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Abstract
Sleep is critical to the health and development
of infants, children, and adolescents, but pedi-
atric sleep is severely under-researched compared
to adult sleep in the context of machine learn-
ing for health and well-being. Here, we present
the first automated pediatric sleep scoring results
on a recent large-scale sleep study dataset that
was collected during standard clinical care. We
develop a transformer-based deep neural network
model that learns to classify five sleep stages from
millions of multi-channel electroencephalogram
(EEG) signals with 78% overall accuracy. Fur-
ther, we conduct an in-depth analysis of the model
performance based on patient demographics and
EEG channels.

1. Introduction
Sleep is a necessary physiological process that actively en-
gages multiple organ systems. Sleep disorders or sleep
disturbances not only negatively affect one’s cognitive and
physical functions (Wulff et al., 2010; Dawson & Reid,
1997), but can also lead to serious medical conditions. For
example, obstructive sleep apnea (OSA) contributes to in-
creased risk of cardiovascular diseases, such as hypertension
(Peppard et al., 2000), stroke (Mohsenin, 2015) and heart
failure (Bradley & Floras, 2003) in adults, as well as neu-
robehavioral issues (Beebe et al., 2004) and even morbidity
(Lumeng & Chervin, 2008; Jennum et al., 2013) in infants
and children.

Diagnoses of many sleep conditions require polysomnogra-
phy (PSG), or overnight sleep study, where a patient sleeps
in a clinic while their physiological signals are monitored
under the supervision of trained technicians (Kushida et al.,
2005; Berry et al., 2018; 2017). A PSG dataset may include
many modalities, such as electroencephalogram (EEG), elec-
tromyelogram (EMG), electrooculogram (EOG), and respi-
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Figure 1. Illustration of our patch-based transformer neural net-
work architecture designed for pediatric sleep scoring from multi-
channel EEG signals. MLP stands for multi-layer perceptron.

ratory airflow. A crucial first step towards diagnosis in PSG
data analysis is sleep scoring, or sleep stage classification,
which assigns every 30-second segment of sleep into two
stages, rapid eye movement (REM), and non-REM, then
further divides the latter into shallow sleep (stages N1 and
N2) and deep sleep (stage N3). In a typical clinical set-
ting, this process is done manually by a technician, which
is highly labor-intensive, time-consuming and prohibitively
expensive.

Naturally there have been many attempts to automate sleep
scoring, especially in recent years with the help of deep
neural networks and freely-available public PSG datasets;
see reviews in (Bandyopadhyay & Goldstein, 2022; Fiorillo
et al., 2019; Watson & Fernandez, 2021; Phan & Mikkelsen,
2021). Most existing deep-learning-based approaches in-
cluding (Zhang et al., 2022) rely on traditional convolutional
neural network or recurrent neural network architectures,
and have yet to be widely adapted in clinical settings. On
the other hand, self-attention based transformer models (and
convolution-based models that are similar in spirit) have
recently gained state-of-the-art performance on a range of
tasks involving vision, audio and text modalities (Vaswani
et al., 2017; Dosovitskiy et al., 2020; Trockman & Kolter,
2022) due to their capability of modeling long-range depen-
dencies and parallelizability.

Several works (Phan et al., 2022; Yang et al., 2021; Chen
et al., 2021; Kim et al., 2021) have attempted to utilize
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transformer-based models for processing EEG signals and
achieve superior performance over other classic deep archi-
tectures. Given that, we design a simple yet effective neural
architecture that can process millions of multi-channel EEG
signals (F4-M1, O2-M1, C4-M1, O1-M2, F3-M2, C3-M2,
CZ-O1) and learn useful representations for pediatric sleep
scoring. Our model is based on the transformer architecture
that operates directly on patches as input and maintains the
same resolution and representations throughout all layers.

We develop and demonstrate our model on the new Na-
tionwide Children’s Hospital (NCH) Sleep DataBank (Lee
et al., 2021), which has not been explored in automatic sleep
scoring research before. This dataset is of massive scale,
containing 3,984 PSG from 3,673 unique patients, allowing
us to leverage the full power of machine learning models. It
explicitly focuses on pediatric sleep, and the sleep studies
were also conducted in a current real-world clinical setting
(i.e. in-the-wild in NCH between 2017 and 2019). Hence
our model is trained from data that is closest to what it will
see in future deployment, which is unlike prior work on
pediatric sleep scoring that learn from mostly healthy adult
subjects in a clinical trial.

Our transformer-based model achieves an overall pediatric
sleep scoring accuracy of 78.2%, and our analysis reveals
that the accuracy is above 80% for 6-15 year old patients.
Our work is different from previous approaches that use
transformers for sleep-stage scoring in several ways:

• Our models directly operate over raw signals as op-
posed to time-frequency images to further simplify the
learning pipeline and improving training efficiency.

• We do not utilize any other modalities except EEG
signals as other works employ additional modalities,
e.g., EOG.

• We do not require mixing or ensembling of multiple
models that can significantly increase model size and
inference cost, especially for on-device deployment.

• Our model is trained specifically for pediatric sleep
scoring, which is a severely under-researched topic
compared to adult sleep in the context of machine
learning for health and well-being.

2. Results
We develop a neural network model for predicting sleep
stages in a real-world clinical environment from pediatric
multi-channel EEG signals. We design a patch-based trans-
former model that operates over one-second segments of
sleep, which provides strong support for long-range model-
ing dependencies in the input signal to learn discriminative
features. We utilize the NCH SleepBank dataset, which

comprises approximately 3.6 million fully-annotated EEG
examples by domain experts, for training and evaluating
models. Only seven-channel EEG signals (F4-M1, O2-M1,
C4-M1, O1-M2, F3-M2, C3-M2, and CZ-01) at 128 Hz are
used to classify instances into five sleep stages (i.e., wakeful-
ness, non-REM stages 1, 2, 3, REM). Detailed information
about the NCH dataset, including patient characteristics and
annotation strategy, is provided in supplementary materials
Section 4.1. To evaluate model performance, we compute
precision, recall, F1-score, and accuracy based on the con-
fusion matrix, and also assess generalization across age
groups, races, and gender. Finally, we perform ablation over
EEG channels to estimate the contribution of each channel
toward sleep scoring.

2.1. Neural network model learns which parts of the
raw EEG signals are important

Our transformer-based model is inspired by the ViT (Doso-
vitskiy et al., 2020) network, which we adapt here to
multi-channel time-series signals. The high-level illus-
tration of the model architecture is shown in Figure 1.
The model accepts inputs of the shape (Sampling
frequency in Hz × # of seconds) × (#
of EEG channels) = 3, 840 × 7, after which the
instance normalization layer normalizes each EEG signal
channel-wise independently. The patch generation layer
then splits the sleep epoch by every second, creating 30
patches of input with shape 128× 7. This is analogous to
tokenization in natural language processing (NLP), where
a piece of text is converted into smaller units (i.e. tokens)
such as words or characters. This helps the transformer
learn which seconds of the EEG signals are important for
sleep scoring.

After the patches are generated, they are embedded into 64-
dimensional vectors via a linear patch encoder layer. This
is then added to 64-dimensional positional vectors to create
images that encode both positional and waveform shape
information of the input patches. The rest of the model is
similar to a classic transformer encoder with 8 blocks with 4
attention heads, which is explained in more detail in Section
4.2. Each block has a normalization layer, a multi-head
attention layer, another normalization layer, and a two-layer
multi-layer perceptron (MLP) with 128 and 64 units. For
feature aggregation, we use global average pooling followed
by a classification layer with units equal to the number of
sleep stages, i.e. 5.

2.2. Data preparation

We use 3,928 PSGs from 3,631 unique patients for model
training and evaluation. In particular, we split the patients
into 70%, 10%, and 20% for training, validation, and testing,
respectively, so that the three splits have no overlap in pa-
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Figure 2. Hypnogram of the gold standard (manual scoring) versus prediction from our transformer-based model for five sleeping stages
annotations on a randomly selected subject from the test set. The horizontal axis is in units of sleep epochs, and the entire length
corresponds to one overnight sleep study.
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Figure 3. a) Normalized confusion matrix for sleep scoring on the entire test set. The number in ith row and jth column indicates the
percentage (%) of samples in stage i (according to manual scoring) that were predicted to be in stage j by our classifier. Each row adds
to 100%. Overall accuracy of our model across all sleep stages is 78.2%. b) Model performances on the entire test set, as evaluated by
accuracy, precision, recall, and F1-score (weighted).

tients. During the learning phase, we monitor the validation
set performance for model checkpointing, and report results
on the test set. Our training set consists of 2.5+ million
instances, and the test set has 730K+ instances, as shown in
Table 1. To the best of our knowledge, we, for the first time,
report results on a large-scale pediatric sleep stage scoring
dataset that is collected in the wild. We provide the rest of
the data pre-processing and related information in Section
4.1, including patient demographic characteristics in Table
4.

2.3. Model demonstrates strong pediatric sleep scoring
performance

Across all sleep stages in the test set, the transformer model
achieves 78.2% accuracy, F1-score (macro) of 70.5%, F1-
score (weighted) of 79.9%, and Cohen’s Kappa score of
71.0%. See Figure 2 for a randomly selected subject’s
hypnogram that is predicted by our transformer model.
Model performance for each sleep stage is presented in

Sleep Stage Train Validation Test

All 2,611,845 301,116 731,344

Wake 469,473 56,327 135,845
N1 92,615 9,768 25,219
N2 990,299 112,188 273,191
N3 623,164 71,728 176,308
REM 436,294 51,105 120,781

Table 1. Number of samples in train, validation, and test sets. One
sample is a 30-second sleep epoch.

Figure 3a as a normalized confusion matrix, and in Figure
3b in terms of accuracy, precision, recall, and F1-score. The
model demonstrates strong predictive power (near 80%) for
Wake, N2, N3, and REM, but not as much in predicting N1,
which has the smallest sample size. The model has lower
precision for sleep epochs in N1, often inaccurately labeling
them as N2 or REM. Nonetheless, this is a huge improve-
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Figure 4. t-SNE embedding of features learned with the trans-
former network. We project 128-dimensional representations from
the model’s penultimate layer to 2 dimensions for a random sub-
set of test set instances. Each point in the plot represents one
30-second sleep epoch. Note that t-SNE does not utilize class
labels. The colors are added during post-hoc analysis for better
interpretability.

ment over the wavelet-based baseline classifier in (Lee et al.,
2021), which had 64.4% accuracy across all sleep stages
and only 0.9% with N1.

We also visualize the features learned by the transformer
model in Figure 4, projecting them from 128-dimensional
to 2-dimensional space via t-SNE (Van der Maaten & Hin-
ton, 2008). The clusters that naturally form for each sleep
stage suggest that the transformer model learns meaning-
ful features from the raw EEG signals before entering the
final classifier layer. Furthermore, we note that N3 samples
seem to be most well-separated, while N1 samples seem to
overlap with other stages the most, which aligns with the
classification accuracy results in Figure 3a.

2.4. Model sleep scores better on 6 to 15 year olds and
children of Asian, Others and Unknown race with
over 80% accuracy

Figure 5 and Table 2 report the transformer model perfor-
mance on different subsets of the patients. Figure 5 shows
that the model achieves the highest accuracy (85%) on the 8
to 9 year olds, and the lowest (70%) on infants less than 1
year old. From 6 to 15 year old age groups, the classifica-
tion accuracy is above 80%, and subsequently higher than
the model’s average accuracy across age groups. In terms
of race, the model achieves the highest accuracy (about
81%) on Others and Unknown, and lowest accuracy (about
76%) on Black or African Americans. Finally, we observed
slightly better performance on female patients.
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Figure 5. Performance comparison of transformer model on dif-
ferent age groups in the test set, as measured by accuracy and
weighted F1-score.

2.5. The predictive power is not from a single EEG
channel

Next, we perform an experiment to determine the individual
contributions of the EEG channels towards sleep scoring.
Seven identical transformer models are created according
to the structure described in Figure 1. Then, each model
is trained using only one of the seven EEG channels. For
example, the first row of Table 3 shows the classification
accuracy of a transformer model that only had access to
the F4-M1 channel EEG signals during both training and
testing. None of the seven models is able to achieve the
results of the original transformer model, lending support to
the use of multi-channel EEG signals. However, the model
trained on F3-M2 channel achieves highest accuracy in clas-
sifying sleep stages Wake, N1, and N3, while the C3-M2
channel model does so for N2. Finally, the F4-M1 channel
model demonstrates a markedly improved performance in
identifying REM stages.
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Accuracy (%) F1-score (%)

Race
White 78.6 80.3
Black or African American 76.4 78.3
Multiple Races 78.0 79.6
Asian 78.7 80.3
Others and Unknown 80.6 82.6

Sex
Male 77.9 79.6
Female 78.5 80.4

Table 2. Transformer model performance on different racial and
groups and sex in the test set. Others and Unknown race is defined
identically to Table 4. F1 refers to weighted F1-score.

Channel Sleep Stage
Wake N1 N2 N3 REM All

F4-M1 69.1 39.8 75.0 83.1 78.0 75.1
O2-M1 70.1 31.5 74.1 81.4 60.7 71.4
C4-M1 68.2 39.9 77.0 83.5 70.8 74.6
O1-M2 67.7 35.0 73.8 78.7 67.4 71.4
F3-M2 72.4 41.8 75.5 84.2 71.1 75.1
C3-M2 72.2 34.7 78.3 83.8 70.8 75.7
CZ-O1 69.1 34.6 76.5 80.1 66.5 72.9

Table 3. Classification accuracy (%) on test set for transformer
models trained on single EEG channels. The highest accuracy for
each sleep stage (column) is bolded.

3. Discussion
We developed and trained a transformer model on more
than 3,900 recent pediatric sleep studies collected during
standard hospital care. The model predicted 5 sleep stages
(Wake, N1, N2, N3, REM) from 7 raw EEG channels (F4-
M1, O2-M1, C4-M1, O1-M2, F3-M2, C3-M2, CZ-O1) with
78.2% accuracy, which is the highest accuracy reported
for automatic sleep scoring on such a large-scale pediatric
dataset to the best of our knowledge.

We believe this work sheds light on many future research
ideas for pediatric sleep. First, the challenge in predicting
the infrequent N1 stages, while consistent with previous lit-
erature, remains an open problem. Prediction performance
for infants less than 1 year old also has room for improve-
ment. Finally, as the NCH Sleep DataBank also provides
the patients’ electronic health records, we plan to build on
this work to develop diagnostic models for sleep disorders.

PSGs, N (Unique Patients, N )
Train Validation Test

2812 (2613) 321 (291) 795 (727)
Age
0-1 157 (132) 26 (21) 59 (43)
1-2 140 (134) 15 (14) 37 (36)
2-3 211 (206) 31 (30) 53 (53)
3-4 189 (187) 31 (31) 57 (55)
4-5 197 (193) 16 (15) 44 (43)
5-6 178 (177) 16 (16) 43 (42)
6-7 178 (176) 16 (16) 48 (46)
7-8 165 (164) 17 (17) 54 (51)
8-9 157 (154) 14 (14) 43 (42)
9-10 136 (134) 18 (18) 38 (35)
10-11 142 (138) 7 (7) 40 (39)
11-12 131 (128) 8 (7) 43 (43)
12-13 136 (130) 9 (9) 34 (34)
13-14 111 (110) 17 (17) 35 (34)
14-15 101 (96) 15 (14) 28 (26)
15-16 132 (123) 13 (12) 23 (22)
16-17 118 (113) 13 (12) 32 (31)
17-18 93 (89) 12 (12) 29 (28)
18-100 140 (131) 27 (25) 55 (46)

Race
White 1855 (1735) 211 (190) 531 (481)
Black 581 (536) 55 (51) 154 (144)
Multiple race 198 (30) 33 (30) 57 (54)
Asian 71 (60) 11 (9) 29 (24)
Others and Unknown 107 (97) 11 (11) 24 (24)

Sex
Male 1600 (1471) 185 (166) 450 (408)
Female or Unknown 1212 (1142) 136 (125) 345 (319)

Table 4. Demographic characteristics of the 3,928 PSGs from NCH
Sleep DataBank that were used to train, validate, and test our
sleep scoring model. N refers to counts; Age is in years; Others
and Unknown races include Unknown, Refuse to answer, Native
Hawaiian or Other Pacific Islander, and American Indian or Alaska
Native, which are aggregated for patient privacy. Note that patients
who have gone through multiple sleep studies over the years could
have been counted multiple times in different age groups.
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4. Experimental Procedures
4.1. Data Description

The NCH Sleep DataBank holds 3,984 pediatric PSG from
3,673 unique patients that were collected between 2017 and
2019 at NCH, Cleveland, Ohio, USA. In this paper, we
used 3,928 PSG from 3,631 unique patients that had seven
EEG channels of interest (F4-M1, O2-M1, C4-M1, O1-
M2, F3-M2, C3-M2, CZ-O1), which is about 98.5% of the
dataset. Demographic information is summarized in Table
4, and the distributions of sleep study length are visualized
in Figure 6. The PSGs were conducted in standard care
at NCH, and all sleep stages were manually scored by a
technician and verified by a physician board certified in
sleep medicine. Since the EEG signals in this dataset have
varying sampling frequency, they were resampled to 128 Hz
before training the model. Please see (Lee et al., 2021) for a
much more detailed description of the dataset including the
de-identification and validation process.
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Figure 6. Distributions of sleep study duration in train, test, and
validation sets. For all three sets of EDFs, the means were between
10.21 and 10.31 hours, and standard deviations were between 1.05
and 1.09 hours.

4.2. Self-Attention in Transformers

We briefly describe the self-attention mechanism (Vaswani
et al., 2017), which is a central building block of the trans-
former architecture. Self-attention computes a weighted
average of tokens (or their representation’s) with similarity
score being equivalent to weights calculated from pairs of
tokens. Given an input sequence with multiple channels
X ∈ RT×C of length T and channels C, it is first reshaped
into n patches (or tokens) of fixed size, i.e. Xp ∈ Rn×(P ·C).
Once Xp is projected to Xt ∈ Rn×d along with the posi-
tional information, it is ready to be inputted into the self-
attention module in transformers. The normalized impor-
tance matrix is computed using three matrices WQ ∈ Rd×dq ,
WK ∈ Rd×dk , and WV ∈ Rd×dv , which extract query
Q = XtWQ, key K = XtWK , and value V = XtWV .
The self-attention is then formulated as:

F(Q,K, V ) = Softmax
(QK⊤√

dq

)
V, (1)

where the softmax operation is applied row-wise, and thus
each element in the output matrix depends on all other
elements in the same row. Building on top of this, the
multi-head self-attention layer comprises H independent
self-attention layers. Specifically, each head produce a set
of query, key and value matrices and compute attention
output as: hi = F(Qi,Ki, Vi) for i = 1, . . . ,H . Lastly,
the fused output is generated by concatenation and linear
transformation with learnable weights WO:

M(Q,K, V ) = Concat(h1, h2, . . . , hH)WO. (2)

For a detailed treatment of how multi-head self-attention
and transformers work, we refer the reader to (Park & Kim,
2022). In our model, the parameters T = 3840, C = 7, n =
30, P = 128, d = dq = dk = dv = 64, and H = 4.
T is the signal length or temporal size of the instance, C
represents the number of channels, P is the patch size, d
is the key (including query and value) dimension, and H
denotes the number of heads in the multi-head attention
layer.

4.3. Loss Function

We use weighted cross-entropy loss function to train our
model as NCH data is slightly imbalanced towards N1 class,
i.e., there are fewer samples belonging to N1 sleep stage
as compared to rest of the classes. Formally, the objective
function we optimize is:

L(θ) = 1

M

M∑
m=1

[
wm ×H(ym, fθ(ym|Xm)

]
(3)

where M denotes the number of training samples, Xm is the
m-th EEG instance in the train set, ym is the m-th label in
the train set, fθ is the neural network function with learnable
parameters θ, and wm is an instance weight representing
the importance that should be given to a particular example.
In the case of an imbalanced dataset, the wm is higher for
instances from the minority class while lower or one for
the rest. For the N1 class, we found the value of 5 to be
optimal, while for the rest of the classes, we used a value
of 0.9 as a weighting factor in the loss function. H is the
standard cross-entropy loss. The loss function L is then
optimized with respect to the neural network parameters θ
during model training.

4.4. Model Training and Evaluation

We use an Adam optimizer with a default learning rate
of 0.001 and batch size of 1, 024 to perform model train-
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ing on a single NVIDIA T4 GPU for 25 thousand itera-
tions, iterating over more than 2.5 million multi-channel
EEG examples. Our transformer-based model has 775, 237
learnable parameters. We save the model checkpoint at
every epoch based on validation set performance to avoid
overfitting, and report model performance on the test set.
We also experimented with training longer and with an
Adam optimizer with weight decay, but we did not notice
any improvement in generalization. Finally, we evaluate
model performance with four metrics: accuracy, precision,
recall, F1-score (macro and weighted averaged variants),
and confusion matrix as implemented in the scikit-learn
package (Pedregosa et al., 2011). Specifically, the F1-score
is the harmonic mean of precision = TP

(TP+FP ) and
recall = TP

(TP+FN) , where TP is True Positive, FP is
False Positive, and FN is False Negative. In a multi-class
classification setting, the macro average is computed as an
unweighted mean of per-class F1-scores. In contrast, the
weighted average takes each class’s support (i.e., number of
samples belonging to a particular class) into consideration.

5. Resource availability
This paper analyzes existing, publicly available dataset
for sleep research. The NCH Sleep DataBank can be
requested from the National Sleep Research Resource
(NSRR) (https://sleepdata.org/datasets/nchsdb) or Physionet
(https://physionet.org/content/nch-sleep). The Python code
and trained models will be made publicly available on
Github upon publication of the manuscript. Further infor-
mation and requests for resources should be directed to and
will be fulfilled by the lead contact: Harlin Lee.
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