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A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION WITH APPLICATIONS TO

MULTI-AGENT CONTROL AND SAMPLING

KATY CRAIG, KARTHIK ELAMVAZHUTHI, MATT HABERLAND, AND OLGA TURANOVA

Abstract. As a counterpoint to classical stochastic particle methods for linear diffusion equations, such

as Langevin dynamics for the Fokker-Planck equation, we develop a deterministic particle method for the

weighted porous medium equation and prove its convergence on bounded time intervals. This general-
izes related work on blob methods for unweighted porous medium equations. From a numerical analysis

perspective, our method has several advantages: it is meshfree, preserves the gradient flow structure of
the underlying PDE, converges in arbitrary dimension, and captures the correct asymptotic behavior in

simulations.

The fact that our method succeeds in capturing the long time behavior of the weighted porous medium
equation is significant from the perspective of related problems in quantization. Just as the Fokker-Planck

equation provides a way to quantize a probability measure ρ̄ by evolving an empirical measure ρN (t) =
1
N

∑N
i=1 δXi(t) according to stochastic Langevin dynamics so that ρN (t) flows toward ρ̄, our particle method

provides a way to quantize ρ̄ according to deterministic particle dynamics approximating the weighted porous

medium equation. In this way, our method has natural applications to multi-agent coverage algorithms and
sampling probability measures.

A specific case of our method corresponds exactly to the mean-field dynamics of training a two-layer

neural network for a radial basis function activation function. From this perspective, our convergence result
shows that, in the over parametrized regime and as the variance of the radial basis functions goes to zero,

the continuum limit is given by the weighted porous medium equation. This generalizes previous results,

which considered the case of a uniform data distribution, to the more general inhomogeneous setting. As a
consequence of our convergence result, we identify conditions on the target function and data distribution

for which convexity of the energy landscape emerges in the continuum limit.
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1. Introduction

Quantization is a fundamental problem throughout the sciences, in which one seeks to approximate a
continuum distribution or signal by discrete objects [43]. Mathematically, the quantization problem may be
modeled by fixing a target probability measure ρ̄ on a subset Ω of Rd and seeking locations {Xi}Ni=1 in Ω

so that the empirical measure ρN = 1
N

∑N
i=1 δXi approximates ρ̄ in an appropriate sense. In statistics, this

March 2, 2022.
2020 Mathematics Subject Classification. Primary 35Q35, 35Q62, 35Q68, 35Q82, 65M12, 82C22, 93A16.
The work of K. Craig is supported by NSF DMS grant 1811012 and a Hellman Faculty Fellowship. K. Craig and O. Turanova

gratefully acknowledge the support from the Simons Center for Theory of Computing, at which part of this work was completed.
The work of K. Elamvazhuthi is supported by AFOSR grants FA9550-18-1-0502 and FA9550-18-1-0502.

The work of O. Turanova is supported by NSF DMS grant 1907221.

©XXXX (copyright holder)

1



2 KATY CRAIG, KARTHIK ELAMVAZHUTHI, MATT HABERLAND, AND OLGA TURANOVA

problem arises in the context of sampling, since the locations {Xi}Ni=1 represent approximate samples drawn
from ρ̄. In control theory, this problem is relevant to multi-agent coverage algorithms [13, 28], in which one
seeks to control a fleet of robots to evolve from their current locations {Xi

0}Ni=1 to terminal locations {Xi}Ni=1

distributed according to ρ̄.
There is a vast literature on different approaches to the quantization problem, arising from the many

different criteria by which ρN = 1
N

∑N
i=1 δXi is considered a “good” approximation of ρ̄. For example, if

one seeks ρN to approximate ρ̄ optimally in the Wasserstein metric of optimal transport, recent work has
shown that this is closely related to the well-known Lloyd’s algorithm and has a fascinating connection to
weighted fast diffusion equations [11,12,17,46,47,60]. In the statistics literature, developing efficient sampling
methods and quantifying their convergence is an active area of research, from classical methods based on
Langevin dynamics to more recent developments, such as Hamiltonian Monte Carlo or Stein Variational
Gradient Descent [10,54,77]. In the control theory literature, recent work has developed multiagent coverage
algorithms based on stochastic and kernelized particle methods for linear diffusions, as well as theoretically
explored the potential of nonlinear diffusions for the coverage task, via finite volume and graph-based methods
[37–39,51, 61]. Other authors have explored the role of different notions of optimality in designing coverage
algorithms [5, 6].

In each of these applications, quantization methods based on partial differential equations play an impor-
tant role. A classical approach is given by evolving the locations of the particles by Langevin dynamics,{

dXi
t =
√

2dBit −∇ log ρ̄(Xi
t)dt,

Xi(0) = Xi
0,

which is the stochastic particle discretization of the Fokker-Planck equation,{
∂tρ = ∆ρ−∇ · (ρ∇ log ρ̄) ,

ρ(0) = ρ0.
(FP)

In the present work, we continue in this line of PDE-principled methods for sampling and coverage
algorithms. We introduce a new method based on the weighted porous medium equation (WPME). Given a
bounded, convex domain Ω ⊆ Rd, a log-concave, strictly positive target ρ̄ : Rd → R with

∫
Ω
ρ̄ = 1, and a

fixed external potential V ∈ C2(Ω), we consider the equation,{
∂tρ = ∇ ·

(
ρ̄
2∇
(
ρ2

ρ̄2

))
+∇ · (∇V ρ) ,

ρ(0) = ρ0,
(WPME)

with no-flux boundary conditions on ∂Ω. The initial conditions are chosen to satisfy ρ0 ≥ 0 and
∫

Ω
ρ0 = 1.

(See Proposition 3.10 for the definition of weak solution.)
The dynamics of (WPME) arise in connection to quantization since, for V = 0, solutions of (WPME)

converge as t → +∞ to ρ̄ on Ω in the Wasserstein metric; see Proposition 3.14. Consequently, if one can

approximate solutions ρ(t) of (WPME) by an empirical measure ρN (t) = 1
N

∑N
i=1 δXi(t), this naturally leads

to a method for flowing the empirical measure toward ρ̄ on Ω in the long time limit.
The main goal of the present work is to develop a deterministic particle method for (WPME), constructing

an empirical measure ρN (t) = 1
N

∑N
i=1 δXi(t) and a system of ordinary differential equations to govern the

locations of the particles Xi(t) so that ρN (t) indeed converges, as N → +∞, to a solution ρ(t) of (WPME)
on bounded time intervals. In Sections 1.4-1.5 below, we describe the specific assumptions we impose and
the precise statements of our results, including which of our results continue to hold for ρ̄ not log-concave,
on unbounded domains Ω, and for less regular V .

On one hand, (WPME) is of interest outside the context of quantization. Weighted porous medium
equations arise throughout the sciences, from models of fluid flow to biological swarming [44, 74]. From
this perspective, Theorem 1.4 of the present work provides a new numerical method for simulating these
phenomena. In particular, our work extends the blob method for the porous medium equation (ρ̄ = 1), which
has been studied by Oelschläger [62], Lions and MasGallic [52], Carrillo, Craig, and Patacchini [20], and
Burger and Esposito [15], to the case of weighted porous medium equations. (See below for a more detailed
discussion of the relation with these results.) This provides a provably convergent numerical method for
(WPME) in arbitrary dimensions, contributing to the substantial literature on numerical methods for such
equations, including classical finite volume, finite element, and discontinuous Galerkin methods [8,14,19,71],
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as well as methods based on alternative deterministic particle methods in one spatial dimension [18,24,32,33,
58], Lagrangian evolution of the transport map along the flow [23,25,40,57,80], and many others [7,21,22,42].
From a numerical analysis perspective, the key benefits of our approach are that it is meshfree, deterministic,
preserves the gradient flow structure and asymptotic behavior, and converges in arbitrary dimension.

On the other hand, we believe (WPME) is particularly interesting from the perspective of quantization
for several reasons. First, as we describe below, there is a strong analogy between (WPME) and (FP), so
that a quantization method based on (WPME) provides a counterpoint to classical Langevin dynamics.

A second reason for studying (WPME) in connection with quantization comes from applications in
sampling. Over the past five years, Stein Variational Gradient Decent, originally introduced by Liu and
Wang [54], has attracted attention in the statistics community as a novel method for sampling a target mea-
sure ρ̄ via a deterministic interacting particle system, which has a formal Wasserstein gradient flow structure
with respect to a convex mobility [50,53,55]. Recent work by Chewi et al. [26] identified that, when V = 0,
Stein Variational Gradient Descent (SVGD) may be interpreted as a kernelized version of (WPME), which
has a rigorous Wasserstein gradient flow structure, as we explain below. In this way, understanding properties
of (WPME) and its discretizations has the potential shed light on behavior of SVGD more generally.

A third reason for interest in (WPME) from a quantization perspective comes from applications in control
theory. This is due to the fact the particle method we succeed in developing for (WPME) is deterministic, an
important attribute in the context of coverage algorithms, since the results of the algorithm wouldn’t need
to be averaged over many runs, and there is hope that future research could lead to quantitative convergence
guarantees. This is in contrast to the case of classical quantization methods based on (FP), for which the
natural Langevin particle approximation is stochastic.

A final reason for interest in (WPME) comes from a variant of the quantization problem arising in models
of two-layer neural networks. As we will explain below, the particle method we develop to approximate
solutions of (WPME) coincides exactly with the dynamics for training a two-layer neural network with a
radial basis function activation function. In this way, our convergence result sheds light on the continuum
limit of two-layer neural networks, showing that they converge to a solution of (WPME); see Corollary 1.6.
This generalizes the previous convergence result of Javanmard, Mondelli, and Montanari [48] to the case of
nonuniform data distributions. As a consequence of this result, we are able provide conditions on the target
function and data distribution that guarantee that the continuum limit of the training dynamics of two-
layer neural networks is the gradient flow of a convex energy, where the relevant notion of convexity along
Wasserstein gradient flow is displacement convexity or convexity along Wasserstein geodesics; see Definition
2.6. This emergence of convexity in the continuum limit is relevant to the behavior of neural networks in
practice, where researchers seek to explain why gradient descent dynamics sometimes converge to a global
optimum, in spite of the fact that, at the discrete level, the energy landscape is nonconvex [27,81].

The remainder of the introduction proceeds as follows. In Section 1.1, we state fundamental properties of
(WPME) and describe the analogy between (WPME) and (FP). In Section 1.2, we introduce our particle
method for approximating solutions of (WPME). In Section 1.3, we describe the connection with two-layer
neural networks. In Sections 1.4 and 1.5, we state our main assumptions and results. Finally, in Section 1.6,
we outline our approach and describe directions for future work.

1.1. The weighted porous medium equation. A key feature of (WPME), which serves as a guiding
principle of the present work, is that is it a Wasserstein gradient flow of the energy,

F : P(Rd)→ R ∪ {+∞}, F(µ) = E(µ) + V(µ) + VΩ(µ),(1.1)

where P(Ω) denotes the set of Borel probability measures on Ω; and the internal energy E , external potential
energy V, and confining potential energy VΩ are given by,

E(µ) =

{
1
2

∫
Rd
|µ(x)|2
ρ̄(x) dx if µ� ρ̄(x)dx and dµ(x) = µ(x)dx,

+∞ otherwise,
(1.2)

V(µ) =

∫
Rd
V (x)dµ(x),(1.3)

VΩ(µ) =

{
0 if supp µ ⊆ Ω,

+∞ otherwise.
(1.4)
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The internal energy E induces the nonlinear diffusion term, the external potential V induces the convection
term, and the confining potential VΩ restricts the dynamics to Ω, with no flux boundary conditions on ∂Ω.
Our primary interest, and the main mathematical challenge in establishing our results, is in the nonlinear
diffusion induced by E and its approximation by a deterministic particle method. In Section 2, we provide
detailed background on the Wasserstein metric W2 and Wasserstein gradient flows. In Proposition 3.10, we
recall the precise statement of the result that solutions of (WPME) are the gradient flow of F .

The fact that (WPME) has a gradient flow structure is in close analogy with the (FP) equation: in their
seminal work [49], Jordan, Kinderlehrer, and Otto established that (FP) is the Wasserstein gradient flow of
the Kullback-Leibler divergence,

KL(µ, ρ̄) =

∫
Ω

log(µ/ρ̄) dµ, for µ� ρ̄.

From this perspective, it is useful to notice that, when V = 0, (WPME) can also be thought of as the
Wasserstein gradient flow of the χ2 divergence [72],

χ2(µ, ρ̄) =

{
1
2

∫ |µ(x)−ρ̄(x)|2
ρ̄(x) dx, if µ� Ld, dµ(x) = µ(x)dx, and supp µ ⊆ Ω,

+∞ otherwise.

This can be seen by noticing
∫
|µ(x)− ρ̄(x)|2/ρ̄(x)dx =

∫
|µ(x)|2/ρ̄(x)dx−1, so that, when V = 0, our energy

F agrees with χ2, up to a constant that does not affect the dynamics of the gradient flow: F(µ) + 1/2 =
χ2(µ, ρ̄). In what follows, we will always suppose that ρ̄ is normalized to satisfy

∫
Ω
ρ̄ = 1, and so that for

µ ∈ P(Rd), the KL divergence and the χ2 divergence measure the discrepancy between µ and ρ̄ on Ω and
vanish in the case that µ = ρ̄ on Ω.

The gradient flow structures of (WPME) and (FP) have important interpretations from the perspective of
quantization, since they encode key information about how quickly solutions are flowing toward ρ̄. The fact
that solutions of the (FP) equation are the Wasserstein gradient flow of the KL divergence is equivalent to
saying that they dissipate the KL divergence as quickly as possible, with respect to the Wasserstein structure.
In the same way, solutions of the (WPME) equation dissipate the χ2 divergence as quickly as possible, with
respect to the Wasserstein structure.

Another important feature of (WPME) from the perspective of quantization are the available estimates
quantifying its convergence to equilibrium. Chewi et al. [26], show that, if Ω = Rd, V = 0, and ρ̄ satisfies a
Poincaré inequality, then, along smooth solutions, the Kullback-Leibler divergence decreases exponentially:

(1.5) KL(ρ(t), ρ̄) ≤ e−Cρ̄ t KL(ρ(0), ρ̄), for Cρ̄ > 0.

If, in addition, ρ̄ is strongly log-concave, then the χ2 divergence decreases exponentially:

χ2(ρ(t), ρ̄) ≤ e−Cρ̄ tχ2(ρ(0), ρ̄), for Cρ̄ > 0,

This mirrors the theory for (FP), in which a Poincaré inquality ensures exponential decay of the χ2 divergence
and log-concavity ensures decay of the KL divergence. (See Matthes, McCann, and Savaré’s flow interchange
method for general results of this form [56]. In addition, see Grillo, Muratori, and Porzio [44], who rigorously
proved exponential convergence to equilibrium of weak solutions in Lp spaces for all p < +∞.) Furthermore,
in the case of the (WPME) equation, if ρ̄ merely satisfies a weaker condition, known as an L2/3-Poincaré
inequality, then Dolbeault et al. [35] showed that the χ2 divergence decreases polynomially. This raises
the possibility that, for different choices of ρ̄ and initial conditions ρ0, there may exist contexts in which
solutions of (WPME) converge to ρ̄ with stronger convergence guarantees than solutions of (FP). Since
developing general conditions on the target ρ̄ and the initialization ρ0 that distinguish whether (WPME)
or (FP) equilibrates more quickly remains an active area of research, we do not claim that the dynamics of
(WPME) offer superior long time behavior to (FP). Instead, we merely observe that, at the continuum level,
(WPME) provides competitive dynamics. Understanding when solutions to (WPME) or (FP) converge more
quickly to equilibrium may, in the future, shed light on which quantization methods are superior in different
contexts.

1.2. Particle approximation of (WPME). The aim of the present work is to design a deterministic
particle method for approximating solutions of (WPME) that preserves its gradient flow structure. Since
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solutions of (WPME) are gradient flows of the energy (1.1-1.4), we seek to approximate them by gradient
flows of the regularized energy, defined by,

Fε,k : P(Rd)→ R ∪ {+∞}, Fε,k(µ) = Eε(µ) + Vε(µ) + Vk(µ),(1.6)

for the energies Eε(µ), Vε(µ), and Vk(µ) given by,

Eε(µ) =
1

2

∫
Rd

|ζε ∗ µ|2(x)

ρ̄(x)
dx,(1.7)

Vε(µ) =

∫
(ζε ∗ V )(x)dµ(x),(1.8)

Vk(µ) =

∫
Vk(x)dµ(x).(1.9)

Here ζε ∈ C∞(Rd) is a rapidly decreasing mollifier and Vk ∈ C2(Rd), for k ∈ N, is a convex function that
vanishes on Ω and approaches +∞ on Ωc as k → +∞.

The energy Eε(µ) is an approximation, as ε→ 0, of E . This regularized energy has superior differentiability
properties along empirical measures, ensuring that the gradient flow starting at empirical measure initial
data leads to a well-posed particle method. It also enjoys the property,

Eε(ρ) = E(ζε ∗ ρ),(1.10)

which is a key element in our proof of an H1 bound for ζε ∗ ρε along solutions of the gradient flow; see
Theorem 4.1. The energy Vε is an approximation of V. While many different methods of approximating V
would work well both numerically and theoretically, we focus our attention on Vε due to the connection with
two-layer neural networks. Finally, the energy Vk is an approximation, as k → +∞, of VΩ.

While the main focus of our work is the analysis of how dynamics induced by Eε, for general initial data,
approximate dynamics induced by E (indeed, if Ω is the entire space Rd and V is taken to be zero, then the
energy Fε,k is exactly Eε), our analysis of how the gradient flow dynamics induced by Vk converge to those
from VΩ as k → +∞ also generalizes existing results by Alasio, Bruna, and Carrillo to weighted porous
medium equations [1]. (See also recent work by Patacchini and Slepčev, which uses a similar approach to
study well-posedness of aggregation equations on compact manifolds [65].) Our motivations for considering
this approximation of the confining potential VΩ are twofold. First, it simplifies the implementation of the
particle method, obviating the need to implement reflection boundary conditions. Second, it allows for the
most challenging aspect of the analysis — the relationship between the dynamics induced by Eε and E — to
be carried out on Rd, rather than on a domain with boundary.

Wasserstein gradient flows of the regularized energy Fε,k are characterized by the equation,{
∂tρ = ∇ · (ρ (∇ζε ∗ (ζε ∗ ρ/ρ̄) +∇ζε ∗ V +∇Vk)) ,

ρ(0) = ρ0,
(WPMEε,k)

defined on all of Rd in the duality with C∞c (Rd× (0,+∞)); see Proposition 3.12. If the initial conditions are

given by an empirical measure, ρ0 =
∑N
i=1 δXi0m

i, with
∑N
i=1m

i = 1, then the solution remains an empirical

measure for all time. Concretely, we have ρ(t) =
∑N
i=1 δXi(t)m

i, and the locations of the particles {Xi(t)}Ni=1

are characterized as solutions of,{
Ẋi(t) = −∑N

j=1 f(Xi, Xj)mj −∇ζε ∗ V (Xi)−∇Vk(Xi),

Xi(0) = Xi
0,

(1.11)

for,

f(x, y) :=

∫
Rd

∇ζε(x− z)ζε(y − z)
ρ̄(z)

dz;(1.12)

see Proposition 3.13. In Section 7.1, we provide sufficient conditions on ρ̄ for which the integral in f(x, y)
has an analytic formula, in which case it can be precomputed exactly and does not contribute to the
computational complexity of our method.

Based on the intuition that Fε,k is an approximation of F , it is natural to hope that gradient flows of
Fε,k approximate gradient flows of F . Our main result is that this is indeed true. We show that the particle
method defined by (1.11) converges to a solution of (WPME) on bounded time intervals, provided that
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the initial conditions ρ0 have bounded entropy and the number of particles N grows sufficiently quickly as
ε→ 0; see Theorem 1.4. Note that this method formally extends to equations of the form (WPME) with an
additional term −∇ · (vρ) on the right hand side, for general velocities v(x, t), by adding a term of the form
v(Xi(t), t) to the right hand side of (1.11).

Our work on the convergence of the ε→ 0 limit builds on several previous works studying the properties
of (1.11) as ε→ 0. All previous works have considered the spatially homogeneous case ρ̄ ≡ 1. The first work
in this direction was due to Oelschläger [62], who considered the case V = Vk = 0 and proved convergence to
classical, strictly positive solutions of (WPME) in arbitrary dimensions and convergence to weak solutions
in one dimension. Subsequently, Lions and Mas-Gallic [52], also in the case V = Vk = 0, proved convergence
of (WPMEε,k) as ε → 0, provided that the initial conditions ρ0 had uniformly bounded entropy, thereby
excluding particle initial data required to connect (WPMEε,k) to the system of ODEs (1.11). The assumption

of bounded entropy played an important role in Lions and Mas-Gallic’s proof of a Ḣ1 bound for regularized
solutions to (WPMEε,k). (In fact, the analogous bound also plays an important role in the present work – see
Theorem 4.1 for a generalization of this result to the spatially inhomogeneous setting.) Next, Carrillo, the
first author, and Patacchini [20] generalized Lions and Mas-Gallic’s approach to porous medium equations
of the form,

∂tρ = ∆ρm +∇ · (ρ(∇V +∇W ∗ ρ)).

In the case m = 2, they obtained convergence of the ε→ 0 limit under appropriate continuity and semicon-
vexity assumptions on V and W ; for 1 ≤ m < 2, they obtained Γ-convergence of the corresponding energies
as ε → 0; and for m > 2, they obtained conditional convergence of the ε → 0 limit, as long as certain a
priori estimates were preserved along the flow. Again, Carrillo, Craig, and Patacchini’s work required the
initial data to have bounded entropy, excluding particle solutions. Very recently, Burger and Esposito [15]
continued the study of the m = 2 case for more general velocity fields v(x, t),

∂tρ+∇ · (ρv) = ∆ρm,

and weaker regularity on the mollifier ζ.
Our work makes three contributions to this active area of research. We obtain true convergence of

the particle method, relaxing the hypothesis that the initial data have bounded entropy by using stability
properties of the regularized flow; see Theorem 1.4. Our result holds for spatially inhomogeneous porous
medium equations, allowing general ρ̄ ∈ C1(Rd) that are log-concave and bounded above and below on
Ω ⊆ Rd. (See the next section for a discussion of where the log-concavity assumption may be weakened.)
Finally, by allowing spatially inhomogenous equations, we identify a connection between our particle method
and problems in sampling, control theory, and training of two-layer neural networks.

1.3. Application to two-layer neural networks. An additional reason for interest in the convergence
of (1.11-1.12) to (WPME), aside from its utility as a particle approximation, is that the dynamics of (1.11-
1.12) for Ω = Rd coincide precisely with the training dynamics for mean field models of two-layer neural
networks with a radial basis function activation function. In this context, one is given a data distribution
ν, a nonnegative target function f0 ∈ L2(ν), and an activation function Φε(x, z) = ζε(x− z), and one seeks

to choose parameters, {Xi}Ni=1, so that the empirical measure ρN = 1
N

∑N
i=1 δXi minimizes the following

energy, known as the population risk :

Rε(µ) =
1

2

∫ ∣∣∣∣∫ Φε(x, z)dµ(x)− f0(z)

∣∣∣∣2 dν(z).(1.13)

In several recent works, it was discovered that evolving the parameters Xi(t) by gradient descent of the
function (X1, . . . , Xn) 7→ Rε(ρN ) is equivalent to evolving the empirical measure ρN by the Wasserstein
gradient flow of Rε [27, 48, 59, 66, 70, 79]. To see the connection with (1.11-1.12), note that, using the
definition of Φε, expanding the square, and applying Tonelli’s theorem (see also the associativity property
of convolution (2.1)), we obtain,

Rε(µ) =
1

2

∫
|ζε ∗ µ(z)|2dν(z)−

∫
ζε ∗ µ(z)f0(z)dν(z)− 1

2

∫
|f0(z)|2dν(z)(1.14)

= Eε(µ) +

∫
(ζε ∗ V )(x)dµ(x) + C = Eε(µ) + Vε(µ) + C,
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for,

ν = 1/ρ̄ , V = −f0ν , C = −1

2

∫
|f0(z)|2dν(z).(1.15)

This shows that, for Ω = Rd, which ensures Vk ≡ 0, we have Rε(ρ) = Fε,k(ρ)+C. Since the constant does
not effect the dynamics of the gradient flow, we see that the gradient flow of Rε for general initial data ρ0 is
characterized by (WPMEε,k), and the evolution for particle initial data corresponds to (1.11-1.12). Corollary
1.6, which follows from our convergence result for the gradient flows of Fε,k, states that, for well-behaved
initial conditions, particle solutions of (1.11-1.12) converge to a gradient flow of,

R(µ) =

{
1
2

∫
|µ(z)− f0(z)|2 dν(z) if µ� Ld, dµ(z) = µ(z)dz,

+∞ otherwise.
(1.16)

This generalizes previous work due to Javanmard, Mondelli, and Montanari [48], which considered the
limit ε→ 0 in the specific case of a uniform data distribution ν = 1Ω/|Ω|, smooth target function f , bounded
domain Ω, and compactly supported radial basis function ζ, with the no flux boundary conditions from the
continuum PDE imposed by reflecting boundary conditions for the particle ODEs. The fact that our result
holds for general nonuniform data distributions ν is significant from the perspective of two-layer neural
networks, since, as can be seen in Corollary 1.6, there is an interplay between the data distribution ν and
the target function f to determine when convexity of the energy Fε,k emerges in the continuum limit.

1.4. Assumptions. We now describe our assumptions. We consider a domain Ω ⊆ Rd satisfying,

Ω is nonempty, open, and convex.(D)

We suppose our mollifier satisfies,

ζ ∈ C2(Rd) is even, nonnegative, ‖ζ‖L1(Rd) = 1, D2ζ ∈ L∞(Rd),

ζ(x) ≤ Cζ |x|−q and |∇ζ(x)| ≤ Cζ |x|−q
′
, for Cζ > 0, q > d+ 1, q′ > d.

(M)

This assumption is satisfied by both Gaussians and smooth functions with compact support. Note that this
assumption ensures that ζ has finite first moment,

∫
Rd |x|ζ(x)dx < +∞.

We suppose the external potential V satisfies,

V ∈ C2(Rd) ∩ L1(Rd) ∩ L∞(Rd), with ∇V ∈ L∞(Rd) and D2V uniformly bounded below.(V)

We are optimistic that our results may continue to hold under weaker regularity hypotheses on V , but we
leave this question to future work, since our primary interest is the approximation of the diffusive dynamics
arising from E via the particle method induced by Eε.

We suppose that our approximation of the confining potential Vk, for k ∈ N, satisfies,

Vk is nonnegative, convex, and twice differentiable with D2Vk ∈ L∞(Rd),(C)

Vk = 0 on Ω and lim
k→∞

(
inf
x∈B

Vk(x)

)
= +∞ for any ball B ⊂⊂ Ωc.(Ck)

Note that assumption (C) ensures Vk ∈ L1(µ) and ∇Vk ∈ L2(µ) for any µ ∈ P(Rd) with
∫
|x|2dµ(x) < +∞.

These assumptions play the following role in our proof: Assumption (C) ensures well-posedness of the
gradient flows, and Assumption (Ck) allows us to recover the correct limiting dynamics as k → +∞. In
particular, note that (Ck) implies that, in the k → ∞ limit, Vk approximates the hard cutoff potential VΩ,
which is given by,

(1.17) VΩ(x) =

{
0 for x ∈ Ω,

+∞ otherwise.

Finally, we suppose that our target ρ̄ satisfies the regularity assumption,

ρ̄ ∈ C1(Rd) and there exists C > 0 so that 1/C ≤ ρ̄(x) ≤ C, for all x ∈ Rd.(T)

Assumption (T) is sufficient to ensure that the energy Eε is lower semicontinuous, convex, and subdifferen-
tiable, so that gradient flows of Eε are well posed. It also allows us to conclude that the energy E is lower
semicontinuous. However, in order to obtain convexity and subdifferentiability of E , hence well-posedness
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of gradient flows, we leverage existing results due to Ambrosio, Gigli, and Savaré [3] and require ρ̄ to be
log-concave; that is,

x 7→ log(ρ̄(x)) is concave.

It is an open question whether well-posedness of the gradient flow of E could be obtained under weaker
assumptions on ρ̄. Interestingly, the main estimates in our proof of the convergence of the gradient flows
of Fε,k to F (Theorem 4.1, Theorem 5.1, and Proposition 5.2) do not require log-concavity of ρ̄. Instead,
log-concavity comes into play when we seek to identify that the limit as ε → 0 of gradient flows of Eε is
indeed a gradient flow of E , since log-concavity of ρ̄ ensures that the metric slope of E is a a strong upper
gradient ; see Section 2.3 and [3, Section 1.2]. For this reason, we are optimistic that, in future work, it will
be possible to extend our results to ρ̄ that are not log-concave, once the difficulty of obtaining well-posedness
of the gradient flow of E and characterization of its strong upper gradient are overcome.

1.5. Main Results. With these assumptions in hand, we now state our main results. In order to get
convergence of (WPMEε,k) to (WPME), we consider the limits ε → 0 and k → +∞ separately: first, we
show that gradient flows of Fε,k converge, as ε→ 0, to a gradient flow of,

Fk(ρ) = E(ρ) + V(ρ) + Vk(ρ);(1.18)

second, we establish that gradient flows of Fk converge, as k → +∞, to a gradient flow of F .
Our first theorem shows that, if the initial conditions ρε,k(0) of the gradient flow of Fε,k have uniformly

bounded entropy S(µ) and second moment M2(µ), given by,

S(µ) =

{∫
Rd µ(x) logµ(x)dLd(x) if µ� Ld and dµ(x) = µ(x)dx,

+∞ otherwise,
M2(µ) =

∫
Rd
|x|2dµ(x),(1.19)

and the initial conditions are “well-prepared,” then the gradient flows of Fε,k with initial data ρε,k(0)
converge, as ε→ 0, to a gradient flow of Fk with initial data ρk(0).

Recall that a probability measure µ ∈ P(Rd) lies in the domain of an energy G : P(Rd) → R ∪ {+∞} if
G(µ) < +∞. We denote this by µ ∈ D(G). We also write P2(Rd) = P(Rd) ∩D(M2). Finally, we often use
the notion of narrow convergence of probability measures; see Definition 2.2.

Theorem 1.1 (convergence of gradient flows as ε → 0). Assume (D), (M), (V), (C), (T), and that ρ̄ is
log-concave. Fix T > 0 and k ∈ N. For ε > 0, let ρε,k ∈ AC2([0, T ];P2(Rd)) be a gradient flow of Fε,k
satisfying,

sup
ε>0
S(ρε,k(0)) <∞ and sup

ε>0
M2(ρε,k(0)) <∞.(1.20)

Suppose there exists ρk(0) ∈ D(Fk) ∩ P2(Rd) such that,

ρε,k(0)
ε→0−−−→ ρk(0) narrowly and lim

ε→0
Fε,k(ρε,k(0)) = Fk(ρk(0)).(1.21)

Then ρε,k(t)
ε→0−−−→ ρk(t) narrowly, for all t ∈ [0, T ], where ρk ∈ AC2([0, T ];P2(Rd)) is the gradient flow of

Fk with initial data ρk(0).

Next, we consider the limit as k → +∞, proving that gradient flows of Fk with “well-prepared” initial
data converge to a gradient flow of F .

Theorem 1.2 (convergence of gradient flows as k → +∞). Assume (D), (V), (C), (Ck), (T), and that ρ̄ is
log-concave. Fix T > 0. For k ∈ N, let ρk ∈ AC2([0, T ];P2(Rd)) be a gradient flow of Fk and suppose there
exists ρ(0) ∈ D(F) ∩ P2(Rd) such that,

ρk(0)
k→+∞−−−−−→ ρ(0) narrowly and lim

k→+∞
Fk(ρk(0)) = F(ρ(0)).(1.22)

Then ρk(t)
k→∞−−−−→ ρ(t) narrrowly, for all t ∈ [0, T ], where ρ ∈ AC2([0, T ];P2(Rd)) is the gradient flow of F

with initial data ρ(0).

Combining the previous two theorems, we immediately obtain the following corollary, which yields con-
vergence of the gradient flows as ε → 0 and k → +∞. For simplicity, we state this result in the specific
case when the same initial conditions are used for all gradient flows, though the result continues to hold for
varying initial data satisfying the hypotheses of Theorems 1.1 and 1.2.
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Corollary 1.3 (convergence of gradient flows as k → +∞, ε = ε(k) → 0). Assume (D), (M), (V), (C),
(Ck), (T) and that ρ̄ is log-concave. Fix T > 0 and ρ(0) ∈ D(F) ∩D(S) ∩ P2(Rd).

For ε > 0 and k ∈ N, let ρε,k ∈ AC2([0, T ];P2(Rd)) be a gradient flow of Fε,k with initial data ρ(0).
Then, as k → +∞, there exists a sequence ε = ε(k) → 0 so that ρε,k(t) narrowly converges to ρ(t), for all
t ∈ [0, T ], where ρ ∈ AC2([0, T ];P2(Rd)) is the gradient flow of F with initial data ρ(0).

The preceding corollary requires that the initial conditions of the gradient flow of Fε,k have bounded
entropy, which explicitly excludes empirical measure initial data. However, we are able to extend this result
to empirical measure initial data by leveraging stability properties of the gradient flow of Fε,k. In this way, we
obtain the following convergence result for the deterministic particle method to weak solutions of (WPME),
provided that the underlying continuum solution has initial data with bounded entropy. In Proposition 3.10,
we state the precise notion of weak solution of (WPME) that we consider, and in Lemma A.4, we provide
an explicit construction of ρNε,k(0) satisfying condition (1.24).

Theorem 1.4 (convergence with particle initial data). Assume (D), (M), (V), (C), (Ck), (T), and that ρ̄
is log-concave. Fix T > 0 and ρ(0) ∈ D(F) ∩D(S) ∩ P2(Rd). For k,N ∈ N, ε > 0, and t ∈ [0, T ], consider
the evolving empirical measure,

ρNε,k(t) =

N∑
i=1

δXiε,k(t)mi, mi ≥ 0,
N∑
i=1

mi = 1,

where Xi
ε,k ∈ C1([0, T ];Rd) solves,{

Ẋi
ε,k = −∑N

j=1m
j
∫
Rd ∇ζε(Xi

ε,k − z)ζε(z −Xj
ε,k) 1

ρ̄(z) dz −∇(ζε ∗ V )(Xi
ε,k)− Vk(Xi

ε,k),

Xi
ε,k(0) = Xi

0,ε.
(1.23)

Suppose that as ε → 0 there exist N = N(ε) → +∞, so that, for all k ∈ N, ρNε,k(0) =
∑N
i=1 δXi0,εm

i

converges to ρ(0) with the rate,

lim
k→∞

e−λεTW2(ρNε,k(0), ρ(0)) = 0, for λε = −ε−d−2||1/ρ̄||L∞(Rd)||D2ζ||L∞(Rd) + inf
{x,ξ∈Rd}

ξtD2V (x)ξ.(1.24)

Then, as k → +∞, there exist ε = ε(k) → 0 and N = N(ε) → +∞ for which ρNε,k(t) =
∑N
i=0 δXiε,k(t)m

i

narrowly converges to ρ(t) for all t ∈ [0, T ], where ρ ∈ AC2([0, T ];P2(Rd)) is the unique weak solution of
(WPME) with initial data ρ(0).

The following corollary ensures that the particle method defined in the previous theorem indeed converges
to ρ̄ on Ω in the long time limit, as relevant for applications in quantization.

Corollary 1.5 (long time limit). Suppose the assumptions of Theorem 1.4 hold and again denote ρNε,k(t) =∑N
i=0 δXiε,k(t)m

i. In addition, assume V = 0, Ω is bounded, and
∫

Ω
ρ̄ dLd = 1.

Then there exist k = k(T ) → +∞, ε = ε(k) → 0, and N = N(ε) → +∞ so that ρNε,k(·, t) narrowly

converges to 1Ω(·)ρ̄(·) as t→∞.

The preceding theorems provide sufficient conditions to guarantee convergence of the particle method to
(WPME) on bounded time intervals and convergence to the desired target distribution ρ̄ on Ω when V = 0
and Ω is bounded. However, these results are purely qualitative, and it remains an open question to what
extent they could be made quantitative in T , k, ε, and N . For example, an inspection of the construction
in Lemma A.4 shows that, if the particles are initialized with uniform spacing on a bounded domain Ω, the
number of particles is required to grow extremely quickly with respect to ε. In particular, it suffices to have

N(ε, k)−1 = o
(
e−1/εd+2

)
as ε→ 0.

On the other hand, we observe numerically that N(ε) ∼ ε−1.01 is sufficient for good performance in one
dimension. We leave a finer quantitative convergence analysis to future work. For example, it would be
interesting to investigate whether higher regularity of the initial data ρ(0) could be used to decrease the rate
at which N must grow with ε in our rigorous convergence results, as the numerical simulations suggest is
possible.
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As a second corollary of our main convergence results, we identify the limit of the training dynamics of
two-layer neural networks with a radial basis function activation function and quadratic loss, as described
in equations (1.13-1.15). In particular, our result gives sufficient conditions under which the limit of these
training dynamics is the gradient flow of a convex energy, in the sense that it is convex along Wasserstein
geodesics; see Definition 2.6.

Corollary 1.6. Consider a radial basis function activation function Φε(x, z) = ζε(x − z) satisfying (M),
a data distribution ν = 1/ρ̄, for ρ̄ satisfying (T) and log-concave, and a target function f0 = −V ρ̄, for V
satisfying (V). Fix T > 0. For ε > 0, N ∈ N, and t ∈ [0, T ], consider the training dynamics of a two-
layer neural network corresponding to the quadratic loss Rε; that is, consider the evolution of the empirical
measure of parameters,

ρNε (t) =

N∑
i=1

δXiε(t)m
i, mi ≥ 0,

N∑
i=1

mi = 1,

where Xi
ε ∈ C1([0, T ];Rd) solves,{

Ẋi
ε = −∑N

j=1m
j
∫
Rd ∇ζε(Xi

ε − z)ζε(z −Xj
ε )ν(z) dz +∇(ζε ∗ (f0ν))(Xi

ε),

Xi
ε(0) = Xi

0,ε.
(1.25)

Suppose there exists ρ(0) ∈ D(F) ∩D(S) ∩ P2(Rd), with Ω = Rd, so that, for all ε > 0, there exists N =
N(ε) so that ρN (0) converges to ρ(0) sufficiently quickly, according to the rate from equation (1.24). Then,

ρNε (t) =
∑N
i=0 δXiε(t)m

i narrowly converges as ε→ 0 to ρ(t) for all t ∈ [0, T ], where ρ ∈ AC2([0, T ];P2(Rd))
is the unique weak solution of (WPME) with initial data ρ(0).

In particular, whenever ν is log-convex and f0ν is concave, the limit of the training dynamics is the
gradient flow of the convex energy R.

Our last main result concerns the behavior of minimizers of the energies Fε,k and Fk. Our proofs of
Theorems 1.1 and 1.2 on the convergence of gradient flows as ε → 0 and k → +∞ leverage Serfaty’s
general metric space framework for Γ-convergence of gradient flows [69], which we recall in Section 2.4.
As a consequence of this approach, we easily obtain that, under sufficient compactness assumptions on the
approximation of our confining potential Vk, minimizers of Fε,k converge to a minimizer of Fk and minimizers
of Fk converge to a minimizer of F .

Theorem 1.7 (minimizers converge to minimizers). Suppose Assumptions (T), (D), (M), (V) and (C) hold.
Assume that for any k ∈ N, the sublevel sets of Vk are compact.

(i) Fix k ∈ N. If ρε,k ∈ P2(Rd) is a minimizer of Fε,k for all ε > 0, then there exists a subsequence
such that, as ε→ 0, ρε,k narrowly converges to ρk ∈ P2(Rd), where ρk is a minimizer of Fk.

(ii) Assume that Vk(x) ≥ V1(x) for each x ∈ Rd and k ∈ N. If ρk ∈ P2(Rd) is a minimizer of Fk for each
k ∈ N, then there exists a subsequence such that, as k → +∞, ρk narrowly converges to ρ ∈ P2(Rd),
where ρ is a minimizer of F .

This theorem has the potential to shed light on the convergence of the gradient flows in the long time
limit. In particular, while our main results on convergence of the gradient flows only hold on bounded time
intervals, if one could show that a gradient flow ρε,k(t) of Fε,k indeed converged as t→ +∞ to a minimizer of
Fε,k, uniformly in ε > 0 and k ∈ N, then one could combine the above theorem with the preceding theorems
to get convergence of the gradient flows of Fε,k to F globally in time. Proving these estimates remains an
open question, closely related to our motivating applications in quantization.

1.6. Outline of approach and future directions. We now outline our approach to proving these results.
We begin, in Section 2, by recalling preliminary information on optimal transport, including basic notation
in Section 2.1, convolution and convergence of measures in Section 2.2, optimal transport and Wasserstein
gradient flows in Section 2.3, and Serfaty’s general framework for Γ-convergence of gradient flows in Section
2.4. In Section 3, we prove several fundamental properties of the energy Fε,k and recall known properties
of the energies Fk and F , including convexity and differentiability in Section 3.1. We give the PDE charac-
terizations of gradient flows of these energies in Section 3.2 and address the long time behavior of gradient
flows of the energy F in Section 3.3.
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With these results in hand, we move on to studying the behavior of gradient flows of Fε,k as ε → 0 and
k → +∞. Section 4 is devoted to proving a key estimate for the analysis of the ε → 0 limit, which shows
that if the initial conditions of the gradient flow of Fε,k have bounded entropy, then the mollified gradient
flow ζε ∗ ρε,k(t) satisfies an H1 bound; see Theorem 4.1. In Section 4.1, we sketch our proof of this result,
formally integrating by parts, and in Sections 4.2-4.3, we prove the result, using the flow interchange method
developed by Matthes, McCann, and Savaré [56].

In Section 5, we use the results of Section 4 to study the ε → 0 limit. In Section 5.1, we obtain Γ-
convergence of the energies Fε,k as ε → 0 and use this to prove convergence of minimizers, as in Theorem
1.7(i). In Section 5.2, we move on to considering Γ-convergence of the gradient flows as ε → 0, ultimately
proving their convergence to a gradient flow of Fk, as in Theorem 1.1, under the key hypothesis that the
initial conditions of the gradient flow has uniformly bounded entropy.

Section 6 considers the k → +∞ limit, obtaining Γ-convergence of the energies Fk to F , as k → +∞,
as well as our main theorems on convergence of the minimizers, Theorem 1.7(ii), and convergence of the
gradient flows, Theorem 1.2. With these results in hand, we turn in Section 6.1 to extending the preceding
convergence results on the gradient flows as ε→ 0, k → +∞ to allow for gradient flows with particle initial
data, thereby obtaining the proof of Theorem 1.4. We also prove Corollary 1.5 on the long time behavior of
the particle method and Corollary 1.6 on the limit of two-layer neural networks.

We close in Section 7 with several numerical examples illustrating key properties of our method. We
explore the dynamics and long time behavior of particle solutions, for targets ρ̄ that satisfy the log-concavity
assumptions of our main theorems, as well as targets that fail this assumption but satisfy a Poincaré inequal-
ity. In both cases, we observe that our particle discretization captures the behavior of the continuum PDE
when V = 0 and flows toward ρ̄ on Ω in the long-time limit. We also explore the effect of the confining poten-
tial Vk on the dynamics for various choices of k, observing the qualitative agreement with no-flux boundary
conditions on Ω, as well as the quantitative effect on rate of convergence to (WPME) as N → +∞, ε → 0.
In the case of strong confinement (k = 109) and log-concave target ρ̄, we observe first order convergence in
N , with ε = 4/N0.99 on Ω = (−1, 1), both for the rate of convergence of the particle method to solutions of
(WPME) and for convergence of the particle method to the target ρ̄ on Ω in the long time limit. Finally, as
our scheme preserves the gradient flow structure of (WPME), it succeeds in capturing the exponential decay
of the KL divergence along particle method solutions (see inequality (1.5)), up to discretization error and is
energy decreasing for Fε,k for all values of N , ε, and k.

There are several directions for future work. Many of our results only lightly use the assumption that
ρ̄ is log-concave, and it would be interesting to remove it. A key challenge in this direction is obtaining
well-posedness of the gradient flow of F in the absence of convexity of the energy and proving that the
metric slope is a strong upper gradient. A second direction for future work would be to improve methods for
computing or approximating f(x, y), as defined in (1.12), which drives the dynamics of our system of ODEs.
To compute this exactly involves integrating the reciprocal of the target ρ̄ against the mollifiers, which
can be done analytically for a variety of targets ρ̄, including piecewise constant ρ̄; see appendix C). Better
understanding of the minimal information required on ρ̄ required to approximate (1.12) and the effect of this
approximation on the dynamics would be important to applying this method in practice, especially when
only partial information of ρ̄ is known. A third interesting open question would be to obtain quantitative
results on the rate of convergence depending on N ∈ N, ε > 0, and k ∈ N, particularly if these quantitative
estimates could be combined with existing estimates on the long time behavior of (WPME) to provide
convergence guarantees regarding the convergence of the particle method to the target ρ̄ on Ω.

2. Preliminaries

2.1. Basic notation. For any r > 0 and x ∈ Rd we use Br(x) to denote the open ball of center x and radius
r. We write 1S for the indicator function of a given subset S of Rd. i.e.,

1S(x) =

{
1 for x ∈ S,
0 otherwise.

We denote the d-dimensional Lebesgue measure by Ld. Given µ ∈ P(Rd), we write µ� Ld if µ is absolutely
continuous with respect to Ld, in which case we will denote both the probability measure µ and its Lebesgue
density by the same symbol, e.g. dµ(x) = µ(x)dx. Finally, we let Lp(µ; Ω) denote the Lebesgue space of
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functions f on Ω with |f |p being µ-integrable, and abbreviate Lp(Ω) = Lp(Ld; Ω). (We commit a slight abuse
of notation by using the same notation for the Lebesgue spaces of real-valued and Rd-valued functions.)

2.2. Convolution and convergence of measures. A fundamental aspect of our approach is the regu-
larization of the energy (1.2) via convolution with a mollifier. We now recall some elementary results on
convolution of probability measures. For any µ ∈ P(Rd) and φ ∈ L∞(Rd), the convolution of φ with µ is
defined by,

φ ∗ µ(x) =

∫
Rd
φ(x− y) dµ(y) for all x ∈ Rd.

Throughout, we use the fact that the definition of convolution allows us to move mollifiers from the measure
to the integrand. In particular, for any f bounded below and φ ∈ L1(Rd) even, we have,

(2.1)

∫
Rd
f d(φ ∗ µ) =

∫
Rd
f ∗ φdµ.

Likewise, we often use the following mollifier exchange lemma, which provides sufficient conditions for moving
functions in and out of convolutions within integrals.

Lemma 2.1 (mollifier exchange lemma, [20, Lemma 2.2]). Let f : Rd → R be Lipschitz continuous with
constant Lf > 0, and let σ and ν be finite, signed Borel measures on Rd. There is p = p(q, d) > 0 so that,∣∣∣∣∫ ζε ∗ (fν) dσ −

∫
(ζε ∗ ν)f dσ

∣∣∣∣ ≤ εpLf (∫ (ζε ∗ |ν|) d|σ|+ Cζ |σ|(Rd)|ν|(Rd)
)

for all ε > 0.

We will often use the following notion of convergence:

Definition 2.2 (narrow convergence). A sequence µn in P(Rd) is said to narrowly converge to µ ∈ P(Rd)
if
∫
fdµn →

∫
fdµ for all bounded and continuous functions f .

For fixed φ ∈ Cb(Rd)∩L1(Rd) even and any sequence µn narrowly converging to µ, we immediately obtain
from the definition of narrow convergence that, for any f ∈ Cb(Rd),∫

f(φ ∗ µn) =

∫
(f ∗ φ)dµn =

∫
(f ∗ φ)dµ =

∫
f(φ ∗ µ),(2.2)

so φ ∗ µn narrowly converges to φ ∗ µ. Moreover, we have:

Lemma 2.3 (mollifiers and narrow convergence, [20, Lemma 2.3]). Suppose ζε is a mollifier satisfying
Assumption (M), and let µε be a sequence in P(Rd) converging narrowly to µ ∈ P(Rd). Then ζε ∗ µε
narrowly converges to µ.

2.3. Optimal transport, the Wasserstein metric, and Wasserstein gradient flows. We now describe
basic facts about optimal transport and the Wasserstein metric, which we will use in what follows. For further
background, we refer the reader to one of the many excellent textbooks on the subject [2, 3, 41,68,75].

For a Borel measurable map t : Rn → Rm, we say that t transports µ ∈ P(Rn) to ν ∈ P(Rm) if ν(A) =
µ(t−1(A)) for all measurable sets A. We call t a transport map and denote ν as t#µ ∈ P(Rm), the push-
forward of µ through t. For µ, ν ∈ P(Rd), the set of transport plans from µ to ν is given by,

Γ(µ, ν) := {γ ∈ P(Rd × Rd) | π1
#γ = µ, π2

#γ = ν},
where π1, π2 : Rd×Rd → Rd are the projections of Rd×Rd onto the first and second copy of Rd, respectively.
The Wasserstein distance [3, Chapter 7] between µ, ν ∈ P2(Rd) is given by,

(2.3) W2(µ, ν) = min
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x− y|2dγ(x, y)

)1/2

.

We say that a transport plan γ is optimal if it attains the minimum in (2.3). We denote the set of optimal
transport plans by Γ0(µ, ν).

Convergence with respect to the Wasserstein metric is stronger than narrow convergence of probability
measures [3, Remark 7.1.11]. In particular, if µn is a sequence in P2(Rd) and µ ∈ P2(Rd), we have,

W2(µn, µ)→ 0 as n→∞ ⇐⇒ (µn → µ narrowly and M2(µn)→M2(µ) as n→∞) .(2.4)

In order to define Wasserstein gradient flows, we require the following notion of regularity in time with
respect to the Wasserstein metric.



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 13

Definition 2.4 (absolutely continuous). We say µ : [0, T ] → P(Rd) is absolutely continuous on [0, T ], and
write µ ∈ AC2

loc((0, T );P2(Rd)), if there exists f ∈ L2
loc((0, T )) so that,

W2(µ(t), µ(s)) ≤
∫ t

s

f(r) dr for all t, s ∈ (0, T ) with s ≤ t.(2.5)

Along such curves, we may define the metric derivative.

Definition 2.5 (metric derivative). Given µ ∈ AC2
loc((0, T );P2(Rd)), the limit,

|µ′|(t) := lim
s→t

W2(µ(t), µ(s))

|t− s|
exists for a.e. t ∈ (0, T ) and is called the metric derivative of µ.

In fact, the metric derivative is the minimal square integrable function satisfying (2.5): for any µ ∈
AC2

loc((0, T );P2(Rd)), we have |µ′| ∈ L2((0, T )), and for any function f satisfying (2.5), we have |µ′|(t) ≤ f(t)
for a.e. t ∈ (0, T ) (see [3, Theorem 1.1.2]).

Geodesics form an important class of curves in the Wasserstein metric. Given µ0, µ1 ∈ P2(Rd), the
geodesics connecting µ0 to µ1 are the curves of the form,

µα = ((1− α)π1 + απ2)#γ for α ∈ [0, 1], γ ∈ Γ0(µ, ν).(2.6)

More generally, given µ1, µ2, µ3 ∈ P2(Rd), a generalized geodesic from µ2 to µ3 with base µ1 is given by,

µ2→3
α =

(
(1− α)π2 + απ3

)
#
γ for α ∈ [0, 1] and γ ∈ P(Rd × Rd × Rd)(2.7)

such that π1,2
#γ ∈ Γ0(µ1, µ2) and π1,3

#γ ∈ Γ0(µ1, µ3),

with π1,i : Rd × Rd × Rd → Rd × Rd the projection of onto the first and ith copies of Rd. Note that when
the base µ1 coincides with one of the endpoints µ2 or µ3, a generalized geodesic is a geodesic.

A key property for the uniqueness and stability of Wasserstein gradient flows is convexity, or more generally
semiconvexity, along generalized geodesics.

Definition 2.6 (semiconvexity). A functional G : P2(Rd) → (−∞,∞] is semiconvex along generalized
geodesics if there exists λ ∈ R such that, for all µ1, µ2, µ3 ∈ P2(Rd), there exists a generalized geodesic
from µ2 to µ3 with base µ1 for which the following inequality holds:

G(µ2→3
α ) ≤ (1− α)G(µ2) + αG(µ3)− α(1− α)

λ

2
W 2

2,γ(µ2, µ3) for all α ∈ [0, 1],(2.8)

where,

W 2
2,γ(µ2, µ3) :=

∫
Rd×Rd×Rd

|π2 − π3|2 dγ(x, y, z).

In this case, will sometimes say the functional is λ-convex. If a functional is 0-convex, we will say it is convex.

We recall the following sufficient condition for convexity, which is the Wasserstein analogue of the “above
the tangent line” characterization of convexity from finite dimensional Euclidean space.

Lemma 2.7 (above the tangent line property [29, Proposition 2.8]). A functional G : P2(Rd) → (−∞,∞]
is λ-convex along generalized geodesics if and only if for all generalized geodesics µ2→3

α connecting µ2 to µ3

with base µ1, the map α 7→ G(µ2→3
α ) is differentiable for all α ∈ [0, 1] and,

G(µ3)− G(µ2)− d

dα
G(µα)

∣∣∣∣
α=0

≥ λ

2
W 2

2,γ(µ2, µ3).

For any functional G : P2(Rd)→ (−∞,+∞], we denote its domain by D(G) = {µ ∈ P2(Rd) | G(µ) < +∞},
and say that G is proper if D(G) 6= ∅. For any measure µ in the domain of a functional G, we may define the
local slope of G at µ as follows.

Definition 2.8 (local slope). Given G : P2(Rd)→ (−∞,∞], for any µ ∈ D(G), the local slope is,

|∂G|(µ) = lim sup
ν→µ

(G(µ)− G(ν))+

W2(µ, ν)
,

where (s)+ = max{s, 0} denotes the positive part of s.
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Next, we define the subdifferential of a functional G : P2(Rd)→ (−∞,+∞] that is lower semicontinuous
with respect to Wasserstein convergence and λ-convex along generalized geodesics.1

Definition 2.9 (subdifferential of λ-convex functional). Suppose G : P2(Rd)→ (−∞,+∞] is proper, lower
semicontinuous, and λ-convex along geodesics. Let µ ∈ D(G) and ξ : Rd → Rd with ξ ∈ L2(dµ). We say
that ξ belongs to the subdifferential of G at µ, and write ξ ∈ ∂G(µ), if for all ν ∈ P2(Rd),

G(ν)− G(µ) ≥
∫
Rd×Rd

〈ξ(x), y − x〉 dγ(x, y) +
λ

2
W 2

2 (µ, ν) for all γ ∈ Γ0(µ, ν).(2.9)

Remark 2.10 (subdifferential of sum). Note that if G1 and G2 satisfy the hypotheses of Definition 2.9 and
µ ∈ D(G1) ∩D(G2), then for any ξ1 ∈ ∂G1(µ) and ξ2 ∈ ∂G2(µ), we have ξ1 + ξ2 ∈ ∂(G1 + G2)(µ).

The local slope and subdifferential are related by the following proposition, which is a direct adaptation
of [3, Lemma 10.1.5] to the case of functionals which contain measures µ in their domain that are not
necessarily absolutely continuous with respect to Lebesgue measure. We defer the proof to appendix A.

Proposition 2.11 (local slope and minimal subdifferential). Suppose G : P2(Rd) → (−∞,+∞] is proper,
lower semicontinuous, and λ-convex along generalized geodesics. Then for any µ ∈ D(|∂G|), we have,

|∂G|(µ) ≤ inf
{
‖ξ‖L2(µ) : ξ ∈ ∂G(µ)

}
.(2.10)

If equality holds and ξ attains the infimum, we will write ξ = ∂◦G(µ). In this case, the element of the
subdifferential attaining the infimum is unique.

We now turn to the definition of a gradient flow in the Wasserstein metric (c.f. [3, Definition 1.1.1,
Proposition 8.3.1, Definition 11.1.1, Theorem 11.1.3]).

Definition 2.12 (gradient flow). Suppose G : P2(Rd) → (−∞,+∞] is proper, lower semicontinous, and
λ-convex along generalized geodesics. A curve µ(t) ∈ AC2

loc((0,+∞);P2(Rd)) is a gradient flow of G in the
Wasserstein metric if µ(t) is a weak solution of the continuity equation,

(2.11) ∂tµ(t) +∇ · (v(t)µ(t)) = 0, in duality with C∞c ((0,+∞)× Rd),

and,

v(t) = −∂◦G(µ(t)) for L1-a.e. t > 0.

Next, we recall sufficient conditions for well-posedness of the initial value problem for the gradient flow,
when the initial condition µ(0) is in the closure of the domain of the energy D(G). We also recall equivalent
characterizations of the gradient flow as a curve of maximal slope and evolution variational inequality. As
the theorem is simply a collection of general results developed by Ambrosio, Gigli, and Savaré [3], we defer
its proof to Appendix A.

Theorem 2.13 (well-posedness and characterization of gradient flow). Suppose G : P2(Rd)→ (−∞,+∞] is

proper, lower semicontinous, and λ-convex along generalized geodesics and µ(0) ∈ D(G). Then, there exists
a unique gradient flow µ(t) of G satisfying limt→0+ µ(t) = µ(0) in the Wasserstein metric.

Furthermore µ(t) ∈ AC2
loc((0,+∞);P2(Rd)) is the gradient flow of G if and only if µ(t) satisfies one of

the following equivalent conditions:

(i) Curve of Maximal Slope: For all 0 < s ≤ t.
1

2

∫ t

s

|µ′|2(r)dr +
1

2

∫ t

s

|∂G|2(µ(r))dr = G(µ(s))− G(µ(t)).

(ii) Evolution Variational Inequality: For all ν ∈ P2(Rd) and for L1-a.e. t ≥ 0,

1

2

d+

dt
W 2

2 (µ(t), ν) +
λ

2
W 2

2 (µ(t), ν) + G(µ(t)) ≤ G(ν).

1Note that in Ambrosio, Gigli, and Savaré [3, Chapter 10] this is known as the reduced subdifferential, which is stronger than

their notion of extended subdifferential : see Definition 10.3.1 of the extended subdifferential and equations (10.3.12)-(10.3.13)

for the reduced subdifferential. The reduced subdifferential is sufficient for our purposes, due to the fact that our main Γ-
convergence result considers gradient flow solutions that are absolutely continuous with respect to Lebesgue measure, and we

extend the convergence to particle initial data separately.
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2.4. Γ-convergence of energies and gradient flows. We now recall the general framework of Γ-convergence
of energies, which is a classical tool in the Calculus of Variations, and Γ-convergence of gradient flows, as
introduced by Serfaty [69]. The former provides sufficient conditions that, when combined with some com-
pactness, ensure that minimizers of a sequence of energies converge to a minimizer of a limiting energy. The
latter provides sufficient conditions that, again with sufficient compactness, ensure that gradient flows of a
sequence of energies converge to a gradient flow of a limiting energy.

We begin by recalling the notion of Γ-convergence of energies, focusing in particular on the case of energies
defined on P(Rd), with respect to the narrow topology.

Definition 2.14 (Γ-convergence of energies). A sequence of functionals Gε : P(Rd)→ R ∪ {+∞} is said to
Γ-converge to G : P(Rd)→ R ∪ {+∞} if:

For any sequence ρε ∈ P(Rd) converging narrowly to ρ ∈ P(Rd), lim inf
ε→0

Gε(ρε) ≥ G(ρ);(2.12)

For any ρ ∈ P2(Rd), there exists ρε ∈ P(Rd) converging narrowly to ρ, s.t. lim sup
ε→0

Gε(ρ) ≤ G(ρ).(2.13)

Next, we recall the notion of Γ-convergence of gradient flows. We state a version of [69, Theorem 2] that
has been specialized to the present case, in which we consider functionals defined on (P2(Rd),W2) that are
lower semicontinuous and semiconvex along generalized geodesics. In this case, the notions of “gradient flow”
and “curve of maximal slope” are equivalent; see Theorem 2.13. Likewise, metric slopes are strong upper
gradients [3, Corollary 2.4.10].

Theorem 2.15 (Γ-convergence of gradient flows, [69, Theorem 2]). Let Gε : P2(Rd) → R ∪ {+∞} and
G : P2(Rd)→ R ∪ {+∞} be proper, lower semicontinuous functionals that are semiconvex along generalized
geodesics. Furthermore, suppose that (2.12) holds. For all ε > 0, let ρε ∈ AC2([0, T ];P2(Rd)) be a gradient
flow of Gε, and suppose that there exists a curve ρ : [0, T ]→ P2(Rd) such that,

ρε(t) narrowly converges to ρ(t) for t ∈ [0, T ], and(2.14)

ρ(0) ∈ D(G) and lim
ε→0
Gε(ρε(0)) = G(ρ(0)).(2.15)

Moreover, suppose, for almost every t ∈ [0, T ],

lim inf
ε→0

∫ t

0

|ρ′ε|2(s) ds ≥
∫ t

0

|ρ′|(s) ds,(2.16)

lim inf
ε→0

|∂Gε|2(ρε(t)) ≥ |∂G|2(ρ(t)).(2.17)

Then ρ ∈ AC2([0, T ],P2(Rd)), and ρ is a gradient flow of G with initial data ρ(0).

In fact, the existence of a subsequential limit of ρε pointwise in time, as required in (2.14), as well as the
lower semicontinuity of the metric derivatives, as required in (2.16) above, are both guaranteed under the
following additional assumption.

Lemma 2.16 (existence of a narrowly convergent subsequence). Let Gε : P2(Rd) → R ∪ {+∞} be proper,
lower semicontinuous functionals that are semiconvex along generalized geodesics. For all ε > 0, let ρε ∈
AC2([0, T ];P2(Rd)) be a gradient flow of Gε. Suppose,

sup
ε>0
Gε(ρε(0)) < +∞ and(2.18)

inf
ε>0, t∈[0,T ]

Gε(ρε(t)) > −∞.(2.19)

Then there exists ρ ∈ AC2([0, T ],P2(Rd)) such that, along a subsequence, (2.14) and (2.16) hold.

Proof. We shall produce the desired ρ and subsequence ρε such that (2.14) holds. Once that is done, [31,
Lemma 2.3] immediately implies that (2.16) holds.

To this end, we use Proposition A.3 to find that, for all ε > 0 and t ∈ [0, T ], there exists C > 0 so that
ρε(t) belongs to the set {ρ : M2(ρ) < C}, which is narrowly sequentially compact [3, Remark 5.1.5, Lemma
5.1.7]. Furthermore, item (i) of Theorem 2.13, together with assumptions (2.18) and (2.19), ensures,

sup
ε>0

1

2

∫ T

0

|ρ′ε|2(r)dr ≤ sup
ε>0

(Gε(ρε(0))− Gε(ρε(T ))) < +∞.(2.20)
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From this, we deduce the equicontinuity:

sup
ε>0

W2(ρε(s), ρε(t)) ≤ sup
ε>0

∫ t

s

|ρ′ε|(r)dr ≤
√
t− s

(∫ t

s

|ρ′ε|2(r)dr

)1/2

≤
√
t− s

(
sup
ε>0

∫ T

0

|ρ′ε|2(r)

)1/2

.

Therefore, the generalized Ascoli-Arzelá/Aubin-Lions theorem [3, Proposition 3.3.1] ensures that there exists
ρ : [0,+∞)→ P2(Rd) so that, up to a subsequence, ρε(t)→ ρ(t) narrowly, for all t ≥ 0. �

3. Gradient flows of energies with regularization and confiment

We now prove several fundamental properties of the internal energy E and the regularized internal energy
Eε, with the addition of external potential energies, V and Vε, as well as the confining energies, Vk and VΩ. In
particular, will will characterize their lower semicontinuity, convexity, and subdifferentiability. Each of these
properties provides information about the one-sided regularity of the energy functional, its first derivative,
and its second derivative with respect to the Wasserstein metric. Since our study of gradient flows only
considers well-posedness of the flow forward in time (which is natural given that our motivating equation
is a diffusion equation), these one-sided estimates on the energy functionals’ regularity are sufficient for our
analysis. We will close the section by applying these properties to characterize the gradient flows of these
energies in terms of partial differential equations.

3.1. Fundamental properties of energies. First, we recall that the functionals E and Eε are lower semi-
continuous with respect to narrow convergence. Since narrow convergence is weaker than Wasserstein con-
vergence, this in turn implies lower semicontinuity with respect to Wasserstein convergence. The proof of
this result is standard, and we defer it to appendix B.

Lemma 3.1 (lower semicontinuity of E and Eε). Suppose Assumptions (T) and (M) are satisfied. Then, for
all ε > 0, the functionals E and Eε are lower semicontinuous with respect to narrow convergence.

The lower semicontinuity of the external potential energies, V and Vε, and the confining energies, Vk
and VΩ, with respect to narrow convergence is an immediate consequence of the Portmanteau theorem, see
e.g. [3, Lemma 5.1.7], since they all are obtained by integrating a function that is lower semicontinuous and
bounded below against ρ.

Lemma 3.2 (lower semicontinuity of V, Vε, Vk, VΩ). Under Assumptions (M), (D), (V), and (C), the
energies V, Vε, Vk, and VΩ are lower semicontinuous with respect to narrow convergence.

The convexity of the energies E , V, Vε, Vk, and VΩ follows immediately from the theory developed by
Ambrosio, Gigli, and Savaré [3]. We recall these results in the following proposition. The proof of this
proposition is an immediate consequence of existing theory, so we defer it to appendix B.

Proposition 3.3 (convexity properties of of E , V, Vε, Vk, and VΩ).

(i) Suppose ρ̄ satisfies Assumption (T) and is log-concave. Then E is convex along generalized geodesics.
(ii) Suppose V and Vk satisfy Assumptions (V) and (C). Then V and Vε are λ-convex along generalized

geodesics, for λ = inf{x,ξ∈Rd} ξ
tD2V (x)ξ, and Vk is convex along generalized geodesics.

(iii) Suppose Ω ⊂ Rd satisfies Assumption (D). Then VΩ is convex along generalized geodesics.

We now aim to show that Eε is also semiconvex for all ε > 0. In order to accomplish this, we begin by
characterizing the directional derivative of Eε. For the reader’s convenience, we also recall the directional
derivatives of the external potential energies V, Vε, and Vk, which have been studied extensively in previous
works; see, for example, [3, Proposition 10.4.2].

Proposition 3.4 (directional derivatives of Eε, V, Vε, and Vk). Suppose Assumptions (T), (M), (V) and
(C) hold. Fix ε > 0, ν1, ν2, ν3 ∈ P2(Rd), and γγγ ∈ P2(Rd × Rd × Rd) with πi#γγγ = νi. Consider the curve,

µα =
(
(1− α)π2 + απ3

)
#
γγγ for α ∈ [0, 1].
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Then,

d

dα
Eε(µα)

∣∣∣∣
α=0

=
1

2

∫
ζε ∗ ν2(x)

ρ̄(x)

∫ 〈
∇ζε

(
x− y2

)
, y3 − y2

〉
dγγγ(y1, y2, y3) dx,

d

dα
V(µα)

∣∣∣∣
α=0

=

∫
〈∇V (y2), y3 − y2〉 dγ(y1, y2, y3),

d

dα
Vε(µα)

∣∣∣∣
α=0

=

∫
〈∇(ζε ∗ V )(y2), y3 − y2〉 dγ(y1, y2, y3),

d

dα
Vk(µα)

∣∣∣∣
α=0

=

∫
〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3).

Remark 3.5. Remark: Note that if γγγ ∈ P2(Rd × Rd × Rd) satisfies the hypotheses in the definition of
generalized geodesic (2.7), then γγγ satisfies the assumptions of Proposition 3.4.

Proof. We begin with the characterization of the directional derivative d
dαEε(µα)

∣∣
α=0

. As a first step in this

direction, we estimate d
dαζε ∗ µα

∣∣
α=0

. For all x ∈ Rd and α ∈ [0, 1],

1

α
(ζε ∗ µα(x)− ζε ∗ µ0(x)) =

∫
1

α
[ζε(x− ((1− α)y2 + αy3))− ζε(x− y2)] dγ(y1, y2, y3).(3.1)

By the mean value theorem for ζε, we may bound the integrand by,

1

α
‖∇ζε‖∞ |((1− α)y2 + αy3)− y2| ≤ ‖∇ζε‖∞ |y3 − y2| ∈ L1(γ),(3.2)

where the integrability holds since M1(γ) ≤ M2(γ)1/2 = (M2(ν1) +M2(ν2) +M2(ν3))
1/2

< +∞. Thus, by
the dominated convergence theorem,

lim
α→0

1

α
(ζε ∗ µα(x)− ζε ∗ µ0(x)) =

∫
lim
α→0

1

α
[ζε(x− ((1− α)y2 + αy3))− ζε(x− y2)] dγ(y1, y2, y3)

=

∫
〈∇ζε(x− y2), y3 − y2〉 dγ(y1, y2, y3).(3.3)

Now, we use this to compute d
dαEε(µα)

∣∣
α=0

. First, note that we may express the difference quotient as,

1

α
(Eε(µα)− Eε(µ0)) =

1

2α

∫ (
(ζε ∗ µα)2(x)− (ζε ∗ µ0)2(x)

)
ρ̄(x)−1dx(3.4)

=

∫
1

2α
[(ζε ∗ µα)(x) + (ζε ∗ µ0)(x)] [(ζε ∗ µα)(x)− (ζε ∗ µ0)(x)] ρ̄(x)−1dx.

By equations (3.1-3.2) and the fact that ρ̄ is uniformly bounded below, the integrand is dominated by,

gα(x) := C [(ζε ∗ µα)(x) + (ζε ∗ µ0)(x)] for C = ‖∇ϕε‖∞‖ρ̄−1‖∞M1(γ).

The narrow convergence of µα to µ0 as α→ 0, and the fact that ζε is bounded and continuous ensures that
gα(x)→ 2C(ζε ∗ µ0)(x) pointwise. Furthermore,

lim
α→0

∫
gα(x)dx = lim

α→0
C

∫
ζε ∗ µα(x)dx+ C

∫
ζε ∗ µ0(x)dx = 2C.

Therefore, by the generalized dominated convergence theorem [67, Chapter 4, Theorem 19] and equations
(3.3) and (3.4),

lim
α→0

1

α
(Eε(µα)− Eε(µ0)) =

∫
lim
α→0

1

2α
[(ζε ∗ µα)(x) + (ζε ∗ µ0)(x)] [(ζε ∗ µα)(x)− (ζε ∗ µ0)(x)] ρ̄(x)−1dx

=

∫
(ζε ∗ µ0)(x)

ρ̄(x)

∫
〈∇ζε(x− y2), y3 − y2〉 dγ(y1, y2, y3) dx.

Next we consider the directional derivative d
dαV(µα)

∣∣
α=0

. By definition of V and µα,

lim
α→0

1

α
(V(µα)− V(µ0)) = lim

α→0

∫
1

α
[V ((1− α)y2 + αy3)− V (y2)] dγ(y1, y2, y3).
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By the mean value theorem for V , we may bound the integrand by,

1

α
‖∇V ‖∞| ((1− α)y2 + αy3)− y2| ≤ ‖∇V ‖∞|y3 − y2| ∈ L1(γ).

Thus, by the dominated convergence theorem,

lim
α→0

1

α
(V(µα)− V(µ0)) =

∫
lim
α→0

1

α
[V ((1− α)y2 + αy3)− V (y2)] dγ(y1, y2, y3)

=

∫
〈∇V (y2), y3 − y2〉 dγ(y1, y2, y3),

which gives the result. The result for Vε follows exactly as above, replacing V with (ζε ∗ V ).
Finally, we consider the directional derivative of Vk. By definition of Vk and µα and the assumption that

Vk ∈ C2 with ‖D2Vk‖∞ < +∞, we may apply the Fundamental Theorem of Calculus to conclude,

lim
α→0

1

α
(Vk(µα)− Vk(µ0))

= lim
α→0

1

α

∫
Rd

[Vk ((1− α)y2 + αy3)− Vk(y2)] dγ(y1, y2, y3),

= lim
α→0

1

α

∫
Rd

∫ α

0

∫ β

0

(y3 − y2)tD2Vk((1− s)y2 + sy3)(y3 − y2) ds dβ + α 〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3)

=

∫
Rd
〈∇Vk(y2), y3 − y2〉 dγ(y1, y2, y3),

where the first term vanishes since D2Vk ∈ L∞(Rd) and
∫
|y3 − y2|2dγ ≤ 2(M2(ν1) +M2(ν2)) < +∞.

�

Using this characterization of the directional derivative of Eε, we now prove that our energy Eε is λε-convex

along generalized geodesics, where λε
ε→0−−−→ −∞.

Proposition 3.6 (semiconvexity of Eε). Suppose Assumptions (T) and (M) hold. For all ε > 0, the
functional Eε is λε-convex along generalized geodesics, where,

(3.5) λε = −‖1/ρ̄‖L∞(Rd)‖D2ζε‖L∞(Rd) = −ε−d−2||1/ρ̄||L∞(Rd)||D2ζ||L∞(Rd).

Proof. Let (µ2→3
α )α∈[0,1] be a generalized geodesic with base µ1 ∈ P2(Rd) connecting two probability mea-

sures µ2, µ3 ∈ P2(Rd), and let γγγ ∈ P2(Rd × Rd × Rd) be the associated measure as defined in (2.7). Since
x 7→ x2 is a convex function, using the above the tangent inequality for convex functions yields,

Eε(µ3)− Eε(µ2) =
1

2

∫ (
ζε ∗ µ3(x)

)2
ρ̄(x)

dx− 1

2

∫ (
ζε ∗ µ2(x)

)2
ρ̄(x)

dx

≥
∫
ζε ∗ µ2(x)

ρ̄(x)
(ζε ∗ µ3(x))− ζε ∗ µ2(x)) dx

=

∫
ζε ∗ µ2(x)

ρ̄(x)

(∫∫∫
ζε(x− y3)− ζε(x− y2)

)
dγγγ(y1, y2, y3) dx.

Therefore, by Proposition 3.4,

Eε(µ3)− Eε(µ2)− d

dα
Eε(µ2→3

α )

∣∣∣∣
α=0

≥
∫
ζε ∗ µ2(x)

ρ̄(x)

(∫∫∫
ζε(x− y3)− ζε(x− y2)−

〈
∇ζε

(
x− y2

)
, y2 − y3

〉
dγγγ(y1, y2, y3)

)
dx

≥ −‖D
2ζε‖L∞(Rd)

2

∫
ζε ∗ µ2(x)

ρ̄(x)
dx

∫∫∫
|y2 − y3|2dγγγ(y1, y2, y3)dx

≥ −‖1/ρ̄‖L∞(Rd)‖D2ζε‖L∞(Rd)

2
W 2

2,γγγ(µ2, µ3),

where we have applied Young’s inequality to conclude that ‖ζε ∗ µ2‖L1(Rd) = 1. By Lemma 2.7, this gives
the result.
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�

The preceding results ensure that our energies E , Eε,V,Vε,Vk, and VΩ are proper, lower semicontinuous,
and semiconvex along generalized geodesics. Thus, the gradient flows of each of their energies, as well as the
sum of any of the energies, is well posed, by Theorem 2.13, for any initial conditions in the closure of their
domains. However, in order to characterize these gradient flows in terms of partial differential equations and
prove our main Γ-convergence result, we must now characterize the minimal elements of their subdifferentials.

We begin with the following proposition, identifying elements in the subdifferential of Eε, V, Vε, and Vk.
Note that the subdifferentials of V, Vε, and Vk were characterized in previous work [3, Proposition 10.4.2],
and we recall key parts these results in item (ii) below for the reader’s convenience.

Proposition 3.7 (subdifferentials of Eε, V, Vε, and Vk).

(i) Suppose Assumptions (T) and (M) hold. For all ε > 0 and µ ∈ D(Eε), we have ∇ δEε
δµ ∈ ∂Eε(µ),

where δEε
δµ = ζε ∗ ((ζε ∗ µ) /ρ̄).

(ii) Suppose Assumptions (M), (V), and (C) hold. For all µ ∈ D(V), we have ∇V ∈ ∂V(µ). Similarly,
for all µ ∈ D(Vε), we have ∇(ζε ∗ V ) ∈ ∂Vε(µ), and, for all µ ∈ D(Vk), we have ∇Vk ∈ ∂Vk(µ).

Proof. We begin with the proof of (i). Fix µ, ν ∈ P2(Rd) and γ ∈ Γ0(µ, ν). Let µα = ((1− α)π1 + απ2)#γ
be a geodesic from µ to ν. By Lemma 3.6, Eε is λε-convex along generalized geodesics, so in particular, it is
convex along µα, and Lemma 2.7 ensures,

Eε(ν)− Eε(µ)− d

dα
Eε(µα)

∣∣∣∣
α=0

≥ λε
2
W 2

2 (µ, ν).

Rearranging and applying Proposition 3.4, with γ̃ = (π1, π1, π2)#γ, and Fubini’s theorem, yields,

Eε(ν)− Eε(µ) ≥ 1

2

∫
ζε ∗ µ(x)

ρ̄(x)

∫ 〈
∇ζε

(
x− y2

)
, y2 − y3

〉
dγ̃γγ(y1, y2, y3) dx+

λε
2
W 2

2 (µ, ν)

=
1

2

∫
ζε ∗ µ(x)

ρ̄(x)

∫ 〈
∇ζε

(
x− y1

)
, y1 − y2

〉
dγ(y1, y2) dx+

λε
2
W 2

2 (µ, ν)

=
1

2

∫ 〈
∇ζε ∗

(
ζε ∗ µ
ρ̄

)
(y1), y2 − y1

〉
dγγγ(y1, y2) +

λε
2
W 2

2 (µ, ν)

=

∫ 〈
∇δEε
δµ

(y1), y2 − y1

〉
dγγγ(y1, y2) +

λε
2
W 2

2 (µ, ν).

This shows ∇ δEε
δµ ∈ ∂Eε(µ), by Definition 2.9 of the subdifferential.

For item (ii), we will show the result for V, since the result for Vε and Vk follow from the same argument,
simply via replacing V with ζε ∗ V and Vk, respectively. Let ν, µ, γ, and γ̃ be as in the proof of item (i).
Applying Lemma 2.7, Proposition 3.3, Proposition 3.4, and rearranging, again as in the proof of (i), yields,

V(ν)− V(µ) ≥
∫
〈∇V (y2), y3 − y2〉 dγ̃(y1, y2, y3) +

λ

2
W 2

2 (ν, µ)

=

∫
〈∇V (y1), y2 − y1〉 dγ(y1, y2) +

λ

2
W 2

2 (ν, µ),

which shows ∇V ∈ ∂V(µ), by Definition 2.9 of the subdifferential. �

Next, we characterize the minimal subdifferential of the energy Fε,k = Eε + Vε + Vk for all ε > 0, k ∈ N.
The proof is standard, and we defer it to Appendix B.

Proposition 3.8 (minimal subdifferential of Fε,k). Suppose Suppose Assumptions (T), (M), (V), and (C)
hold. For all ε > 0 and k ∈ N, µ ∈ D(Fε,k),

∇∂Eε
∂µ

+∇(ζε ∗ V ) +∇Vk = ∂◦Fε,k(µ).(3.6)

Finally, we close by recalling Ambrosio, Gigli, and Savaré’s characterization of the minimal subdifferentials
of Fk and F [3, Theorems 10.4.9-10.4.13].

Proposition 3.9 (minimal subdifferentials of Fk and F , [3, Theorems 10.4.9-10.4.13]). Assume (T), (V),
and ρ̄ is log-concave.
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(i) Suppose also (C) holds. Then, given µ ∈ D(Fk), we have |∂Fk|(µ) < +∞ if and only if (µ/ρ̄)2 ∈
W 1,1

loc (Rd) and there exists ξ ∈ L2(µ) so that,

ξµ =
ρ̄

2
∇(µ/ρ̄)2 +∇V µ+∇Vkµ on Rd.(3.7)

In this case, ξ ∈ ∂◦Fk(µ).

(ii) Suppose also (D) holds. Given µ ∈ D(F), we have |∂F|(µ) < +∞ if and only if (µ/ρ̄)2 ∈ W 1,1
loc (Ω)

and there exists ξ ∈ L2(µ) so that,

ξµ =
ρ̄

2
∇(µ/ρ̄)2 +∇V µ on Ω.

In this case, ξ ∈ ∂◦F(µ).

3.2. Differential equation characterization of gradient flows. We close by identifying the differential
equations that characterize gradient flows of Fk,ε, Fk and F . These proofs are natural consequences of the
properties of the energies proved in the previous section and the definition of gradient flow, so we defer them
to Appendix B.

Proposition 3.10 (PDE characterization of GF of Fk and F). Assume (V), (T), and ρ̄ is log-concave.

(i) Suppose also (C) holds. For every µ0 ∈ D(Fk), we have that µ(t) ∈ AC2
loc((0,+∞);P2(Rd)) is the

unique Wasserstein gradient flow of Fk with initial data µ0 if and only if µ(t) satisfies,

(3.8)

{
∂tµ−∇ ·

(
ρ̄
2∇
(
µ2

ρ̄2

)
+∇V µ+∇Vkµ

)
= 0, in duality with C∞c (Rd × (0,∞)),

limt→0+ µ(t) = µ0 in W2,

and satisfies,

µ(t)� Ld and (µ(t)/ρ̄)2 ∈W 1,1
loc (Rd) for L1-a.e. t > 0,(3.9) ∫

Rd

∣∣ρ̄ ∇ (µ(t)2/ρ̄2
)
/(2µ) +∇V +∇Vk

∣∣2 dµ ∈ L1
loc(0,∞).(3.10)

(ii) Suppose also (D) holds. For every µ0 ∈ D(F), we have that µ(t) ∈ AC2
loc((0,+∞);P2(Rd)) is the

unique Wasserstein gradient flow of F with initial data µ0 if and only if µ(t) satisfies,

(3.11)

{
∂tµ−∇ ·

(
ρ̄
2∇
(
µ2

ρ̄2

)
+∇V µ

)
= 0, in duality with C∞c (Rd × (0,∞)),

limt→0+ µ(t) = µ0 in W2,

and satisfies,

µ(t)� Ld, µ = 0 Ld-a.e. on Rd \ Ω, and (µ(t)/ρ̄)2 ∈W 1,1
loc (Ω) for L1-a.e. t > 0,(3.12) ∫

Rd

∣∣ρ̄ ∇ (µ(t)2/ρ̄2
)
/(2µ) +∇V

∣∣2 dµ ∈ L1
loc(0,∞).(3.13)

Remark 3.11 (relationship with existing work on nonlinear diffusion equations). First, note that if Ω is
compact, then the weak formulation of the PDE in equation (3.11) implies that the PDE also holds in the
duality with C∞((0,+∞)× Ω), which is a weak formulation of the no flux boundary conditions,

ρ̄

2
∂n

(
µ2

ρ̄2

)
+ ∂nV µ = 0 on ∂Ω,(3.14)

since the test functions are merely required to be compactly supported Rd × (0,+∞), not Ω× (0,+∞). In
particular, if µ is a smooth classical solution of (WPME) with no flux boundary conditions, it solves (3.11).

In [64], Otto pioneered the connection between PDEs and Wasserstein gradient flows, characterizing
solutions to homogeneous porous medium equations (ρ̄ = 1) without boundary (Ω = Rd) as gradient flows
of the internal energy F(ρ) = 1

2

∫
ρ2. The notion of solution used in this previous work is stronger than

the one in Proposition 3.10. In particular, if ρ is a solution to the porous medium equation in this previous
sense [64, Definition 1], then it is a solution of (3.11), hence a gradient flow in the sense defined here.

More recently, Dolbeault, et al. [35] and Grillo, Muratori, and Porzio [44] consider well-posedness of
(WPME). If u is smooth enough, it is a solution to [44, equation (1.1)] (with ρν = ρµ = ρ̄, and with Ω = Rd)
if and only if µ := ρ̄u satisfies (3.11). More precisely comparing our notion of solution with [44, Definition
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3.5], we observe that our definition requires the same regularity in space, stronger regularity in time, and we
employ a smaller class of test functions.

Next, we provide a PDE characterization of the gradient flow of Fε,k, the proof of which we again defer
to Appendix B.

Proposition 3.12 (PDE characterization of GF of Fε,k). Suppose Assumptions (T), (M), (V), and (C) hold.

For every µ0 ∈ D(Fε,k), we have that µ(t) ∈ AC2
loc((0,+∞);P2(Rd)) is the unique Wasserstein gradient flow

of Fε,k with initial data µ0 if and only if µ(t) satisfies,{
∂tµ−∇ ·

(
µ
(
∇ζε ∗

(
ζε∗µ
ρ̄

)
+∇(ζε ∗ V ) +∇Vk

))
= 0, in duality with C∞c (Rd × (0,∞)),

limt→0+ µ(t) = µ0 in W2.
(3.15)

Finally, we characterize the dynamics of the gradient flow of Fε,k when the initial data is given by an
empirical measure. We show that it remains an empirical measure for all time, that is, “particles remain
particles”, and we explicitly state the ODE that characterizes the empirical measure’s evolution. The proof
is in Appendix B.

Proposition 3.13 (particle evolution for Fε,k). Suppose Assumptions (T), (M), (V), and (C) hold. Fix

ε > 0, N ∈ N, {X1
0 , . . . , X

N
0 } ∈ Rd, and {m1, . . . ,mN} ∈ R+ satisfying

∑N
i=1m

i = 1. Then, there exists
a unique continuously differentiable function X : [0,∞) → RNd, with components (X1(t), ..., XN (t)), that
satisfies the system,

(3.16)

{
Ẋi = −∑N

j=1m
j
∫
Rd ∇ζε(Xi − z)ζε(z −Xj) 1

ρ̄(z) dz −∇(ζε ∗ V )(Xi)−∇Vk(Xi),

Xi(0) = Xi
0.

Moreover, µ(t) :=
∑N
i=1 δXi(t)m

i is the unique Wasserstein gradient flow of Fε,k with initial conditions µ(0).

3.3. Long-time behavior. We conclude this section by recalling known properties of the long time behavior
of (WPME) or, equivalently, gradient flows of F , which motivate its connection to quantization.

Proposition 3.14 (long time behavior, [3]). Assume (D), (T), V = 0, Ω is bounded, and ρ̄ is log-concave.
Let ρ0 ∈ D(F) and let ρ(t) be the gradient flow ρ of F with initial data ρ0. Then we have,

lim
t→+∞

W2

(
ρ(t),

1Ωρ̄∫
Ω
ρ̄ dLd

)
= 0.

Proof. This is an immediate consequence of [3, Corollary 4.0.6]. �

4. An H1 bound on the mollified gradient flow of Fε,k
A key element in our proof of the convergence of the gradient flows of Fε,k to a gradient flow of Fk as

ε→ 0 is the following H1-type bound on ζε ∗ρε(t) (the mollified gradient flow of Fε,k) in terms of the energy,
second moment, and entropy of the initial data. We remark that this bound holds without a log-concavity
assumption on ρ̄.

Theorem 4.1 (H1 bound on mollified GF of Fε,k). Assume (T), (M), (V), and (C) hold. There exist
positive constant Cρ̄ and CV , depending only on ρ̄ and V , respectively, so that, for all T > 0, k ∈ N, and
ε > 0 and for any gradient flow ρε ∈ AC2([0, T ];P2(Rd)) of Fε,k, we have,∫ T

0

||∇ζε ∗ ρε(t)||2L2(Rd) dt ≤ Cρ̄
(
S(ρε(0)) +

√
2π + (1 + T + TeT ) (M2(ρε(0)) + Fε,k(ρε(0)) + CV )

)
.(4.1)

4.1. Proof sketch. First, we describe a formal argument to obtain inequality (4.1), and then we explain
how to make the argument rigorous. By Proposition 3.12, ρε(t) is a weak solution of the PDE,

(4.2) ∂tρε = ∇ ·
(
ρε∇ζε ∗

(
ζε ∗ ρε
ρ̄

)
+ ρε∇(ζε ∗ V ) + ρε∇Vk

)
,
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in the duality with C∞c (Rd × (0,∞)). Thus, formally evaluating the entropy S(ρ) along the gradient flow,
differentiating in time, and integrating by parts, we obtain,

d

dt
S(ρε)(t) =

∫
Rd

log(ρε)∂tρε dLd(4.3)

= −
∫
Rd

〈
∇ρε,∇ζε ∗

(
ζε ∗ ρε
ρ̄

)〉
+ 〈∇ρε,∇(ζε ∗ V )〉+ 〈∇ρε,∇Vk〉 dLd

= −
∫
Rd

|∇ζε ∗ ρε|2
ρ̄

+

〈
∇(ζε ∗ ρε), (ζε ∗ ρε)∇

(
1

ρ̄

)〉
+ 〈∇(ζε ∗ ρε),∇V 〉 − ρε∆Vk dLd.

Integrating in time and estimating the terms on the right hand side then leads to inequality (4.1).
The key difficulty in making the above argument rigorous is justifying the time differentiation of the

entropy, in the absence of relevant a priori estimates for ρε. In order to overcome this difficulty, McCann,
Matthes, and Savaré introduced the flow interchange method [56]. Suppose that ρε(t) and µ(t) are, re-
spectively, the gradient flows of the energy Fε,k and the entropy S, and we have ρε(0) = µ(0). The flow
interchange method is based on the following formal observation, with∇W2

denoting the Wasserstein gradient
and 〈·, ·〉W2,ρ

denoting the Wasserstein inner product at ρ:

d

dt
S(ρε)

∣∣∣∣
t=0

= 〈∇W2
S(ρε), ∂tρε〉W2,ρε

∣∣∣
t=0

= − 〈∇W2
S(ρε),∇W2

Fε,k(ρε)〉W2,ρε

∣∣∣
t=0

= − 〈∇W2S(µ),∇W2Fε,k(µ)〉W2,µ

∣∣∣
t=0

= 〈∂tµ,∇W2Fε,k(µ)〉W2,µ

∣∣∣
t=0

=
d

dt
Fε,k(µ)

∣∣∣∣
t=0

.

Consequently, at a fixed time, differentiating Fε,k along the gradient flow of S should give the same result as
equation (4.3). The former is much easier to justify in practice, since the gradient flow µ(t) of S with initial
data µ(0) is precisely the solution of the heat equation on Rd with initial data µ(0) [3, Examples 11.2.7], for
which we have robust a priori estimates.

Note that, since the entropy S is a 0-convex energy [3, Proposition 9.3.9], the evolution variational
inequality characterization of gradient flows, recalled in Theorem 2.13, ensures that, if µ(t) is the gradient
flow of S, then for all ν ∈ P2(Rd) and for L1-a.e. t ≥ 0,

1

2

d+

dt
W 2

2 (µ(t), ν) + S(µ(t)) ≤ S(ν).(4.4)

4.2. Preliminaries for the proof. Now, we introduce the machinery we need for our rigorous argument,
following the outline described above. To avoid differentiating S(ρε) in time, we work with the discrete time
analogue of the gradient flow of Fε,k, given by the minimizing movement scheme (see Definition A.1).

Definition 4.2 (minimizing movement scheme for Fε,k). Given µ ∈ P2(Rd), let Jnτ,εµ denote the nth step

of the minimizing movement scheme of Fε,k with time step τ and initial data J0
τ,εµ = µ.

Due to the robust a priori estimates available for solutions of the heat equation, we will work with
continuous time gradient flow of S.

Definition 4.3 (heat flow semigroup). Gven µ ∈ P2(Rd) and h ≥ 0, we will let Shµ denote the (continuous
time) gradient flow of S with initial data µ at time h; in other words, Sh is the heat flow semigroup operator.

We will use the fact that, for any µ ∈ P2(Rd), we have,

(4.5) ζε ∗ (Sh(µ)) = Sh(ζε ∗ µ).

A key step in the proof is computing the derivatives in h of Eε(Sh(Jnτ,εµ)), Vε(Sh(Jnτ,εµ)), and Vk(Sh(Jnτ,εµ))
at h = 0. We separate this step into a separate lemma:
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Lemma 4.4 (derivatives along Sh(Jnτ,εµ)). Assume (T), (M), (V), and (C) hold. Let µ ∈ P2(Rd). We have,

lim sup
h→0+

Eε(Jnτ,εµ)− Eε(Sh(Jnτ,εµ))

h
= −

∫
Rd

1

ρ̄
∆(ζε ∗ Jnτ,εµ)

(
ζε ∗ Jnτ,εµ

)
dLd,(4.6)

lim sup
h→0+

Vε(Jnτ,εµ)− Vε(Sh(Jnτ,εµ))

h
=

∫
Rd

〈
∇V,∇(ζε ∗ Jnτ,εµ)

〉
dLd, and(4.7)

lim sup
h→0+

Vk(Jnτ,εµ)− Vk(Sh(Jnτ,εµ))

h
= −

∫
Rd

∆Vk dJnτ,εµ.(4.8)

Our proof of this lemma relies on two key facts, which we now recall. First, for any ν ∈ P2(Rd),

(4.9) the map h 7→ Shν is narrowly continuous;

that is, h 7→
∫
f dShν is continuous for any bounded and continuous function f . This holds since Shν, by

virtue of being the gradient flow of S, is in AC2
loc((0,+∞);P2(Rd)), hence h 7→ Shν is continuous with

respect to W2, which implies narrow continuity.
The second fact we will use is that, for any for any ν ∈ P2(Rd) and φ ∈ C1

c (Rd),

(4.10)

∫
Rd
φdShν −

∫
Rd
φdν = −

∫ h

0

∫
Rd
〈∇φ(y),∇Stν(y)〉 dy dt.

Notice that, at a formal level, the integrand on the left-hand side is exactly
∫ h

0
d
dtStνdt, which, upon using

the fact that Stν satifies the heat equation, and integrating by parts, yields the desired equality. More
rigorously, one may obtain (4.10) as a consequence of [4, Lemma 8.1.2]. And, arguing as in [4, Example

11.1.9], we have Shν ∈W 1,1
loc (Rd) for a.e. h > 0 and,∫ T

0

∫
Rd
|∇Shν| =

∫ T

0

∫
Rd

|∇Shν|
Shν

Shν ≤
(∫ T

0

∫
Rd

|∇Shν|2
Shν

)1/2(∫ T

0

∫
Rd

Shν

)1/2

=
√
T

(∫ T

0

∫
Rd

|∇Shν|2
Shν

)1/2

,

where the quantity on the right-hand side is finite by equation (11.1.38) of [4].
With these facts in hand, we now turn to the proof of Lemma 4.4.

Proof of Lemma 4.4. We begin by proving equation (4.6). For all h > 0, using the definition of Eε and the
commutativity relation (4.5), we find,

Eε(Jnτ,εµ)− Eε(Sh(Jnτ,εµ))

h
=

1

2h

∫
Rd

∣∣ζε ∗ (Jnτ,εµ)
∣∣2

ρ̄
dLd − 1

2h

∫
Rd

∣∣ζε ∗ (Sh(Jnτ,εµ))
∣∣2

ρ̄
dLd

=

∫
Rd

1

2ρ̄

(
ζε ∗ (Jnτ,εµ)− ζε ∗ (Sh(Jnτ,εµ))

h

)(
ζε ∗ (Jnτ,εµ) + ζε ∗ (Sh(Jnτ,εµ))

)
dLd

=

∫
Rd

1

2ρ̄

(
ζε ∗ (Jnτ,εµ)− Sh(ζε ∗ Jnτ,εµ)

h

)(
ζε ∗ (Jnτ,εµ) + ζε ∗ (Sh(Jnτ,εµ))

)
dLd.(4.11)

Recalling that ζε ∗ (Jnτ,εµ) is a smooth function, and using that Sh(ζε ∗ Jnτ,εµ) satisfies the heat equation
in the classical sense, we find,

(4.12) ζε ∗ (Jnτ,εµ)− Sh(ζε ∗ Jnτ,εµ) = −
∫ h

0

d

dt
St(ζε ∗ Jnτ,εµ) dt = −

∫ h

0

∆St(ζε ∗ Jnτ,εµ) dt.

Using this in (4.11), we obtain,

Eε(Jnτ,εµ)− Eε(Sh(Jnτ,εµ))

h
=

∫
Rd

1

2ρ̄

(
1

h

∫ h

0

−∆St(ζε ∗ Jnτ,εµ) dt

)(
ζε ∗ (Jnτ,εµ) + ζε ∗ (Sh(Jnτ,εµ))

)
dLd.

Classical elliptic regularity implies that ‖∆St(ζε ∗Jnτ,εµ)‖L∞(Rd) ≤ Cε,τ,n holds for all t. Hence, the integrand

on the right-hand side of the previous line is bounded in L1(Rd), independently of h. Thus, upon applying
the dominated convergence theorem to take the limit h→ 0+, we find,

lim sup
h→0+

Eε(Jnτ,εµ)− Eε(Sh(Jnτ,εµ))

h
= −

∫
Rd

1

ρ̄
∆(ζε ∗ Jnτ,εµ)

(
ζε ∗ Jnτ,εµ

)
dLd.
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We have again used that St(ζε ∗ Jnτ,ε) satisfies the heat equation in the classical sense, and is therefore
continuous in t. This completes the proof of equation (4.6).

Next we establish equation (4.7). For all h > 0, using the definition of Vε, followed by (4.5), we obtain,

Vε(Jnτ,εµ)− Vε(Sh(Jnτ,εµ))

h
=

1

h

(∫
Rd

(ζε ∗ V ) dJnτ,εµ−
∫
Rd

(ζε ∗ V ) dSh(Jnτ,εµ)

)
=

1

h

∫
Rd
V
(
ζε ∗ Jnτ,εµ− ζε ∗ Sh(Jnτ,εµ)

)
dLd

=
1

h

∫
Rd
V
(
ζε ∗ Jnτ,εµ− Sh(ζε ∗ Jnτ,εµ)

)
dLd.

As in the computation for Eε, we now use (4.12) to find,

Vε(Jnτ,εµ)− Vε(Sh(Jnτ,εµ))

h
= −

∫
Rd
V

1

h

∫ h

0

∆St(ζε ∗ Jnτ,εµ) dt dLd.

Assumption (V) implies V ∈ L1(Rd), so we can pass to the limit in h (again, as above), and find,

lim sup
h→0+

Vε(Jnτ,εµ)− Vε(Sh(Jnτ,εµ))

h
= −

∫
Rd
V∆(ζε ∗ Jnτ,εµ) dLd.

Integrating by parts yields (4.7).
Finally, we establish (4.8). For all h > 0, using the definition of Vk, followed by (4.10), and an integration

by parts, yields,

Vk(Jnτ,εµ)− Vk(Sh(Jnτ,εµ))

h
=

1

h

(∫
Rd
Vk dJnτ,εµ−

∫
Rd
Vk dSh(Jnτ,εµ)

)
=

∫
Rd

1

h

∫ h

0

〈
∇Vk(x),∇StJ

n
τ,εµ(x, t)

〉
dt dx

= −
∫
Rd

1

h

∫ h

0

∆Vk(x)StJ
n
τ,εµ(x, t) dt dx.

Since ‖∆Vk‖L∞(Rd) is bounded, we use the dominated convergence theorem, as well as the narrow continuity
of StJ

n
τ,εµ in t (see (4.9)), to pass to the limit in h and obtain the desired result.

�

Before proceeding to the main result of the section, we estimate the right-hand side of (4.6). Notice that
the hypotheses on φ in the statement are satisfied by ζε ∗ Jnτ,εµ, since Jnτ,εµ ∈ D(Eε).

Lemma 4.5. Let φ ∈ C∞(Rd) ∩ L1(Rd) ∩ L2(Rd). Then we have,

−
∫
Rd

1

ρ̄
(∆φ)(φ) dL ≥ Cρ̄‖∇φ‖2L2(Rd) − C ′ρ̄‖φ‖2L2(Rd),

where Cρ̄ and C ′ρ̄ depend only on ρ̄.

Proof. Integrating by parts, using the product rule, and the fact that ρ̄ is bounded uniformly away from
zero, we find,

−
∫
Rd

1

ρ̄
(∆φ)(φ) =

∫
Rd

〈
∇φ,∇

(
1

ρ̄
φ

)〉
=

∫
Rd

|∇φ|2
ρ̄

+ φ

〈
∇φ,∇

(
1

ρ̄

)〉
≥ Cρ̄

∫
Rd
|∇φ|2 − C ′ρ̄

∫
Rd
|∇φ||φ| ≥ Cρ̄

2

∫
Rd
|∇φ|2 − C ′ρ̄

∫
|φ|2,

where the last estimate follows from the Cauchy-Schwartz inequality, and C ′ρ̄ changes from line to line (but
depends only on ρ̄). �
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4.3. Proof of H1-type bound. We now apply the previous lemmas to prove the main result of the section.

Proof of Theorem 4.1. By definition of the minimizing movement scheme (see Definition A.1), for any µ ∈
D(Fε,k),

Fε,k(Jnτ,εµ)−Fε,k(Sh(Jnτ,εµ)) ≤ 1

2τ

[
W 2

2 (Sh(Jnτ,εµ), Jn−1
τ,ε µ)−W 2

2 (Jnτ,εµ, J
n−1
τ,ε µ)

]
.

Dividing by h, taking the limit as h→ 0, and applying the evolution variational inequality characterization
of the gradient flow of S, inequality (4.4), we obtain,

lim sup
h→0+

Fε,k(Jnτ,εµ)−Fε,k(Sh(Jnτ,εµ))

h
≤ 1

2τ

d+

dh
W 2

2 (Sh(Jnτ,εµ), Jn−1
τ,ε µ)

∣∣∣∣
h=0

≤ S(Jn−1
τ,ε µ)− S(Jnτ,εµ)

τ
.(4.13)

The quantity on the right hand side will play the role of − d
dtS(ρε) in the τ → 0 limit. Thus, in order to

obtain (4.1), we aim to bound it from below by estimating the left hand side of (4.13).
Recalling that Fε,k = Eε + Vε + Vk and applying Lemma 4.4, we find,

lim sup
h→0+

Fε,k(Jnτ,εµ)−Fε,k(Sh(Jnτ,εµ))

h

= −
∫
Rd

1

ρ̄
∆(ζε ∗ Jnτ,εµ)

(
ζε ∗ Jnτ,εµ

)
dLd +

∫
Rd

〈
∇V,∇(ζε ∗ Jnτ,εµ)

〉
dLd −

∫
Rd

∆Vk dJnτ,εµ.

Combining this with (4.13), and and summing over n, we obtain,

S(J0
τ,εµ)− S(Jnτ,εµ)

τ
=

n∑
i=1

S(Ji−1
τ,ε µ)− S(Jiτ,εµ)

τ

≥
n∑
i=1

−
∫
Rd

1

ρ̄
∆(ζε ∗ Jiτ,εµ)

(
ζε ∗ Jiτ,εµ

)
dLd +

∫
Rd

〈
∇V,∇(ζε ∗ Jnτ,εµ)

〉
dLd −

∫
Rd

∆Vk dJiτ,εµ.

Take τ = T/n, and let µτ,ε(t) denote the piecewise constant interpolation of the minimizing movement
scheme Jnτ,εµ; see equation (A.2). Then the above line implies,

S(µτ,ε(0))− S(µτ,ε(T ))(4.14)

≥
∫ T

0

∫
Rd
−1

ρ̄
∆(ζε ∗ µτ,ε(s)) (ζε ∗ µτ,ε(s)) + 〈∇V,∇(ζε ∗ µτ,ε(s))〉 dLd ds−

∫ T

0

∫
Rd

∆Vk dµτ,ε(s) ds.

We consider the right-hand side. The first term on the right-hand side is the most important one, since
this is where the derivative we seek to estimate will come from. First, we note, using the definition of Eε,
the properties of ρ̄, the fact that the energy Fε,k decreases along the minimizing movements scheme (see
inequality (A.1)), and the fact that the minimizing movements scheme is initialized at ρε(0),

‖ζε ∗ µτ,ε(s)‖2L2(Rd) ≤ ‖ρ̄−1‖L∞(Rd)Eε(µτ,ε(s)) ≤ ‖ρ̄−1‖L∞(Rd)

(
Fε,k(µτ,ε(s)) + ‖V ‖L∞(Rd)

)
(4.15)

≤ ‖ρ̄−1‖L∞(Rd)

(
Fε,k(ρε(0)) + ‖V ‖L∞(Rd)

)
< +∞.

Thus, for each fixed s, we may apply Lemma 4.5 to find,∫
Rd
−1

ρ̄
∆(ζε ∗ µτ,ε(s)) (ζε ∗ µτ,ε(s)) dLd ≥ Cρ̄‖∇ζε ∗ µτ,ε(s)‖2L2(Rd) − C ′ρ̄‖ζε ∗ µτ,ε(s)‖2L2(Rd).

Using (4.15) to bound the second term on the right-hand side of the previous line from below, and integrating
in time, we find,∫ T

0

∫
Rd
−1

ρ̄
∆(ζε∗µτ,ε(s)) (ζε ∗ µτ,ε(s)) dLd ds ≥ Cρ̄

∫ T

0

‖∇ζε∗µτ,ε(s)‖2L2(Rd) ds−TC ′ρ̄
(
Fε,k(ρε(0)) + ‖V ‖L∞(Rd)

)
.

(Here C ′ρ̄ is allowed to change from line to line, but only depends on ρ̄.)
Next, we apply the Cauchy-Schwartz inequality to the second term on the right-hand side of (4.14) to

obtain, ∫ T

0

∫
Rd
〈∇V,∇(ζε ∗ µτ,ε(s))〉 dLd ds ≥ −

Cρ̄
2

∫ T

0

‖∇ζε ∗ µτ,ε(s)‖2L2(Rd) ds− C ′ρ̄T‖∇V ‖L2(Rd).
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Finally, for third term on the right-hand side of (4.14), we bound it from below simply by T‖∆Vk‖L∞(Rd),
which is finite by assumption. Using this, along with the two previous estimates, we find,

S(µτ,ε(0))− S(µτ,ε(T )) ≥ Cρ̄
2

∫ T

0

‖∇ζε ∗ µτ,ε(s)‖2L2(Rd) ds− TC ′ρ̄ (Fε,k(ρε(0)) + CV ) ,(4.16)

where CV = ‖V ‖L∞(Rd) + ‖∇V ‖L2(Rd) + ‖∆Vk‖L∞(Rd).

We now aim to send n → +∞ in inequality (4.16), using the fact that µτ,ε(t) → ρε(t) narrowly for all
t ≥ 0; see Theorem A.2. Note that, for any f ∈ L2(Rd) and s ∈ [0, T ],∫

Rd
f∇(ζε ∗ µτ,ε(s)) = −

∫
Rd

(∇ζε ∗ f)µτ,ε(s)
n→+∞−−−−−→ −

∫
Rd

(∇ζε ∗ f)ρε(s) =

∫
Rd
f∇(ζε ∗ ρε(s)).

Thus, ∇(ζε ∗ µτ,ε)(s)→ ∇(ζε ∗ ρε)(s) weakly in L2(Rd) for all s ∈ [0, T ]. By the lower semicontinuity of the
L2(Rd) norm with respect to weak convergence and Fatou’s lemma, sending n → +∞ in inequality (4.16)
yields,

lim sup
n→∞

S(µτ,ε(0))− S(µτ,ε(T )) ≥ Cρ̄
2

∫ T

0

‖∇ζε ∗ ρε(s)‖2L2(Rd) ds− T
(
C ′ρ̄Fε,k(ρε(0)) + CV

)
.(4.17)

For the left hand side of (4.17), note that the choice of initial data for the minimizing movement scheme
ensures S(µτ,ε(0)) = ρε(0) for all τ > 0 and, by the lower semicontinuity of the entropy with respect to
narrow convergence [3, Remark 9.3.8], lim supn→∞−S(µτ,ε(T )) ≤ −S(ρε(T )). Thus, sending n → +∞ on
the left hand side of (4.17), we estimate,

lim sup
n→+∞

S(µτ,ε(0))− S(µτ,ε(T )) ≤ S(ρε(0))− S(ρε(T )).(4.18)

Finally, using a Carleman-type estimate [24, Lemma 4.1] to bound the entropy below by a constant plus the
second moment and applying Proposition A.3 to bound the second moment, we obtain,

lim sup
n→+∞

S(µτ,ε(0))− S(µτ,ε(T )) ≤ S(ρε(0)) +
√

2π +M2(ρε(T ))

≤ S(ρε(0)) +
√

2π + (1 + TeT ) (M2(ρε(0)) + Fε,k(ρε(0))) .(4.19)

Thus, combining inequalities (4.17) and (4.19), we obtain

S(ρε(0)) +
√

2π + (1 + TeT ) (M2(ρε(0)) + Fε,k(ρε(0))) ≥ Cρ̄
2

∫ T

0

‖∇ζε ∗ ρε(s)‖2L2(Rd) ds− T
(
C ′ρFε,k(ρε(0)) + CV

)
.

Rearranging then gives the result. �

5. Convergence of the gradient flows of Fε,k to Fk
We now apply the properties of the energy Fε,k and its gradient flows developed in the previous sections

to prove two of our main results: Thorems 1.1 and 1.7(i). Our strategy to prove these three theorems is to
leverage the framework of Γ-convergence.

In Subsection 5.1, we begin by proving the Γ-convergence of the energies Fε,k to the energy Fk, in the
sense of Definition 2.14. It is then a routine application of standard Calculus of Variations techniques to
conclude that, as long as the external potentials offer sufficient compactness, minimizers of Fε,k converge to
a minimizers of Fk as ε→ 0. This yields Theorem 1.7(i).

Next, in Subsection 5.2.1, we prove the Γ-convergence of the gradient flows of Fε,k to the the gradient
flow of Fk, in the sense of Serfaty [69]; see Theorem 2.15 in which we recall her approach. This ensures that,
given a sequence of gradient flows of Fε,k with “well-prepared” initial data (bounded entropy and energy),
the gradient flows of Fε,k converge to a gradient flow of Fk as ε→ 0, completing the proof of Theorem 1.1.

5.1. Γ-convergence of the energies and convergence of minimizers. We now turn to the proof of
Theorem 1.7(i), that minimizers of Fε,k converge to a minimizer of Fk. We begin by showing the Γ-
convergence of the energies Fε,k to the energy Fk, in the sense of Definition 2.14.

Theorem 5.1 (Γ-convergence of energies). Assume (T), (M), (V), and (C) hold. Fix k ∈ N. Then the
energies Fε,k Γ-converge to Fk as ε→ 0. In particular, for any µ ∈ P2(Rd), limε→0 Fε,k(µ) = Fk(µ).
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Proof. We begin with the proof of (2.12). Let ρε narrowly converge to ρ. Lemma 2.3 implies,

(5.1) ζε ∗ ρε narrowly converges to ρ.

By definition of Eε and E , we have, as in (1.10), Eε(ρε) = E(ζε ∗ ρε). Taking lim infε→0 and using the lower
semicontinuity of E with respect to narrow convergence, as well as (5.1), we obtain,

lim inf
ε→0

Eε(ρε) = lim inf
ε→0

E(ζε ∗ ρε) ≥ E(ρ).

For the Vε term, we first use the properties of convolution, followed by the assumption V ∈ Cb(Rd) and
(5.1), to find,

(5.2)

∫
Rd

(ζε ∗ V ) dρε =

∫
Rd
V (ζε ∗ ρε) dLd →

∫
Rd
V dρ.

Finally, Lemma 3.1 ensures Vk is lower semicontinuous with respect to narrow convergence. Together with
the definitions of Fε,k and Fk, this concludes the proof of (2.12).

Now we establish (2.13). Let ρ ∈ P(Rd). Taking ρε = ρ for all ε > 0 in (5.2), and using the fact that
Vk is independent of ε, we find that it suffices to prove lim supε→0 Eε(ρ) ≤ E(ρ). Without loss of generality,
we assume ρ is such that E(ρ) < +∞, otherwise, the desired inequality is trivially true. Together with the
definition of E and our assumption (T) that ρ̄ is bounded uniformly above and below, we deduce ρ ∈ L2(Rd).
We use the definition of Eε to find,

2Eε(ρ) =

∫
Rd
|ζε ∗ ρ|2(x)

1

ρ̄(x)
dx =

∫
Rd

∣∣∣∣∫
Rd
ζε(x− y)ρ(y) dy

∣∣∣∣2 1

ρ̄(x)
dx.

Next we use Jensen’s inequality, followed by Fubini’s Theorem, to obtain,

2Eε(ρ) ≤
∫
Rd

∫
Rd
ζε(x− y)ρ(y)2 1

ρ̄(x)
dy dx =

∫
Rd

(
ζε ∗

1

ρ̄

)
(y)ρ2(y) dy.(5.3)

We shall now prove:

(5.4) lim
ε→0

∣∣∣∣∫
Rd

(
ζε ∗

1

ρ̄

)
(y)ρ2(y) dy − 2E(ρ)

∣∣∣∣ = 0.

Together with (5.3), this will yield the desired result.
In order to establish (5.4), we first use the definition of E(ρ) to write,∣∣∣∣∫

Rd

(
ζε ∗

1

ρ̄

)
ρ2 dLd − 2E(ρ)

∣∣∣∣ =

∣∣∣∣∫
Rd

(
ζε ∗

1

ρ̄

)
ρ2 dLd −

∫
Rd

ρ2

ρ̄
dLd

∣∣∣∣ ≤ ∫
Rd

∣∣∣∣(ζε ∗ 1

ρ̄

)
− 1

ρ̄

∣∣∣∣ ρ2 dLd.(5.5)

Fix δ > 0 arbitrary. Since ρ ∈ L2(Rd), there exists R > 0 such that
∫
BcR

ρ2 ≤ δ. Moreover, since 1/ρ̄ is

uniformly bounded (see Assumption (T)),∫
BcR

∣∣∣∣(ζε ∗ 1

ρ̄

)
− 1

ρ̄

∣∣∣∣ ρ2 dLd ≤ C
∫
BcR

ρ2 ≤ Cδ,

where C is independent of δ and ε. Now, splitting the integral in (5.5) into integrals over BR and BcR, we
find,∣∣∣∣∫

Rd

(
ζε ∗

1

ρ̄

)
ρ2 dLd − 2E(ρ)

∣∣∣∣ ≤ ∫
BR

∣∣∣∣(ζε ∗ 1

ρ̄

)
− 1

ρ̄

∣∣∣∣ ρ2 dLd + Cδ ≤
∥∥∥∥(ζε ∗ 1

ρ̄

)
− 1

ρ̄

∥∥∥∥
L∞(BR)

‖ρ‖L2(Rd) + Cδ.

Since 1/ρ̄ is continuous, ζε ∗ 1
ρ̄ converges to 1/ρ̄ uniformly on compact subsets of Rd as ε→ 0. In particular,

we may choose ε > 0 small enough so that the value of the right-hand side of the previous line is no larger
than δ. Since δ > 0 was arbitrary, this completes the proof of estimate (5.4) and therefore of the lemma. �

We now apply this result to complete the proof of Theorem 1.7(i), which ensures that, under the assump-
tion that the sublevel sets of Vk are compact, minimizers of Fε,k converge to a minimizer of Fk.

Proof of Theorem 1.7(i). The proof is classical, following directly from Theorem 5.1 and the fact that, since
the sublevel sets of Vk are compact, a sequence of minimizers of Fε,k is tight. For more details, see a similar
argument in previous work by the first author [20, Theorem 4.5]. �
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5.2. Γ-convergence of the gradient flows. We now turn to the proof of Theorem 1.1. We seek to show
that gradient flows of Fε,k with “well-prepared” initial data converge to a gradient flow of Fk. As previously
described, our approach relies on Serfaty’s framework of Γ-convergence of gradient flows, so we seek to verify
the hypotheses in Theorem 2.15. In general, the most challenging hypothesis to verify in this framework
is hypothesis (2.17), which ensures lower semicontinuity of the metric slopes of Fε,k along a sequence of
gradient flows ρε(t),

lim inf
ε→0

|∂Fε,k|2(ρε(t)) ≥ |∂Fk|2(ρ(t)).(5.6)

In Subsection 5.2.1, we prove Proposition 5.2, which provides sufficient conditions to ensure this lower
semicontinuity. In Subsection 5.2.2, we apply this to conclude convergence of the gradient flows for “well-
prepared” initial data.

5.2.1. Lower semicontinuity of metric slopes. We begin by stating sufficient conditions under which the lower
semicontinuity inequality for the metric slopes holds.

Proposition 5.2 (lower semicontinuity of metric slopes). Assume (T), (M), (V), and (C) hold. Consider
a sequence ρε in P2(Rd) satisfying,

sup
ε>0
Fε,k(ρε) < +∞,(5.7)

lim inf
ε→0

‖∇ζε ∗ ρε‖L2(Rd) < +∞, and(5.8)

lim inf
ε→0

∫ ∣∣∣∣∇ζε ∗ (ζε ∗ ρερ̄

)∣∣∣∣2 dρε < +∞.(5.9)

In addition, suppose there exists ρ ∈ P(Rd) such that ρε narrowly converges to ρ. Then ρ2 ∈W 1,1(Rd), and
there exists η ∈ L2(ρ), with,

(5.10) ηρ =
ρ̄

2
∇
(
ρ2

ρ̄2

)
+ ρ∇(V + Vk),

and such that,

(5.11) lim inf
ε→0

∫ ∣∣∣∣∇ζε ∗ (ζε ∗ ρερ̄

)
+∇(ζε ∗ V ) +∇Vk

∣∣∣∣2 dρε ≥ ∫ |η|2dρ.
Remark 5.3 (lower semicontinuity of metric slopes and log-concavity). Note that, under assumptions (T),
(M), (V), and (C), if we impose the additional assumption that ρ̄ is log-concave, then, by Propositions
3.8-3.9, we have (5.11) is equivalent to (5.6). However, we emphasize that the conclusion of Proposition 5.7
holds even for ρ̄ not log-concave.

The remainder of this subsection is devoted to the proof of Proposition 5.2. We begin with a preliminary
lemma, showing that, under the assumptions of Proposition 5.2, we may upgrade the convergence of ζε ∗ ρε
to ρ from narrow convergence to convergence in L2

loc(Rd).

Lemma 5.4 (upgraded convergence of ζε∗ρε). Assume (T), (M), (V), and (C) hold. Consider any sequence
ρε in P(Rd) and ρ ∈ P(Rd) such that ρε narrowly converges to ρ and (5.7) and (5.8) are satisfied. Then
ρ ∈ L2(Rd), and there exists a subsequence (still denoted ρε) along which we have,

sup
ε>0
||ζε ∗ ρε||H1(Rd) < +∞ and,(5.12)

ζε ∗ ρε converges to ρ in L2
loc(Rd).(5.13)

Proof of Lemma 5.4. By assumption (5.7) and the definition of Fε,k, we find,

(5.14) +∞ > sup
ε>0
Fε,k(ρε) + ‖V ‖L∞(Rd) ≥ sup

ε>0
Eε(ρε) = sup

ε>0

1

2

∫
Rd

|ζε ∗ ρ|2
ρ̄

≥ 1

2‖ρ̄‖L∞(Rd)

sup
ε>0

∫
Rd
|ζε ∗ ρ|2.

Similarly, since Theorem 5.1 ensures the Γ-convergence of Fε,k to Fk, statement (2.13) in Definition 2.14 of
Γ-convergence ensures,

+∞ > sup
ε>0
Fε,k(ρε) + ‖V ‖L∞(Rd) ≥ Fk(ρ) + ‖V ‖L∞(Rd) ≥ E(ρ) ≥ 1

2‖ρ̄‖L∞(Rd)

∫
Rd
ρ2 dx,



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 29

so ρ ∈ L2(Rd).
Combining assumption (5.8) with the estimate (5.14) we find that, up to a subsequence, (5.12) holds.

Therefore, by the Rellich-Kondrachov embedding theorem, we find that, up to another subsequence, ζε ∗ ρε
converges in L2

loc(Rd). On the other hand, Lemma 2.3, implies that ζε ∗ ρε narrowly converges to ρ. The
uniqueness of limits therefore implies (5.13). �

A key step in proving lower semicontinuity of the metric slopes of Fε,k, as in Proposition 5.2, is to identify

the weak limit of ∇ζε ∗
(

1
ρ̄ (ζε ∗ ρε)

)
in L1(ρε). With this weak limit in hand, lower semicontinuity of the

metric slopes will then follow from general results due to Ambrosio, Gigli, and Savaré on lower semicontinuity
of integral functions with varying measures [3, Theorem 5.4.4 (ii)]. In the following lemma, we characterize
the weak limit.

Lemma 5.5 (weak limit of subdifferentials). Assume (T), (M), (V), and (C) hold. Consider any sequence
ρε in P(Rd) and ρ ∈ P(Rd) such that ρε narrowly converges to ρ and (5.7), (5.8), and (5.9) are satisfied.
For all ε > 0 and f ∈ C∞c (Rd), define,

Lε(f) =

∫
Rd
f

(
∇ζε ∗

(
1

ρ̄
(ζε ∗ ρε)

))
dρε and L(f) =

∫
Rd
−1

2
∇
(
f

ρ̄

)
ρ2 dx+

∫
Rd
fρ2∇

(
1

ρ̄

)
dx.(5.15)

There exists a subsequence, still denoted by ε, so that, for any f ∈ C∞c (Rd), we have,

(5.16) lim
ε→0

Lε(f) = L(f).

Furthermore, L is a bounded linear operator on L2(ρ).

Proof. By Lemma 5.4, we may choose a subsequence, still denoted ρε, along which (5.12) and (5.13) hold.
In order to characterize limε→0 Lε(f), we begin by breaking up the expression for Lε(f) into two terms,

which we will estimate separately. Using the definition of Lε and properties of convolution, we find that, for
any f ∈ C∞c (Rd),

Lε(f) =

∫
Rd
f

(
ζε ∗

(
1

ρ̄
∇ (ζε ∗ ρε)

))
dρε +

∫
Rd
f

(
ζε ∗

(
∇
(

1

ρ̄

)
(ζε ∗ ρε)

))
dρε

=

∫
Rd

((fρε) ∗ ζε)
(

1

ρ̄
∇ (ζε ∗ ρε)

)
dLd +

∫
Rd

((fρε) ∗ ζε)
((
∇1

ρ̄

)
(ζε ∗ ρε)

)
dLd

=: Iε(f) + Jε(f).(5.17)

We begin by showing,

(5.18) lim
ε→0

Jε(f) =

∫
Rd
fρ2∇

(
1

ρ̄

)
dLd.

To this end, we apply Lemma 2.1, with σ = ζε∗ρε∇
(

1
ρ̄

)
dLd and ν = ρε to find, for Cζ > 0 as in assumption

(M), there exist p, Lf > 0, and Cρ̄ > 0 so that,∣∣∣∣Jε(f)−
∫
Rd
f(ζε ∗ ρε)2∇

(
1

ρ̄

)
dLd

∣∣∣∣ ≤ εpLf (∫
Rd

(ζε ∗ ρε)2|∇(1/ρ̄)| dLd + Cζ

∫
(ζε ∗ ρε)

∣∣∣∣∇1

ρ̄

∣∣∣∣ dLd)
≤ εpLfCρ̄

(∫
Rd

(ζε ∗ ρε)2 dLd + Cζ

)
.

By (5.12) of Lemma 5.4, the right-hand side converges to 0 as ε→ 0, which implies that (5.18) holds.
Next, we consider limε→0 Iε(f). For any f ∈ C∞c (Rd), define,

Ĩε(f) =
1

2

∫
Rd

f

ρ̄
∇
(

(ζε ∗ ρε)2
)
dLd.

Note that the L2 convergence of ζε ∗ ρε to ρ established in (5.13) of Lemma 5.4 ensures that, for any
f ∈ C∞c (Rd),

lim
ε→0

Ĩε(f) = lim
ε→0
−1

2

∫
Rd
∇
(
f

ρ̄

)
(ζε ∗ ρε)2 dLd = −1

2

∫
Rd
∇
(
f

ρ̄

)
ρ2 dLd.
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Thus, to complete our proof that limε→0 Lε(f) = L(f), it suffices to prove that, for any f ∈ C∞c (Rd),

(5.19) lim
ε→0
|Iε(f)− Ĩε(f)| = 0.

Using the definitions of Iε(f) and Ĩε(f), followed by some rearranging, we find,

|Iε(f)− Ĩε(f)| =
∣∣∣∣∫

Rd
((fρε) ∗ ζε) (x)

1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx−

∫
Rd
f(x)(ζε ∗ ρε)(x)

1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx

∣∣∣∣ ,
=

∣∣∣∣∫
Rd

[((fρε) ∗ ζε) (x)− f(x)(ζε ∗ ρε)(x)]
1

ρ̄(x)
∇(ζε ∗ ρε)(x) dx

∣∣∣∣ .
We have, for all x ∈ Rd,

((fρε) ∗ ζε)(x)− f(x)(ζε ∗ ρε)(x) =

∫
Rd

(f(y)− f(x))ρε(y)ζε(x− y) dy.

Thus, using this and Fubini’s Theorem we find,

|Iε(f)− Ĩε(f)| ≤
∫∫
|f(y)− f(x)| ρε(y)ζε(x− y)

1

ρ̄(x)
|∇(ζε ∗ ρε)(x)| dy dx.

Since ρ̄ is bounded uniformly from below and f ∈ C∞c (Rd),

|Iε(f)− Ĩε(f)| ≤ ‖∇f‖∞
inf ρ̄

∫∫
|x− y| ρε(y)ζε(x− y) |∇(ζε ∗ ρε)(x)| dy dx.(5.20)

Next, we claim that there exist C > 0, γ ∈ (0, 1) and δ > 1, all depending only on ζ, such that,

(5.21) ζε(x− y)|x− y| ≤ Cεδ for |x− y| > εγ .

Indeed, let q be as in Assumption (M), define δ′ = q− (d+ 1) > 0 and γ = δ′/2(d+ δ′). The definition of ζε
and assumption (M) imply,

ζε(z)|z| = ζ
(z
ε

) |z|
εd
≤ C|z|−(d+1+δ′)εd+1+δ′ |z|ε−d = C|z|−d−δ′ε1+δ′ .

Thus, for |z| > εγ we obtain, ζε(z)|z| ≤ Cε−(d+δ′)γε1+δ′ = Cε1+δ′/2. The inequality (5.21) now follows by
taking δ = 1 + δ′/2.

Thus, breaking up the integral on the right-hand side of (5.20) into two regions and using (5.21), we find,

|Iε(f)− Ĩε(f)|

≤ ‖∇f‖∞
inf ρ̄

(
εγ
∫∫
|x−y|<εγ

ρε(y)ζε(x− y) |∇(ζε ∗ ρε)(x)| dy dx+ Cεδ
∫∫
|x−y|>εγ

ρε(y) |∇(ζε ∗ ρε)(x)| dy dx
)

≤ ‖∇f‖∞
inf ρ̄

(
εγ
∫

(ρε ∗ ζε)(x) |∇(ζε ∗ ρε)(x)| dx+ Cεδ
∫
|(∇ζε ∗ ρε)(x)| dx

)
.

Now we use Hölder’s inequality for the first term on the right-hand side, and Young’s inequality for the
second term to obtain,

|Iε(f)− Ĩε(f)| ≤ Cf
(
εγ ||ζε ∗ ρε||L2(Rd)||∇ζε ∗ ρε||L2(Rd) + εδ||∇ζε||L1(Rd)

)
.

To bound the first term on the right-hand side we recall that ζε ∗ρε is bounded in H1(Rd) uniformly in ε (see
the estimate (5.12) from Lemma 5.4). For the second term, we note εδ||∇ζε||L1(Rd) = εδ−1||∇ζ||L1(Rd).

Since γ > 0 and δ − 1 > 0, this ensures limε→0 |Iε(f) − Ĩε(f)| = 0, which completes the proof that
limε→0 Lε(f) = L(f).

It remains to show that L is a bounded linear operator on L2(ρ). We will show that, for any f ∈ C∞c (Rd),
|L(f)| ≤ C‖f‖L2(ρ).

Indeed, since ρ ∈ L2(Rd), ρ is a Radon measure, so C1
c (Rd) is dense in L2(ρ) [9, Corollary 4.2.2], and there

exists a unique extension of L to L2(ρ) enjoying the same bound.
Fix arbitrary f ∈ C∞c (Rd). By definition of Lε in equation (5.15) and Hölder’s inequality,

|Lε(f)| ≤ ‖f‖L2(ρε)

∣∣∣∣∣∣∣∣∇ζε ∗ (1

ρ̄
(ζε ∗ ρε)

)∣∣∣∣∣∣∣∣
L2(ρε)

.
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Thus, by assumption (5.9), there exists C > 0 so that,

|L(f)| = lim inf
ε→0

|Lε(f)| ≤ C lim inf
ε→0

||f ||L2(ρε) = C||f ||L2(ρ),

which gives the result. �

We now apply the previous lemmas to prove our main proposition, ensuring lower semicontinuity of the
metric slopes.

Proof of Proposition 5.2. Choose a subsequence, still denoted by ρε, so that,

lim
ε→0
|∂Fε,k|(ρε) = lim inf

ε→0
|∂Fε,k|(ρε).

It suffices to show ρ2 ∈W 1,1(Rd), there exists η ∈ L2(ρ) satisfying (5.10), and, up to a further subsequence,

lim
ε→0

∫
Rd
f

(
∇ζε ∗

(
1

ρ̄
(ζε ∗ ρε)

)
+∇(ζε ∗ V ) +∇Vk

)
dρε =

∫
fη dρ for all f ∈ C∞c (Rd).(5.22)

The estimate (5.11) then follows by applying [3, Theorem 5.4.4 (ii)], completing the proof.
Notice that, for any f ∈ C∞c (Rd), the fact that ∇V and ∇Vk are continuous and Lemma 2.3 ensure,

lim
ε→0

∫
Rd
f (∇(ζε ∗ V )) dρε = lim

ε→0

∫
Rd
∇V (ζε ∗ (fρε)) dLd =

∫
f∇V dρ,(5.23)

lim
ε→0

∫
Rd
f (∇Vk) dρε =

∫
f∇Vk dρ.(5.24)

Next, we use the definitions of Lε(f) and L(f), as well as the convergence of Lε(f) to L(f) established in
(5.16) of Lemma 5.5. Combining these with the Riesz Representation Theorem on L2(ρ) (which we can
apply to the operator L due to, again, Lemma 5.5), we find that there exists η̃ ∈ L2(ρ) such that,

lim
ε→0

∫
Rd
f

(
∇ζε ∗

(
1

ρ̄
(ζε ∗ ρε)

))
dρε =

∫
Rd
−1

2
∇
(
f

ρ̄

)
ρ2 dx+

∫
Rd
fρ2∇

(
1

ρ̄

)
dx =

∫
f η̃ dρ.

Rearranging, we obtain,

−1

2

∫
Rd
∇
(
f

ρ̄

)
ρ2 dx =

∫
Rd
f η̃ρ− fρ2∇

(
1

ρ̄

)
dx =

∫
Rd

f

ρ̄

(
η̃ρρ̄− ρ̄ρ2∇

(
1

ρ̄

))
dx.

Since the previous line holds for all f ∈ C∞c (Rd), we deduce ρ2 ∈W 1,1(Rd) and

∇
(
ρ2

2

)
= η̃ρρ̄− ρ̄ρ2∇

(
1

ρ̄

)
.

Finally, by the chain rule for W 1,1(Rd) functions and the previous line, we have,

∇
(
ρ2

ρ̄2

)
= ∇(ρ2)

1

ρ̄2
+ ρ2∇

(
1

ρ̄2

)
=

1

ρ̄2

(
2η̃ρρ̄− 2ρ̄ρ2∇

(
1

ρ̄

))
+ ρ2∇

(
1

ρ̄2

)
= 2η̃

ρ

ρ̄
.

Thus,

(5.25) η̃ρ =
ρ̄

2
∇
(
ρ2

ρ̄2

)
.

Finally, defining η = η̃ +∇V +∇Vk, the facts that ∇V ∈ L∞(Rd) and ∇Vk ∈ L2(ρ) (see sentence following
Assumption (C), ensure η ∈ L2(ρ) and (5.22) holds. �

5.2.2. Convergence of gradient flows. We now apply the lower semicontinuity of the metric slopes, obtained
in Proposition 5.2, as well as the Γ-convergence of the energies, obtained in Theorem 5.1, to prove Theorem
1.1: that gradient flows of Fε,k with “well-prepared” initial data converge to a gradient flow of Fk.

Proof of Theorem 1.1. First, we will show that, up to a subsequence, the hypotheses of Serfaty’s Γ-convergence
of gradient flows framework, recalled in Theorem 2.15, are satisfied. The results of Section 3.1 ensure that
Fε,k and Fk are proper, lower semicontinuous, and semiconvex along generalized geodesics. Hypothesis
(2.12) holds by Theorem 5.1. Hypothesis (2.15) holds by assumption.
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Next, we consider hypotheses (2.14) and (2.16). First, note that, up to a subsequence, we may assume,

sup
ε>0
Fε,k(ρε,k(0)) < +∞.(5.26)

Likewise, Fε,k(µ) ≥ −‖V ‖L∞(Rd) for all µ ∈ P2(Rd). Thus, applying Lemma 2.16 with Gε = Fε,k, we obtain

that there exists ρk ∈ AC2([0, T ],P2(Rd)) so that (2.14) and (2.16) hold, up to a subsequence.
It remains to show (2.17). By Theorem 4.1, inequality (5.26), and assumption (1.20) of the present

theorem, we obtain,

lim inf
ε→0

∫ T

0

||∇ζε ∗ ρε,k(t)||2L2(Rd) dt < +∞.

Thus, by Fatou’s lemma, for almost every t ∈ [0, T ],

(5.27) lim inf
ε→0

||∇ζε ∗ ρε,k(t)||L2(Rd) < +∞.

Let us fix a time t so that (5.27) holds. We now apply Proposition 5.2 with ρε,k(t) and ρk(t) instead of ρε
and ρ. We find ρk(t)2 ∈W 1,1(Rd), and that there exists ηk(t) ∈ L2(ρk(t)) satisfying,

ηk(t)ρk(t) =
ρ̄

2
∇
(
ρk(t)2

ρ̄2

)
+∇(ζε ∗ V )ρk(t) +∇Vkρk(t),

and such that,

(5.28) lim inf
ε→0

∫
Rd

∣∣∣∣∇ζε ∗ (1

ρ̄
(ζε ∗ ρε,k(t))

)
+∇(ζε ∗ V ) +∇Vk

∣∣∣∣2 dρε,k(t) ≥
∫
Rd
|ηk(t)|2dρk(t).

Finally, we notice that, according to Propositions 3.8 and 3.9, the previous line is exactly (2.17).
Thus, we can apply Theorem 2.15, from which the conclusion of Theorem 1.1 follows immediately. Finally,

we remark that, although we have established this for a subsequence of ε → 0, the uniqueness of gradient
flows of Fk (Proposition 3.10) shows that the limit is the same along any subsequence, which implies that
the whole sequence ρε,k converges to ρk.

�

6. Convergence of the gradient flows of Fk to F
We now show that, if the confining potentials Vk approximate the hard cutoff function VΩ, which is defined

in (1.17), on the convex domain Ω, then gradient flows of Fk converge to gradient flows of F as k → +∞. Our
result generalizes work by Alasio, Bruna, and Carrillo [1] to the case of weighted porous medium equations.
As in our previous theorem on the ε → 0 limit, we use an approach based on Γ-convergence of gradient
flows, which is different from the approach used in the aforementioned work [1]. We are optimistic this new
approach will be more easily generalizable to a range of Wasserstein gradient flows.

We begin by showing Γ-convergence of the energies Fk to F , in the sense of Definition 2.14.

Theorem 6.1 (Γ convergence of energies Fk to F). Assume (T), (D), (V), (C), and (Ck). Then, the
energies Fk Γ-converge to F as k →∞. In particular, limk→+∞ Fk(µ) = F(µ) for any µ ∈ P2(Rd).

Proof. We first establish item (2.12). Without loss of generality, we may assume lim infk→+∞ Fk(ρk) < +∞
and, up to a subsequence, that supk∈N Fk(ρk) < +∞. Using that Fk = E + V + Vk and the fact that E(ρk)
and V(ρk) are bounded below uniformly in k, this likewise gives,

sup
k∈N
Vk(ρk) < +∞.(6.1)

We claim that it suffices to show,

lim
k→+∞

Vk(ρk) ≥ VΩ(ρ).(6.2)

In particular, if this is true, then by the lower semicontinuity of E and V, see Lemmas 3.1 and 3.2, we have,

lim inf
k→+∞

Fk(ρk) = lim inf
k→+∞

E(ρk) + V(ρk) + Vk(ρk) ≥ E(ρ) + V(ρ) + VΩ(ρ) = F(ρ),

which gives item (2.12).
To show inequality (6.2), (2.13), by definition of Vk and VΩ, it suffices to prove that supp ρ ⊆ Ω, since

then the left hand side of the inequality is nonnegative and the right hand side is zero. Suppose, for the
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sake of contradiction that supp ρ 6⊆ Ω, so that there exists x ∈ Ω
c

and an open ball B containing x so
that B ⊂⊂ Ω

c
and ρ(B) > 0. By the Portmanteau theorem, the fact that ρk → ρ narrowly ensures

lim infk→+∞ ρk(B) ≥ ρ(B) > 0. Thus, up to taking another subsequence, we may assume that there exists
δ > 0 so that ρk(B) ≥ δ for all k ∈ N. By definition of Vk, this implies,

lim inf
k→+∞

∫
Rd
Vkdρk ≥ lim inf

k→+∞

∫
B

Vkdρk ≥ lim inf
k→+∞

(
inf
x∈B

Vk(x)

)
ρk(B) ≥ δ lim inf

k→+∞

(
inf
x∈B

Vk(x)

)
= +∞,

where the last inequality follows from Assumption (Ck) on Vk. This contradicts (6.1). Thus, we must have
supp ρ ⊆ Ω, which completes the proof of item (2.12).

It remains to prove item (2.13). To this end, we note that we may write VΩ(ρ) =
∫
VΩ dρ, where VΩ(x) is

given by (1.17). Assumption Ck on Vk implies Vk(x) ≤ VΩ(x) for all x ∈ Rd. Therefore we find,

lim sup
k→+∞

Vk(ρ) = lim sup
k→+∞

∫
Vkdρ ≤

∫
VΩdρ = VΩ(ρ),

and thus conclude by recalling the definitions of Fk and F . �

As a corollary of Theorem 6.1, we obtain Theorem 1.7(ii): minimizers of Fk converge to minimizers of F .
The additional assumption we add – that the Vk are all greater than V1 – is natural in the context of taking
the Vk’s to be diverging to +∞ off of Ω.

Proof of Theorem 1.7(ii). Since F is proper, take ν ∈ P2(Rd) such that F(ν) < +∞. We now use that the
ρk minimize Fk, followed by the Γ-convergence of the Fk to F , to find,

lim inf
k→∞

Fk(ρk) ≤ lim sup
k→∞

Fk(ν) < F(ν) <∞.

Thus, up to taking a subsequence, we may assume Fk(ρk) is uniformly bounded. Next, the assumption
Vk ≥ V1 implies,

sup
k∈N

∫
V1 dρk ≤ sup

k∈N

∫
Vk dρk ≤ sup

k∈N
Fk < +∞.

Together with the assumption that the sublevel sets of V1 are compact, this guarantees that the sequence
ρk is tight; see [4, Remark 5.1.5]. The remainder of the argument is classical. See, for example, a similar
argument in previous work by the first author [20, Theorem 4.5]. �

With the previous theorem on the Γ-convergence of the energies Fk to F , we now prove Theorem 1.2 on
convergence of the gradient flows.

Proof of Theorem 1.2. We seek to apply Serfaty’s framework for Γ-convergence of gradient flows, recalled in
Theorem 2.15. We note that the hypotheses on semicontinuity and convexity are satisfied due to the results
in Subsection 3.1, and Theorem 6.1 guarantees that Fk and F satisfy (2.12). Assumption (2.15) is satisfied
due to the analogous assumptions (1.22).

We now apply Lemma 2.16 to demonstrate that, up to a subsequence, hypotheses (2.14) and (2.16) are
satisfied. First, (1.22) ensures,

sup
k∈N
Fk(ρk(0)) < +∞,(6.3)

so assumption (2.18) of Lemma 2.16 is satisfied. Next, note that since E and Vk are non-negative and
V is bounded below, assumption (2.19) is also satisfied. Thus, Lemma 2.16 guarantees the existence of a
subsequence of ρk along which (2.14) and (2.16) hold.

It remains to verify assumption (2.17). In particular, we will show that for all t ≥ 0,

lim inf
k→+∞

|∂Fk|2(ρk(t)) ≥ |∂F|2(ρ(t)).(6.4)

Theorem 2.15 then ensures that, up to a subsequence, the ρk converge to a gradient flow of F with initial
data ρ(0). Finally, the uniqueness of gradient flows of F (Proposition 3.10) ensures that the limit is the same
along any subsequence, which implies that the whole sequence ρk converges to the unique gradient flow ρ
with initial data ρ(0).

First, combining inequality (6.3) with Theorem 2.13, we obtain,

sup
k∈N

sup
t≥0
Fk(ρk(t)) ≤ sup

k∈N
Fk(ρk(0)) < +∞.(6.5)
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Furthermore, since ρk(t)→ ρ(t) narrowly, Theorem 6.1 implies,

sup
t≥0
F(ρ(t)) < +∞.(6.6)

Since V and Vk are bounded below, inequality (6.5) implies,(
inf ρ̄

2

)
sup

k∈N,t≥0
‖ρk‖22 ≤ sup

k∈N,t≥0

1

2

∫ |ρk(t)|2
ρ̄

= sup
k∈N,t≥0

E(ρk(t)) < +∞.(6.7)

Likewise, inequality (6.6) implies ρ(t) ∈ L2(Rd) and supp ρ(t) ⊆ Ω for all t ≥ 0. In particular, ρ(t) = 0 a.e.
on Ωc for all t ≥ 0.

Fix t ∈ [0, T ]. We seek to show (6.4). From now on, we will suppress dependence on t, for simplicity of
notation. Without loss of generality, we may suppose that the left hand side of inequality (6.4) is finite and
that, up to a subsequence, we have,

sup
k∈N
|∂Fk|2(ρk) < +∞.(6.8)

By Proposition 3.9, we have (ρk/ρ̄)2 ∈W 1,1
loc (Rd) and there exists ξk ∈ L2(ρk) satisfying,

(6.9) ξkρk =
ρ̄

2
∇(ρk/ρ̄)2 +∇V ρk +∇Vkρk,

and such that ‖ξk‖L2(ρk) = |∂Fk|(ρk). In particular, by (6.8), we have,

(6.10) sup
k∈N
‖ξk‖L2(ρk) < +∞.

Furthermore, since Assumption (V) ensures ∇V ∈ L∞, applying the triangle inequality yields,

sup
k

∫ ∣∣∣ ρ̄
2
∇(ρk/ρ̄)2 +∇Vkρk

∣∣∣ = sup
k
‖ξk −∇V ‖L1(ρk) ≤ sup

k
‖ξk −∇V ‖L2(ρk)(6.11)

≤ sup
k
|∂Fk|(ρk) + ‖∇V ‖L2(ρk) ≤ sup

k
|∂Fk|(ρk) + ‖∇V ‖∞ < +∞.

By a second application of Proposition 3.9, combined with [3, Theorem 5.4.4], in order to show (6.4), it

suffices to show (ρ/ρ̄)2 ∈W 1,1
loc (Ω), and that there exists ξ ∈ L2(ρ) satisfying:

ξρ =
ρ̄

2
∇(ρ/ρ̄)2 +∇V ρ holds on Ω, and(6.12)

lim inf
k→+∞

∫
Rd
f
( ρ̄

2
∇(ρk/ρ̄)2 +∇V ρk +∇Vkρk

)
=

∫
Ω

f
( ρ̄

2
∇(ρ/ρ̄)2 +∇V ρ

)
for all f ∈ C∞c (Rd),(6.13)

where we use that ρ = 0 a.e. on Ωc. By Assumption (V) on V , we have f∇V ∈ Cb(Rd), so since ρk narrowly
converges to ρ, we find,

lim inf
k→+∞

∫
Rd
f∇V ρk =

∫
Ω

f∇V ρ , for a.e. t ∈ [0, T ].

Thus, (6.13) is equivalent to the claim that, for all f ∈ C∞c (Rd),

lim inf
k→+∞

∫
Rd
f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
=

∫
Ω

f
ρ̄

2
∇(ρ/ρ̄)2.(6.14)

We will establish (6.14) for test functions f ∈ C∞c (Ω). Then, we will extend to the general case of f ∈ C∞c (Rd)
via a cutoff function to obtain (6.14).

First, we consider the region Ω. By Assumption Ck, which ensures Vk vanishes on Ω for all k, inequality
(6.11) implies, (

inf ρ̄

2

)
sup
k

∫
Ω

∣∣∇(ρk/ρ̄)2
∣∣ ≤ sup

k

∫
Ω

∣∣∣ ρ̄
2
∇(ρk/ρ̄)2

∣∣∣ < +∞.(6.15)

Since (ρk/ρ̄)2 ∈W 1,1
loc (Rd), combining (6.7) and (6.15), we obtain that (ρk/ρ̄)2 is bounded in W 1,1(Ω). Thus,

up to a subsequence, (ρk/ρ̄)2 converges in L1(Ω) and almost everywhere to some g ∈ L1(Ω) with g ≥ 0.



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 35

Furthermore,∥∥∥∥ρkρ̄ −√g
∥∥∥∥
L1(Ω)

≤
√
|Ω|
∥∥∥∥ρkρ̄ −√g

∥∥∥∥
L2(Ω)

≤
√
|Ω|
(∫

Ω

∣∣∣∣ρkρ̄ −√g
∣∣∣∣ (ρkρ̄ +

√
g

))1/2

=
√
|Ω|
(∫

Ω

∣∣∣∣∣
(
ρk
ρ̄

)2

− g
∣∣∣∣∣
)1/2

,

so ρk/ρ̄ → √g in L1(Ω). Combining this with the fact that ρk → ρ narrowly, we obtain
√
g = ρ/ρ̄ a.e. on

Ω. Therefore, for all f ∈ C∞c (Ω), the fact that Vk vanishes on Ω ensures,

lim inf
k→+∞

∫
Ω

f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
= lim inf

k→+∞

∫
Ω

f
ρ̄

2
∇(ρk/ρ̄)2 = − lim inf

k→+∞

∫
Ω

∇
(
f
ρ̄

2

)
(ρk/ρ̄)2(6.16)

= −
∫

Ω

∇
(
f
ρ̄

2

)
(ρ/ρ̄)2.

By inequality (6.11), the left hand side of the equation may be bounded above by,

sup
k
‖f‖∞

∥∥∥ ρ̄
2
∇(ρk/ρ̄)2 +∇Vkρk

∥∥∥
L1(Rd)

≤ ‖f‖∞(sup
k
|∂Fk|(ρk) + ‖∇V ‖∞),

so we conclude (ρ/ρ̄)2 ∈ BV (Rd). Thus, for all f ∈ C∞c (Rd),

−
∫

Ω

∇
(
f
ρ̄

2

)
(ρ/ρ̄)2 =

∫
Ω

f
ρ̄

2
∇(ρ/ρ̄)2.(6.17)

Next, we seek to apply the Riesz Representation Theorem to the operator,

L(f) =

∫
Ω

f
ρ̄

2
∇(ρ/ρ̄)2.

We first verify the boundedness of this operator on L2(ρ; Ω). To this end, we use the definition of L and the
equalities (6.16) and (6.17) to find,

L(f) = lim inf
k→+∞

∫
Ω

f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
.

Recalling the definition of ξk in (6.9), then using Hölder’s inequality, and finally using the estimate (6.10)
and the boundedness of ∇V , we obtain,∫

Ω

|f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
| =

∫
Ω

|f(ξkρk −∇V ρk)|

≤ ‖f‖L2(ρk;Ω◦)(‖ξk‖L2(ρk) + ‖∇V ‖L2(ρk;Ω))

≤ ‖f‖L2(ρk;Ω)

(
sup
k
|∂Fk|(ρk) + ‖∇V ‖L∞(Rd)

)
.

Finally, taking the limit in k, and using the narrow convergence of ρk to ρ, we find that the desired bound
on L holds:

|L(f)| ≤ ‖f‖L2(ρ;Ω)

(
sup
k
|∂Fk|(ρk) + ‖∇V ‖L∞(Rd)

)
.

Thus, by the Riesz Representation theorem, there exists w ∈ L2(ρ; Ω) so that,∫
f
ρ̄

2
wρ =

∫
f
ρ̄

2
∇(ρ/ρ̄)2, for all f ∈ C∞c (Ω).

Since ‖wρ‖L1(λd;Ω) = ‖w‖L1(ρ;Ω) ≤ ‖w‖L2(ρ;Ω), this shows that (ρ/ρ̄)2 ∈W 1,1
loc (Ω). Likewise, ξ := w +∇V ∈

L2(ρ) satisfies the conditions of (6.12). Finally, integrating by parts on the right hand side of (6.16) gives
(6.14) for all f ∈ C∞c (Ω).
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It remains to show that (6.14) holds for all f ∈ C∞c (Rd). By the fact that we just showed it holds for test
functions in C∞c (Ω), for any smooth cutoff function 0 ≤ η ≤ 1 that is compactly supported in Ω, we have,

lim inf
k→+∞

∫
Rd
f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
= lim inf

k→+∞

∫
Rd

(fη + f(1− η))
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
=

∫
Ω

fη
ρ̄

2
∇(ρ/ρ̄)2︸ ︷︷ ︸
I1

+ lim inf
k→+∞

∫
Rd
f(1− η)

( ρ̄
2
∇(ρk/ρ̄)2 +∇Vkρk

)
︸ ︷︷ ︸

I2

.

To estimate I1, note that,

|fη ρ̄
2
∇(ρ/ρ̄)2| ≤ ‖f‖∞‖ρ̄‖∞

2
|wρ| ∈ L1(λd; Ω).

To estimate I2, note that,

I2 ≤ lim inf
k→+∞

‖f(1− η)‖L2(ρk) (|∂Fk|(ρk) + ‖∇V ‖∞) ≤ ‖f(1− η)‖L2(ρ)

(
sup
k
|∂Fk|(ρk) + ‖∇V ‖∞

)
,

where,

|f(1− η)|2ρ ≤ |f |2ρ ∈ L1(λd; Ω).

Thus, by the dominated convergence theorem, for all δ > 0, choosing η sufficiently close to 1 pointwise on
Ω, we obtain,∣∣∣∣lim inf

k→+∞

∫
Rd
f
( ρ̄

2
∇(ρk/ρ̄)2 +∇Vkρk

)
−
∫

Ω

f
ρ̄

2
∇(ρ/ρ̄)2

∣∣∣∣ ≤ ∣∣∣∣I1 − ∫
Ω

f
ρ̄

2
∇(ρ/ρ̄)2

∣∣∣∣+ I2 ≤ δ.

Since δ > 0 was arbitrary, this completes the proof of (6.14). �

We conclude with the proof of Corollary 1.3.

Proof of Corollary 1.3. By Theorem 5.1,

lim
ε→0
Fε,k(ρ(0)) = Fk(ρ(0)),

so by Theorem 1.1, ρε,k(t)
ε→0−−−→ ρk(t) narrowly, for all t ∈ [0, T ], where ρk ∈ AC2([0, T ];P2(Rd)) is the

gradient flow of Fk with initial data ρ(0). Furthermore, by Theorem 6.1,

lim
k→+∞

Fk(ρ(0)) = F(ρ(0)),

so, by Theorem 1.2, ρk(t)
k→∞−−−−→ ρ(t) narrrowly, for all t ∈ [0, T ], where ρ ∈ AC2([0, T ];P2(Rd)) is the

gradient flow of F with initial data ρ(0). Thus, by first choosing k ∈ N sufficiently large and then ε > 0
sufficiently small, we may find ρε,k(t) arbitrarily close to ρ(t). �

6.1. Extension to particle initial data and application to two-layer neural networks. In the pre-
vious sections, we have shown that gradient flows of Fε,k with “well-prepared” initial data converge to a
gradient flow of F , as k → +∞, ε = ε(k) → 0. Unfortunately, our assumption of “well-preparedness” re-
quires that the initial data of Fε,k have bounded entropy (1.20), which is a crucial assumption for obtaining
the H1-type bound on the mollified gradient flow (Theorem 4.1) and the lower semicontinuity of the metric
slopes (Proposition 5.2). This assumption explicitly excludes initial data given by an empirical measure.

We now use stability of the gradient flows of Fε,k to extend the convergence result to initial data given
by an empirical measure, obtaining the proof of our third major theorem, Theorem 1.4. This is based on
the elementary fact that that any measure µ ∈ P2(Rd) can be approximated to arbitrary accuracy by an
empirical measure. For lack of a reference, we recall this in Lemma A.4. (In fact, our construction of the
empirical measure in the proof of Lemma A.4 closely parallels what we employ in our numerical method.) It
can be seen from the proof of Lemma A.4 that, if supp µ ⊆ [−R,R)d, then N can be taken to be the smallest

integer larger than (2
√
dR/δ)d. More generally, in order for an empirical measure constructed from N i.i.d.

samples of a measure µ� Ld to converge to µ in the Wasserstein metric, N must scale like O(1/δd) [34,36].
Our requirement that the initial conditions of Fε,k have bounded entropy implies µ � Ld, so this scaling
requirement is sharp in our case. However, if µ were permitted to concentrate on lower dimensional sets,
recent work by Weed and Bach has shown these requirements can be weakened [78].



A BLOB METHOD FOR INHOMOGENEOUS DIFFUSION 37

Once we have extended our result to particle initial data, in Theorem 1.4, we are then able to quickly
obtain our two main corollaries. Corollary 1.5 shows that, on bounded domains Ω and in the absence of an
external potential V , the particle solution indeed approximates the target ρ̄ in the long time limit. Next,
Corollary 1.6 shows that the overparametrized limit of two-layer neural networks converges, as the variance
of the radial basis function goes to zero, to a solution of (WPME), which is the gradient flow of a convex
energy.

We begin with the proof of Theorem 1.4.

Proof of Theorem 1.4. First, let ρε,k(t) be the gradient flow of Fε,k with initial data ρ(0). By Corollary 1.3,
as k → +∞, ε = ε(k)→ 0,

(6.18) ρε,k(t) narrowly converges to ρ(t) for all t ∈ [0, T ],

where ρ(t) is the gradient flow of F with initial data ρ(0). By Proposition 3.10, ρ is the unique weak solution
of (WPME). Recall from Lemmas 3.1-3.2 and Propositions 3.3 and 3.6 that Fε,k is lower semicontinuous
and λε-convex along generalized geodesics with,

(6.19) λε = −ε−d−2||1/ρ̄||L∞(Rd)||D2ζ||L∞(Rd) + inf
{x,ξ∈Rd}

ξtD2V (x)ξ,

and note that −∞ < λε ≤ 0.
By Proposition 3.13, the evolving empirical measure ρNε,k(t), as defined in the statement of Theorem 1.4,

is the unique gradient flow of Fε,k with initial data ρNε,k(0). By (6.18), it suffices to show that, as k → +∞,

ε = ε(k)→ 0, N = N(ε)→ +∞,

(6.20) (ρNε,k(t)− ρε,k(t)) narrowly converges to 0 for all t ∈ [0, T ].

Since ρNε,k(t) and ρε,k are both gradient flows of the λε-convex energy Fε,k, classical stability estimates for

gradient flows [3, Theorem 11.2.1] ensure that, for all t ∈ [0, T ],

W2(ρNε,k(t), ρε,k(t)) ≤ e−λεtW2(ρNε,k(0), ρ(0)).

By hypothesis (1.24), the right hand side goes to zero, which by (2.4) completes the proof. �

We now apply this to obtain the proof of Corollary 1.5.

Proof of Corollary 1.5. Let ρ(t) be the solution of (WPME) with initial data ρ(0), as in Theorem 1.4. By
Proposition 3.10, ρ is the unique gradient flow of F with initial data ρ(0), so by Proposition 3.14,

lim
t→+∞

W2 (ρ(t),1Ωρ̄) = 0.

Thus, choosing t sufficiently large so that ρ(t) is sufficiently close to 1Ωρ̄, Theorem 1.4 gives the result. �

We conclude with the proof of Corollary 1.6.

Proof of Corollary 1.6. The evolving empirical measure ρNε (t), as defined in the statement of Corollary 1.6,
coincides with the evolving empirical measure in Theorem 1.4, in the case Ω = Rd, hence Vk ≡ 0. Thus, the
convergence of ρNε,k(t) to ρ(t) is an immediate consequence of this theorem.

Furthermore, by Proposition 3.10, ρ(t) is the unique gradient flow of F . Expanding the square in the
definition of R and applying Tonelli’s theorem, as in equation (1.14), we see that F equals R, up to a
constant. By Definitions 2.9 and 2.12, the gradient flows of two energies coincide. Thus, ρ(t) is the gradient
flow of R. Similarly, from Definition 2.6, we see that adding or subtracting a constant from an energy does
not affect its convexity properties. Thus, Proposition 3.3 ensures that R is convex.

�

7. Numerical Simulation

We now implement the particle method described in Theorem 1.4, demonstrating how the system of
deterministic ordinary differential equations (1.11-1.12) can be used to numerically approximate solutions
of the diffusive partial differential equation (WPME). Our numerical examples explore long time behavior
of solutions, the effect of the confining potential Vk on the dynamics, the decay of the KL divergence along
particle method solutions, and the rate of convergence as N → +∞, ε → 0, for fixed k >> 1, both to
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solutions of (WPME) at intermediate times and to the target ρ̄ on Ω in the long time limit. Our simulations
are conducted in Python using the NumPy, SciPy, CuPy, and Matplotlib libraries [45,63,73,76].

7.1. Details of numerical approach. We now describe the details of our numerical approach. Since
the main goal of our study is to illustrate how nonlocal particle dynamics can approximate local diffusion
equations, we consider the external potential V = 0. We take the dimension d = 1, a Gaussian mollifier,

(7.1) ζε(x) = e−x
2/2ε2/(

√
2πε2),

and choose the underlying domain as Ω = (−1, 1). We approximate no flux boundary conditions on Ω via
the confining potential,

(7.2) Vk(x) =


k
2 (x+ 1)2 if x < −1,
k
2 (x− 1)2 if x > 1,

0 otherwise,

where k ∈ N controls the strength of the confinement.
Unless otherwise specified, we choose,

ε = 4/N0.99.(7.3)

Note that this relationship between ε and N is better than expected from our rigorous results; see the
discussion after Corollary 1.5. As will be seen from our choice of initial conditions {Xi

0}Ni=1 below, the choice
of ε in (7.3) ensures that the mollifiers have sufficient overlap and that different particles can “sense” each
other through the function f(Xi, Xj).

Similarly, unless otherwise specified, we choose

k = 109.(7.4)

Our choice of k, corresponding to strong confinement, is motivated by the desire to more closely approximate
the dynamics of (WPME) on the bounded domain Ω with no flux boundary conditions. We anticipate that
different choices of dimension, mollifier, underlying domain, and confining potential may affect the rate of
convergence of our method, but, as our main convergence theorems are not quantitative, we leave a detailed
numerical analysis of the these effects to future work.

The first step in our method is to approximate the initial condition ρ0 in (WPME) by an empirical

measure
∑N
i=1 δXi0m

i with locations {Xi
0}Ni=1 ⊆ Rd and weights {mi}Ni=1 ⊆ [0,+∞) satisfying

∑N
i=1m

i = 1.

In practice, we do this by dividing the domain Ω = (−1, 1) into N intervals of equal measure. The location
Xi

0 is chosen to be the center of the ith interval, and the weight mi is chosen to approximate the integral of
ρ0 over the interval:

mi = hρ0(Xi
0) ≈

∫ Xi0+h/2

Xi0−h/2
ρ0(x)dx, for h = |Ω|/N.

See Lemma A.4.
With the initial conditions in hand, the next step is to solve the system of ODEs (1.11-1.12). For general

ρ̄, this is an integral equation, which would be expensive to compute. In the present work, we consider ρ̄
for which the integral in equation (1.12) can be pre-computed exactly, yielding to a closed form, analytic
expression for f(Xi, Xj) and reducing (1.11) to a standard system of ODEs. In Appendix C, we provide
explicit formulas for f(Xi, Xj) in the case ρ̄ is piecewise constant or ρ̄ = C/(1 + |x|2), the latter being a
prototypical example of a log-concave target. While it will not be possible to obtain a closed form expression
for f(Xi, Xj) for all choices of ρ̄, we are optimistic that taking sufficiently accurate piecewise constant
approximations would yield good results. We leave a detailed analysis of the convergence of our method
under various approximations of the target ρ̄ to future work. Once a closed form expression for f(Xi, Xj)
is obtained, the system of ODEs (1.11) may then be solved using a standard numerical integrator. In
the present work, we use the SciPy implementation of the backward differentiation formula (BDF) with a
maximum time step of 10−5.
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Finally, we seek to understand qualitative properties of the particle solution, that is, the evolving empirical
measure,

ρNε,k(t) =

N∑
i=1

δXi(t)m
i,(7.5)

as well as its relation to the solution ρ(t) of (WPME) and the target ρ̄. To visually depict ρNε,k(t) and

compute its difference from ρ(t) and ρ̄ with respect to classical Lp norms and statistical divergences, we will
often consider the following kernel density estimate, given by convolving ρNε,k(t) with the mollifier ζε:

ρ̃Nε,k(x, t) = (ρNε,k(t) ∗ ζε)(x) =

N∑
i=1

ζε(X
i(t)− x)mi.(7.6)

According to Lemma 2.3, if there exists µ ∈ P(Rd) so that ρNε,k narrowly converges to µ as ε→ 0, then the

kernel density estimator ρ̃Nε,k also narrowly converges to µ as ε → 0. Thus our main results that guarantee

convergence of ρNε,k also ensure convergence of ρ̃Nε,k.

Furthermore, when the target ρ̄ is normalized to satisfy
∫

Ω
ρ̄ = 1, solutions of (WPME) dissipate the

Kullback-Leibler (KL) divergence with respect to ρ̄ on Ω exponentially quickly in time (see inequality (1.5)).
We will numerically illustrate that this key property is preserved by our approximate solutions ρ̃Nε,k. We

compute the KL divergence on Ω̄ via,

KL

(
ρ̃Nε,k(t)

Cε,k,N (t)
, ρ̄

)
=

∫
Ω

(
ρ̃Nε,k(x, t)

Cε,k,N (t)

)
log

(
ρ̃Nε,k(x, t)

Cε,k,N (t)ρ̄(x)

)
dx, for Cε,k,N (t) =

∫
Ω

ρ̃Nε,k(x, t)dx,(7.7)

where the constant Cε,k,N (t) allows us to compensate for the fact that, since ρ̃Nε,k is not in general supported

on Ω, the restriction of ρ̃Nε,k to Ω is not a probability measure and KL(ρ̃Nε,k(t), ρ̄) can be negative. On the

other hand, ρ̃Nε,k/Cε,k,N is always a probability measure on Ω, so that equation (7.7) gives a well-defined,

nonnegative statistical divergence. We compute the integrals in (7.7) numerically, using the SciPy library’s
quad function.

A final key quantity of our numerical scheme is the value of the energy Fε,k along the solution of the
gradient flow ρNε,k. At the continuous time level, the gradient flow structure ensures that Fε,k(ρNε,k(t)) is
always decreasing in time; see Theorem 2.13 and Proposition 3.13. To investigate the rate of decrease
numerically, we first obtain the following expression for Fε in this setting:

Fε,k(ρNε,k(t)) = Eε(ρNε,k(t)) + Vk(ρNε,k(t)) =
1

2

∫
Rd

|ζε ∗ ρNε,k(t)|2
ρ̄

dLd +

∫
Rd
Vk dρ

N
ε,k(t)(7.8)

=
1

2

∫
Rd
ζε ∗

(
ζε ∗ ρNε,k

ρ̄

)
(t) dρNε,k(t) +

∫
Rd
Vk dρ

N
ε,k(t)

=
1

2

N∑
i=1

N∑
j=1

g(Xi(t), Xj(t))mimj +

N∑
i=1

miVk(Xi(t)), where

g(x, y) :=

∫
R

ζε(x− z)ζε(y − z)
ρ̄(z)

dz.(7.9)

We note that g(x, y) is related to the function f(x, y) defined in equation (1.12) by f = ∇xg, and the integral
in the definition of g may be likewise computed explicitly for our choices of ρ̄, as we describe in Appendix C.

We close this discussion of the details of our numerical method with a few remarks on its efficient imple-
mentation in Python. As an interacting particle system, computing the evolution of the particle trajectories
(1.11-1.12) is inherently an O(N2) computation for a strictly positive mollifier ζε. The expectation is that
the computational effort would decrease for a compactly supported mollifier: indeed, if supp ζε ⊂⊂ BRε(0),
then f(Xi, Xj) would vanish for |Xi−Xj | > 2Rε. However, rigorously proving that the computational effort
indeed decreases to O(mN), where m represented the average number of particles lying within the radius of
a given mollifier, would require careful estimates on the repulsive forces between the particles and is left for
future work. Nevertheless, even for a strictly positive mollifier, we are able to achieve good computational
speed in practice by using the following techniques. First, we provide an analytical Jacobian to the ODE
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solver rather than relying on finite difference approximations. Second, we leverage the structure of the in-
tegrand to compute these partial derivatives efficiently. Finally, we parallelize these computations using the
CuPy library for GPU-accelerated computing [63]. These elements of our implementation allow us to speed
up our calculations by two orders of magnitude compared to previous work by the first author [20]. Namely,
we performed the same simulations as those used to generate Figure 1 of [20] (the evolution of density over
time, starting from Barenblatt initial data), both using the code of [20], as well as with our implementation.
In Figure 7.1, we record the resulting improvement in terms of computational time.

Time Carrillo, et. al. [20] Present Work

N = 100 0.04s 0.05s

N = 200 0.41s 0.08s
N = 400 3.35s 0.14s

N = 800 38.96s 0.35s

N = 1600 461.96s 5.73s

Figure 1. Computational time for simulation of ρNε,k(t) using our numerical method and

implementation (right column) and that of [20] (left column). Here the target is ρ̄uni, we
take k = 0, t = 0.15, and the initial condition is the Barenblatt profile (7.13.

These simulations were performed on a standard desktop PC (Intel Core i7-10700 CPU @ 2.9 GHz, 16 GB
RAM) with a consumer-level GPU (NVIDIA GeForce RTX 2060 Super). This improvement demonstrates
how recent advances in open source scientific computing methods, even in high level languages like Python,
are making computing interacting particle systems tractable, even for large numbers of particles.

7.2. Simulation Results. We now turn to several numerical examples that illustrate key properties of our
method. In the following simulations, we consider three main choices of target: uniform, log-concave, and
piecewise-constant, given by,

ρ̄uni(x) =
1

2
,(7.10)

ρ̄log-con(x) =
2

π(1 + |x|2)
,(7.11)

ρ̄pw-const(x) =

{
1/3 for x ∈ (−∞,−0.75) ∪ [−0.25, 0.25) ∪ [0.75,+∞),

2/3 for x ∈ [−0.75,−0.25) ∪ [0.25, 0.75).
(7.12)

7.2.1. Evolution of density and particle trajectories. In Figure 2, we illustrate qualitative properties of nu-
merical solutions by plotting the kernel density estimate ρ̃Nε,k(x, t), defined in equation (7.6), in the top row

and the trajectories of the particles Xi(t) in the bottom row. We conduct our simulation for N = 101
particles, of which 20 are plotted in the bottom row. We consider three choices of target: ρ̄uni (left), ρ̄log-con

(middle), and ρ̄pw-const (right). In all cases, our initial condition is given by a Barenblatt profile ψτ (x), with
τ = 0.0625:

ψτ (x) =
τ−1/3

12

(
34/3 − |x|

2

τ2/3

)
+

.(7.13)

In the top row of Figure 2, we observe that, for all choices of target ρ̄, the kernel density estimate of the
solution ρ̃Nε,k(x, t) flows toward ρ̄ on Ω. For ρ̄uni and ρ̄log-con, this provides numerical verification of Corollary
1.5, since these targets ρ̄ are log-concave. On the other hand, while ρ̄pw-const is not log-concave, and thus
falls outside the scope of our theoretical results, it does satisfy a Poincaré inequality, so previous work on
asymptotic behavior on smooth [26] and weak [35,44] solutions of (WPME) ensure that exact solutions of the
continuum PDE converge to the target ρ̄pw-const exponentially quickly in time; see, for example, inequality
(1.5). Consequently, although this case lies outside the realm of our rigorous results, it is not surprising that
we observe convergence of ρNε,k to ρ̄pw-const in the long-time limit numerically.

In the bottom row of Figure 2, we observe that the particles evolve relatively quickly to their steady state,
with most stopping by time t = 0.3. This stands in stark contrast to classical stochastic approaches for
sampling, such as Langevin dynamics [10], and stochastic methods in the control theory literature [37,61], in
which particles remain in perpetual motion, complicating the choice of an appropriate stopping time, beyond
which continued evolution doesn’t lead to improved accuracy.
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ρ̄uni ρ̄log-con ρ̄pw-const

D
en
sit
y

Xi(t) Xi(t) Xi(t)

Xi(t)

Figure 2. Simulation of the evolution of the density ρ̃Nε,k(t) for the three targets defined

in (7.10)-(7.12), with N = 101, k = 109, and initial data the Barenblatt profile (7.13). Top
Row: Snapshots of ρ̃Nε,k(t) for the indicated times t. Bottom Row: Evolution of correspond-

ing particle trajectories Xi(t).

7.2.2. Effect of confining potential on evolution of density. In Figure 3, we consider the effect of the confining
potential on the dynamics. For a fixed number of particles N = 200 and initial conditions given by ρ̄pw-const,
we plot the evolution of the kernel density estimate ρ̃Nε,k(x, t) as the strength of the confining potential Vk is

increased, from k = 0 (left, no confinement) to k = 100 (middle, moderate confinement) and k = 109 (right,
strong confinement). All simulations are conducted with Barenblatt initial data, as in equation (7.13).

In the k = 0 plot in Figure 3, we observe that the support of ρ̃Nε,k(x, t) quickly spreads outside the closure

of the domain Ω = [−1, 1]. This is due to fact that k = 0 implies V0 = 0, by equation (7.2), so there is no
confining potential, which is equivalent to taking Ω = Rd. In this case, Theorem 1.1 ensures that, for ε > 0
small and N ∈ N large, the particle method approximates solutions of the (WPME) equation on Rd without
boundary. The diffusive effect of this equation causes the particles to spread.

In the k = 100 plot, we observe that even a weak confining potential causes the support of the kernel
density estimate to remain mostly inside of Ω, with only a small amount of mass leaking out the sides of the
domain. And, in the k = 109 plot, when the confinement effect is very strong, we observe that the support
of the kernel density estimate is even closer to Ω. In general, we expect the support of the kernel density
estimate ρ̃Nε,k(t) to always be slightly larger than the domain, since even when all particles are confined to

Ω, the kernel density estimate will satisfy,

supp ρ̃Nε,k(t) = {X1(t), . . . , Xn(t)}+ supp ϕε.
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k = 0 k = 100 k = 109
D
en
si
ty

Figure 3. Comparison of how the strength of the confining potential affects the evolution
of the density. Here, ρ̄ = ρ̄pw-const, N = 200, and the initial data is the Barenblatt profile
(7.13). Left: no confinement (k = 0). Middle: medium confinement (k = 100). Right:
strong confinement (k = 109).

However, in the limit N → +∞, ε → 0, and k → +∞, the support of ρ̃Nε,k will be contained in Ω. Finally,
note that, by preventing mass from leaking out of the domain, strong confinement gives the best agreement
between the long time behavior (t = 1) of the kernel density estimate and the desired target ρ̄pw-const on Ω,
in agreement with Corollary 1.5.
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Figure 4. Evolution of KL divergence between ρ̃Nε,k(t) and ρ̄ for three choices of target

(7.10)-(7.12) and three choices of N (solid lines). We plot the line of best fit for t ∈ [0, 0.25]
(dashed line). We take k = 109, t = 2, and initial data is the Barenblatt profile (7.13).

7.2.3. Decay of KL divergence. In Figure 4, we examine the decay of KL divergence between the kernel
density estimate ρ̃Nε,k(t) and the target ρ̄ on Ω, as computed via equation (7.7). We consider three choices of

target, ρ̄uni (left), ρ̄log-con (middle), and ρ̄pw-const (right), and varying numbers of particles N . All simulations
are conducted with Barenblatt initial data. Since each of the three targets ρ̄ satisfies a Poincaré inequality,
the inequality (1.5) implies that the KL divergence between ρ̄ and smooth solutions ρ(t) of the (WPME)
equation decays exponentially quickly in time. We seek to observe to what extent this property is preserved
by the numerical solution ρ̃Nε,k(t), which approximates ρ(t) in the limit N → +∞, ε → 0, and k → +∞, as
in Theorem 1.4.

For all three choices of target, we indeed observe an initial regime in which the KL divergence decays
exponentially, as indicated by linear decay on the semilog plots in Figure 4. We estimate the rate of decay
by plotting the line of best fit on the time interval t ∈ [0, 0.25], as shown by the dashed line. After the initial
period of exponential decay, the KL divergence often appears to level off, particularly for smaller numbers
of particles. For larger numbers of particles, the period of exponential decay lasts longer. This indicates
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that, for smaller numbers of particles, the discretization error in the approximation of (WPME) becomes
dominant sooner, slowing the decay of the KL divergence.

The fact that our numerical approximation ρ̃Nε,k(t) preserves, up to discretization error, the key property of
exponential decay of the KL divergence testifies to the benefit of structure-preserving numerical schemes—in
our case, designing a numerical scheme that preserves the continuum PDE’s gradient flow structure also
succeeds in capturing asymptotic behavior at the level of the particle method.

7.2.4. Decay of energy. In Figure 5, we examine the decay of the energy Fε,k along the particle method
solution ρNε,k(t), as computed via equations (7.8-7.9). We consider three choices of target, ρ̄uni (left), ρ̄log-con

(middle), and ρ̄pw-const (right), and varying numbers of particles N . All simulations are conducted with
Barenblatt initial data.

In all three cases, we observe that the energy decreases along the flow. This is expected since (up to the
time discretization error of the ODE solver) our particle method solution ρNε,k(t) is exactly a gradient flow
of the energy Fε,k. For both of the log-concave energies, ρ̄uni and ρ̄log-con, we observe an initial period of
exponential decay, for t ∈ [0, 0.5], which we approximate by a line of best fit, shown by the dashed line. We
do not observe a corresponding period of exponential decay for the non-log-concave energy ρ̄pw-const.
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Figure 5. Evolution of Fε,k(ρNε,k) for three choices of target (7.10)-(7.12) and three choices

of N (solid lines). We include the line of best fit for t ∈ [0, 0.5] (dashed line) on the left and
middle plots. We take k = 109, and the initial data is the Barenblatt profile (7.13).

7.2.5. Convergence to weighted porous medium equation. In Figures 6 and 7, we examine the rate of conver-
gence of the kernel density estimate ρ̃Nε,k(t) as k → +∞, ε→ 0, and N → +∞. Given that, for general ρ̄, we

lack an analytic expression for the solution ρ(t) of (WPME) to which we expect the solutions to converge,
we instead compare our numerical solution with N particles at time t = 0.1 to the numerical solution with
Nmax = 1, 280 particles at time t = 0.1 via,

L1 error =

∫
Ω

∣∣∣ρ̃Nε(N),k(x, t)− ρ̃Nmax

ε(Nmax),k(x, t)
∣∣∣ dx, t = 0.1,(7.14)

where ε(N) is as in equation (7.3) and the integral is evaluated using the SciPy library’s quad function.
Furthermore, since we only expect good convergence rates when the solution of the underlying weighted
porous medium equation is sufficiently regular, we restrict our attention to the smooth targets ρ̄uni and
ρ̄log-con.

In Figure 6, we consider how the presence of a confining potential affects the rate of convergence, for
both ρ̄uni and ρ̄log-con. All simulations are conducted with Barenblatt initial data. We choose values of N
from N = 20 to N = 640, with logarithmic spacing. In the top row, for no confinement (k = 0), we observe
second order convergence. In the middle row, for moderate confinement (k = 100), we observe slightly less
than second order convergence. Finally, in the bottom row, for strong confinement (k = 109), we observe
less than first order convergence.

This example illustrates that there is a delicate balance underlying the choice of the stegnth of the confining
potential. On one hand, the confinement must be selected to be sufficiently strong to prevent mass from
leaking out of the domain and to ensure that the long time limit agrees well with the desired target; see
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Figure 6. The effect of k on the rate of convergence in N of the L1 error (7.14) between
ρ̃Nε,k and the numerical solution. In the left-hand column the target is ρ̄uni and in the right-
hand column the target is ρ̄log-con. Here t = 0.1, and the initial condition is the Barenblatt
profile (7.13).

Figure 3. On the other hand, selecting the confinement to be too strong can lead in a degradation of the
rate of convergence as ε→ 0, N → +∞, as more particles would be required for a given degree of accuracy.

In Figure 7, we consider the role the initial conditions play in determining the rate of convergence of
the method. In particular, unlike the previous simulation, which was conducted with Barenblatt initial
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Figure 7. The effect of the initial condition on the rate of convergence in N of the L1 error
(7.14) between ρ̃Nε,k and the numerical solution for two choices of target ρ̄. Here k = 109,

t = 0.1, and we take the uniform initial condition (7.15).

conditions, we now consider uniform initial conditions,

(7.15) µ0(x) =

{
1
2 if x ∈ [−1, 1],

0 otherwise.

We consider the case of no confinement, k = 0, since the previous figure showed the fastest rate of convergence,
of approximately second order, in this case; see Figure 6, top row. We compute the L1 error as in equation
(7.14) with Nmax = 1, 280 and N from N = 20 to N = 640 logarithmically spaced.

Unlike in the previous case, in which we observed near second order convergence in the absence of con-
finement, in this case we observe closer to first order convergence for both ρ̄uni (left) and ρ̄log-con (right). We
believe this is due to the fact that the continuum solution ρ(t) of (WPME) with uniform initial conditions,
as above, has worse regularity than the solution for Barenblatt initial conditions. In previous work by the
first author and Bertozzi [30] on a regularized particle method for the related aggregation equation, which
also has a gradient flow structure in the Wasserstein metric, it was shown that the rate of convergence of
the particle method depended strongly on the regularity of the solution of the underlying PDE, in the sense
that lower regularity of the continuum solution led to a slower rate of convergence of the numerical solution.
While the convergence results in the present paper are purely qualitative, it appears that there may a similar
dependence on regularity for the rate of convergence of our particle method to (WPME).

7.2.6. Convergence to Steady State. In Figure 8, we conclude our study of properties of the numerical method
by examining the rate of convergence of the kernel density estimate ρ̃Nε,k(t) to the target ρ̄ in the long time
limit, as the number of particles N increases. As we only expect good convergence rates when the target
is sufficiently regular, we restrict our attention to the smooth targets ρ̄uni and ρ̄log-con. Furthermore, as
illustrated in Figure 3, since strong confinement is necessary to obtain convergence to the target as t→ +∞,
we choose k = 109. We consider Barenblatt initial conditions and values of N from N = 20 to N = 720,
logarithmically spaced. We compute the L1 error via,

L1 error =

∫
Ω

∣∣ρ̃Nε,k(x, T )− ρ̄(x)
∣∣ dx, T = 2.0,(7.16)

where the integral is evaluated using the SciPy library’s quad function.
For both ρ̄uni and ρ̄log-con we observe nearly first order convergence of our particle approximation to the

target ρ̄. This provides a quantitative numerical result to complement our qualitative result from Corollary
1.5, in which we show that there exist parameters T → +∞, k → +∞, ε → 0, N → +∞ for which our
particle method indeed provides a way to approximate ρ̄ on Ω, as relevant for applications in quantization.
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Figure 8. The rate of convergence in N of the L1 error (7.16) between ρ̃Nε,k and the target

ρ̄ for two choices of target. Here t = 2, k = 109, and we take the uniform initial condition
(7.15).

Appendix A. Wasserstein gradient flows

We begin with a proof of Proposition 2.11, relating the metric slope and subdifferential.

Proof of Proposition 2.11. By definition of the subdifferential and local slope, for all γ ∈ Γ0(µ, ν),

|∂G|(µ) = lim sup
ν→µ

(G(µ)− G(ν))+

W2(µ, ν)
≤ lim sup

ν→µ

1

W2(µ, ν)

(∫
Rd×Rd

〈ξ(x), x− y〉 dγ(x, y)− λ

2
W 2

2 (µ, ν)

)
+

≤ lim sup
ν→µ

(‖ξ‖L2(µ)W2(µ, ν)

W2(µ, ν)
+

λ−
2
W2(µ, ν)

)
= ‖ξ‖L2(µ),

where λ− = max{−λ, 0}. This shows inequality (2.10). Uniqueness of the minimal subdifferential follows
from the strict convexity of ‖ · ‖L2(µ). �

We now describe the proof of Theorem 2.13, which is a collection of results due to Ambrosio, Gigli, and
Savaré that ensure well-posedness of Wasserstein gradient flows, as well as their characterization via curves
of maximal slope.

Proof of Theorem 2.13. Existence and uniqueness of the gradient flow, as well as the fact that the gradient
flow is a curve of maximal slope, follows from [3, Theorem 11.2.1]. Conversely, if µ(t) is a curve of maximal
slope, then [3, Theorem 11.1.3] ensures it is a gradient flow of G. (This theorem applies since functionals
that are λ-convex are regular, in the sense required by the theorem, and functionals that are λ-convex along
generalized geodesics satisfy the required coercivity assumption in [3, equation 11.1.13b]: see [3, Lemma
10.3.8, Definition 10.3.9] for regularity and [3, Assumption 4.0.1, Lemma 4.1.1] for coercivity. Furthermore,
the λ-convexity and lower semicontinuity of G ensure that its local slope is a strong upper gradient [3,
Corollary 2.4.10].) Finally, the fact that µ(t) is a gradient flow of G if and only if it satisfies the Evolution
Variational Inequality follows from [3, Theorem 11.1.4].

�

Next, we define a discrete time approximation of a Wasserstein gradient flow, known as a minimizing
movement scheme, which was famously introduced in the Wasserstein context by Jordan, Kinderlehrer, and
Otto [49].

Definition A.1 (minimizing movement scheme). Suppose G is proper, lower semicontinuous, and λ-convex
along generalized geodesics. Define the proximal operator Jτ by,

Jτµ = argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (µ, ν) + G(ν)

}
,
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and define the minimizing movement scheme Jnτµ by,

Jnτ (µ) = Jτ ◦ Jτ ◦ · · · ◦ Jτ︸ ︷︷ ︸
n times

(µ).

Note that, by definition, the energy decreases along the minimizing movement scheme:

G(Jnτµ) ≤ G(Jn−1
τ µ).(A.1)

We recall the following theorem on the convergence, due to Ambrosio, Gigli, and Savaré.

Theorem A.2 (convergence of minimizing movement scheme, [3, Theorem 4.0.9]). Suppose G is proper,
lower semicontinuous, and λ-convex along generalized geodesics and µ ∈ D(G). Fix T > 0, and take a
piecewise constant interpolation of the minimizing movement scheme,

µτ (s) = Jnτµ for s ∈ ((n− 1)τ, nτ ].(A.2)

Then for all t ∈ [0, T ], we have limn→+∞ µτ (t) = µ(t) narrowly, where µ(t) is the gradient flow of G with
initial data µ.

Proof. This theorem is an immediate consequence of [3, Theorem 4.0.9]. �

We continue with an elementary result bounding the Wasserstein distance between a curve of maximal
slope and a fixed reference measure.

Proposition A.3 (M2 bound for curves of maximal slope). Suppose ρ(t) ∈ AC2
loc((0,+∞);P2(Rd)) is a

curve of maximal slope of a nonnegative functional G : P2(Rd) → [0,+∞], that is, ρ(t) satisfies Theorem
2.13(i). Suppose further that ρ0 ∈ D(G). Then we have,

M2(ρ(t)) ≤
(
1 + tet

)
(M2(ρ(0)) + G(ρ(0))) .(A.3)

Proof. We shall first establish, for any µ ∈ P2(Rd), the estimate,

W 2
2 (ρ(t), µ) ≤

(
1 + tet

) [
W 2

2 (ρ(0), µ) + G(ρ(0))
]
.(A.4)

To this end, fix some µ ∈ P2(Rd), and define W(ρ) = − 1
2W

2
2 (ρ, µ). Since W is (-1)-convex and lower

semicontinuous [3, Proposition 9.3.12], the local slope |∂W|(µ) is a strong upper gradient for W (see [3,
Definition 1.2.1, Corollary 2.4.10]), which implies,

|W(ρ(t))−W(ρ(0))| ≤
∫ t

0

|∂W|(ρ(s))|ρ′|(s)ds.(A.5)

Furthermore, using the definition of local slope, rearranging, and applying the triangle inequality, yields,

|∂W|(ρ) = lim sup
ν→ρ

W 2
2 (ν, µ)−W 2

2 (ρ, µ)

2W2(ρ, ν)
= lim sup

ν→ρ

(W2(ν, µ)−W2(ρ, µ))(W2(ν, µ) +W2(ρ, µ))

2W2(ρ, ν)

≤ lim sup
ν→ρ

W2(ρ, ν)(W2(ν, µ) +W2(ρ, µ))

2W2(ρ, ν)
= W2(ρ, µ).(A.6)

Thus, combining (A.5) and (A.6), we obtain,

1

2

[
W 2

2 (ρ(t), µ)−W 2
2 (ρ(0), µ)

]
≤ |W(ρ(t))−W(ρ(0))| ≤

∫ t

0

W2(ρ(s), µ)|ρ′|(s)ds

≤ ‖W2(ρ(s), µ)‖L2([0,t])‖|ρ′|(s)‖L2([0,t]) ≤
1

2

∫ t

0

W 2
2 (ρ(s), µ)ds+

1

2

∫ t

0

|ρ′|(s)2ds.

Since ρ(s) is a curve of maximal slope of G and G is nonnegative,

1

2

∫ t

0

|ρ′|(s)2ds ≤ G(ρ(0)).

Combining the previous two inequalities gives,

1

2

[
W 2

2 (ρ(t), µ)−W 2
2 (ρ(0), µ)

]
≤ 1

2

∫ t

0

W 2
2 (ρ(s), µ)ds+ G(ρ(0)).



48 KATY CRAIG, KARTHIK ELAMVAZHUTHI, MATT HABERLAND, AND OLGA TURANOVA

By Gronwall’s inequality, this implies,

W 2
2 (ρ(t), µ) ≤

[
W 2

2 (ρ(0), µ) + G(ρ(0))
] (

1 + tet
)
.

This shows inequality (A.4).
To obtain (A.3), it suffices to recall the definition of the Wasserstein metric in equation (2.3) in terms of

transport plans γ. If γ is a transport plan from a measure µ to a Dirac mass δ0, then for all measurable sets
A and B,

γ(A× Rd) = µ(A) and γ(Rd ×B) = δ0(B),

so γ = (id× 0)#µ, where 0 denotes the function 0 : x 7→ 0. Therefore, applying equation (2.3), we obtain,

W 2
2 (µ, ν) =

∫
Rd×Rd

|x− y|2dγ(x, y) =

∫
Rd×Rd

|x− 0|2dµ(x) = M2(µ).

Combining this with inequality (A.4) gives inequality (A.3). �

We close this section by providing the construction of an empirical measure approximating any measure
µ ∈ P2(Rd).

Lemma A.4 (approximation via empirical measures). For all µ ∈ P2(Rd) and δ > 0, there exists N ∈
N, {Xi}i=1,...N ⊆ Rd, and {mi}i=1,...,N ⊆ R+ with

∑N
i=1m

i = 1, such that µN =
∑N
i=i δXim

i satisfies
W2(µ, µN ) ≤ δ.
Proof of Lemma A.4. Throughout this proof, we shall use Qr(0) to denote a cube in Rd centered at 0 and

with side length r > 0; namely, Qr(0) =
[
− r2 , r2

)d
. For x ∈ Rd, let Qr(x) = Qr(0) + x.

Fix µ ∈ P2(Rd) and δ > 0. First, we reduce to the case of approximating a compactly supported measure.

To this end, note that since µ ∈ M2(Rd), there exists R > 0 so that
∫
QR(0)c

|x|2 dµ ≤
(
δ
2

)2
. Consider the

transport map,

tR(x) =

{
x if x ∈ QR(0),

0 otherwise,

and define µR via µR = (tR)#µ. Then we find,

W2(µ, µR) ≤
(∫
|tR(x)− x|2 dµ

)1/2

≤
(∫

QR(0)c
|x|2 dµ

)1/2

≤ δ

2
,(A.7)

We are now ready to define the approximating measure µN . Choose K ∈ N large enough so that,

(A.8) K ≥ 2
√
dR

δ
,

and consider a grid on QR(0) where each cell has side length R/K, so that we have QR(0) =
⋃Kd

i=1QR/K(Xi),

where the centers {Xi}mdi=1 are chosen such that the above union is disjoint. Let N = Kd, and define µN to
be the sum of Dirac masses at the centers of the cells, with weights given by the mass of µR in each cell:

µN =

N∑
i=1

δXim
i, with mi = µR

(
QR/K(Xi)

)
.

To estimate W2(µR, µ
N ), we consider the transport map t : Rd → Rd which, for i = 1, ..., N , moves all

the mass in cell QR/K(Xi) to Xi. Then µN = t#µR and,

W 2
2 (µR, µ

N ) ≤
∫
|t(x)−x|2 dµR =

N∑
i=1

∫
QR/K(Xi)

|t(x)−x|2 dµR ≤
N∑
i=1

∫
QR/K(Xi)

(√
dR

K

)2

dµR =

(√
dR

K

)2

,

where the second inequality follows from the fact that mass in the ith cell stays in the ith cell, so the largest

distance mass could be moved is the diagonal length of the cell,
√
dR
K . Finally, we conclude by using the

definition of K in (A.8), together with the estimate (A.7), and the triangle inequality:

W2(µ, µN ) ≤W2(µ, µR) +W2(µR, µ
N ) ≤ δ

2
+
δ

2
.
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�

Appendix B. Further properties of energies and gradient flows with regularization and
confinement

We provide the proof of Lemma 3.1, which ensures that the energies E and Eε are lower semicontinuous
with respect to narrow convergence.

Proof of Lemma 3.1. First we consider E . For this energy, lower semicontinuity follows from the following
result of Buttazo [16, Corollary 3.4.2]: given g : Rd × R → [0,+∞], consider the functional G : P(Rd) →
[0,+∞] defined by,

(B.1) G(µ) =

{∫
Rd g(x, µ(x))dx if µ� Ld,

+∞ otherwise.

Then if (i) g is lower semicontinous, (ii) for every x ∈ Rd, the function g(x, ·) is convex on R, and (iii) there

exists θ : R → R with limt→∞
θ(t)
t = ∞ and g(x, y) ≥ θ(|y|) for every x ∈ Rd, y ∈ R, then the functional G

is lower semicontinuous with respect to narrow convergence.

We now verify these hypotheses: our energy E is of the form (B.1), for g(x, y) = y2

2ρ̄(x) , which satisfies (i)

and (ii). Furthermore, by setting θ(t) = Ct2, where C = (maxx∈Rd 2ρ̄(x))−1, we see that g satisfies (iii).
Thus, E is lower semicontinuous with respect to narrow convergence.

The lower semicontinuity of Eε follows directly from the definition of Eε(µ) = E(ζε ∗ µ), Lemma 2.3, and
the lower semicontiuity of E . �

We now prove Proposition 3.3 by applying the general results of Ambrosio, Gigli, and Savaré [3] to
immediately characterize the convexity of E , V, Vk, and Vε.
Proof of Proposition 3.3. Item (i) is an direct consequence of [3, Theorem 9.4.12]. Item (ii) is a consequence
of the fact that, for any potential W : Rd → R∪{+∞} that is proper, lower semicontinuous, bounded below,
and λ-convex, the corresponding energy ρ 7→

∫
Wρ is λ-convex along generalized geodesics [3, Proposition

9.3.2]. Next, recall that that V ∈ C2(Rd) with Hessian bounded below implies D2V ≥ λId×d for λ =
inf{x,ξ∈Rd} ξ

tD2V (x)ξ, hence we also have D2(ζε ∗ V ) ≥ λId×d for all ε > 0. In particular, both V and
(ζε ∗ V ) are λ-convex, which implies V and Vε are λ-convex along generalized geodesics. likewise, since Vk is
continuous, bounded below, and convex, Vk is convex along generalized geodesics. Finally, for item ((iii)),
we first note that for µ ∈ P2(RD), we may write VΩ(ρ) =

∫
VΩ dρ, where VΩ is given by (1.17). Assumption

(D) implies VΩ is a lower-semicontinous, nonnegative, convex function. Hence, the result follows once again
from [3, Proposition 9.3.2]. �

Next we prove Proposition 3.6, characterizing the minimal element of the subdifferential of Fε,k.

Proof of Proposition 3.6. For simplicity of notation, denote,

ξ = ∇δEε
δµ

+∇(ζε ∗ V ) +∇Vk.(B.2)

Note that Lemma 3.7 and Remark 2.10 on the additivity of the subdifferential ensure that ξ ∈ ∂Fε,k(µ). In
order to conclude ξ ∈ ∂◦Fε,k, it remains to show that ‖ξ‖L2(µ) ≤ |∂Fε,k|(µ). Proposition 2.11 will then give
the result.

Fix ψ ∈ C1(Rd) satisfying ∇ψ ∈ L2(µ), and define µα = (id +α∇ψ)#µ. By definition of the Wasserstein
distance from µ to µα in terms of minimizing over all transport plans from µ to µα, equation (2.3), and the
fact that (id× (id + α∇ψ))# µ is such a plan,

W2(µα, µ) ≤ ‖(id + α∇ψ)− id‖L2(µ) = α‖∇ψ‖L2(µ).

By definition of the metric slope,

|∂Fε,k|(µ) = lim sup
ν→µ

(Fε,k(µ)−Fε,k(ν))+

W2(µ, ν)
≥ lim sup

α→0

(Fε,k(µ)−Fε,k(µα))+

W2(µ, µα)
(B.3)

≥ 1

‖∇ψ‖L2(µ)
lim sup
α→0

(Fε,k(µ)−Fε,k(µα))+

α
.
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We now apply inequality (B.3) to complete the proof. Recall from the sentence following assumption
(C) that Vk ∈ L1(ν) and ∇Vk ∈ L2(ν) for all ν ∈ P2(Rd). Hence, µα ∈ D(Fε,k) for all α ≥ 0. Thus,
combining inequality (B.3) with Proposition 3.4, which characterizes the directional derivatives of Eε, Vε,
and Vk, applied with,

γ = (id, id, id +∇ψ)#µ,

we obtain,

|∂Fε,k|(µ)‖∇ψ‖L2(µ) ≥ lim
α→0

Eε(µ)− Eε(µα)

α
+
Vε(µ)− Vε(µα)

α
+
Vk(µ)− Vk(µα)

α

= −1

2

∫
ζε ∗ µ(x)

ρ̄(x)

∫ 〈
∇ζε

(
x− y2

)
, y3 − y2

〉
dγγγ(y1, y2, y3)

+

∫
〈∇(ζε ∗ V )(y2) +∇Vk(y2), y3 − y2〉 dx

= −
∫ 〈

1

2

(
∇ζε ∗

(
ζε ∗ µ
ρ̄

))
+∇V +∇Vk,∇ψ

〉
dµ.

Since the above inequality holds for any ψ ∈ C1 with ∇ψ ∈ L2(µ), taking,

ψ = −1

2

(
ζε ∗

(
ζε ∗ µ
ρ̄

))
− (ζε ∗ V )− Vk, so that ∇ψ = −ξ,

we obtain |∂Fε,k|(µ)‖∇ψ‖L2(µ) ≥ ‖∇ψ‖2L2(µ). Dividing through by ‖∇ψ‖L2(µ) = ‖ξ‖L2(µ) gives the result.

�

We now turn to a proof of Proposition 3.10, which characterizes the gradient flows of Fk and F in terms
of partial differential equations.

Proof of Proposition 3.10. Note that, for either G = Fk or G = F , if µ is a gradient flow of G, with initial
data µ0 ∈ D(G), then, according to Theorem 2.13, µ is unique and is a curve of maximal slope for G. Since
G ≥ −‖V ‖∞, this implies that for any t > 0,∫ t

0

|∂G|2(µ(r)) dr ≤ G(µ0) + ‖V ‖∞ < +∞.(B.4)

This ensures that |∂G|(µ(t)) < +∞ for L1 almost every t > 0, and since D(|∂G|) ⊆ D(G), we also have,

G(µ(t)) < +∞ for a.e. t > 0.(B.5)

First, consider the case G = Fk. Suppose µ is a gradient flow of Fk with initial data µ0 ∈ D(Fk). By
inequality (B.5), µ(t) � Ld for almost every t ≥ 0. Furthermore, Proposition 3.9 implies that, for almost

every t ≥ 0, we have (µ(t)/ρ̄)2 ∈W 1,1
loc (Rd) and there exists ξ(t) ∈ ∂◦Fk(µ) with,

(B.6) ξ(t)µ(t) =
ρ̄

2
∇(µ(t)2/ρ̄2) +∇V µ(t) +∇Vkµ(t) and |∂Fk|(µ) = ‖ξ(t)‖L2(µ(t)).

By Definition 2.12 of gradient flow, we obtain that µ satisfies the continuity equation (2.11) with v(t) = −ξ(t).
Using the expression (B.6) for ξ therefore yields (3.8). Finally, the containment (3.10) follows from inequality
(B.4) and equation (B.6).

On the other hand, suppose µ solves (3.8) and satisfies (3.9-3.10). Then, defining ξ on the support of µ
via (B.6) implies that the hypotheses of Proposition 3.9 are satisfied, so ξ ∈ ∂◦F(µ). From this we find that
(3.8) is exactly the continuity equation in Definition 2.12 of the gradient flow, with v(t) = −ξ(t) satisfying
‖v(t)‖L2(µ(t) ∈ L1

loc(0,+∞). Thus, we have that µ ∈ AC2
loc(0,+∞);P2(Rd)) [3, Theorem 8.3.1], hence µ(t) is

the unique gradient flow of Fk with initial data µ0, completing the proof of the first part of the proposition.
Now, consider the case G = F . Suppose µ is a gradient flow of F with initial data µ0 ∈ D(F). By

inequality (B.5), µ(t)� Ld and µ = 0 a.e. on Rd \ Ω for almost every t ≥ 0. Furthermore, Proposition 3.9

implies that, for almost every t ≥ 0, (µ(t)/ρ̄)2 ∈W 1,1
loc (Ω) and that there exists ξ(t) ∈ ∂◦F(µ) with,

(B.7) ξ(t)µ(t) =
ρ̄

2
∇(µ(t)2/ρ̄2) +∇V µ(t) on Ω and |∂F|(µ) = ‖ξ(t)‖L2(µ(t)).
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By Definition 2.12 of gradient flow, we obtain that µ satisfies the continuity equation (2.11) with v(t) = −ξ(t).
Using the expression (B.7) for ξ therefore yields (3.11). Finally, the containment (3.13) follows from inequality
(B.4) and equation (B.7).

On the other hand, suppose µ solves (3.11) and satisfies (3.12-3.13). Then, defining ξ on the support of µ
via (B.7) implies that the hypotheses of Proposition 3.9 are satisfied, so ξ ∈ ∂◦F(µ). From this we find that
(3.11) is exactly the continuity equation in Definition 2.12 of the gradient flow, with v(t) = −ξ(t) satisfying
‖v(t)‖L2(µ(t) ∈ L1

loc(0,+∞). Thus, we have that µ ∈ AC2
loc(0,+∞);P2(Rd)) [3, Theorem 8.3.1], hence µ(t)

is the unique gradient flow of F with initial data µ0, completing the proof of the proposition. �

The next result is a proof of Proposition 3.12, which characterizes the gradient flow of Fε,k in terms of a
partial differential equation.

Proof of Proposition 3.12. Suppose that µ(t) is the gradient flow of Fε,k. Then the fact that µ(t) satisfies
(3.15) follows directly from Definition 2.12, Proposition 3.8, and Theorem 2.13.

Now suppose that µ(t) satisfies (3.15). Then, the fact that the velocity field in the continuity equations
is uniformly bounded ensures, by [4, Theorem 8.3.1], that µ ∈ AC2([0, T ];P2(Rd)). Thus, the fact that µ is
the gradient flow of Fε,k is again a consequence of Definition 2.12, Proposition 3.8, and Theorem 2.13. �

We now consider the proof of Proposition 3.13, which shows that the gradient flow of Fε,k beginning at
an empirical measure remains an empirical measure for all time and characterizes the ODE governing the
evolution of the locations of the Dirac masses.

Proof of Proposition 3.13. First note that, for all ε > 0 fixed, the function of (X1, ..., XN ) that appears on
the right-hand side of (3.16) is Lipschitz continuous, and therefore the ODE system (3.16) is well-posed.

Suppose Xi(t) solves (3.16). We claim that it suffices to show that µ(t) =
∑N
i=1 δXi(t)m

i solves (3.15).
Proposition 3.12 then ensures that µ(t) is the unique solution of the gradient flow.

The fact that limt→0+ µ(t) = µ(0) in W2 follows immediately from the definition of µ(t) and µ(0). Next,
note that,

−
∫
Rd
∇ζε(Xi(t)− z) 1

ρ̄(z)

N∑
j=1

mjζ(z −Xj(t)) dz = −
∫
Rd
∇ζε(Xi(t)− z) 1

ρ̄(z)
ζ(z − y) dµ(y)dz

= −
(
∇ζε ∗

(
ζε ∗ µ
ρ̄

))
(Xi(t)).(B.8)

Now, fix a test function f ∈ C∞c (Rd × (0,+∞)). By the Fundamental Theorem of Calculus and equation
(B.8), for each 1 ≤ i ≤ N ,

0 =

∫ ∞
0

d

dt
f(Xi(t), t) dt =

∫ ∞
0

〈
∇f(Xi(t), t), Ẋi(t)

〉
+ ∂tf(Xi(t), t) dt

=

∫ ∞
0

〈
∇f(Xi(t), t),

(
−
(
∇ζε ∗

(
ζε ∗ µ
ρ̄

))
(Xi(t))−∇(ζε ∗ V )(Xi(t))−∇Vk(Xi(t))

)〉
+ ∂tf(Xi(t), t) dt.

Multiplying by mi, summing over i, and recalling the definition of µ yields,

0 =

∫ ∞
0

∫
Rd

〈
∇f(x, t),

(
−
(
∇ζε ∗

(
ζε ∗ µ
ρ̄

))
(x)−∇(ζε ∗ V )(x)−∇Vk(x)

)〉
+ ∂tf(x, t) dµ(x, t) dt.

Thus, µ is a distributional solution of the continuity equation (3.15). �

Appendix C. Explicit formulas for numerical method

In this section, we collect a few explicit formulas that we use in the implementation of our numerical
method. For our choices of uniform (7.10), log-concave (7.11), and piecewise constant (7.12) target, we have
explicit formulas for the functions f(x, y) and g(x, y) defined in section 7.1: see equations (1.12) and (7.9).



52 KATY CRAIG, KARTHIK ELAMVAZHUTHI, MATT HABERLAND, AND OLGA TURANOVA

For the log-concave target measure, we obtain,

f(xi, xj) =
−2ε2xi − 6ε2xj + x3

i + x2
ixj − xix2

j + 4xi − x3
J − 4xj

16
√
πε3

Cρ̄e
−(xi−xj)2/(4ε2)

g(xi, xj) = [ψij(+∞)− ψij(−∞)]

ψij(z) =
Cρ̄
8
εe
−(x2

i+x2
j+2z2)

2ε2

(
−√π(2ε2 + x2

i + 2xixj + z2 + 4)

e
(x2
i+x2

j+2xixj)

4ε2 erf
(xi + xj − 2z

2

)
− 2ε(xi + xj + 2z)ε

z(xi+xj)

ε2

)
.

For the uniform and piecewise constant targets, note that both may be expressed as,

ρ̄(x) =

N∑
k=1

ck1[bk,bk+1](x),

where {ck}Nk=1 are positive constants chosen so that
∫

Ω
ρ̄ = 1, {bk}N+1

k=1 ⊆ R. For any target of this form, we
obtain

f(xi, xj) =
N∑
k=1

c−1
k [ϕij(bk+1)− ϕij(bk)]

ϕij(z) = −e
−(x2

i+2z2+x2
j )/(2ε

2)

8πε3

(
2εez(xi+xj)/ε

2) −√π(xi − xj)e((xi+xj)
2+4z2)/(4ε2)erf

(
xi − 2z + xj

2ε

))
+
e−(x2

i+x
2
J)/(2ε2)

8πε3

(
2ε−√π(xi − xj)e(xi+xj)

2/(4ε2)erf

(
xi + xj

2ε

))
g(xi, xj) =

N∑
k=1

[ψij(bk+1)− ψij(bk)]

ψij =
−1

4
√
π
e
−(xi−xj)2

4ε2 erf
(xi + xj − 2z

2ε

)
.
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[2] L. Ambrosio, E. Brué, and D. Semola. Lectures on optimal transport. Springer, 2021.
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[60] Q. Mérigot. A multiscale approach to optimal transport. In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley

Online Library, 2011.
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