
Random Features for High-Dimensional Nonlocal
Mean-Field Games

Sudhanshu Agrawala,∗, Wonjun Leeb,∗, Samy Wu Fungc,∗∗, Levon Nurbekyanb

aDepartment of Computer Science, University of California, Los Angeles
bDepartment of Mathematics, University of California, Los Angeles

cDepartment of Applied Mathematics and Statistics, Colorado School of Mines

Abstract

We propose an efficient solution approach for high-dimensional nonlocal mean-
field game (MFG) systems based on the Monte Carlo approximation of interac-
tion kernels via random features. We avoid costly space-discretizations of inter-
action terms in the state-space by passing to the feature-space. This approach
allows for a seamless mean-field extension of virtually any single-agent trajec-
tory optimization algorithm. Here, we extend the direct transcription approach
in optimal control to the mean-field setting. We demonstrate the efficiency of
our method by solving MFG problems in high-dimensional spaces which were
previously out of reach for conventional non-deep-learning techniques.

Keywords: mean-field games, nonlocal interactions, random features, optimal
control, Hamilton-Jacobi-Bellman

1. Introduction

We propose a computational framework for solving mean-field game (MFG)
systems of the form

−∂φ(t, x) +H(t, x,∇φ(t, x)) =
∫
Rd K(x, y)dρ(t, y) in (0, T )× Rd,

∂tρ(t, x)−∇ · (ρ(t, x)∇pH(t, x,∇φ(t, x))) = 0 in (0, T )× Rd,
ρ(0, x) = ρ0(x), φ(T, x) = ψ(x) in Rd,

(1)

based on random features from kernel machines. The partial differential equa-
tion (PDE) above describes an equilibrium configuration of a noncooperative
differential game with a continuum of agents. An individual agent faces a cost

φ(t, x) = inf
z(t)=x

∫ T

t

{
L(s, z(s), ż(s)) +

∫
Rd

K(z(s), y)dρ(s, y)

}
ds+ ψ(z(T )),

(2)
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where the Lagrangian (running cost) L and the Hamiltonian H are related by
the Legendre transform:

L(t, x, v) = sup
p∈Rd

{−v · p−H(t, x, p)},

H(t, x, p) = sup
v∈Rd

{−v · p− L(t, x, v)}.
(3)

Furthermore, ρ(t, ·) represents the distribution of all agents in the state-space
at time t, and the term

f(x, ρ(t, ·)) =

∫
Rd

K(x, y)dρ(t, y) (4)

models the influence of the population on an individual agent. Finally, ψ in 2
represents the terminal cost paid by agents at terminal time T , and ρ0 is the
initial distribution of the population. Note that 4 assumes a nonlocal interaction
of an individual agent with the population. If, for instance, we had

f(x, ρ(t, ·)) = c ρ(t, x)κ or f(x, ρ(t, ·)) = c log ρ(t, x)

then the interaction would be local. In this paper, we only consider nonlocal
interactions in 4.

In an equilibrium, individual agents cannot unilaterally improve their costs
based on their belief about the state-space distribution of the population. This
Nash equilibrium principle leads to the Hamilton-Jacobi-Bellman (HJB) PDE
in 1. Furthermore, the evolution of the state-space distribution of the pop-
ulation corresponding to their optimal actions must coincide with their belief
about population distribution. This consistency principle leads to the continuity
equation in 1.

The MFG framework, introduced by M. Huang, P. Caines, R. Malhamé [1, 2]
and P.-L. Lions, J.-M. Lasry [3, 4, 5], is currently an active field with applications
in economics [6, 7, 8, 9], finance [10, 11, 12, 7], industrial engineering [13, 14, 15],
swarm robotics [16, 17, 18, 19], epidemic modelling [20, 21] and data science [22,
23, 24]. For comprehensive exposition of MFG systems we refer to [5, 25, 26]
for nonlocal couplings, [27, 28, 26] for local couplings, [29, 30] for a probabilistic
approach, [31] for infinite-dimensional control approach, [32, 33] for the master
equation, and [34] for the control on the acceleration. For the mathematical
analysis of 1 we refer to [5, 25, 26].

In this paper, we develop a computational method for 1 based on kernel
expansion framework introduced in [35, 36, 37, 38]. The key idea is to build an
approximation

K(x, y) ≈ Kr(x, y) =

r∑
i,j=1

kijζi(x)ζj(y), (5)

where {ζi}ri=1 and (kij) are suitably chosen basis functions and expansions co-
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efficients, and consider an approximate system
−∂tφ(t, x) +H(t, x,∇φ(t, x)) =

∫
Rd Kr(x, y)dρ(t, y) in (0, T )× Rd,

∂tρ(t, x)−∇ · (ρ(t, x)∇pH(t, x,∇φ(t, x))) = 0 in (0, T )× Rd,
ρ(0, x) = ρ0(x), φ(T, x) = ψ(x) in Rd.

(6)

The structure of Kr allows for an efficient discretization of the interaction term∫
Rd Kr(x, y)dρ(t, y) in the feature space. Indeed, introducing unknown coeffi-

cients a(t) = (a1(t), a2(t), · · · , ar(t)) we can rewrite 6 as

0 = K−1a(t)− δ

δa(t)

∫
Rd

φa(0, x)dρ0(x), (7)

where K = (kij)
r
i,j=1, and φa is the viscosity solution of{

−∂tφ(t, x) +H(t, x,∇φ(t, x)) =
∑r
i=1 ai(t)ζi(x) in (0, T )× Rd,

φ(T, x) = ψ(x) in Rd.
(8)

We provide a formal derivation of the equivalence between 6 and 7 in the Ap-
pendix and refer to [36] for more details. When K is symmetric, 7 reduces to
an optimization problem

inf
a

1

2

∫ T

0

r∑
i,j=1

(K−1)ijai(t)aj(t)dt−
∫
Rd

φa(0, x)dρ0(x). (9)

The key advantage in our approach is that (ai) contain all information about
the population interaction, and there is no need for a costly space discretiza-
tion of f in 4. Indeed, the approximation in 5 yields an approximation of the
interaction operator∫

Rd

K(x, y)dρ(t, y) ≈
∫
Rd

Kr(x, y)dρ(t, y) =

r∑
i=1

ζi(x)

r∑
j=1

kij

∫
Rd

ζj(y)dρ(t, y)︸ ︷︷ ︸
ai(t)

that is independent of the space-discretization. Moreover, for fixed r, the com-
putational cost of calculating the approximate interaction term in space-time is
O(r2Nt + 2rNxNt), where Nt is the time-discretization, and Nx is the space-
discretization or number of trajectories or agents in the Lagrangian setting. In
contrast, direct calculation of the interaction term yields an O(N2

xNt) computa-
tional cost. This dimension reduction provides a significant computational gain
when r is moderate.

There is a complete flexibility in the choice of basis functions {ζi}. In [36],
the authors considered problems in periodic domains and used classical trigono-
metric polynomials. Furthermore, in [37, 38] the authors drew connections with
kernel methods in machine learning and used polynomial and quasi-polynomial
features for {ζi}.
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Our key contribution is to build on the connection with kernel methods in
machine learning and construct {ζi} using random features [39]. The advantage
of using random features for a suitable class of kernels is the simplicity and speed
of the generation of basis functions, including in high dimensions. Moreover, K
in 5 reduces to an identity matrix which renders extremely simple update rules
for (ai) in iterative solvers of 7 and 9.

We demonstrate the efficiency of our approach by solving crowd-motion-type
MFG problems in up to d = 100 dimensions. To the best of our knowledge, this
is the first instance such high-dimensional MFG are solved without deep learn-
ing techniques. Our algorithm is inspired by the primal-dual algorithm in [36],
except that here we use random features instead of trigonometric polynomi-
als. The primal step consists of trajectory optimization, whereas the dual step
updates nonlocal variables (ai). Modeling nonlocal interactions by (ai) decou-
ples primal updates for the agents, which would not be possible using a direct
discretization of the interaction term. Hence, one can take advantage of par-
allelization techniques within primal updates. We refer to Section 4 for more
details.

For related work on numerical methods for nonlocal MFG we refer to [40,
41, 42, 43] for game theoretic approach, [44, 45, 46, 47] for semi-Lagrangian
schemes, [48] for deep learning approach, and [49] for a multiscale method. In
all of these methods the nonlocal terms are discretized directly in the state-
space. Finally, for a comprehensive exposition of numerical methods for other
types of MFG systems we refer to [26].

The rest of the paper is organized as follows. In Section 2 we present the
kernel expansion framework. Next, in Section 3, we show how to construct basis
functions based on random features. Section 4 contains the description of our
algorithm. Finally, we present numerical results in Section 5. We provide an
implementation1 written in the Julia language [50].

2. The method of coefficients

One can adapt the results in [36] to the non-periodic setting relying on the
analysis in [25] and prove the following theorem.

Theorem 2.1. A pair (φ, ρ) is a solution for the MFG 6 if and only if there
exist a = (a1, a2, · · · , ar) ∈ C([0, T ];Rr) such that 7 holds. Moreover, when K
is symmetric, 7 reduces to 9. Finally, when K is positive-definite 9 is a convex
program.

Next, we need a formula to calculate the gradient of the objective function
in 9. Again, adapting results in [36] to the non-periodic setting one can prove
the following theorem.

1code can be found in https://github.com/SudhanshuAgrawal27/HighDimNonlocalMFG
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Theorem 2.2. The functional a 7→
∫
Rd φa(0, x)dρ0(x) is convex and Fréchet

differentiable everywhere. Moreover,

δ

δai(t)

∫
Rd

φa(0, x)dρ0(x) =

∫
Rd

ζi(zx,a(t))dρ0(x), (10)

where zx,a is an optimal trajectory for the optimal control problem

φa(t, x) = inf
z(t)=x

∫ T

t

{
L(s, z(s), ż(s)) +

r∑
i=1

ai(s)ζi(z(s))

}
ds+ ψ(z(T )). (11)

We do not specify precise assumptions on the data in these previous theorems
and refer to [36, 25] for more details since the theoretical analysis of 1 and 6 is
out of the scope of the current paper. Nevertheless, these theorems are valid for
typical choices such as

L(t, x, v) =
v>Rv

2
+Q(t, x),

where R is a positive-definite matrix, K,ψ,Q are smooth and bounded below,
and ρ0 is a compactly supported absolutely continuous probability measure with
bounded a density. In particular, za,x is unique for Lebesgue a.e. x, and one
can choose za,x in such a way that (t, x) 7→ za,x(t) is Borel measurable.

Utilizing the value-function representation 11 of φa, we obtain the following
saddle-point formluation of 9:

inf
a

sup
zx:zx(0)=x

1

2

∫ T

0

r∑
i,j=1

(K−1)ijai(t)aj(t)dt

−
∫
Rd

[∫ T

0

{
L(s, zx(s), żx(s)) +

r∑
i=1

ai(s)ζi(zx(s))

}
ds+ ψ(zx(T ))

]
dρ0(x)

(12)

This saddle-point formulation is the basis of our algorithm in Section 4.

3. Random Features

Random features is a simple yet powerful technique to approximate trans-
lation invariant positive definite kernels [39]. The foundation of the method is
Bochner’s theorem from harmonic analysis.

Theorem 3.1 (Bochner [51]). A continuous symmetric shift-invariant kernel
K(x, y) = K(x− y) on Rd is positive definite if and only if K(·) is the Fourier
transform of a non-negative measure.

Thus, if K(x − y) is a continuous symmetric positive definite kernel there
exists a probability distribution p such that

K(x− y) =K(0)

∫
Rd

eiω·(x−y)p(ω)dω

=K(0) Eω∼p [cos(ω · x) cos(ω · y) + sin(ω · x) sin(ω · y)] .

(13)
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Hence, we can approximate K(x− y) by sampling {ωj} iid from p:

K(x− y) ≈ Kr(x− y) =

r/2∑
j=1

[
ζcj (x)ζcj (y) + ζsj (x)ζsj (y)

]
, (14)

where

ζcj (x) =

√
2K(0)

r
cos(ωj · x), ζsj (x) =

√
2K(0)

r
sin(ωj · x). (15)

Note that this approximation is also shift-invariant, which is a significant
advantage for crowd-motion type models where agents interact through their
relative positions in the state space. Furthermore, K in 5 is the identity matrix,
which leads to simple update rules for nonlocal variables a1, a2, · · · , ar: see
Section 4.

The approximation above is viable if one can efficiently sample from p. In
this paper, we consider Gaussian no-collision repulsive kernels similar to those
in [52, 53]:

K(x− y) = µ exp

(
−‖x− y‖

2

2σ2

)
. (16)

In this case, one can easily sample from p because it is a Gaussian normal
distribution:

p(ω) =
σd

(2π)
d
2

exp

(
−σ

2‖ω‖2
2

)
. (17)

4. Trajectory Generation

Here, we propose a primal-dual algorithm inspired by [36] to solve 12. Note
that the sup part of 12 is a classical optimal control or trajectory optimiza-
tion problem where the dual variable a = (ai) acts as a parameter. Thus, we
successively optimize trajectories and update the dual variable.

While there exist many trajectory optimization methods for 12 [54, 55, 56,
53, 57, 53], we use the direct transcription approach for simplicity [58]. The
direct transcription approximates the solution to 12 by discretizing the tra-
jectories over time using, for instance, Euler’s Method for the ODE and a
midpoint rule to discretize the time integral. Consider a uniform time dis-
cretization 0 = t1 < t2 < . . . < tN = T , and denote the discretized states
by z = (z(t1), z(t2), . . . , z(tN )) and the discretized dual variables by ai =
(ai(t1), ai(t2), . . . , ai(tN )). The direct transcription approach solves the dis-
cretized problem given by

inf
a

sup
v

1

2

N∑
l=1

h

r∑
i,j=1

(K−1)ijai[l]aj [l]

− 1

M

M∑
m=1

[
N∑
l=1

h

[
L(tl, z

v
xm

[l],vxm
[l]) +

r∑
i=1

ai[l]ζi(z
v
xm

[l])

]
+ ψ(zvxm

[N ])

]
,

(18)
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where v is the discretized control, and

zvxm
[l + 1] = zvxm

[l] + hvxm
[l], zvxm

[1] = xm, 1 ≤ l ≤ N − 1.

Thus, zvxm
[l] is the value of z(tl) for the initial condition xm and control v = ż.

Here, x1, x2, . . . , xm are samples of initial conditions drawn from ρ0. The inner
sup problem occurs over the discretized controls

v =


vx1

[1] vx1
[2] . . . vx1

[N ]
vx2

[1] vx2
[2] . . . vx2

[N ]
...

vxM
[1] vxM

[2] . . . vxM
[N ]

 , (19)

where each row represents the controls for the trajectory defined by initial con-
dition xm. The outer inf problem occurs over the discretized coefficients

a =


a1[1] a1[2] . . . a1[N ]
a2[1] a2[2] . . . a2[N ]

...
ar[1] ar[2] . . . ar[N ]

 . (20)

Indeed, any optimization algorithm can be used to solve this problem. While
we used an Euler discretization of the dynamics, any other method could also
be used, e.g., RK4. As in [36], we use a version of primal-dual hybrid gradient
(PDHG) algorithm [59] to approximate the solution to 18. Denoting by

L(a,v) =
1

2

N∑
l=1

h

r∑
i,j=1

(K−1)ijai[l]aj [l]

− 1

M

M∑
m=1

[
N∑
l=1

h

[
L(s, zxm [l],vxm [l]) +

r∑
i=1

a
(k)
i [l]ζi(zxm [l])

]
+ ψ(zxm [N ])

]
,

18 reduces to
inf
a

sup
v
L(a,v),

and the algorithm successively performs the updates

v(k+1) = v(k) + hv ∇vL(ak,v),

v(k+1) = 2v(k+1) − v(k),

a(k+1) = arg min
a

L(a,v(k+1)) +
‖a− ak‖2

2ha
,

(21)

where hv, ha > 0 are suitably chosen time-steps, and (a(0),v(0)) are chosen
randomly.
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Remark 4.1. In the original PDHG of Chambolle and Pock [59] the coupling
between a,v is bilinear, L is concave in v, and the gradient ascent step in
v is replaced by a proximal step. Despite these differences, 21 has a reliable
performance.

The gradient ascent step in v is implemented via back-propagation, whereas
the proximal step in a admits a closed-form solution

a(k+1)[l] = (I− haK−1)a(k)[l] +
ha
M


∑M
m=1 ζ1(zv

k+1

xm
[l])∑M

m=1 ζ2(zv
k+1

xm
[l])

...∑M
m=1 ζr(z

vk+1

xm
[l])

 , 1 ≤ l ≤ N.

Note that for m 6= m′ the updates of vxm
and vxm′ are decoupled within

the v update because the coupling variable a is fixed within this update. Fur-
thermore, the random-features approximation yields K = Id, which leads to
extremely simple proximal updates for a:

a
(k+1)
i [l] = (1− ha)a

(k)
i [l] + ha

∑M
m=1 ζi(z

vk+1

xm
[l])

M
, 1 ≤ l ≤ N.

5. Numerical Experiments

We discuss several numerical examples to demonstrate the efficiency and ro-
bustness of our algorithm. The experiments are organized in three groups, A, B,
and C, which are presented in Sections 5.1, 5.2, and 5.3, respectively. In exper-
iments A and B we consider high-dimensional problems with low-dimensional
interactions - this setting is realistic in the physical setting, e.g., controlling
swarm UAVs, since it is often the case that one may have a high-dimensional
state/control but the interaction only occurs in the spatial dimensions. In ex-
periment C we consider high-dimensional problems with high-dimensional in-
teractions. The experiments are performed in d = 2, 50, 100 dimensions with a
fixed time horizon T = 1.

5.1. Experiment A

We assume that agents are initially distributed according to a mixture of
eight Gaussian distributions centered at the vertices of a regular planar octagon.
More precisely, we suppose that

ρ0(x) ∝
8∑
j=1

exp

(
−‖x− yi‖

2

2 · 0.12
)

(22)

where

yj =

(
cos

(
2πj

8

)
, sin

(
2πj

8

)
, 0, · · · , 0

)
∈ Rd, 1 ≤ j ≤ 8.
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Furthermore, we assume that the interaction kernel has the form

K(x− y) = µ exp

(
−‖x

′ − y′‖2
2σ2

)
, x, y ∈ Rd, (23)

where x′ = (x1, x2) ∈ R2 for x = (x1, x2, · · · , xd) ∈ Rd. Such kernels are
repulsive, where µ is the repulsion intensity, and σ is the repulsion radius.
Thus, larger µ leads to more crowd averse agents. Furthermore, the smaller σ
the more sensitive are the agents to their immediate neighbors. Hence, σ can
also be interpreted as a safety radius for collision-avoidance applications [52, 53].
For experiments in A we take µ = 10, and σ = 0.2, 1.25.

The random-features approximation of K is given by

K(x− y) ≈ Kr(x− y) =

r/2∑
j=1

[
ζcj (x′)ζcj (y′) + ζsj (x′)ζsj (y′)

]
,

where

ζcj (x′) =

√
2µ

r
cos(ω′j · x′), ζsj (x′) =

√
2µ

r
sin(ω′j · x′), x′ ∈ R2,

and {ω′j}
r/2
j=1 ⊂ R2 are drawn randomly from

p(ω′) =
σ2

2π
exp

(
−σ

2‖ω′‖2
2

)
, ω′ ∈ R2.

We plot the convergence of approximate kernels to the true one in Figures 1a
and 2a for σ = 0.2 and σ = 1.25, respectively. This is done by comparing
the values generated by the true and approximate kernels K(x′, 0) = K(x′− 0),
Kr(x

′, 0) = Kr(x
′−0) in l∞ and l2 norms for x′ on a 2-dimensional grid centred

at the origin. Further, in Figures 1b, 1c and Figures 2b, 2c, we visually compare
the approximation to the true kernel on this grid. In experiments A, we choose
r = 512 for both values of σ.

We take the Lagrangian and terminal cost functions

L(t, x, v) =
‖v‖2

2
, ψ(x) = 10‖x− xtarget‖2, (t, x, v) ∈ (0, 1)× Rd × Rd,

where xtarget = 0. This choice corresponds to a model where crowd-averse
agents travel from initial positions towards a target location, xtarget. Finally,
we sample M = 256 initial positions from ρ0.

In Figure 3 we plot the projections of agents’ trajectories on the first two
dimensions when the repulsion radius is σ = 0.2 and d = 2, 50, 100. Analogously,
we plot the agents trajectories for σ = 1.25 and d = 2, 50, 100 in Figure 4. Note
that trajectories split more when σ = 0.2, which corresponds to the case when
agents are more sensitive to their immediate neighbors. Additionally, note that
the terminal cost function enforces agents to reach the destination xtarget = 0.
The 3D trajectories are plotted in Figure 5.
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Number of basis functions (r)
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2.0
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E
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||K −Kr||∞
RMSE(K −Kr)

(a) Convergence of errors.

(b) True Kernel (c) Approximate kernel with
r = 512 features.

Figure 1: Kernel approximation for σ = 0.2, µ = 10.0.

In Table 1 we report the population running cost

h

M

M∑
m=1

N∑
l=1

L(s, zxm [l],vxm [l]),

interaction cost

h

N∑
l=1

1

2M2

M∑
m,m′=1

Kr(zxm
[l], zxm′ [l]) =

h

2M2

N∑
l=1

(
r∑
i=1

ζi(zxm
[l])

)2

,

terminal cost

1

M

M∑
m=1

ψ(zxm
[N ]),

and the total cost at the equilibrium.
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(b) True Kernel (c) Approximate kernel with
r = 512 features.

Figure 2: Kernel approximation for σ = 1.25, µ = 10.0.

(a) d = 2, σ = 0.2. (b) d = 50, σ = 0.2. (c) d = 100, σ = 0.2.

Figure 3: Agents’ trajectories in experiments A for σ = 0.2 plotted on the first two dimensions.
Agents move from 8 Gaussian distributions (colored red) to the target point (0, 0). Each plot
shows the trajectories solved in different dimensions: (a) d = 2, (b) d = 50, (c) d = 100.
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d = 2, σ = 1.25. (a) d = 50, σ = 1.25. (b) d = 100, σ = 1.25.

Figure 4: Agents’ trajectories in experiments A for σ = 1.25 plotted on the first two dimen-
sions. Agents move from 8 Gaussian distributions (colored red) to the target point (0, 0).
Each plot shows the trajectories solved in different dimensions: (a) d = 2, (b) d = 50, (c)
d = 100.

d σ Running Interaction Terminal Total
2 0.2 0.526 0.465 0.0108 1.10
2 1.25 0.621 3.57 0.00997 4.29
50 0.2 0.754 0.454 0.0116 1.32
50 1.25 0.825 3.58 0.0109 4.51
100 0.2 0.992 0.533 0.0140 1.67
100 1.25 1.11 3.26 0.0139 4.51

Table 1: Running, interaction, terminal, and total costs in experiments A.

5.2. Experiment B

In this set of experiments we assume that agents are initially distributed
according to

ρ0(x) ∝ exp

(
−‖x− xinitial‖

2

2 · 0.22
)
, x ∈ Rd,

where xinitial = (0, 1, 0, · · · , 0) ∈ Rd. Furthermore, we assume that the La-
grangian and terminal cost functions are

L(t, x, v) =
‖v‖2

4
+ 5 max

(
x′>

[
1 0
0 −5

]
x′, 0

)
, ψ(x) = 10‖x− xtarget‖2,

for (t, x, v) ∈ (0, 1)× Rd × Rd, where xtarget = (0,−1, 0, · · · , 0).
As before, we consider low-dimensional interactions with a kernel of the form

23. We take µ = 50 and σ = 1. The approximation error and the approximate
kernel for r = 512 are plotted in Figure 6. As before, the plots are generated
by evaluating the true kernel and the approximate kernel at points on a 2-
dimensional grid.

Thus, in experiments B we model a crowd-averse population that travels
from around an initial point, xinitial, to a target point, xtarget, avoiding wedge
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(a) 3D view. (b) XZ view.

(c) YZ view. (d) Top view.

Figure 5: 3D plots of agents’ trajectories in experiments A with low-dimensional interactions
(the first two dimensions) for d = 50, σ = 0.2. The plots show the first three dimensions of the
trajectories. Each agent starts from t = 0 (colored blue) to t = 1 (colored yellow). The plots
are from four different viewpoints. (a): 3D view, (b), (c): side views (XZ view and YZ view),
(d): top view (XY view). The interactions of agents are only across the first two dimensions.
Thus, while the agents spread in XY axis (see (d) for the top view), they move to the target
point almost linearly in other axis (see (b) and (c) for the side views).

shaped obstacles. The projections of agents’ trajectories on the first two dimen-
sions are plotted in Figure 7.

Note that the trajectories split at close to the initial and target points,
demonstrating the crowd-averse behavior of the agents. On the other hand,
obstacles force the agents to converge at the bottleneck.

We plot the 3D trajectories in Figure 8 and report running, interaction,
terminal, and total costs in Table 2.

5.3. Experiment C

In experiments A, B we consider high-dimensional problems with low-dimensional
interactions. Here, we perform experiments similar to A but with full-dimensional

13
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(a) Convergence of errors.
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r = 512 features.

Figure 6: Kernel approximation for σ = 1.0, µ = 50.0.

(a) d = 2. (b) d = 50. (c) d = 100.

Figure 7: Agents’ trajectories in experiments B plotted on the first two dimensions. Agents
move from the initial distribution (near (0, 1)) to the target point (0,−1) while avoiding the
obstacle (colored red). Each plot shows the trajectories solved in different dimensions: (a)
d = 2, (b) d = 50, (c) d = 100.
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(a) 3D view. (b) XZ view.

(c) YZ view. (d) Top view.

Figure 8: 3D plots of Agents’ trajectories with low-dimensional interactions in experiments B
for d = 50. The plots show the first three dimensions of the trajectories. Each agent starts
from t = 0 (colored blue) to t = 1 (colored yellow) while avoiding the obstacle (see Figure 7).
The plots are from four different viewpoints. (a): 3D view (the target point is at the lower-left
side of the plot and the initial distributions are at the top-right side of the plot), (b), (c): side
views (XZ view and YZ view), (d): top view (XY view). The interactions of agents are only
across the first two dimensions. Thus, while the agents spread in XY axis (see (d) for the top
view), they move to the target point almost linearly in other axis (see (c) for the side view).

d Running Interaction Terminal Total
2 3.72 12.2 0.388 16.3
50 2.63 15.4 0.533 18.6
100 2.86 14.8 0.567 18.3

Table 2: Running, interaction, terminal, and total costs in experiments B.

interactions to demonstrate the efficiency of our method for higher-dimensional
interactions as well.

Thus, we assume that we are in the same setup as in A with the only differ-
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ence that K is a full-dimensional interaction 16 with σ = σ̂ ·
√
d/2, and µ = 10

and µ = 1 for σ̂ = 0.2 and σ̂ = 1.25, respectively. Here, σ̂ is a dimensionless
repulsion radius. Indeed, since for ρ0 in 22 the variance of constituent Gaussians
is the same across dimensions, the average distance between agents scales with
a factor

√
d near the centers of these Gaussians. Hence, if we used the same

repulsion radius across all dimensions, the effective interaction would be differ-
ent, and it would be hard to interpret the results. By fixing a repulsion radius
σ̂ for d = 2 and scaling it accordingly we make sure that the effective interac-
tion is the same across all dimensions, and we should obtain similar equilibrium
behavior.

The results for σ̂ = 0.2 and σ̂ = 1.25 are plotted in Figures 9 and 10,
respectively.

(a) d = 50, µ = 10, σ̂ = 0.2. (b) d = 100, µ = 10, σ̂ = 0.2.

Figure 9: Agents’ trajectories in experiments C for σ̂ = 0.2 plotted on the first two dimensions.
Agents move from 8 Gaussian distributions (colored red) to the target point (0, 0). Each plot
shows the trajectories solved in different dimensions: (a) d = 50, (b) d = 100.

(a) d = 50, µ = 1, σ̂ = 1.25. (b) d = 100, µ = 1, σ̂ = 1.25.

Figure 10: Agents’ trajectories in experiments C for σ̂ = 1.25 plotted on the first two di-
mensions. Agents move from 8 Gaussian distributions (colored red) to the target point (0, 0).
Each plot shows the trajectories solved in different dimensions: (a) d = 50, (b) d = 100.

Note that the trajectories are almost straight lines when σ̂ = 1.25. In Fig-
ures 11, 12, 13 we plot the original and approximate kernels to explain this
phenomenon. More specifically, in Figures 11a and 12a we plot K(x, 0) and
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Kr(x, 0) along a random direction so that |x| ≤ 2.5. Furthermore, in Figures
11b and 12b we plot the decay of the approximation error K(x, µc)−Kr(x, µc)
in l∞ and l2 norms for x sampled according to ρ0, where µc is the center of one
of the eight constituent Gaussians of ρ0. Finally, we superimpose Figures 11a
and 12a in Figure 13.

As we can see in Figures 12a and 13, the interaction kernel is almost flat
for σ̂ = 1.25 within the support of ρ0. Hence, the interaction cost is approx-
imately the same for all agents, which effectively decouples the agents leading
to individual control problems with a purely quadratic cost. In the latter case,
optimal trajectories are straight lines as follows from the Hopf-Lax theory [60,
Section 3.3].

We plot the 3D trajectories in Figure 14 and report running, interaction,
terminal, and total costs in Table 3.
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Figure 11: Kernel approximation for d = 50, σ̂ = 0.2, µ = 10.0.
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Figure 12: Kernel approximation for d = 100, σ̂ = 1.25, µ = 1.0.
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Figure 13: Kernel values along a random ray for r = 512, σ̂ = 0.2, 1.25

d σ̂ µ running interaction terminal total
50 0.2 10 1.05 1.96 0.0192 3.20
50 1.25 1 0.674 0.492 0.00340 1.20
100 0.2 10 1.21 2.59 0.0177 3.97
100 1.25 1 0.912 0.495 0.00458 1.45

Table 3: Running, interaction, terminal, and total costs in experiments C.

6. Conclusion

We propose an efficient solution approach for high-dimensional nonlocal
MFG systems utilizing random-feature expansions of interaction kernels. We
thus bypass the costly state space discretizations of interaction terms and allow
for straightforward extensions of virtually any single-agent trajectory optimiza-
tion algorithm to the mean-field setting. As an example, we extend the direct
transcription approach in optimal control to the mean-field setting. Our numer-
ical results demonstrate the efficiency of our method by solving MFG problems
in up to a hundred-dimensional state space. To the best of our knowledge, this
is the first instance of solving such high-dimensional problems with non-deep-
learning techniques.

Future work involves the extension of our method to affine controls arising
in, e.g., quadrotors [61], as well as alternative trajectory generation methods
that involve deep learning [56, 48].

Compact feature space representations of interaction kernels are also valu-
able for inverse problems. In a forthcoming paper [62], we recover the interaction
kernel from data by postulating its feature space expansion.

Furthermore, note that feature space expansions of the kernel are not related
to the mean-field idealization. Thus, we plan to investigate applications of our
method to possibly heterogeneous multi-agent problems where the number of
agents is not large enough for the mean-field approximation to be valid [52, 53].
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(a) 3D view. (b) XZ view.

(c) YZ view. (d) Top view.

Figure 14: 3D plots of Agents’ trajectories in experiments C with full-dimensional interactions
for d = 50, σ̂ = 0.2. The plots show the first three dimensions of the trajectories. Each agent
starts from t = 0 (colored blue) to t = 1 (colored yellow). The plots are from four different
viewpoints. (a): 3D view, (b), (c): side views (XZ view and YZ view), (d): top view (XY
view). Because of full-dimensional interactions, the spread of agents’ trajectories can be
observed from every viewpoints.

Finally, an interesting and challenging question is the convergence analysis
of the primal-dual algorithm 21 described in Section 4. We anticipate analysis
methods developed in [41] to be useful for this question.
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Appendix

Derivation of 7. Assume that v(t, x) is a smooth vector field. For every x ∈ Rd
denote by zx(t) the solution of the ODE

żx(t) = v(t, zx(t)), zx(0) = x. (24)

If agents are distributed according to ρ0 at time t = 0 and follow the flow in 24,
their distribution, ρ(t, x), satisfies the continuity equation

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0, ρ(0, x) = ρ0(x).

Now assume that φa is the solution of 8. From the optimal control theory we
have that∫

Rd

φa(0, x)dρ0(x)

≤
∫
Rd

[∫ T

0

{
L(t, zx(t), v(t, zx(t))) +

r∑
i=1

ai(t)ζi(zx(t))

}
dt+ ψ(zx(T ))

]
dρ0(x)

=

∫
Rd

∫ T

0

{
L(t, x, v(t, x)) +

r∑
i=1

ai(t)ζi(x)

}
dtdρ(t, x) +

∫
Rd

ψ(x)dρ(T, x),

where equality holds for (ρ, v) = (ρa, va) given by

va(t, x) = −∇pH(t, x,∇φa(t, x))

∂tρa(t, x)−∇ · (ρa(t, x)∇pH(t, x,∇φa(t, x))) = 0, ρa(0, x) = ρ0(x).
(25)

Summarizing, we obtain that∫
Rd

φa(0, x)dρ0(x) = inf
∂tρ+∇·(ρv)=0
ρ(0,x)=ρ0(x)

∫
Rd

∫ T

0

L(t, x, v(t, x))dtdρ(t, x)

+

∫
Rd

∫ T

0

r∑
i=1

ai(t)ζi(x)ρ(t, x)dtdx+

∫
Rd

ψ(x)dρ(T, x),

(26)

where the equality holds for (ρ, v) = (ρa, va) in 25. Applying perturbation
analysis for optimization problems [63, Proposition 4.12] we obtain

δ

δai(t)

∫
Rd

φa(0, x)dρ0(x) =

∫
Rd

ζi(x)dρa(t, x) =

∫
Rd

ζi(zx,a(t))dρ0(x), (27)

where zx,a is the solution of 24 for the optimal control v = va.
Now we are in the position for proving the equivalence between 6 and 7. We

have that ∫
Rd

Kr(x, y)dρ(t, y) =

r∑
i=1

ai(t)ζi(x), (28)
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where

ai(t) =

r∑
j=1

kij

∫
Rd

ζj(y)dρ(t, y). (29)

Therefore, (φ, ρ) solve 6 if and only if (φ, ρ) = (φa, ρa) for a satisfying 29.
Furthermore, 27 yields that 29 is precisely equivalent to

a(t) = K
δ

δa(t)

∫
Rd

φa(0, x)dρ0(x)

which leads to 7.
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trol formulation of mean field game based large scale coordina-
tion of loads in smart grids, Automatica 100 (2019) 312 – 322.
doi:https://doi.org/10.1016/j.automatica.2018.11.029.
URL http://www.sciencedirect.com/science/article/pii/

S0005109818305612
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