∫
Ω

∇G(u) · ∇G(u) =

∫
Ω

G(u)(u) =

∫
Ω

(I − ΠH)G(u)(u) +

∫
Ω

ΠHG(u)(u)

≤ C̄
1
2H‖∇G(u)‖L2‖u‖L2 +

∫
Ω

ΠHG(u)(u) .

We hence obtain

(4.13) ‖u‖2
V ∗0
≤ C̄H2‖u‖2

L2 + 2

∫
Ω

ΠHG(u)(u).

Combining (4.11), (4.12) and (4.13) with (4.10), we have∫ t

0

(
1

2
∂t‖e‖2

V ∗0
+ (θ̃ − θ, s̃− s) +

µ

2
‖∇G(e)‖2

L2

)
≤
∫ t

0

(
1

2
∂t‖e‖2

V ∗0
+ (θ̃ − θ, s̃− s) + µ

∫
Ω

ΠHG(e)(e) +
µC̄

2
H2‖e‖2

L2

)
=

∫ T

0

∫
Ω

((
κw(s)− κw(s̃)

)
∇p · ∇G(e)− κw(s̃)∇(p̃− p) · ∇G(e)

+ (θ̃ − θ, π(s̃− s)) +
µC̄

2
H2‖e‖2

L2

)
≤C1

∫ t

0

((
‖s− s̃‖Lp + ‖∇(p̃− p)‖Lp(Ω)

)
‖∇G(e)‖Lq

+ ‖θ̃ − θ‖Lq̃‖π(s̃− s)‖Lp̃ +
µC̄

2
H2‖e‖2

L2

)
,

for any p > 1 with
1

p
+

1

q
= 1 and an aubituary µ > 0 which will be determined later. With

an argument similar to the proof of Lemma 3.9, we can also obtain

‖∇(p̃− p)‖pLp ≤ Ĉp‖s̃− s‖pLp .

hence, with p = 2 = q, we have

∫ t

0

(
1

2
∂t‖e‖2

V ∗0
+ (θ̃ − θ, s̃− s) +

µ

2
‖∇G(e)‖2

L2

)
≤ C1

∫ t

0

((
‖s− s̃‖L2 + ‖∇(p̃− p)‖L2(Ω)

)
‖∇G(e)‖L2

+ ‖θ̃ − θ‖L2+τ‖π(s̃− s)‖
L

2+τ
1+τ

+
µC̄

2
H2‖e‖2

L2

)
,

(4.14)
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∫ t

0

(
1

2
∂t‖e‖2

V ∗0
+ (θ̃ − θ, s̃− s) +

µ

2
‖∇G(e)‖2

L2

)
≤ C1

∫ t

0

((
‖s− s̃‖L2 + ‖∇(p̃− p)‖L2(Ω)

)
‖∇G(e)‖L2

+ ‖θ̃ − θ‖L2+τ‖π(s̃− s)‖
L

2+τ
1+τ

+
µC̄

2
H2‖e‖2

L2

)
,

(4.15)

and ∫ t

0

(
‖s− s̃‖L2 + ‖∇(p̃− p)‖L2(Ω)

)
‖∇G(e)‖L2 ≤

µ

4C1

‖∇G(e)‖2
L2 +

2C2

µ
‖s− s̃‖2

L2 ,

where C2 := 4C1(1 + Ĉ2).

We next estimate the term ‖θ̃ − θ‖L2+τ‖π(s̃− s)‖
L

2+τ
1+τ

as

‖θ̃ − θ‖L2+τ‖π(s̃− s)‖
L

2+τ
1+τ
≤

C̃

2C1C0

‖θ̃ − θ‖2+τ
L2+τ +

2C1C0(1 + τ)

C̃(2 + τ)2
‖π(s̃− s)‖

2+τ
1+τ

L
2+τ
1+τ

≤
C̃

2C1

‖s̃− s‖2+τ
L2+τ +

C3

C1

‖π(s̃− s)‖
2+τ
1+τ

L
2+τ
1+τ

,

where C3 =
2C2

1C0(1 + τ)

C̃(2 + τ)2
. Now, from

∫ t
0
(θ̃ − θ, s̃− s) ≥ C̃

∫ t
0

∫
Ω
|s̃− s|2+τ , we get that

∫ t

0

(1

2
∂t‖e‖2

V ∗0
+
C̃

2

∫ t

0

∫
Ω

|s̃− s|2+τ +
µ

4
‖∇G(e)‖2

L2

)
≤
∫ t

0

(C2

µ
‖s− s̃‖2

L2 + C3‖π(s̃− s)‖
2+τ
1+τ

L
2+τ
1+τ

+
µC̄

2
H2‖e‖2

L2 ,

Then with the help of ‖e‖2
L2 ≤ ‖s̃− s‖2

L2 and ‖π(s̃− s)‖
2+τ
1+τ

L
2+τ
1+τ
≤ e−2( 2+τ

1+τ
)t‖π(s̃− s)(0, ·)‖

2+τ
1+τ

L
2+τ
1+τ

,

we obtain ∫ t

0

(1

2
∂t‖e‖2

V ∗0
+
C̃

2

∫ t

0

∫
Ω

|s̃− s|2+τ +
µ

4
‖∇G(e)‖2

L2

)
≤
(2C2

µ
+
µC̄

2
H2
)
‖s− s̃‖2

L2 + C3

∫ t

0

e−2( 2+τ
1+τ

)t‖π(s̃− s)(0, ·)‖
2+τ
1+τ

L
2+τ
1+τ

.

We can now take µ to be the form µ = 2γ̃
(C2

C̄

)− 1
2
H−1 (where γ̃ is a chosen constant) to get

(2C2

µ
+
µC̄

2
H2
)
‖s− s̃‖2

L2 = H
(C2

C̄

) 1
2
(
1

γ̃
+ γ̃).
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With
∫ t

0

∫
Ω
|s̃− s|2 ≤ C̃τ

∫ t
0

( ∫
Ω
|s̃− s|2+τ

) 2
2+τ

, we obtain∫ t

0

(1

2
∂t‖e‖2

V ∗0
+
C̃

2

∫ t

0

∫
Ω

|s̃− s|2+τ +
µ

4
‖∇G(e)‖2

L2

)
≤H

(C2

C̄

) 1
2
(
1

γ̃
+ γ̃)

∫ t

0

(∫
Ω

|s̃− s|2+τ
) 2

2+τ
+ C3

∫ t

0

e−2( 2+τ
1+τ

)t‖π(s̃− s)(0, ·)‖
2+τ
1+τ

L
2+τ
1+τ

.

Now consider

I :=

{
0 < t < T, such that c∗H2+τ ≤

(∫
Ω

|s̃(t, ·)− s(t, ·)|2+τ
)τ}

,

where

(4.16) c∗ =
((C2

C̄

) 1
2
(
1

γ̃
+ γ̃)

)2+τ(C̃
4

)−2−τ
.

Now for all t ∈ I, we have(C2

C̄

) 2+τ
2

(
1

γ̃
+ γ̃)2+τ

(C̃
4

)−2−τ
H2+τ ≤

(∫
Ω

|s̃− s|2+τ
)τ
,

and

H
(C2

C̄

) 1
2
(
1

γ̃
+ γ̃)

∫ t

0

(∫
Ω

|s̃− s|2+τ
) 2

2+τ

=
((C2

C̄

) 2+τ
2

(
1

γ̃
+ γ̃)2+τH2+τ

(∫
Ω

|s̃− s|2+τ
)−τ)) 1

2+τ

∫ t

0

(∫
Ω

|s̃− s|2+τ
)

≤
C̃

4

∫ t

0

∫
Ω

|s̃− s|2+τ .

Hence, we have∫ t

0

(1

2
∂t‖e‖2

V ∗0
+
C̃

4

∫ t

0

∫
Ω

|s̃− s|2+τ +
µ

4
‖e‖2

V ∗0

)
≤ C3

∫ t

0

e−2( 2+τ
1+τ

)t‖π(s̃− s)(0, ·)‖
2+τ
1+τ

L
2+τ
1+τ

≤ C5 ‖π(s̃− s)(0, ·)‖
2+τ
1+τ

L
2+τ
1+τ

.

Which proves the theorem as

‖e(t, ·)‖2
V ∗0
≤ e−

µ
2
t
(
‖e(0, ·)‖2

V ∗0
+ 2C5‖π(s̃− s)(0, ·)‖

2+τ
1+τ

L
2+τ
1+τ

)
.

�

Remark 4.3. We remark that our method can be likewise extended to a general multi-phase
model with no obstruction; however, for the sake of simplicity, we will postpone that to a
future work.
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5. Computational study

We now present results of two numerical tests that illustrate the theory given in the
last section. We consider Algorithm (4.1) for two scenarios with two different permeability
profiles. In both tests, the domain is Ω = [0, 100]2. The reference and the approximate
solutions are calculated in a fine square mesh with fine mesh size h = 1/100 by upwinding
finite volume method with time step size dt = 0.05. The data is obtained in a coarse square
mesh with coarse mesh size H = 1/10, while the nudge parameter µ = 200.

Since we do not have access to true (reference) solutions for these problems, we instead
use a computed solution. The reference solutions were evolved from a zero initial value,
and is run to t = 325 using the above setting. For the DA computation, we start from
zero initial conditions use the same spatial and temporal discretization parameters as the
reference solution, and start assimilation with the t = 25 reference solution (i.e., time 0 for
DA corresponds to t = 25 for the reference).

5.1. Computational study I. In our first experiment, we consider the relative permeability
krα defined as

kro = (1− sw)2, krw = (sw)2 ,

with the injection and production located at the top-left and bottom-right corner of the
domain respectively.

In this experiment, we carried out three tests. The first one is with data taken on full
domain Ω, and the other two tests are carried out with data only taken on one of the
following square sub-domains at the top - left corner:

Ω1 = [0, 50]2 , Ω2 = [0, 25]2.

The plots in Figure 1 shows the saturation error in L2 vs. time, where the observational
data are collected from different fractions of the domain. The solution without data assim-
ilation µ = 0 has only negligible drop (in blue) in its residual error. This underscores the
significance of a nudged solution synchronizing with the reference solution. Full nudging (in
red) indicates synchronization with the reference solution roughly at an exponential rate.
We then continue by testing the effect of the size of the sub-domain. Machine precision is
reached for data collected over the whole domain. By then, in the case of Ω1 and Ω2, the
error is within 10−10 and 10−5 respectively. Particularly in the case of subdomains Ω1 and
Ω2, we see from the snapshot plots in Figures 2, 3, 4, and 5 that the main spatial features
over the full domain Ω are nevertheless captured as time evolves.

The convergence of the DA solution to the true solution in time can also be seen in the
snapshot plots of the solutions in Figures 6. Here at t = 0.1, there is of course a major
difference, since the DA simulation starts at 0. The accuracy of DA is seen to increase by
t = 1 and further by t = 10. Finally by t = 100 there is no visual difference between DA and
reference solution, which we expect since the L2 difference between the solutions at t = 100 is
seen in Figure 1 to be near 10−15. More over, the snapshot plots of the true solution starting
from zero initial value (bottom plots in Figure 6) indicate the sensitivity of the solution to
the initial conditions.
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Figure 1. Error comparison ‖s(t)− s̃(t)‖L2 . Left: L2 error. Right: L2 error
in log-scale.
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Figure 2. Snapshots and comparison of the solutions with different data at
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Figure 4. Snapshots and comparison of the solutions with different data at
T = 10. Left: two-phase solution. Middle-Left: full data. Middle-Right: 1
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(b) T = 1
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(c) T = 10
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Figure 6. Snapshots of the solutions. Top: Reference solution. Middle-Left:
DA (approximate) solution. Middle-Right: difference between the approximate
and reference solution. Bottom-Left: two-phase solution starting from zero
initial value. Bottom-Right: difference between the two-phase solutions with
different initial values.

5.2. Computational study II. We present our second numerical test, with its source terms
coinciding with that of the first example. On the other hand, we have a medium that have
a totally different permeability profile as shown in figure 7.

The same initialization process as in the first example is considered here, which provides
us with the initial condition of the exact solution as sw(0) = s̃w(25). With this new medium
profile, we compute an approximate solution without any prior knowledge of our initial value,
and apply our data assimilation algorithm with µ = 200 as in Example 1

The convergence history of this test is given in figure 8, and the snapshots of the solutions
are now shown in figures 9. We again observe an exponential decay of the residual error in
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Figure 7. Absolute permeability for case 2.

0 50 100 150 200 250

Time, t

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

Error for the model without data

Error of the data assimilation model

0 50 100 150 200 250 300

Time, t

-4

-3

-2

-1

0

E
rr

or
 in

 lo
g 

sc
al

e

Linear fitting: y=-0.008 x + -1.839

Error of the data assimilation model

Figure 8. Error comparison. Left: data assimilation vs two-phase flow solu-
tion. Right: error of data assimilation in model log-scale.

figure 8, with a clear linear fit in the log scale, This has numerically validated the theoret-
ical result that we have proved in Theorem 4.2, and the effectiveness of our proposed data
assimilation algorithm.
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Figure 9. Snapshot of the solutions. Top: Reference solution (exact).
Middle-Left: data assimilation solution. Middle-Right:difference between data
assimilation solution and reference solution. Bottom-Left: two-phase solution.
Bottom-Right: difference between two-phase solution and reference solution.
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