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Abstract

A study is given of ceriain linear singularly perturbed Volterra or
Fredholm vector integral equations, including also certain integrodifferential
equations. Several examples are discussed that illustrate the rich diversity
of (in some cases surprising) behavior that is possible for such equations.
A special class of equations is studied further using a version of the
additive multivariable technique, and the results are justified by

appropriate error estimates.
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1. Introduction

We consider the vector integral equation
1
ew(x) + h(x, €) = t[Ifc(x, s)w(s)ds, 0 < x < 1, (1.1)

for small positive values of ¢ (e = 0+), for a solution function w = w(x) =
w(x, €} that is an m-dimensional real or complex vector-valued function,
and where the data functions h and K are real or complex
vector-valued and matrix-valued functions with appropriate compatible
orders. In operator form the equation becomes XKw = h + ew, and the

reduced equation is given by putting € = 0 in (1.1),
Kw = hj, (hg(x) := h{x, 0)). : (1.2)

We assume that the given forcing function h is smooth and has an

asymptotic expansion in nonnegative powers of € asg

" ‘
~ j °
h(x, €) Zhj(x)e for 0<x<1, (1.3)
Jj=0
as € - 0+, for suitable smooth functions h j = hj(x). There is no

difficulty in permitting the kernel K to depend similarly on €, but for
simplicily we take K to be independent of €. Also for simpliciiy, here

and in the next few sections we consider mainly the scalar cgse (m = 1},

with X, h and w suitable real- or complex-valued functions; the vector



case ig considered in later sections of this paper. By considering the vector
case for (1.1), we are able directly to include also wvarious

integrodifferential equations.

Perhaps the simplest case of (l.1) corresponds to a scalar constant
kernel, with K(x, s) = A for some fixed number A, in which case an easy

calculation shows that (1.1) has the unique solution

-1 1
w(x,€) = m[(A—-e}h(x,e) + Afoh(s,e)ds]. ‘ (1.4)

This solution is generally unbounded as € = 0, wuniformly for 0 ( x £ 1,

and there are no boundary layers. This behavior is indicative of typical

behavior for smooth kernels: in Appendix A.l, for various classes of smooth
kernels, we show more generally that (1.1} has a unigue solution, and the

solution does not exhibit boundary-layer behavior, as € =~ Q.

Our interest here is in piecewise smooth kernels K(x, s} that exhibit
discontinuities so as to result in solutions of boundary-layer iype. A simple

example is given by the piecewise constant kernel

A, s < %
K(x, s8) := (1.5)
B, 5 > X,

for given numbers A and B, A # B. In this case the reduced equation
(1.2) has a solution, given as w(x) = (A—B)_lho’(x), if and only if hy =

ho(x) . satisfies the condition
Bho(l) = AhO(O). (1.6)

However, for all small € > 0, the full equatlion (1.1) has a unique solution

whether or not (1.6) holds. For example, suppose h(x) = e}‘x for a fixed



constant X, so that the integral equation becomes

o 1
ew(x) + M = Ag\w(s)ds + ij(s)ds. {(1.7)

X
ﬂpan differentiation of (1.7} we find the equation ew’ - (A-B)w =

-ke}‘x, with general solution

e G (1.8)

where c¢ is a constant of integration that is determined by inserting {(1.8)

back into (1.7}, yielding

a (A-B)Y(A - Be™ o
e(B-Ater) [4 - Be(A“B)/e]

The resulting solution undergoes rapid oscillations in the case Re A =
Re B, while either boundary-layer behavior or rapid exponential growth
can occur in each of the cases Re A ( ReB and Re B < Re A, Our
interest here is in problems exhibiting boundary-layer phenomena. We

intend to treat the case of rapid oscillations in a subsequent work.

For example, (1.7) is a Volterra equation for an initial-value problem in

the case B = 0, with solution

A
Cia Ax
wix, €) = L A2 + Ae (1.10)
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The solution undergoes rapid exponential growth for x »
while it has a boundary layer at x = 0 if Re A < 0. Analogous results
hold when A = 0, in which case (1.7) is a backward Volterra equation for
a terminal-value problem, and the solution undergoes rapid exponential
growth for x <1 if Re B > 0, and so forth.-

Similarly we find from (1.8)-(1.9} the result:

RHe A < Re B implies

{1.11)
A-B
A _ S—=x
w(x,e) ~ %:- -B-@—K--—-A e € + AEB e)\x’ if A #Q,

The first term on the right side of (l.11}) represents a boundary-layer
correction at x = 0, while the last term represents a slowly varying outer

solution, with

limit,  wix, €) = g2y e % (1.12)

€ = 0
Fixed x€(0,1]

This limiting outer sclution given by the right side of (1.12) coincides with
the solution of the reduced equation (1.2) when this latter equation has a
solution. (i.e. when (1.8) holds), and in this case the solution of (1.1) is
uniformly O©(l) as ¢ - 0t  because (1.6) implies Be}“ = A and so the
0(1/€) term vanishes in the boundary-layer term. On the other hand if
Be* A, then (1.6) fails to hold and the reduced equation (1.2) has no
solution. The amplitude of the boundary-layer correction is 0(1/€) in this

Aoy A), and the boundary-layer correction acts like a "delta

case (Be
function” when inserted into the integral of (1.1), so that the sum of the

terms on the right side of {1.11) provides a useful asymptotic solution to



the reduced equation for x > 0. An analogous result holds in the case
Re B < Re A, B # 0, with the layer region occurring at x = 1 instead of

at x = 0,

The example (1.7) shows that boundary-layer behavior is possible with
discontinuous kernels, and in fact boundary layers are posaible for other
types kernels possessing both stironger and weaker ~discontinuities than

indicated by {1.5), such as the kernel

K(x, 8) = y
X—s

and also kernels for which K(x, s) is continuous but akK(x,s)/axk is
discontinuous for some k > O. However, in this paper we restrict
consideration mainly to certain of the simplest problems of boundary-layer
type for (1.1)._ Except in Section 3, where less regularity is required, we
genereally assume that X(x, s) is smooth on [0, 1]X[0, 1] except for a jump

discontinuity along the diagonal x = s, with smooth jump (matrix) J =

J{x) given as
J(x) = K(x, x°) - K{x, x') for 0 < x <1, (1.13)

where K(x, x ) = limit K(x, s) and X(x, x+) = limit K(x, s} for 0 <
s=X s—x
8<x S>X

x < 1, and with J(0} and J(l)' given by the respective limits of J(x)
as x = 0t and x = 1 Moreover, except in Section 2,  we generally
impose additional conditions so as to restrict attention to a class of
problems with the simplest iype boundary-layer structure. Considerations of
various other relgted problems with solutions of boundary-layer and
interior-layer type, problems with kernels having discontinuites along more
general curves other than x = 8, +various nonlinear problems, etc., are
deferred elsewhere. For the present class of problems considered h:,-.r_e, we
are able to obtain rigorous results in a clear, precise manner. We shall see

that the class of problems is of considerable interest becahse it includes



several important special cases such as the singularly perturbed wvector
Volterra equat;ion (with K(x,8) = 0 for & > x, with jump J(x) = K(x, x)),
various integrodifferential equations, and many imf)ortant singularly
periurbed boundary-value problems for differeniinl eguations that can be
reformulated a2s integral equations of the type (1.1) with a discontinuous

kernel.

For example, the (scalar) Dirichlet problem

ey" + a(x)y’ + b(x)y = f(x) for 0 < x <1,

(0, €) = g ¥(l, €) = ay, (1.14)

(smooth real data a, b and f, and real dp @y and €),

is known to have a unique solution (as e = 0+) if a(x) is everywhere
nonzere, with resulting solution that has a single boundary layer occurring
either at the left endpoint or the right endpoint in the respective cases
a{x) > 0 or &d(x) < 0 ({(cf. Smith [1985; Section 8.3]). A routine calculation
shows that the problem (1.14} can be replaced by an equivalent integra}l

equation of the type (1.1) with m = 1, w = ¥, and

h(x,e) = -ela, + (ay-a,)x] - J\x(x—l)sf(s)ds - fl {s-1)xf(s}ds,
0 170 0 %
(x-1)[a(s) + s(a’(s) - b(s))] if s < x, (1%
Kix, 58) = { _
x[a(s) + (s-1){a’(s) — b(s))] if s > x.
Here the kernel K has jump (1.13) given as
J(x) = -a(x), (1.18)



and this problem (1.1), (1.15) is of the type considered here if the function

a 1is nonzero.

Examples such as (1.5) and (1.15) show that (1.1) can have solutions of
boundary-layer type if the kernel K has a jump discontinuity across x =
s and if suitable stability conditions hold. Moreover, in the case (1.5) the
amplitude in the boundary layer is 0(1/€} unless (1.8) holds so that the
reduced equation has a solution, in which case the solution of (1.1)
(including the amplitude in the boundary layer) is uniformly O(1). If the
appropriate stability conditions do not hold, then solutions of (1.1) need not
be of the boundary-layer iype conside}e_d here, but rather, a variety of
other behaviors can occur as discussed briefly for (1.7) and as illustrated
more fully in Section 2. However, subject to appropriate .;assumptions, we

shall find that (1:1) has a uniqﬁé. solution w = w(x, €} satiafying

w ™~ outer sclution + boundary-layer correction, as ¢ = 0+, (1.17)

]

where the outer solution 1is regular and of orcier unity, while the
boundary-layer correction term is generally a linear combination of "delta
functions" at the endpoints x = 0 and x = 1, of order O(l/€). In
particular, subject to the present assumptions, the situation for (1.1) is
analogous to that for certain singular singularly perturbed problems for a
‘differential equation, where the reduced problem is not uniquely soivable;
cf. Smith [1985, p. 227] and Schmeiser and Weiss [1986] for references on
such problems for 6rdinary and partial differential equations.~On the other
hand, in the special case (1.15) {with a(x) nonzero) and in various other
cases arising similarly from commonly studied singularly perturbed
boundary wvalue problems for differential equations {(such as (4.2)-(4.3)
belbwi, the resulting reduced equation (1.2) is always uniquely solvable,
and the amplitudes of the resuliing boundary layers are O{l). Hence such
commonly studied singularly perturbed boundary value problems for
differential equations correspond to a rather special case within the

framework of the theory discussed here for the integral egquation.



As indicated in (1.17), the solution of (1.1) possesses an additive

decomposition into the sum of a regular part plus a boundary-layer

ssumptions., (Qther iypes of behavior can occur
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when our assumptions are relaxed, as indicated by the examples of sections
2 and 3.} In the present study of (1.1) we use, for the most part, a direct
additive multivariable (boundary layer) technique of a sort that is commonly
Qmployed in certain studies of singularly perturbed differential equations
primarily since the work of O’Malley [1968, 1969, 1970, 1971a, 1971b, 19741;
see also Latta [1951], Carrier {1953, 1974], Cochran [1962], Erdélyi [1968],
Hoppensteadt [1971]1 and Smith [1971, 1975, 1985] aniong many possible
references. Instead of the direct additive multivariable method employved
here for (1.1}, we could equally well use the method of matched asymptotic
expansions, as illustrated for various differential equations in Carrier [1953,
1974], Eckhaus [1973, 1979]), Nayfeh [1973], Bender and Orszag [19781,
Kevorkian and Cole [1981], and Lange [1983] among many possible
references, and as illustrated in Lange and Miura [1982, 1985a, 1985b} for
differential-difference equations. The formal use of the additive
multivariable method has in some cases led to spurious solutions for
differential equations; cf. Carrier and Pearson {1968], Rosenblat and Szeto
[1980], and Lange [1983]. And indeed we find that the method of matched
asymptotic expansions is more effective than the additive multivariable
method for certain integral equation problems for (1.1) when our present
assumptions ar: relaxed, as in the case of related problems with solutions
of interior-layer type, or problems for which the kernel X(x, s) has less
regularity than assumed here. We shall defer to a subsequent work a
general discussion on the use of matched asymptotic expansions for wvarious
- singularly perturbed integral equations. The additive multivariable method
is a convenient approach when it applies, and for this reason we use the

method here,

It is a well-known consequence of a result of Banach [1922] that, for
all Jlarge €, (1.1) is uniquely solvable for any forcing function h,
subject to mild regularity conditions on h and XK. On the other hand,
for small € as considered here, the correspouding results in the

literature are rather restricted. Olmstead and Handelsman [1972] consider



certain scalar linear and nonlinear Volierra equations related to {1.1), with
a singular Volterra kernel of convolution type. Erdélyi [1974] considers
again the linear equation of Olmsiead and Handelsman [1972], uéing a
different method. Sirovich and Xnight [1982] consider = claas of linear
Fredholm equations with kernels that are primarily of convolution type but
with a slowly varying nonconvolution part, such as K(x, s) = V(x-s, €x).
Hoppensteadt [1983] considers certain Volierra equations with a small
parameter € appearing in the kernels in such a way that the kernels
behave as della functions s € = 0. The present paper seems io be the
first to apply standard singular perturbation methods to Fredholm

(including Volterra) integral equations of the type {1.1).

In an important work that has not received adegquate attention in the
applied literature, ﬁ}skin [1973, 19811 uses the Wiener/Hopf method in a
study of certain mixed boundary value problems for multidimensional elliptic
pseudodifferential equations, including elliptic singular iniegral equations
which in the one-~variable case include equations that are related to (1.1).
Our methods and results differ from those of i}skin. For example, ‘éskin
expresses his asymptotic representations for solutions in a certain

multiplicative form rather than the additive multivariable form employed

here. Moreover, while our study is resiricted to the one-dimensional

problem, we are able to obtain more explicii results.

The present paper is organized as follows., In Section 2 we give the
exact solution for a model scalar equation depending on several auxiliary
parameters, and we show that a diversity of different types behavior can
occur for different choices of these parameters. In certain cases this model
equation satisfies the stability conditions imposed later in- this paper,
resulting in solutions of boundary-layer type satisfying (1.17). But in other
cases the model equation violates oné or more of these conditions, resulting
then in an interesting variety of different types behavior. In Section 3 we
describe our adaptation of the additive boundary-layer technique to
integral equations such as those considered here, in the context of a less
restrictive scalar example that satisfies weaker regularity conditions than
those we later employ. Section 4 contains examples of vector equations,

while Section 5 contains a description of a general class of such vector

10



equations subject to certain conditions and assumplions. The additive
multivariable technique is used in Section 6 to construct a formal
agymptotic expansion for solutions of (1.1) subject to the conditions of
Sectlion §. The resulting asymptotic expansion is used in Section 7 to prove
existence and uniqueness of solutions of boundary-layer type for (1.1), and
we prove that the given asymptotic expansion is uniformly valid for 0 ¢ x
£1 as € = 0+, again subject to suitable conditions. The results are

applied to systems of integrodifferential equations in Section 8.

2. Exact Solution of a Model Equation

An indication of the rich diversity of forms that is possible for
solutions of singularly perturbed integral equations can be obiained by
examination of relatively simple model equations. The equation which we
focus on here is particularly illuminating and has the advantage that it can
be transformed into an easily solvable ordinary differential equation. The
insight gained from a study of this and other model eguations provides a
motivation for the formal perturbation approach utilized in the remainder of

the paper.

Consider the linear scalar integral equation
' X 1
ew(x) + h(x) = Afosw(s)ds + Jf w(s)ds, 0 < x <1, (2.1)
« .

" where A, B are specified real constants, h(x) is a given smootih
function, and 0 < € << 1. This equation is of the form (1.1} with kernsl

K(x, s) given as

As for s < x
Ki(x, s) := : (2.2)
B for s > %,

so that the jump J(x) of (1.13) is

11



J{x}) = Ax - B for 0<x< 1L (2.3)

The associated reduced problem, obtained by puiting € = 0 in (2.1),

is

X 1
h(x) = Afosu(s)ds + fou(s)ds, 0<¢x<1l (2.4)

Differentiation of (2.4) with respect to x yields the potential solution

ulx) = B = s lmnm), 0 <x <L (2.5)

By direct substitution of (2.5) into (2.4) we conclude that the reduced
problem has a solution (given uniquely by (2.5)) if and only if h{x}

satisfies the condition

1, .
h(0) = Bjob-ﬁf:_ﬁg-}-ds. (2.8)

In contrast to the reduced problem, (2.1} has a2 unigque solution for all
sufficiently small positive (or negative) €. Indeed, differentiation of (2.1)
with respect to x transforms the integral equation into the following

differential equation

ew “(x) - J{x)w(x) = -h“(x), 0<x<1, (2.7)

which has the general solution

12
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wix} = e

where ¢ is an arbilrary constant. Upon substitution of (2.8) into (2.1), we

find that ¢ 1is given uniquely by

: (2.9)

where we assume here thai A # 0; the simpler case A = 0 can be easily

handled simiiarly.

Our task is to interpret the asymptotic behavior of the solution

(2.8)-(2.9) for € = ot. Consistent with our assumption that € > 0. and A

and B are real, we may assume without loss of generality that B = -1,
0, or +1. (If B # 0, simply divide (2.1) by |Bl and redefine. ¢, A
and h.,) Careful examination of (2.8)-(2.9) reveals distinctly different

behavior in the five cases (in increasing degree of complexity):

G)B=0,A%0, (ii)B=+1,A<1(A=#0), (ii)B=-1,A>-1(A=0),
{2.10)
({iv} B = -1, A < -1, and (v} B = +1, A > 1.

We shall discuss each of these cases in turn. For sake of brevity we omit

consideration of the interesting transition cases such as B = +1, A = +1,

13



Cage (i): B = 0 (Volierra equation)

For this special case (2.1) is a Volterra integral equation of the second

kind with a unique soluiion for all € > 0 given by

‘2 2
wixe) = - L A% /(ZE)[h(O) + J\:h’(s)e_As /(ze)ds], x> 0. (2.11)

" According to (2.6) with B
solution if and only if h(0)

0, the associated reduced problem has a
0. The effect of the ew(x) term in (2.1)
depends crucially on the sign of the parameter A; see Figure 1 for typical

[}

solution forms,
-—— Figure 1 Here —-—-

If A < 0, then it follows from (2.11) that there is an initial layer of
width 0O{(/€) at x = 0, outside of which the solution is a slowly-varying
function of Xx. (We reserve the term boundary layer for Fredholm
equations.) Simple descriptions of the solution which are valid in the initial
layer and in the outer region can be obtained by carrying out the
appropriate limit processes in (2.11), The inner expansion, corresponding to

the limit process e » 0t with ¥ = x//€ fixed, takes the form

o0
wine) = ¢ n%e) ~ ¢ 3 a@eE %=/ (2.12)
J=0 -

where

(2.13)

14



There are several properties of this expansion which merit discussion.
First, we observe that the leading-order term in (2.12) satisfies (2.1) with

h(x) replaced by h(0), i.e.,
1 o - X 1
e[t ng®] + noo) = Ajos[gno(s/ﬁ)]ds, | (2.14)

or, strictly in terms of X,

¢ :
ng(%) + h(0) = Afosno(g)dg. (2.15)

In other words, the ew(x) term enters directly into the dominant balance
in the inner equation limit of (2.1). (This latter result holds eyen'if h(0) =
0.) Second, in general, the magnitude of the solution is large in the initial
layer (O(1/e} if h{0) # 0, or O(1/¥/€) if h(0) = 0 but h*{0) # 0).
As a consequence of this large magnitude, the contribution to the integral
in {2.1) from the (narrow) initial layer is O(l) as € = 0F with x> 0
fixed. More precisely, the leading-order term in (2.12) satisfies the

integrated relation

8(¢€) .
Af s[-}:-no(s/ﬁ)]ds ~ h{0) as e = O, - (2.16)
0 .

provided (e) >> Je. There is an important connection between this
second property and the explicit form of the solution in the outer region.
Finally, we note that the higher-order terms in (2.12), starting with j = 2,

do not decay for large X.

The standard outer expansion for w(x,€) when A < 0 is obiained

15



+

from (2.11) by carrying oul the limit process € = 0° with x > 0 fixed.

It is given by

o
wix,e) = yix,e) ¥ > vjx)e, (2.17)
j=0 |
with
yolx) = XL 5 () = z%;[h L) - (218)

We observe that the leading-order term in (2.17) satisfies the integral

equation

h(x) - h(0) = Agsyo(s)ds, (2.19)

which, unless h(0} = 0, is not the reduced equation associated with (2.1).
Clearly, the h(0) term on the LHS of (2.19) is just what must be added to
the reduced equation to guarantee a (unique) solution. In faci, il is not
difficult to see that this term arises from the aforementioned contribution to
the integral in (2.1) from the initial-layer region (cf. (2.16)). Thus, while-
the ew(x) term does not enter directly into the dominant balance in the
outer equation limit of (2.1), it does make a fundamental contribution
indirectly through the integral term. These concepts are discussed furiher

in the next section.

An interesting feature of the outer expansion (2.17) is thexsingular
bhehavior of each yj(x) as x - 0%, In particular, the integrals j syj(s)ds
do not exist for j > 1. This singular behavior is a consequence of the

fact that the jump J({x) = K(x, x-) +vanishes at x = 0. Later we show,

16



subject to suitable conditions, that the outer solution is fegular for x>0

for amcalar Volterra equations if K(x, x-) is regular and negative for x 2>

0.

Following standard procedures il is easy to obtain an approximation to
w(x, € in (2.11) which is uniformly valid to order unity. In fact, by
adding three terms of the inner expansion (2,12) to one term of the outer
expansion (2.17) and subtracting the common parl, one can form the

following "composite" approximation (Kevorkian and Kole [19811]):

%

wix, €) = - BLOL AR/2 h'fgo) J J(A/2)(#2-8%) 45
€

0

(2.20)
_ B0 ARZ/2 L ) = R(0) 4 o /)

AxX

as € -> 0+ The asymptotic error estimate O(/€) in (2.20) can be shown

to hold uniformly on any compact interval 0 < x £ Xj.

The situation when A > 0 in Case (i) (B = 0) is easier to interpret
for (2.1). It is clear from {2.11) that the solution has the form of a
rapidly-growing exponential for all fixed x > 0, which is approximated to

leading order {assuming h(0} # 0) by

2
w(x,e} ~ - -h-%g'l' AX/(2€) 9 ¢ 4 oh

In other words, there is no outer region if A > 0; the ew(x) term
belongs in the dominant balance in (2.1) for all x > 0. Behavior such as
this can be analyzed by an adaptation of the WKB method, but we omit this

analysis here.

Case (ii)y B = 1, A < 1 (boundary layer at x = 0)

17



In what follows we exclude the special case A = 0 as the resulis are
similar in that case to those for B = 0, A > 0. With the present
restrictions (2.1} is a Fredholm integral equation. A straightforward
asymptotic evaluation of {2.8)-(2.9) leads +to the following uniform

leading-order approximation to w(x,e) for 0 < x < 1,

, ~x/ 1, .
w(x,e) = BoCx) + 0(e) + e—ﬁ:-z—i{h(o) + J‘Ol‘I:%ldt + o(e)] (2.21)

as € = 0+.

The similarities between this result and the preceding result for B =
0, A <0 are apparent, In both instances the solution has a large
magnitude in a layer region near =x = 0 and is slowly varying with an
0(l) magnitude away from x = 0 (cf. Figure la and Figure 2a). However,
there are essential differences as well. For the present case the width of
the layer is narrower (O{e€) rather than 0{/€}) and the magnitude of the
solution in the layer is larger (O(I/e:z) rather than 0(1/¢)} than for the

Volterra equation. Moreover, in contrast with the earlier case, the function

olx) = hA; X (A < 1), (2.22)

which describes the solution to leading order away from x = 0, is smooth
on 0 < x <1; there is no singularity at x = 0 (cf. (2.18)). In fﬁct, in the
present case each term of the outer expansion is smooth on 0 { x { 1, As
a consequence, the solution can be expressed asympilotically in terms of an

additiove boundary-layer representation.
—-~— Figure 2 Here -—-

In the next section we show how to derive (2.21) by & perturbation

method. To make our approach ﬁ_lausible we briefly comment on certain

18



properties of (2.21). The parallels with the case B = 0, A < 0 are clear.
The function yQ(x) is the unique solution of the Fredholm equation of the

first kind

h{x) - h(0) - f -r-(—-)-dt = AJ syo s)ds + jlyo(s)ds. {2.23)

We observe that (2.23) is the reduced equation (2.4) with additional terms
on the LHS. These additional terms represent the contribution to the first
integral on the RHS of (2.1) from the bquﬁdary—layer region. More precisely,
it follows from (2.21) that ‘ '

5(€) 3(e) .S/ € ‘y
(€)d ~ h{0 —-—L—)"dt
AIO sw(s,€}ds AJO S[—A-ET'[ {0) + f T=KT ]]

(2.24)

1, ,
~ h(0) + Ioh Ltlgt  as e 0

provided that € << 8(e) << 1 (cf. (2.16)). When the reduced problem (2.4)
has no solution, it is crucial that the magnitude of the solution in the
boundary layer be large so that the contribution to the integral in (2.1)

from this region enters into the dominant balance for the outer function

Yo(x)-
Case (iii): B = -1, A > -1 (boundary layer at x = 1)

For this case an asymptotic evaluation of (2.8)-(2.9) yields the

following uniform leading-order approximation to wix,e) for 0 {x <1,

x=1

€

, 1+A 1. .
w(x,e) = %{l + O(e) - 4 o (1 )[h(O) + f0h+Att dt + O(E)] (2.25)
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as € = 0+.

The form of (2.25) is that of an additive boundary-layer

representation, with the boundary layer at x = 1 rather than at x = 0

(see

0(1/¢) rather than 0(1/€

Figure 2b). Moreover, the magnitude of the solution in the layer is

2y as in the preceding case. Still, the

contribution to the integral in (2.1) from this region enters into the

dominant balance for the outer solution. To leading order the outer

solutions for cases (ii) and (iii) are essentially the same. In the next section

we derive {2.25) by a perturbation approach.

Case

(iv): B = -1, A < -1 ({interior layer at x = - %:)

The last two cases require somewhat more care in carrying out an

asymptotic evaluation of (2.8)-(2.9). The solution does not possess an

elementary additive decomposition as in cases (ii} and (iii). In the present

case tihe solution -is slowly varying on 0 < x <1 except in an
interior-layer region (of width O(J/€}) at x = - 1/A wherein it has the
form of a large amplitude, 0(1//€), "spike" (see Figure 2c). Leading-order

approximations to w(x,e} in the outer region and in the interior layer are

given by
h 7 (x x€[0, 11 with Ix + LI >> JE
+AX ! : A !
1, .
wix,e) ~ - [ [h(O-) + Prfobl—_,_%t%dt]
- 1 2
(x+5) & A 1.2
3 A +
+ RICZBZA) I ejrdt]egzcx U £ = 0(/9),
JTAT € 0
{2.28)

as

e = 0%, The indicated integral in (2.26) is to be interpreted as a

principal-part integral. Again one can obtain a uniform leading order

composite expansion analogous to (2.20), but we omit this result here..

Observe that the form of the outer solution agrees to leading order
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with that in Case (iii), although here the outer solution is singular in the
layer region. This nonintegrable singular behavior expléins why problems
with interior layers must be treated by alternative methods. We defer such

a study to a subsequent work.
Case'(v): B =1, A>1 (exponentially large solution)

For this case there are no layer regions, but rather the solution is
exponentially large in 0(1) neighborhoods of the endpoinis, and slowly
varying in between these neighborhoods'(see Figure 2d). The juxtaposition
of these regions is a surprising property of the integral equsation.
Leading-order approximations to w(x,€) in these three regions depend

upon whether 1 <A <2 or A 2

It 1< A <2, we find

17, AY A (. 1}2 ‘
h’{(1/4) 7 _E[l"?] TE_[X_I] 1 Z-A
J2r o e , 0 ¢ x < k- /iR
3T A A A
wixe) ~ ¢ Bl Lo A oy ¢ g, | (2.27)
Af._1)2
x-n—
- h (1/8) JE£ delt)® Lexgu,

while if A > 2, .then

Af, 112
h/(1/4) /ZE eTE[X *"*] , 0<x <4

~ h’(x

w(x,€) T

(1-a)h* (k) vEmeR R %]ef%[x‘%]z,

Of course, these results do not hold in small transition zones between the

specified regions. Observe that the slowly-varying portion of the solution is



identical to that in Case (ii) where A < 1. Also, within a factor of 1l/e,

the magnitude of wi{x,e} is the same at x = 0 and =x = 1.

We conclude this discussion by noting that if h is a constant, then
the sochition in this case differs dramatically from the description in

(2.27)-(2.28). A uniform leading-order approximation to w(x,e) for 0 £ x

£ 1 is given by

A—h-? e*x/e, - (h comnstant, 1 < A < 2),
€ !

wix,e) ~ \ {2.29)
h(A-1) xzlia-y
= e ({h constant, A > 2},

as € - 0%, The layer structure described by (2.29) is highly unstable to

deviations in h from a constant. |

3. Description of the Perturbation Method

In this section we describe our adaptation of the additive
boundary-layer (multivariable) technique to iniegral equations of the type
(1.1). For simplicity we consider only a single equation, reserving the
treatment of systems to following sections. In order to demonsirate the
versatility of the technique, we place somewhat fewer restrictions on -the
behavior of the kernel here than in following seciions. The -presentation
indicates clearly how to extend the basic ideas to an even broader class of

problems.

The scalar kernel K(x, s) is assumed to be smooth on [0, 1]1X(0, 1)
except for a2 jump discontinuity along the diagonal X = 8. We allow
K(x, s) to have algebraic behavior as s = 0Y and as s = 17, as

prescribed by the following specified asymptotic relations,
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ax 's as x = 07, 0 ¢ s < x,
K(x, s} ™ { 8 (3.1)
B(x)-{1-s) 1 as s = 1, 0 < x <s <1, .

ay 8y _
b-{1-x) “(1l-s) as x =1, x <(s <1,

where A(x) and B(x) are smooth functions of x on (0, 11 and [0, 1),
respectively, and Ggr s By By, B and_ b are real constants. It follows

from (3.1) that A(x) and B(x) satisfy
99 + @ \- .
A{x) ~ ax as x = 0 and B{x) ~ b(l-x) as x = 1. (3.2}

Our perturbation ansatz is predicated on w(x,e} having boundary
layers at x = 0 and/or x = 1 outside of which it is a slowly-varying

function. Specifically, we seek . w = w(x) = w(x,e} in the form

wix,e) = wi(xe) + s(e)W(FRe) + vle)P(Re), (3.3)

with
%= oy, 5= 3}% (3.4)
for a suitable outer approximation w'l and suitable boundary-layer

correction terms W and @ depending on the respective boundary-layer
variables % =and €, for suitable width order functions u and ».
The unknown order functions ¢ and ¢ describe the magnitude of w in

the layers (W. and @ are O{1) as € = 0 with, respectively, ¥ and
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® fixed), Moreover, the layer terms W and % must satisfy the decay

(matching) conditions
W=0 as ¥ and O -0 as £ - ©0, (3.5)

Determination of the layer-width order functions u and » is also part
of the problem. We shall be content with ascertaining the leading-order
approximation for each of w*, W and- %, An algorithm for constructing

higher-order terms is presented in Section §.

As regards the model equation discussed in Section 2, the form of (3.3)
is géneral enough to include Cases (i) - (iii}, but not (iv) and {(v). A more
sophisticated approach is necessary for the latter cases. It is reassuring
that, in attempting to carry out (3.3) for Cases (iv) and (v), we are alerted

to the failure of the ansatz. No spurious solutions are generated.

Substitution of (3.3) into (1.1) leads to

1
fOK(x, shwh(s)ds + 9(e)I;(x,€) + I (x,e)] + H(OIg(x,€) + I,(x,€)]

(3.8)
; = h(x,e) + elwl(x) + S()W(R) + ¢()M(D], 0 < x < 1,
1
" where the integrals Il’ »++y I, are defined by
L) = [ Rae@as,  Lxe) = [ Kaawd)d
1(x,€) = 0 (x,s)w(l_1 s, z(x,c = fx x,8)W(j)ds,
(3.7)

- .ol -
Is(x,e) = J‘:K(x,s)ﬁ(l—vﬁ-)ds, 14(3:,5) = fo(x,s)Q(lps)ds.

An agymptotic analysis of (3.6) depends on the decay rates of the layer
terms W and ®. To keep the analysis relatively simple we assume that
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% and @ decay rapidly enough so that certain improper integrals exist
and so that certain asymptotic estimates hold. Of course, the validity of
these assumptions can be checked a’posteriori in individual cages. Even in
instances when these assumptions fail to hold, it is still often possible to

carry out a modified asymptotic analysis along the lines presenied here.

Our first step is to determine an equation for the outer function
wT(x). This is accomplished by carrying out the limit process e - o
with x fixed in (3.6), 0 < x ¢ 1. Each of the integrals in (3.7) must be

evaluated separately. We can rewrite I, using (3.1) as

1+4 o B A
I(xe) = 1 OAG) [eq j Ogr(yat] + uj [RGrut) - A (ut) 0] F(n)at,
(3.8)
where
cy = f: tﬁcv'“‘v(t)dt. (3.9)

We assume that W decays repidly enough so that the integral in (3.9)
I

exists. Otherwise, 1(x, €) must be evaluated differently. Similarly, we can

rewrite 14 as

14(}:,6) = vl+£1B [ f t. t)dt] + vjf [K(x,l—vt) - B(x)(vt)ﬂl]@r(t)dt,

(3.10)

where
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o B
cq = Io t le(tat. | (3.11)

Because of the assumed rapid decay of W and %@, I, and Iy do
not contribute to the dominant balance in (3.6) in the limit € ~ ot with
fixed x, 0< x <1 (in this limit ¥ and £ - «). Using (3.1) we easily
derive the asymplotic relations {(all based on € = ot with 0 < x < 1
fixed),

1+, 1+Bl

CoA(X), ] I4(X,E) ~ oy

I,(x,€) ~ 1 c1B{x},
(3.12)
IZ << Il, 13 << 14.
Thus, the dominant balance in (3.6) for the outer limit is
1 + 1+80_ 1+31
foxxx, siwl(s)ds - hy(x) ~ -u OscgA(x) - »  lyeyB(x) (3.13)

for 0 < x < 1.

If A and B are linearly independent, then neither term on the RHS
of (3.13) can exceed O{1) in magnitude. On the other hand, in order for
{3.13) to represent a solvable eguation for wf, at least one of these two
terms must be ©(1) but not o{l). (We are assuming here that the reduced
problem (1.2) has no solution = if it does, then our analysis would be

modified accordingly, as indicated in Section 7.} Let us assume that

1+4 1+8
Oy = 1

1 1, » Y = 1, (3.14)

and replace the asymptotic relation (3.13) by the equation
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1 ¥
JOK(x,s)wT(s)ds - hy(x) = = cpA(x) - ¢;Blx), 0 < x C L (3.15)

We contend that {(3.15) represenis the appropriate governing equation
for the leading-order outer approximation wf(x) = w?{x;O). The
constants ¢ and cqy are connected to the boundary-layer correction
terms by (3.9) and (38.11), respectively. The reader can compare the
development leading—to (3.15) with our correspending remarks on the outer

solution for the modiel equation in Seciion 2.

We shall return to (3.15) after consideration of_ the inner or
| .
boundary-layer correction terms. With (8.15), the original equation (3.6)

reduces to

1+, 1+84
#(e)lIy(x,€) - cyu Alx) + Ip(x,€)] + ¢(e)[Ig(x,€) ~ cq¥ B(x)
| : , (3.16)
+ 1y(x,€)] = hixe) - hy(x) + elw' (%) + 6W(Z) + $AR)],
for 0 < x<£ 1L
First we focus on the layer at x = 0. This is accomplished by

carrying out the limit process € = ot with ¥ = x/ule) fixed, so that in
this limit there will hold x » of and £ = o, From (3.1)-(3.2) and
(3.7)-(3.8) the following asymptotic relations hold (aill based on € = 0F

with X fixed):

o0

1+84 l+ant+8, @ 8
1, (%€) - cou CAGx) ~ - u O Ca¥ OI t O%(t)at,
¥
1
u o0
Iz(x,e) = MJ K{px,ut)wit)dt =~ uK(0,0+)I~Vv(t)dt,
o~ X
X
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(3.17)
1-ug
I(x,€) - c;»  IB(x) pJo [K(ug,1-v1) - BuR) (v1) J#wat

1+£1
= oy )s

1+£1
and 13(x, €) <« 14(}:, €) - cq¥ B{x}), where

K(0,0%) := limit K(x,s). (3.18)
' 3<-’<0
XS

For simplicity we assume that the limit in (3.18) is well-defined, although we

could allow more general behavior.

With (3.17), the dominant balance in (3.18) for the inner Ymit at x = 0

becomes

v}

‘8 .
t 9% )dt + um(o,m)j W(t)dt
%

o

1+a.+48. a
%t o of

b4
(3.19)

~

dou¥
¥
0

+ WJ

for ¥ > 0. By a similar process we can deduce the dominant balance in

[K(w’i’,l,—vt) - B(uﬁ)(pt)ﬂl]ﬁr(t)dt ~ edW(E)

{3.16) for the inner limit at x = 1; it is given by
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l+a+8) = Q4 % 8y ®
-y ¢bg t tet)dt + veK(1,1-)] W(t)dt
{ {

(5.20)

1-v8
“”’J g [KQ-»gut) - A(l—vfé)(ut)ﬂo]i‘v(t)dt ~ ey (R)
0 |

for & > 0, where K(1,17) := limi1i K(x, s). We observe that (3.19)+(3.20)
8 =
s<{x<1l
represents a coupled system of asymptotic relations for % and . Of
course, the magnitudes of the individual terms depend on the specific

values of the exponenis d, dy, 4 and 4y, and as a conseguence,

the corresponding system of leading-order equations will often be much

simpler.

It is interesting to note that for certain cases, =all the terms in

(3.19)~(3.20) have the same magnitude. For example, SuUppose that there hold
8y = —Up £y = -ay (with ajy, @y » 0}, (3.21)

and also, as an extension of (3.1),

-a 4
Alx)s 0[1 + Ygs 1] as & = 0+, 0 ¢ s < x &1,
K(x, 8) ~
. _ -y B Ty -
B{x)(l-s) 1+T1(1 s) as s = 1 , 0 ¢ x < s < 1,

(3.22)

for constanis Yn, Yy. Then it follows from (3.14) and (3.19)-(3.22) that
there hold '
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=vy=-¢g @#=z2€° , ¢gyze-“ , (3.23)

v

and the leading-order equations for the inner functions w and &

become

an a0 —d o 00 (-0
-a% Ot Owat + k(0,00 W(v)at + YlB(O)fot O Taat = wim)

(3.24)
for ¥ > 0, and

-2 [ Tawar + k(1,14 [“Ritas + vgac) f:tul'aoﬁr(t)dt = 0(R)
3 2

(3.25)

for £ > 0. The system {3.24)-(3.25) is indeed coupled, but in a very
special way. Diffe;‘entiating each equation twice with respect to x vields
two uncoupled second-order ordinary differential equations for W and %@,
subject to certain coupled boundary conditions. Further consideration of
this particular example would lead us too far astray from -the central

purpose of this section.

It is worthwhile to investigate how our proposed asymptotic
development applies to the model équation- of Section 2, where the kernel

K(x,s) is given as

( ) {As -for 8 < x (3.26)
Kix, s) = .
’ B for s > x,
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with -jump

Jix) = Ax - B for 0 {(x <1 {3.27)
Comparing these results with (3.1), we have in this case

g =0, Bp=1, @y = £ = 0. (3.28)

With these choices the dominant balances in (3.19}-(3.20) for the

boundary-layer correction terms reduce to

—uzAfioth(t)dt + uBJTW(t)dt' ~ W), ¥ 0 (3.29)
X ) X
and
N | |
vJ(l)jQW(t)dt ~ ef(®), £ 0. (3.30)

Moreover, the equation for the leading-order outer approximation given in

(3.15) takes the special form
X 4 1 +
Afosw (s)ds + BJ wi(s)ds = h(x) - cjA - ¢;B  for 0 < x < 1, (3.31)
\ X

with
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O o
. cg = | tw(t)ay, o, = [ ()dt. (3.32)

First, suppose that B = 0, so that our model equation is in fact a
Volterra equation (case (i} in Section 2). It follows from (3.14), (3.28) and

(3.29) that we should set
u = J€, ¢:%—, . (3.33)

with the leading~order equation for the initial-layer correction term W

given by
s ]
W(x) + A[_t#(t)at = o, (3.34)
X

{We need not consider (3.30) because a boundary-layer correction at x =1
ig not relevant for this special case.) Examination of the exact solution
{2.11) confirms the correctness of the scalings in (3.33) for the width and

magnitude of the initial-layer correction term.

If A < 0, then (3.34) has a nontrivial solution given by

o2
w(E) = g% /2 (3.35)

with & an arbiirary constant. If A > 0, then (3.34}) describes a rapia
exponential growth in violation of our original assumption on the character
of W. If A < 0, then the decay condition in (3.5) is satisfied. To
determine & in the latter case we turn to {3.31) with B = 0. According
to {2.4)-(2.8) (with h{x) there replaced by h(x) - cOA), the resulting
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equation for w*(x) has ‘a solution, given unigquely by

"
whix) = holxd, (3.36)
if and only if there holds
h{0) - coh = 0. (3.37)

Assuming h(0) # 0, the value of & in (3.35) readily follows from (3.32)
and {3.37) to be

¢ = ~h(0). (3.38)
In summary, for B = 0O our formal approach yields the potential
leading-order approximation
2
wix, €) ~ - h..(é.Q.l. X /(2e) o h;xx . {3.39)

Unfortunately, as pointed out in Section 2, this additive- initial-layer
representation is not uniformly wvalid for x > 0. The singular .nature of
the outer function for x near 0 provides a clear indication that our
perturbation ansatz fails for this special case. The difficulty can be traced
to the slow decay of the higher-order boundary-layer terms (see
(2.12)-(2.13)). It is easy to obtain a uniform composite approximation in
(2.20) by a straightforward modification of our ansatz which takes into

account this slower decay.

Next, suppose B # 0. For small u, the term with B dominates the
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term with A in (3.29). It follows from (3.14), (3.28), (3.29) and (3.30) that
we should set {cf. (3.33))

u:v:e:,ai:lz-, 4;:-15 {3.40}
€
with
w.
#(® + IO Fwat =0 (3.41)
% _
replacing (3.34) as the leading-order equation for W.
Solving (3.30) (with » = €) and (3.41) we obtain
#(® = &8 O%  sor %0, (3.42)
and
a@ = eV gor 25 0, (3.43)

Pal

where & and & are constants of integration. The decay conditions in
(3.5) are satisfied if and only if J(0) < 0 and J(1) > 0. For example, if
J(x) <0 on 0 < x < 1, then a boundary layer (BL) is possible at x = 0
but not at x = 1, Cases (ii} - (iv) in Section 2 encompass all the

possibilities which we list as follows:
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0),

(i) J(0) ¢ 0, J(1) <O (BL. possible only at x

1);

{3y J{(0) > 0, J{1) > 0 - ({(BL possible only at x
(3.44)

(iv) J(0) > 0, J(1) < O {no BL's are possible),

{v) J(0) <0, J(1) > O (BL’s are possible at bolh ends).

We discuss these cases in turn.

For case (ii) we must take & = 0 in (3.43) which implies that cy =0
in (3.31). The resulting equation for WT(X) has a solution, given uniquely

by

I -

whix) = 84X for 0 < x < 1, (3.45)

if and only if (cf. (2.6))

1’

- 5
h(0) - cpA = BIO-T(%-S)-dS. (3.46)
From (3.32), (3.37) and (3.46) we find
(3.47)

= -(if-g-l-)-%[h(o_) - Bf;%}fs—sy}-ds].

~
C

Putting these results together yields the following leading-order

approximation to w(x, €) for 0 < x £ 1,
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+

-Bx/€ L2 1.7 .
wixye) ~ Bl 4 e ;Le[h(O) - BJ’O%—(%STLds], (3.48)

which agrees with the exact result in (2.21). The perturbation method

described in this section works for Case (ii).

It is straightforward to verify that our perturbation method works for
Case (iii) as well. Case (iv) is another matier. The fact that boundary layers
are impossible does not preclude the possaibility of interior layers. Suppose

that we modified (3.3) by adding an iriterior—layer term of the form
X({e)w(x), ‘ (3.49)
with
1= E5k, ¢ fixed in [0, 1, (3.50)

for suitable functions % and . An analysis similar to that leading to

(3.19) yields the following differential equation for W,
# (%) - JE)FEF) = O. - (3.51)

The solution of (3.51) grows exponentially either for X -+ - or for X =
+. Thus, an interior layer is impossible unless J(§) = 0. But this is
just what happens in Case (iv), resulting there in a large amplitude "spike”

at szEI‘

A further indicastion of the significance of the =zeros of the jump

function J(x) 1is given by (3.45). The outer function w*(x) becomes
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unbounded where J{x) vanishes. This singular behavior is a clear signal
of the failure of our ansatz. A more refined treatmeni of problems with

interior layers is under study.

Case (v) seems somewhat more ambiguous since boundary layers appear
to be possible at both x = 0 and at x = 1. The signal that something is
amiss again follows from consideration of (3.45) for w*(x). From (3.44) it
is clear that the jump J musl change sign at a zero in (0, 1), At such a
point wl s singular (if h’ is nonzero there), and the ansatz fails. As
in Case {iv), a more refined analysis is called for. A lesson to be learned
from the exact solution in Case (v) is thai a solution of an integral equation
such as (1.1) need not exhibit boundary-layer behavior even though =a

formal analysis suggests that boundary layers are possible.
We conclude this section by relating the present results with our
treatment of veclor integral equations in the remainder of this work.

Regarding the scalings in the multivariable expansion {3.3)~{3.4) it follows

immediately from (3.14), (3.19) and (3.20) that, in general,
w=v»z=e€, ¢:5‘I’=% (3.52)

for kernels X(x, s} which are smooth on [0, 1]X[0,/1] (except for a jump
discontinuity along the diagonal x = s) and which satisfy the additional,

condition that
K(x, 0) # 0, K(x, 1) # 0 for 0<x < L (3.53)

This result forms the basis for our choice of scalings in Section ﬁ
Also, our study of the model equation (2.1} reveals that the additive

boundary-layer representation is appropriat'e provided the jump J(x) doés

not vanish on [0, 1] (cf. cases (ii} and (iii} in (8.44)). If J(x) does vanish
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on [0, 1], then other phenomena such as interior "spikes" or regions of
rapid exponential growth are possible. This result appears to be quiﬁe
general. For example, it ig not difficult to establish that the solution wT
of (3.15) can become singular at the zeros of J(x). A generalization of the
condition that J(x) # 0 on [0, 1] plays an important role in our analysis

of vector integral eqsuations in Sections 5 and 6.

4. Examples of Veclor Sysiems

Vector equations of the type (1.1) with a discontinuous kernel appear
in several important areas, including the study of coupled systems of
singularly perturbed Volterra integral equations. In addition, many problems
involving differential equations and integrodifferential equations can be
conveniently reformulated as a vector integral equation of the type (I.1).
For example, resulis analogous to those discussed earlier for the scalar
Dirichlet problem (1.14) when the coefficient a(x) there is everywhere
nonzero (cf. {1.15), (1.16}) hold also for a vector ond order system of the
type (1.14) for suitable matrix functions a(x) and b(x), for a given
vector function f(x}, and for given vectors g dy; see Smith [1986a]
for references. In this latter case the resulting equation (1.1) is a wvector

Fredholm eguation.

Another example cccurs for the scalar Dirichlet problem (1.14} in the

case a(x) = 0, in which case the problem can be wrilten as ¢

e?y" + b(x)y = £(x), v(0,€) = ap  y(l,e) = dy, (4.1)

where € has been replaced here by ez. In this case a direct integration

shows that (4.1} can be replaced by an equivalent integral euntion of the

type (L.1) with m = 2, w = [ y’]’ and with vector function
£y
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Eﬁo

h(x,e) = - : ) ) (4.2)
o px . P
e“(aq—-dy) + sf(s)ds + {s—1)T{(s)ds}
and matrix kernel function
0 1
~sb(s) O for s < %,
X(x, s) = 0 . (4.3)
[(I“S)b(S) 0] for 8 > X.
The jump (1.13) is given as
0 1 '
J{x) = . (4.4)
-b{x) O

Again, an analogous result holds for a wvector an order problem of the

type (4.1).
As another example, consider the first order system of differential
equations
e = Alx)w + £(x) for 0<x <1, (4.5)
subject to the coupled boundary condition (cf. pp. 3-4 of Smith [19851)

Lw(0, €) + Rw(l, ) = v, (4.6)

for an m-vector soluti;::il w = w(x, €}, for given smooth data functions A
m

m
= A(x) and f = f(x), and for given mXm boundary mairices L and
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R, and given vector Y. The case L =1 R = 0 corresponds to the

initial value problem, while the case L = 0, R = I corresponds to the
terminal value problem, and other cases yield various other boundary value
problems. A direct integration of (4.5) shows that the problem (4.5)-(4.6)
can be formulated equivalently as the system of integral equations (1.1)

with

-1 -1 11

h(x, €) = ~eM ¥ - JEM Lf(s)ds + I M "Rf(s)ds, (4.7)
X
and

MmlL—A(s), s < x
K(x, s} := -1 (4.8)

~-M “RA(s), s > X,
provided the matrix M := L + R is invertible, Even if this matrix is

singular, the problem can often be repackaged in various equivalent forms
so that the present procedure can still be used to obtain an equivalent
integral equation of the form (l1.1)., The jump matrix J of (L.13) is given

here as
J(x) = A(x). - {4.9)
lFinally, we show that an integrodifferential equation of the form

< 1, (4.10)

2 1
e“u’(x) + g(x, €) = J‘OE(X, s)u(s)ds, 0 < x

along with a suitable auxiliary condition ({(such as an initial condition,

terminal condition, or some other boundary condition), can be reformulated
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as a vector integral equation. If (4.10) is a scalar integrodifferential
equalion, then the resuliing integral equation (1.1} will be a two-dimensional
vector equation. More generally if (4.10) is a first-order vector
differeniial-integral equation for an m-dimensional vector golution, then the
corresaponding equation (1.1) will be a wvector integral equation for a
2m-dimensional solution: the dimension of the problem doubles. We shall

consider the vector case here because it is just as easy as the scalar case.

Hence we consider (4.10) for an m-dimensional solution function u =
u(x) = u(x,e), where g and E are vector and matrix data functions with
appropriate compatible orders, and where the given kernel function E =

E{(x, s) has a jump discontinuity Jj = j(x) given as (cf. (1.13))

i(x) = E(x,x") - Blx, x1). (4.11)

Along with the (4.10) we also impose on u a boundary condition of the

type (4.6),
Lu(0, €) + Ru(l, €) = v, | (4.12)

where Y is a given vector, and the given data quantities L and R "are
mXm matrices. As with (4.5)-(4.6), so also here, the case L = I, R= 0 in
{(4.12) corresponds to the initial value problem for (4.10), while the case L
=0 R = Im corresponds to the terminal wvalue problem, and other cases

yield various other problems with spatially coupled boundary conditions.

We set

v{x) = eu’(x), {4.13)
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: X
so that u(x} = u(0) + (l/e)jov. This last result with (4.12) implies {L +

1 <1
Riu(Q) = v - < JORv(s)ds, and then we find
-1 -1 1 -1
eulx) - €(L+R) "v = J‘X(L+R) Lv(s)ds - J' (L+R) “Rv{s)ds, {4.14)
0 X

provided the matrix L + R is invertible. Also, from (4.10) and {(4.13) we

have
1
evix) + glx, €) = IOE(}:, s)u(s)ds. (4.15)

The equations (4.14) and (4.15) can be writlien in the form (1.1) with the

earlier dimension m of (1.1) replaced now with 2m, and with

u’ -E(L+R)—1Y
w = . h(x,e) = s {4.18)
v g(x,€) :
and
. R
0 {(L+R) ~L
for s < x:,
2mX2m [E(x,5s) 0 )
K=K(x, s8) = - (4.17})
e 0 —(1+R) " 1m
for =8 > X.
E(x,s) 0

The jump matrix J of (1.13) becomes here

0 I
J = J(x) = [ m], (4.18)
J(x) 0
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where Jj(x) is the jump in E(x, s).h as in (4.11).

Similarly, we can reformulate higher-order differential-integral
equations as vector integral equations with increased dimension. For

exasmple, a second-order differential-integral equation can be formulated as

a vector integral equation with triple the dimension.

5. A Class of Vector Equations with Solutions of Boundary-Layer Type

We introduce a special class of vector integral equations (1.1} for
which we are able to obtain rigorous resulis in a clear, precise manner. The
ideas and techniques used here can be more broadly applied, but for
simplicity we restrict consideration to the stated class of problems. The
special class of vector equations (1.1} cog%dc—;red here is characterized hy
the requirement that the kernel K = K(x, s) is smooth on [0, 1Ix[0, 1]
except for a jump discontinuity along x = s, with gsmooth jump matrix J =
J(x) given by (1.13), subject to the basic assumption that this jumi: matrix
is uniformly invertible (nonsingular)., In fact, we make the stronger
" assumption that all eigenvalues A\ = A(x) of J have nonzero real parts,

with

|Re M(x)| 2 x4 > 0 (5.1)

uniformly for 0 ¢ x { 1, for some fixed K4 > 0. Hence each eigenvalue
of J satisfies precisely one of the two inequalities Re N { -x; or Re A
2 tky, and the smoothness of J guaraniees that no eigenvalue A\(x)
can switch from one of these inequalities to the other as x ranges over
[0, 1]. The assumption (5.1) corresponds to the assumption of elliptic type
in i‘)skin [1981]. We also generally assume that the matrix function K
defined by (5.5) below is uniformly invertible, and the auxiliary equation
(8.6) is assumed to be uniquely solvable, although these last assumptions

are not always essential, as indicated later in the discussion following
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(6.23). These assumptlions lead to boundary-layer behavior of a particular
type for the solution of (1.1), Eigenvalues of J with negsaiive real part
lead to boundary layers at the left endpoint x = 0, while eigenvalues with
positive real part lead to layers at the right endpoint x = 1 (cf. example
(5.12)—(5.13) below}.

The smoothness of J and the assumption {5.1) imply that there is a
smooth, invertible mXm matrix function T(x) that will transform J(x) into
block diagonal form as (see Chang and Coppel [1969, p. 279]) T(x)J(x)T—l(x)
= diag[Jneg(x), pc)S(x)], where the matrix functions Jneg(x) and Jpos(x)
take wvalues respectively in c™X®  and - cPXP  with n + p = m, and
neg(x) and ‘Ipos(
positive real parts respectively. The transformation

where the eigenvalues of J x) have negative and

w¥x) = Txw(x), h¥(x) = T(x)h(x), K (xs) = T(x)K(x,s)T 1(s) (5.2)

can be applied to (1.1}, yielding the transformed equation ew® + h¥ =
K*w*, with corresponding jump matrix J*(X) = K*(x, x) - K*(x, x+)
which is in block diagonal form, J*(x} = diag[Jneg(x), Jpos(x)]. We assume
that such a transformation has already been performed and then we drop
the asterisks on w*, h* and K* to lichten the notation. Hence, subject
to our present assumptions, there is no loss in taking the jump matrix to

be in the form

C mXm
J{x) = dmg[Jneg(x), Pos(x)] for 0 < x <1, m = ntp, {5.3)
where all eigenvalues of Jneg and Jpos have negative and positive real

parts respectively, as described earlier. The cases m = n (with p = 0)

and m = p (with n = 0} are included.

We could dispense with taking J in the block diagonal form (5.3), as

indicated by the example in Appendix A.2, and ipdeed in practice this may

44



be a convenient approach in some cases. However, for a theoretical study it

is convenient to use (5.3), and we shall do so here.

. mXm
In view of (5.3) it is convenient to introduce the projection P given

as

I. 0 0 0
?:[n o] with I -33:[ ]r (5.4)

and we shall also need the matrix function ﬁ(x) defined as
R(x) = K(x, O)P + K(x, 1)(I - P) for 0 < x< 1L (5.5)

We assume that I.f-{(x) is invertible, and the following auxiliary equation
1 — —
JRw(x) + #(x) = - g{K(x)a%{-{Kml(x)K(x, s)1pw(s) ds (5.6)

is assumed to be uniquely solvable for a solution w, for an arbitrary

given (regular} m-vector function ¢ = ¢(x), where J{x) . is the jump
matrix given by (1.13). This required assumpticn,. that (5.6) must be
solvable, will hold automatically if the invertible jump matrix J is large
enough. For example, it is a2 consequence of a result of Banach [1922}] that

(5.6) is uniquely solvable if the matrix J(x) is invertible and there holds

jsup [REGE ke 91 < vl for 0 <x LT, (5.7)
s
S#X
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for some fixed 0 ¢ ¥ < 1, where |-| denotes any convenient matrix
norm. In particular, {5.7) always holds in the piecewise constani case in
which ihe kernel function X 1is compconentwise piecewise constant for =z #

S,

If the original equation (1.1} is a Volterra equation, with X(x, s} = 0
for s > x, and if K(x, x7) = J(x) satisfies the eigenvalue condition (5.1),
then the matter ~of the invertibility of K is generally crucial for the
resulting behavior of solutions. If K is invertible, then sclutions will
exhibit initial-layer behavior, while if K- is not invertible, then solutions
may exhibit rapid exponential growth, as illustraled earlier for the scalar

example in Section 1 (cf. (1.10}).

Because of the decomposition (5.3}, it is sometimes convenient in the
general case to write {1.1)} explicitly as a coupled system in terms of block

components as

1
culx) + f(x,e) = £[A(x,s)u(s) + B(x,s)v(s)lds,

{5.8)
1
ev(x) + g(x€) = [[Cx,s)u(s) + D(xs)v(s)]ds,
0
nxXl pxl mxl : nxl pxl
for s=suitable block components ua, v of w ; . components f , g
mx1 . _ nXn nXp pXxXn pXp mXm
of h ; and components A , B, C , D of K :
u T A B
w = y, h= , and K = . (5.9)
v g ¢ D

These components are characterized in terms of the projection P as u =
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[3] = Pw, v = [g] = (I-P)w, f = [g] = Ph, g = [%] = (I-P)h, A = ['é 8]

0
and elsewhere we sometimes identify a projected vector with ils (generally

= PKP, B = [8 B] = PK(I-P}), and so forth. For notational brevity here

lower dimensional) value restricted to the range of the projection, as Pw
= u, (I-P)w = v, and so forth, where the intended meaning will always be

clear from the context.

The jumps in A, B, C and D are given by (1.13), {5.3) and (5.9) as

AlxT) - Alxxt) = I (x),  B(xx) - Blxx') = 0,
(5.10}

*y = o, D(x,x”) - Dixxt) = 1__ (x),

Clx,x") - C{x,x pOS

so that, in particular, the off-diagonal blocks B and C of K are
continuous. In fact we assume that B(x, s) and C(x, s) are as smooth as
required on [0, 1IX[0, 1]

We assume that the forcing function h = hix, €) = [g] in (1.1} {or

(5.8)) is smooth and has an asymptotic representation of the type

g(x, j=0 j=0 gj(x}
(5.11)
, [~}
h (x, €) ™ Zhj(x)e, for 0 < x <1,
J=0
as € = 0+, for suitable smooth functions hj = hj(x), fj(x), and -gj(x).

There is no difficulty in permitting the kernel X to depend similarly on

€, but for simph'city we take K 1o be independent of «.
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A simple exswple is given by the following piecewise constant kernel
(m = 2}

0 1

1 1 for s < =x,
(5.12)

1

1

1
0 for s > x,

with jump J = [“(1) (1}], so that here J is already in the block form

(5.3), with n = p = 1. The eigenvalues of J satisfy (5.1}, with one
eigenvalue having negative real part while the other has positive real part.
The projection P of (5.4) is given here as P = [% 8], and the malrix
K of (.5} is K = [(1] %] All of the assumptions described in the first
paragraph of this section are seen to hold. In this case the integral
equation (1l.1) can be easily solved exactly (by considering the related
differential equation obtained by differentiating the integral equation), and
we find boundary layers of amplitude 0O{(1/e} at both endpoints x = 0
and x = 1. Specifically, if we denote the two (scalar} components of w
as u and v, with w = [3E§:gg], then in this case u(x, €) has a
boundary layer at x = 0 while v(x, €} has a layer at x = 1, with

L o/ fg0) + 25(1) - £(0)] + 0(1)

u(x, €) = ¢

{5.13)

vix, €) = & (¥ Tg00) - gy(1) + £5(1)] + 0(1)

as € = O+, uniformly for 0 £ x £ 1, where f and €9 denote the
ts of hy(x) = Tolx)

components o olx} = go(x) s

=0 and x = 1, the- 0(1)° terms involve slowly varying functions (cf.

(1.11)). Details are omitted.

and where outside the layer regions at x

Similarly, the earlier piecewise constant scalar case (1.5} can be easily
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extended to the general vector case, with A and B arbitrary constant
mXm matrices. The integral equation (1.1) can be easily solved in this case
(up to quadrature}), and one generally finds boundary layers at both
endpoints, subject to appropriate conditions as congidered here. For
example, there holds J = A-B, so the condition (5.1) requires that the
matrix A~B should be nonsingular. The condition (1.6) on the solvability of

the reduced equation becomes
B(A - B) Thy(1) = A(A - B) Ihy(0). (5.14)

In particular, if A-B is stable (all eigenvalues having negative real part)

and if A is nonsingular, then K is invertible and the vector solution

function w{x,e) has a boundary layer only at x = 0, and there holds

wix,e) =
(5.15)
] c(A-B)x -1 -1 “1y g .
Le (A-B)A [B(A—-B) h(l,e) — A(A-B) h(O,e)] + 0(1)
+ . %(A—B)X ) _
as € = 07, wuniformly for 0 ¢ x { 1, where e is the matrix

exponential., Further details are omitted.

It is interesting to reconsider briefly several of the earlier examples of
Section 4. For example, the scalar Dirichlet problem (4.1) leads to a vector
integral equation (1.1} with jump matrix J{x) given by (4.4). One sees
directly that this J(x) satisfies the condition (5.1) if the real coefficient
b(x} of the differential equation in (4.1) is negative,

b(x) <0 for 0 < x< 1. | (5.16)
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It is well known that this condition (5.16) guarantees the unique .solvability
of (4.1) as e = Q, and the resulting solution generally exhibits
boundary-layer behavior at both endpoints {cf. Smith [1985; Section 8.2]).

As sn aside we mention thai the matrix

1 -1//=b(x)
T{x) = [ {(5.17)
1 +1//~B{x)
can be used in this case in (5.2} sc as to diagonalize J{x). The resulting

(transformed) matrix ﬁ*(

this case, but a minor modification of the construction of Section 6 can be

x) corresponding to (5.5} is a singular matrix in
used successfully for the integral equation with data (4.2)}-(4.3).

Turning to the boundary-value problem (4.5)-(4.6) for the first-order
system of differential equatlions E%-;% = A{x)w + f(x), we have a vector
integral equation of the type (1.1) with jump matrix given by (4.9} as J(x)
= A{x). In this case the condition (5.1) is satisfied if the given matrix
function A(x) is nonsingular with all eigenvalues X\ satisfying (5.1).
Similarly the condition on the invertibility of K and the condition on the -
solvability of the auxiliarly equation (5.6) become conditions here on the

given matrix function A(x).

In the case of the integrodifferential equation (4.10) subject to the

boundary condition (4.12), we obtain a vector integral equation (l.1) with

2mX2m

result}gﬂg jump matrix J = J(x) given by (4.18) in terms of the jump J
hril
= 3{x) associated with the kernel E(x, s) of . the given

integrodifferential equation. The matrix J{(x) in (4.18) is invertible if and
only if Jj{x) in (4.11) is invertible. We can give direct sufficient conditions
(in terms of the kernel E of the given integrodifferential}) that will
guaraniee the wvalidity of =all of the conditions for the corresponding

integral equation, stated earlier in terms of J(x) and f((x).

For this purpose, for simplicity we assume that the mXm matrix j{x)

has a complete set of m linearly independent eigenvectors 2z = z(x),
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Zy = zk(x) for k = 1,2,-+«+,m, {5.18)

which can be taken to be smooth functions of x, with ‘corresponding
eigenvalues X = Xk(x). No assumption is made concerning the multiplicities

of the eigenvalues )\k,-where
j(x)zk = MeZp (no sum on k) : (5.19)

for k = 1,2,+-,m. We now transform the jump matrix J{x) of (4.18) to

2mX2m
block diagonal form, using (5.2} with transformation matrix T = T(x)
given as (cf. Smith [1985, p. 230; 1986L 1)
T =% [Zwl -a 27 ith T ! Ao (5.20)
= - I wi = .
2 {z-1 o lz71)’ -zo zaj
m
where Z = Z(x) is constructed with its columns given by the

eigenvectors  zpl of j(x), while 0 = 0(x) 1is a diagonal matrix with
diagonal elements given by s;:qm:-u‘ef roots JKk of corresponding

eigenvalues, so that
(x)2(x) = 2(x)(0(x0)%. (5.21)
A direct calculation with (4.18) and (5.20}-(5.21) now gives

-1 ~-0(x) 0
T(x)J(x)T™“(x) = 0 ~a(x , (5.22)
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where the matrix on the right side here is in an apopropriste block diagonal
form of the type (5.3) if the eigenvalues of  j(x) satisfy a suitable

condition., Further details are given later in Section 8.

Finally, it is interesting to reconsider briefly the scalar model equation
of Section 2. In Case (i) of that model equation the jump (2.3) satisfies
J{x) ¢ 0 except at x = 0 where J{(0) = 0, =so that the condition (5.1)
fails to hold, resulting (in the case A < 0) in a layer of width 0(/€),
rather than ©O{e) as would be indicated by (6.1)-(6.2) below. In Case (ii)
there holds J{x) £ - xy < 0 for =x¢[0, 1], with «; = min{l, 1-A}, so

that (5.1) is satisfied. However, in this case the quantity K of (5.5)
2
)

]

vanishes, I-:I(x) = 0, and the resulting solution (2.21}) has an 0O(1l/¢
magnitude in the layer, instead of 0O{1/€) as would be indicated by
(6.1)-(6.2). In Case (iii} there holds J(x) > K1 2 0 for x¢[0, 1], with
k1 = min{l, 1+A}, so that (5.1) is satisfied. In addition there holds K(x)

]

-1, and the equation (5.8) is uniquely solvable (with solution w(x) =
- #(x)/[1+Ax]}). In this case all of the assumptions outlined earlier in this
section are seen to hold, and'indeed the solution ({2.25) is of the type
(6.1)-(6.2). In Case (iv) there holds J{(x) = 1 + Ax with A <( -1, so that
J(xo) =0 for xp5 = -(1/A)€[0, 1], with J(x) > 0 for x€[0, xo) and J(x)
< 0 for xG(xO, 1], The assumption (5.1) fails to hold, and indeed the
behavior (8.1)-(6.2) also fails to hold because there is an interior layer of
width ©O(/€) at Xp as shown by (2.26). Finally, in Case (v} there holds
J{x}) = -1 + Ax with A > 1, so that J(xo) =0 for x4 = 1/4, with J(x) <
0 for x€[0, xO) and J(x) > 0 for xé(xo, 1. Hence (5.1} fails to hold,
and rather than (6.1})-{6.2), one finds here the remarkable behavior

indicated by {2.27) and (2.28).

6. Formal Consiruction for Vecior Eguations

Subject to the general assumptions introduced in Section 5, we seek a
representation for the solution w(x) = wi{x, €) of (1.1} or (5.8) in the

form (see (5.9))

52



mp=

u(x,e) Y(X’E)
wix, €) = [ ] ~ { ] +

lv{x, €)] z(x,€)

n(%, e)
8.
[f(x,ED] (6-1)

ags € = O+, with boundary-layer wvariables
% := x/e and x:i= (1-x)/¢, (6.2)

and for suitable outer solution functions Y(}J{’ e), z(x, €} and suitable

boundary-layer corrections 2, ¥, given asymptotically as

[Y(x, E)] " Z[y (X)] i ang [n(f,e)] Z[n (X)] (63
z(x, jTo 2 (x) Y (x,€) i=0 Va(x)

l

for suitable functions ¥ Z3 N4 and . that will be determined below

in th1s section. Our ant‘impjated‘] Scalmo'lp~ in (6.1)-(6.2) are based on the
considerations discussed in Section 3. It is important to note that if the
general assumptions in Section 5 fail to hold, then it still may be possible
to represent the solution in an additive multivariable form similar to
(6.1)-(6.2), but with different solution magnitudes in the layers and

different layer widths; see Section 3 and the final paragraph of Section 5.

In order now to determine the functions Y 24 nj and S'j, we
insert {5.11), (6.1} and (6.3} into (1.1) and find '

- 1 (%) £.(x)
Z P R -
z;5. 1(X) g;(x)

j=0

e,
—
Xy
S
iy,
N
G G
FamnY Pamet
n /]
S S
SE—
[*
7
it
m
LS

(6.4)

where Y., = 0, z_1 = 0, and in the .integral on the right side there
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_~

holds (following {(6.2)) § := /¢ and s := (1-8)/€.

We now examine the integral on the right side of {6.4), given as (see

(5.9})

mj—
O,
=
Ry
w
f——
-
—
wy

et

1
J(s)]ds :% [A(x »8)n;(8) + B(x, s)¥; (S)]ds,
C(x,S)nJ(S) + D(x,8)¥;(s)

(6.5)

where we shall examine the various terms separately on the right side here.

Consider first the term involving B,

%gB(x,s)i'j(s) ds = ! B(x,1-€5)t(5) ds. (6.6)
(s=l-€s)
We Taylor expand B(x, 1—€§) with respect to € about € = 0, and
find by a routine calculation from (6.8},
1 0
-~ a B(x
€ [y ds ) = Efr (8)(- s)kds]e : (6.7)
k=0
ok = k k
where sB(x,l) = ©"B(x,s)/@s fs:l’ and where here and below we
l/e .
replace wvarious integrals IO -ds by corresponding (asymptotically

-]

equivalent) integrals I .ds because of the expected exponential decay of
Ly j as justified later %y the error estimate (6.25). Similarly, using s =

€s, we find
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1 *® afc(x,0 '
'i"' E!‘C(X;S)nj(g) ds ™ Z 'i-l,'(("};'{'—)" @ﬂj(g)gkdg] ‘:kn (6.8}
k=0

where E)IS{C(X,O) = akC(x,s)/asklszo.

The terms in {(6.5) involving A and D must be handled slightly
differently because of the jump discontinuities exhibited by these functions.

For the term _involving A we write

1 * oka(x,0) [M4E
. gA(X,S)nj(g) ds ~ » g [ ([ nj(g)gkdg] ek
k=0
(6.9)
1/¢
+ [[Me,f,'s‘)nj("s“)dg,
where
oo k s
~ BIA(exX,0)
B(e, % 8) 1= A(eR, e8) - » —S—pr—" gRek, (6.10)

k=0

and where (6.9) is simply an identity obtained by adding and subtracting
the first summation on the right side there, and we have also used x =
¢ and s = €§ in the last term on the right side of (6.8). Because of

the jump in A, we write the last term on the right side of (6.9) as
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1/e - % 1/¢€
[ Keggn;@as = JA(e,ﬁ,gmi(a')dﬁ + [ Aex®n,(E)d8, (6.11)
0 : o : :

X

and we Taylor expand K(E,E,E) in € about € = 0, separatiely for each
of the two integrals on the right side of (6.11). From (6.10) we find

k k
ak o~ _ e : A o~ .
*—Eae A(e,X,8) I e=0+ = 0 for 0 < & ¢ ¥, while —R-ae A{e,%,5) I =0+ - (xax

+ §as)k [A(X’S)!(O,OH - A(x,s)|(0,0_)] for - & > ¥. Hence we find from (6.9),
(6.10) and (6.11),

U f
(6.12)
o k o
+ > Er f[(xa |+ o8 )k[A(O 0+)-A(0,0~ )]]n (0)do,
k=0 )‘?
where 8, = 8/dx B, = /s, (%0 +oB)XA(0,04) =
[(fiax+aas)kA(x,s)}(x 8)=(0,04)? and so forth. Similarly we have
i 1 ® ok 00 ’
- R -~ o D(X,l)
%gD(x,s)rj(s) ds ~ _Lk_'——_ [Jrj(a)(~a)kda] ek
- k=0 ‘
(6.13)

+ i —< k I[(an + aas)k[p(l,l—)-n(i,1+)]]:J.(g)d,,,
X
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where (;ax+af‘)s)kD(1,1—} = [(xax+aas)kD(x,s)](X,S)z(l’l_), and so forth.

We now insert {6.7), (6.8), (6.12) and (6.13) into (6.5) and in this way

we are lead with (6.4) (after inlerchanging several orders of repeated

summations) to the following conditions for the outer functions (for j =

0!1|2r . )

[yj_1<x)] , [fjcx>] ) IKC&S)[yJ<s>]dS
zj—l(x) gj(x) 0 ZJ'(S)

(6'14)j

"
ES
M-
o
[
-
o]
ki
R
Oy
fr———
o
!
b
~
e
Pamn
b
“ 3
~
Q
o
[—————
S
[
e
fof
q

for 0 ¢ x ¢ 1, where the matrix function Ki(x) is defined {for i =

0,1’2,' . ') as

B0 = 2r[kx, 0P + Kx, 1(1,-9)]

Bgl
[——L—;'_—S-)] IS:O? ¥ [M——%“——E‘—)] Is 1(Im_?) (6'15)}.‘

[alA(x ,0) aga(x,l)].
aic(x,0)  8iD(x,1))

while for the boundary-layer correction terms we have similarly the

conditions (recall (5.10))

B



neg nj(a)do

K o 8

(6.16) 4

J_l oo .
= -2 T [ [88y + 03 )T R(A(0,0-)-(0,00) ] ny (e
k=0 %

(6.17)

-1 j— O~ .
= JZ G- ki [ [GB, + 003 K (D(1,1-)-D(1,14)) | £ (0)do
=0 X

for }? > 0, where the summations are put equal to zero on the right sides
of (6.16)0 and (6.17)0 in the case j = 0, and where the terms in square
brackets in the integrals on the right sides are defined as earlier in the
HHES%' immediately following (6.12) and (6.13), We now show that the
conditions (6.14)j, (6.16)j, and (6'17)j can be used recursively to determine

the functions yj(x), zj(x), nj(:'f) and i‘j(;) for j=0,1,--.

First, (6.14)O implies (note that ¥y.; 20 and z_y 20, while (6.15)0
and (5.5) yield K, = K)

[fo(x)] s [YO(S)}dS _ ﬁ(x)[ao} 6.18)
gg(x) Zg (s) ‘ 30
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for suitable constant vectors ¢, and A&, given as
e Cad
a, = fo ng and £y = foxo. (6.19)

We now show that the equation (6.18) always has one and only one solution,

for suitable wvalues of Ty and BO'

To this end, differentiate (6.18) and find the following equation of

second l;ind ,

. 1
. . ;
[ O,(x)] - J(x)[yo(x)} - Kx(x,s)[YOCS)]ds = Kx(x)[ao]- (6.20)
g (%) 20 (%) 2o(s) %o

where the jump J(x) 1is given by (1.13). The matrix function K(x} is
assumed lo be invertible, and so we can solve (6.18) for (CEO, .80), and
the resulting values can be used to eliminate dj and £, in (6.20). In
this way we find that the leading outer functions yo(x) and zo(x)

satisfy

J( )[ - K(x)gr K
* ZO(X) (xa-}? & go(x)

(6,21}

1
_ = d =1 vo(s)
- _ i!{K(x)-d-}?[x (X)K(%, s)]}[zo(s)]ds,

-which shows that (yo(x), zo(x)) = w(x) satisfies (5.6) with ¢i{x) =

fo(x)

” In particular yo(x) and zo(x) are uniquely
go(x> j

—{c(x)f;[ﬁ'lcx) {



determined by (6.21) because (5.6) is assumed to be uniquely solvable.
Moreover, a direct calculation shows that ihe resulting functions Yo and

2y determined by {6.21) =satisfy

d {=-1 fo(x)} _ 1 [YO(S)} ]}=
a;{K (x)[[ge(x) J’OK(x,s) oo dsis =0 for 0<x <1, (6.22)

so that these functions Yor 2p automatically satisfy (6.18), for suitable
integration constanis Ty 8y which are determined now by simply

evaluating (6.18) at any fixed x, yielding

_ £ 1
[ao} = K'l(xo)“ O(XO)] - I K(xg s)[YO(S)]ds] (6.23)

for any XOE[O, 1}, This construction is based on the assumptions that X
is invertible and (5.8} is uniquely solvable. We use these assumptions to
obtain suitable outer functions Yo and Zq from equation (6.18). These

agsumptions are sufficient (along with (5.1)), but not necessary, for the

validity of our construction. Indeed, in some cases (6.18) is solvable for
certain data with singular IE, as occurs in the imperiant example
(4.2)-(4.3). In such cases a minor modification of our construction carries
through for such a singular E. [Note that the key lemma given in Appendix

A.4 makes no reference to (5.8) and does not require K to be ‘invertible.}

Turning now to the determination of the boundary-layer correction
terms ng and Yor we find directly from (6.16)0, (6.17)0 and (6.19) the

resulis,

(1)x

z -J
oS
e P Jposu)ﬂa, (6.24)

J 0
np(%) = -e neg% J

neg(o)ao. and S'O(x)

Fa¥al



for suitable constants of integration q and 44 We select g and
Bg in accordance with (6.23), and then one Asu-:res directly that the
resuliing functions yo(x), zo(x), no(i’), and L’O(x) constructed here do
indeed satisfy the required conditions‘(s.ltl)o, (6.16)0, and (6.17)0. Finally,
it follows directly from (6.24), along with the negativity of the real parts
of the eigenvalues of Jneg((}) and "'Jpos(l)’ that the boundary-layer
correction functions ng and . ¥ 0 decay exponentially toward zero with

. ~
increasing positive values of their arguments X and =X.

The procedure can be continued recursively so as to provide yj, zj,

M and  t. for as many j = 0,1, .+ as permitted by the smoothness of
the datas. Details are omitted. The boundary-layer correction terms 73

and ¢ 3 will satisfy estimaies of the form

"~

In.le)! X 0,3‘70 and |V.{(o)} _<_C-e--”'“:r for all o > 0, (6.25) .
J J

for j = 0,1,-.-, for suitable constants C 3 for any fixed positive constant
£ satisfying Re X < -% <0 for al eigenvalues x of Jneg(x) at x =

-~

0, and for any fixed positive constant « satisfying Re x> k> 0 for

all eigenwvalues i of J at x = 1.

pos(x)

7. Existence, Uniqueness, and Error Estimaies

Subject to the conditions of Section 5, we assume without loss here as
in Section 5 that the jump matrix J is in a diagonal block form as in

{5.3). We rewrite (1.1) in terms of the function W given as
U
W= v = W(x, €) = wix, €) - wylx, €), (7.1)

where we suppress the obvious dependence of W . on N, and where Wy
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= wN(x, €) is the proposed approximate solution defined as

N
o YJ(X)] l.[ RJ(X/E} ]] j 7.9
b ) ;[[zjm A CRGES VNI T

in terms of the functions Y 5 zj, nj and - Ij constructed in Section 6.
A direct calculation based on the resulits of Section 6 shows ihat wy
satisfies {1.1) approximately, in the sense that the resulting residual py

is small, where py = pN(x, €) is defined as
1
pN(x,e) = ewN(x,e) + hixz,e) - J‘OK(X,S)WN(S,E)dS for 0 < x < 1. (7.3)

In fact a direct calculation as indicated in Appendix A.3 shows that py
satisfies the estimates ‘
+1
N

pN(x,e) = Ofe and ph;(x,e) = O(EN), uniformly for 0 { x £ 1,

(7.4)

N+1)’

1 P .
and also IO !,ON (z,e¥ldx = Ofe as € = O+

It follows from (1.1), (7.1) and (7.3) that the function W satisfies the

equation
| 1
eW(x,€) + pylx,€) = IOK(X,S)W(S,E)dS. (7.5)

We assume that the jump J of (1.13) is large enough so that the condition
(A.4.7) of Appendix A.4 holds. If the integer N satisfies N 2 1, it then
follows directly from (7.4) and (7.5) along with the lemma of Appendix A.4
(with w and h replaced respectively by W and py in that lemma)
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that (7.5) has one and only one solution W for all small € > 0, and this

N Zz V4

solution satisfies W(x, €} = O(EN) as € = 0+, uniformly for 0 { x { 1.
Hence, in terms of w in {7.1), we find that (1.1} has precisely one

solution, and this solution satisfies
- N , +
wix, €) = wN(x, e) + 0{e’) as €= 07, ("1'.6)N

uniformly for 0 < x < 1. In this way we are lead to the following theorem.

Theorem 7.1. Lét the forcing function h be of class CN+2([O, 1]} and

possess asympiotic expansions of ithe type (5.11), ai least through order
N+2, for some N > O Let the kernel K(x, 5) be of class
CN+2([O, 1]%[0, 1]} except for a jump disconiinuity along x = 5 as in
(1.13) and (5.3), and let the off-diagonal blocks B and C of K (see
(5.9)) be smooth (of class CN+2) without any jumps. Assume that J(x)
satisfies (5.1) and (5.3), assume that the jump J Iis large enough so that
(A.4.7) holds, assume that K(x) of {6.5) is invertible, and assume that the
auxiliary equation (5.6) is uniquely solvable (for every forcing function
¢). Then there is a fixed number €, > 0 such that (1.1) has precisely

one solution w = w(x, €) for 0 <€ < €g, and this solution satisfies

| . B
wizye) A.{ To(x/€) ] ; Z[ v+ g x/e) ]ci + oy

lrp((I-x)/e))  joplzy(x) + 55 ((1=x)/€)

uniformly lor (x,e)¢€[0, 11X(0, EOL where Yy 23 n 5 S'j are the functions

constructed in Section 6, and where the boundary-layer correction terms
n 50 S'j satisfy. the estimates (6.25). The %- term in (7.7} vanishes, with
np = 0 and g = 0, if and only if the reduced forcing function hy(x)

is in the range of the integral operator of (1.1), with

.



1
hg(x) = IOK(X, s)w(s)ds, 0 < x < 1, (7.8)

for some fixed function Ww. If (7.8) holds, then the function W is unigue,

and the leading outer solution determined from (6.21) is given directly in

terms of W as

[YO(X)] = w(x), (7.9)
Zo(x) .

and in this latter case the leading outer solution (7.9) satisfies the reduced

equation (1.2).

Proof: The earlier discussion demonstrates the existence of precisely one
solution w  satisfying (7.6)N, for any N > 1, The stated assumptions
permit the consiruction of wyq for any N > 0, and then the stated

result (7.7) follows directly from (7‘6)N+1 and (7.2)y.1-

There remain to be proved only the assertions regarding the 1/¢
term in (7.7). Pirsti, suppose there holds Ny E 0, &'O = 0. Then (6.24)
implies dg = 0, &3=0 and (6.23) shows that (7.8)~(7.8) holds at some
fixed x = x5, But (6.22) then implies that (7.8)-(7.8) holds for all =x.

Conversely, suppose that (7.8} holds for some W, ’I‘he'n (6.21) and
(7.8) imply '

I(x) [YO (x)] - Rixg

zo(x) [f{—l(x)lei(x, s)ﬁr(s)q;]

(7.10)

= o d ezl Yo(s>]
K K K(x, ds,
{ (xR ()R(x S”}Lo(s> s

[ e Lo
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where a direct calculation gives

- - 1
K(x)ad;[rl(x)fox(x, s)fv(s)ds]
' (7.11)

= J{x)W(x) + I-si(x)\l’1 d [I-(_l(x)K(x s)lw{s)ds.
0dx ’

. Yy
From (7.10) and (7.11) it follows that the function w = [ 0] - W satisfies
’ . Zo
(5.8) with zero forcing term, ¢ = 0, and then the unique solvability of
(5.6) implies the result (7.9). But then (7.8}, (7.9) and (6.23) imply ag = 0
and By = 0, and the construction in Section 6 then yvields ng E 0,

3’050. B

If the jump matrix J satisfies the eigenvalue condition (5.1) but if J
is not in a block diagonal form such as (5.3), then Theorem 7.1 remains true
with the obvious modifications if the transformed kernel ¥ of (5.2)
satisfies the appropriate conditions of the theorem, with E¥ invertible. In
this case, for small € (e = O+), the equation (1.1} has a unigue solution
w = wix, €} and this solution is such that T({x}w(x, €) can be

represented by the right side of (7.7). Hence there holds

wix, €) = %—T'l(x)[ ng{x/€) ]
) &'0((1-)()/15)

(7.12)

N
+ ZT_l(x)[ YJ<X) * n.j+1(x/€) ]Ej + O(EN+1),
j=0 z;(x) + T ((1-x)/€)

where T = T(x) 1is the matrix function that transforms J(x) into block
diagonal form, appearing in (5.2). In this case each component of the

solution function generally has boundary layers at both endpoinis because
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of the coupling due to T_1 in (7.12), as illustrated by the example in
Appendix A.Z.

In summary, solutions of boundary-layer type have been shown fto
exist for a special class of vector integral equations of the form (1.1} for
all small enough € > 0. The data are assumed to be at least of class 02
except for a jump discontinui.ty in the kernel which is assumed to possess
an invertible jump discontinuity (1.13) that is sufficiently large (e.g. the
condition (A.4.7) of Appendix A.4 suffices, and (5.1} is assumed to hold), and
if the auxiliary equation (5.6) is uniquely solvable, with K of (5.5)
invertible. If the jump matrix J 1is in the block diagonal form {5.3), then

the resulting solution satisfies

u(x, €) vox)1 [ 7o [%] s
w(x,e) = [ ] = + < + + O(e} (7.13)
v(x, €) ZO(X) rO [lzx] rl[ ;x]

as € = 0+, uniformly for 0 < x < 1, so that the solution w can be
decomposed into components u and v  that have separate boundary
layers respectively only at x = 0 and at x = 1. The boundary layer
correction terms decay exponentially away from the endpoints, in accordance

with (6.25), so that the sclution satisfies

limit wix, €) = [yo(x}]’ (7.14)
€ = 0+ zo(x)
[Fixed x€(0, 1)]

where (yo(x), zo(x)) is the leading term in the outer solution.

If the reduced forcing function hO ie not in the range of the
operator K, then existence fails for the reduced equation (1.2) obtained
by putting € = 0 in (1.1) or in (5.8). In this case of course the limiting

outer solution (7.14) does not satisfy the reduced system {1.2), but rather
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it is determined as the solution of the auxiliary equation (6.21), Also in this
case, the % boundary layer terms Ny and 'EO are nonirivial near the

appropriate endpoints (with a5 # 0 and 8y # ¢ in (6.24)), and the

u-component of w behaves like a delta function near x = 0 while ihe

v-component behaves like a delta function near x = 1.

If hy is in the range of K, then (1.2) has precisely one solution
(as a consequence of our assumption on the unique solvability of {5.6}}, and

this reduced solution coincides with the limiting outer solution (7.14).

Moreover in this caese the %- boundary-layer terms vanish,. ng 2 0. and

fg =2 0y go that (7.13} becomes ulx, €) = yo(x) + nl(x/e) + Ofe}

-

v(x, €) = zo(x) + rl((l—x)/e) + 0(e) as € ~ O+ uniformly for 0 < x £
i1. In particular the boundary values become
(v (0) + nq(0)]
w(0, €) = 0 1 + 0O(€),
20(0)
{7.15)
- vo (1) ]
w{l, €) = 0 + O(€),
2y (1) + £;(0))

where 7y and !’1 are found to be given by the same formulas as in

(6.24) but with o, and 8q replaced by suitable integration constants
(e e +]
ay = Ionl and 31 = ferl. The actual values of these constants are

given by a formula of the type (6.23) but with £, and ga}"'replaced
there by fl + ¥y and g1 * Zp respectively, and with Yo and zZg
replaced there by ¥y - and z respectively. The required functions ¥4

and z; are found to be determined by (5.6) with

£1(x) + y0<x>]]_

#(x) = -K d[ﬁ'l [
(x) (x)3z (x) gy (x) + zg(x)

If J is not in the block diagonal form (5.3) but if the eigenvalue

e ry



condition (5.1) still holds and if the transformed kernel K* of {5.2) yields
an invertible I-{* {as in (5.5), with K replaced there by K*), then {1.1)
still has a unique solution w(x, €} for all small enough € # 0. The
solution is of boundary-layer type, with =all components of w generally
having boundary layers at both endpoints as indicated by (7.12). The
situation is illustrated by the example of Appendix A.Z2.

8. Integrodifferential Equations

We =saw in Section 4 that the following‘ first-order wvector

integrodifferential equation (see (4.10))

-

2 i
e“u’(x) + g{x, €} = IOE(X, s)u(s)ds, 0<x¢1, (8.1}

mXm
with discontinuous kernel E = E(x, s) and subject to the boundary

condition (see (4.12))
Lu(0, €) + Ru(l, €} = ¥, (8.2)

can be reduced to the related vector integral equation (1.1) with data
functions h: and K  @given by (4.16)-(4.17), provided that the matrix

L + R 1is invertible.

The resulting jump matrix J is given by (4.18), and is not in a
.suitable block diagonal form (5.3). However, it follows from (5.22) that J(x)
can be block-diagonalized by the matrix T(x) of (5.20), and the resulting
block-~diagonal matrix (5.22) can be taken to satisfy the conditions of (6.3)

if the eigenvalues kk(x) of Jj{x) are excluded from a region in the

complex plane that contains a neighborhood of the origin and a
neighborhood of the negative real axis. In this case we need only take the

positive  square root of )N for each element JN =

88



Ixl 1/zexp{% i(arg \}} of the diagonal matrix 0 in (5.20), so that
every such element X of 0 satisfies “Re Y% » 0. Hence, in the
terminology of (5.3), the block-diagonal matrix of (5.22) satisfies n = p = m,

and the projection P of (5.4) is
1 0 '
P = [ m ] (8.3)
0

The matrix Z* becomes (see (5.5))
K*(x) = K¥(x, 0P + K'(x, N{Igy - P) (8.4)

where the kernel K* is obtained from (5.2) as K*(x, 8) = T(X)K(x,s)T_l(s).
Hence (8.4) yields

B (x) = 1(x) [K(x, 0T7H0)P + Klx, DT MU {Tgy, - )]  (8.5)
with K(x, 8) given by (4.17), and it follows that

K*(x) is ipnvertible if and ouly if

K(z, 0)T"1(0)P + K(x, VT™L(1)(I, - P) is invertible.

For example if we consider the initial-value problem for (8.1) with L =

I and R = 0 in (8.2), then (4.17) implies

~-2(0)yn{0 0
K(x, )T H(O)P + K(x, VT H1) {1y, - P) = (0)ya(o) ]’

E(x,0)Z(0) E(x,l)Ztl)
(8.3)



~which with (8.6) shows that I_(*(x) is invertible for the initial-value
problem if and only if E(x, 1} is invertible. In particular, we conclude
that i*(x) is a singular matrix if E 1is a Volierra kernel with E(x, 8} =
0 for s > x Based on the results of Section 5 - 7, if E is a Volterra
kernel we would then generally not expect to obtain a solution of

boundary-layer type for the initial-value problem for the integrodifferential

equation (8.1). On the other hand if we consider the jerminal-value

problem with L = 0 and R = I, then (4.17) implies

0 -7({1ya(l
K{x, O)T'l(O)fP + K(x, I)T_l(l)(]’_zm -P) = (1) )],

E(x,0)Z(0) E(x,1)Z(1)

(8.8)

which with (8.6} shows that ﬁ*(x) is invertible for the terminal-value
problem if and only if E(x, 0) is invertible. Hence, if E 1is a Volterra
kernel, we expect to find =a solution of boundry-layer type for the
terminal-value problem {subject to the furiher condition that (5.6) is

solvable).

These results are sharp, as can be seen by the scalar example

For the initial-value problem the unique solution is

E
ke
m
1]
Boj—
ras———
-2
+
mj—
vttt
o]
1
k]
~
m
+
3 ]
—
-
m—

]e""/ € (8.10)
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which is not of boundary-layer type but rather exhibits rapid exponential
growth for x > 0 (e = 0+). On the other hand, for the terminal-value

problem the unique solution of (8.9) is

-X/€ -1/¢€
alxe) = & E/ . Y—l(l/e)_ez/e/ -/ 4 o=(i-x)/€]
+
© (8.11)
~ "15 e—x/e + Ye—(l—x)/e:’
which is of boundary-layer type, with layers at both endpoints.
By way of comparison, the Fredholm integrodifferential egquation
9 X 1
e“u’(x) +1 = ZJ' u(s)ds + f u(s)ds (8.12)
0 X

has a unique solution of boundary-layer type for the initial-value problem,

satisfying
ulx,e) ~ ve ¥ € 4 [—}5 - ZY]e“(l‘X)/e, (8.13)

and (8.12) also has a unique solution of boundary-layer type for the

terminal-value problem, satisfying
u{x,e) ~ %[-:L - “r]e“x/'z + Ye'(l_x)/e. (8.14)

These explicit results for (8.12) are also in agreement with the asymptotic
results of Section 5 -~ 7 because ihe 2X2 matrix I?I*(x) is seen to be

invertible for (8.12) both for the initial-value problem and for the

Y
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terminal-value problem.

Appendix A.]1 Certain Results for Continuous Kernels

We consider several classes of problems for (1.1} with continuous

kernels. Consider first the scalar equation (1.1) with a degenerate kernel,

m
K(x, s) = Z a;x)45(s) for x, s€[0, 1), (A.1.1)
J=1

for given functions aj, £j (j = 1,2,--.,m) that are continuous on {0, 1],

for a fixed positive integer m. In this case (1.1) implies

m -
-1
wix) = E[—-h(x,e) + cha‘.j(x)J for x€[0, 1], (A.1.2)
Jj=1
with constants c; given as
Cj - (ﬁj, W} fOI‘ j - 1,2,' - ',m, (A.1.3)

1 .
where {-y-} is the Lo inner product, (f, g} = fof(s)g(s)ds. Using

|

(A.1.2} in the right side of (A.1.3), we find the matrix equation

(A -€l)jc=b for c = (cl,cz,- . -,cm)T, - (AdL4)

o



where the wvector b = (bi) is given 'by bi = “’i' h) for i =

1,2, »+,m, and the matrix A = (B‘ij) is given by

a;; = ( 85 n‘.j} for i,j = 1,2,++«+,m. (A.1.5)

It follows from Lemma A.1.] (the latter lemma being proved below, at
the end of this Appendix A.1) that (A.1.4) has a unique solution c¢ for all
small nonzero €, and this solution satisfies ¢ = c(€) = o™y as e
- 0. We conclude with (A.1.2) that the integrasl equation (1.1), (A.1.1) has a

unique solution for all small nonzerc €, and this solution satisfies
wix) = w(x, €) = O(e:'(mﬂ)] as € = 0, (A.1.8)

uniformly for all x¢[0, 1], provided that h is bounded. Hence the solution
of (1.1) does not exhibit any boundary layer hehavior for a continuous
degenerate kernel (A.1.1); rather the golution generally becomes unbounded

uniformly for 0 { x ¢ L

The proof of Lemma A.1.1 given below actually provides more detailed
information than (A.1.6) on the behavior of the solution of (1.1} in the case
of a degenerate kernel. The result (A.1.6) represents the worst case among
several possibilities, where this worst case occurs precisely when the

principal invariants of the matrix A = (a;;) of (A.1.5) all vanish, as in the

B,
13
following example with degenerate kernel (m = 1)

K(x,s) = 1 - 2x, with al(x) =1-2x and ﬁl(s) = 1. (A.1.T)

in this case the solution of (1.1) is given as



S R . - - ¢
wine) = - —f ¢y(x) - ¢ hixe), with o = (8, h) = J'Oh. (A.1.8)

Here there igenerally holds wix,e) = 0(4-:_2) = 0(5“(m+1)) unless h
satisfies J'Oho =0 (ho orthogonal to ’Bl)’ and again there are no

boundary layers.

More generally, for a continuous nondegenerate kernel there may be a

sequence of eigenvalues €; = O+, with ij T EgW; for j = 1,2,« -
(cf. pp. 116-17 of Tricomi [19571). In such a case one expects ithat special
care musi be taken in the study of (1.1) for small € near the

eigenvalues; see Lange [1986]1 for a related situation involving =a
Sturm/Liouville problem. It follows from our Lemma A.4.1 that ihis type
behavior cannot occur for appropriate piecewise continuous kernels as

considered here.

As another example of a continuous kernel, consider the constant mXm
kernel, K(x, s) = A for some fixed matrix ACCTX™  th this case (1.1)
implies ew{x) = -h(x,e) + Ac with ¢ = Ow, and one sees direcily that

this vector ¢ will satisfy the previous (A.1.4} with right hand side b =

1
foh. Hence we find with Lemma A.l.1 the result Ac = O(e"m+1). It follows
that the wvector integral equation (1.1) with constant mXm kernel has a

unique solution for all small €, and this solution satisfies
w(x) = w(x, €) = 0(e™™) as €= 0, (A.1.9)

uniformly for x¢[0, 1]}. Again, (A.l.9} represents the worst possible case,
and this case occurs when all principal invariants of A vanish, as in the

example {m = 3 with A3 = 0)

A
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A= 4l -1 iy, with
ll “1 0
(A.1.10)
1 1,2 1
wix,e) = - Lhix,e) - dr(a? + eA)th

In this exampli there generally holds w{x,€) = O(E_S) = 0(e™), unless

the integral Ioho igs in the null space of Az.

We close this appendix with a proof of the lemma used earlier.

Lemma A.1.]1. The matrix A-¢€el is invertible for any given fixed

Aéﬂ:mxm, for all complex € in 2 deleted neighborhood of € = 0, 0 <

lel < €, - for some positive €, = eO(A). The solution ¢ of (A.1.4)

satisfies

adc = o(e™™y  for j=0,1,---,m, as €= 0, (A.1.11)

for any fixed beC™1 in  (A.1.4),

Proof, The lemma is trivially true if A is nonsingular, but we give a
direct proof that handles simultaneously all cases, A nonsingular and A
singular. For this purpose we use the Hamﬂton/Cayley theorem which

implies the result
m .
m - m—j
AT = E 1].1jA | (A.1.12)
J:

for any mXm A, where the coefficients T are given as M. =

. J J
(—1)3+115(A) and where Ij(A) is the jth principal invariant of A, given



by the coefficient of Xm—j in the characteristic polynomial det(A+\I)." We

alse uce

Aj+1c = Aj(t—:c + b) for any solution ¢ of (A.1l.4), (A.l.la)‘j

for j = 0,1, -, obtained by multiplying (A.1.4) by A,

From (A.1.12) and (A.1.13) one finds directly the result

m—1 .
> oA, a™ b (A.1.14)

P8y e)c = -[
J=0

for any solution ¢ of (A.1.4), where the scalar coefficients p; are

defined recursively as

Po(A: €) = -1, P]_(A; €) = MI(A) - € and
(A.1.15)

Pj(A: €) := ﬂj(A) + Epj__l(A, €) for j = 2,3,---,m

For the derivation of (A.1.14), first apply both sides of (A.1.12Z) to tihe

vector ¢, and eliminate the term Af: between the resulting equation

m
. m-1l_ _ ,m-1 m-j .
and (A.1.13)m_1 to find plA c = A b - Z,ujA ¢, Next eliminate
: j=2
the term Am_lc between this last result and (A.I.IS)m_2 to give pzAm—zc
. . .
= (Am"’l - plhm_z)b - ZujAm_Jc, and so forth, continuing in this fashion
Jj=3

for a total of m steps until (A.1.14} is obtained for PCs details are

omitted. We note however that the guantities pj(A, €) ~of (A.1.15) are all

TOo



nonzero, for all small enough nonzero €.

One sees directly that the resulting unique solution ¢ = cle) of
(A.1.14) gives also the unique solution of (A.1.4). The estimates of (A.1.11}
follow as special cases of the more genersal results provided directly by
(A.1.14)-(A.1.15). For example, if A is nonsingular, with det A # 0, then

. . 1
also u (A) # 0, and in this case we have = 0O{l). Hence the
m ' 7 Pmtej

solution ¢ from (A.1.14) satisfies c(e) = O(1) as € =+ 0, with Ade =
0(1), so that {(A.l.11) is trivially true. At the other extreme is the case in
which all principal invariants vanish, “j = 0 for all j. In this case there
holds p,, = -¢™, and also cle€) = 0(1/€™). The estimates (A.1.11) follow
then directly from (A.LIS)j. Further details are omitted. |

Appendix A.2 An Example wilh Jump Matrix not in Block Diagonal Form

Consider a 2-dimensional {m = 2) system (1.1} with piecewise constant

kernel K given as

3 -1
for s < X,
K(x, s) = ¢ ' U1 1 (A.2.1)
3 1
[ ] for s > %
1 -1
The jump matrix J of (1.13) becomes
C -2
J = ' (A.2.2)
_2 P

so that J is not i_n the block diagonal form {5.3).

We give here a construction of an asymptotic expansion for the

i



solution w of (1.1), using a suitable multivariable additive representation
applied directly to (1.1) without the preliminary transformation (5.2), We

seek w = wi(x) = wi{x, €) in the form

wix, ) = whix, ) + L[ e + %% o] with ¥:=% £:=13%, (A29)

for a suitable outer approximation wf and suitable boundary layer

correction terms W and @ depending on the respective boundary layer
variables ¥ and £

We assume that these functions w?, W% and @ have asymptotic
expansions (at least up to some finite order, determined by the regularity
of the data) analogous to those of (6.3), and we insert these expansions into
(1.1) and proceed as in Section 6. Omitting the details, we find for the
leading terms wi(x) = wi(x, 0), Wy(¥) = W(% 0) and @R = #(& 0)

the conditions

1 o0 co

hO(x) - E!‘K(x, s)wg(s)ds = K(X,O)gﬁro(a)da + K(x,l)gﬁro(o)da, (A.2.4)
WolR) + J(O)j”o(a)da = 0, " (A.2.5)

R

and
oo .

Po(8) - J(l)fﬁo(o')da = 0. (A.2.6)

{
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The equation (A.2.4) corresponds to (6.18)-(6.19), while the equations {(A.2.5)
and (A.2.6) correspond respectively to (6.16)0 and (6L17)0. In the present
case the jump matrix is constant, so that J(0) = J(1) = J, as given by
(A.2.2). In keeping with the assumed existence of the improper integrals in
(A.2.4), {A.2.5), and {A.2.6), we have the matching conditions

Wo® = 0 and Limit %o(®) = 0. (A.2.7)

From (A.2.5) and (A.2.6) we find (cf. {6.24)}

o geE 5%
wo(x) = e a and Wo(ﬁ) = e 8, (A.2.8)

!
for suitable (vector) integration constants d and & which must, if

possible, be chosen so as to be compatible with the matching conditions of
(A.2.7). That is, we require o and & 1o be in thei (asymptotically} stable
initial manifolds of the respective equation ({A.2.5) and (A.2.6). In the

present case from (A.2.2) and (A.2.8) we have

g, -da o 1 a,+d o {1
PR 1 "2 2% 1 "2 2%
WwalX) = e + e {A.2.9)
0 2 [-1] 2 [1]
and
B8+ 8 1 By— 8 _0d 1
wo(ﬁ) = '—1"2"'"& 929 [1] + -%—-—2— e 28 [“1], (A.2,10)
where Uy and d, are the components of a = (al, az), and similarly

8y and 8, are the components of 8 = (,81, 52). The matching
conditions of (A.2.7) imply with (A.2.9) and (A.2.10) the results

ay = ciz and 8y = -8y, ‘ (A.2.11)

~0



go that WO and QO become

~ (1 1 . '
Wo(®) = ale_zx [1] and Wy(R) = 313'29 [_1], (A.2.12)

where these functions now satisfy (A.2.5) and (A.2.6), for arbitray (scalar)
constants ay and 8, which will now be specified with (A.2.4).

We use (A.2.1} and (A.2.12) in (A.2.4) and find
1 + 1 1 ay
h(x) - E!K(x, s)wg (s)ds = | for 0 < x < 1, (A.2.13)

where thig last equation is analogous to (6.18). Upon differentiation, (A.2.13)

yields ho"(x) = J(x)wg(x), or

- gq(x)
wg(X) = J 1h0/(x) z - %-[f;(::)], (A.2.14)

where f; and g, are the components of hy = (fo, go). A direct
calculation now shows that (A.2.14) does indeed provide the solution of

(A.2.18) if and only if there hold

a; = §[-225(0) + £5(1) + go(1)] and 4 = F2e0) + £500 - go(0]. (A.2.15)

Hence we impose {A.2.15), and then (A.2.12), (A.2.14) and (A.2.15) provide the
leading terms for the solution (A.2.3). The procedure can be continued so as

to determine further (higher order) terms in the appropriate asymptotic

OMn



expansions, subject to suitable regularity requirements on h(x, €}, but

no further terms are obtained here.

In particular, we find that the solution w = {u, v) satisfies

' 1 1
w(x,e) = [:E: Z;] = e“lal[ ]e-2x/e.+ g-lﬂl[—l]e—vzu—x)/e
(A.2.16)

B} %[igiii] + Wy (x/€) + ®{((1-x)/€) + O(e),

where Wl and @1 denote the next terms in the expansions for the

boundary layer corrections. Hence there holds

Limit, wix, € = - %[go(x)], (A.2.17)
e £ (%)
(Fixed 0 ¢ x < 1)

and a direct calculation shows that the leading outer solution given by the
right side of (A.2.17) satisfies the reduced equation (1.2) if and only if
there hold

-ZgO(O)_, + fo(l) + go(l) = 0 and Zgo(l) + fO(O) - gO(O) = 0, (A.2.18)

where these conditions coincide with (5.14). Moreover, (A.2.18) is seen with
(A.2.15)-(A.2.18}) to be the necessary and sufficient condition for the
solution w to be bounded, w = O(1).

In the present case the matrix T = [% _}] can be used in the
transformation (5.2) to reduce J to diagonal form, and then the results of

Section 5 can be applied to the transformed problem. One finds that the
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resulting expansion (‘7.'12) coincides with the corresponding expansion
obtained directly here without (5.2). (The transformed problem is closely

related here to the earlier problem (1.1}, (5.12) which can be expliciily

solved.)

Appendix A.3 Esiimates on Residuals

We give an indication of a derivation for the estimates (7.4) on the
residual pN(x, e) of (7.3), assuming always sufficient smooihness on the

data. To this end, insert ("r’.2)N into the right side of (7.3) and find

|

N
[h(x,e) _ Zhj(x)ej] + [YN(X)]ENH_
i=0 2y (%)

pN(X: €)

N
. T. 1 . .
+ [[‘YJ—l(X> * J(x)} + J‘ K(x,s)[?J(S)]ds]eJ {A.3.1)
j= zj—l(x) + gj(x) 0 z:(s)

M=

[[ JI?J'(X/E) ] —%‘[lK(x,s)[ DJ'(S/E) ]ds]ej
j=0 rj((l“x)/ﬁ) 0 S‘J-((l—s}/e)

with y_; = 0, z_; = 0. This result and the comstruction of the functions

given in Seclion 8 gives (cf. (6.14)j, and also {5.9), {5.11))

Ge i _
- 00 (o)
py(x,€) = o(NH) + i[ AT () [ KN ]d ]
¥ o [T el N IR R

(A.3.2)

/€

1 .
N [ HJ(X/E) ] _ [A(x,eo)nj(o) + B(X,I_Ea)rj(a)]da t-:j,
!'J.((l—-x)/e) C(x,eo)nj(a} + D(x,'lue:o)k‘j(a) ‘
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where several changes of integration variables have been made, and where

the O(EN+1) term is uniform in x (0 { x {1} as € = ot.

The first estimate of (7.4) for py will follow directly from (A.3.2) and

the result

N [[ nj(x/€) ]_“E{A(x,ea)njwm(x,l—ea)rjca)]da
Jj=0

rj((1~x)/e) C(x,ea)nj(a)+D(x,1—eo)rj(a)

(A.3.3)

J - oo m. (o) :
1 k i - N+1
+ k;) ['('-"—]{_)_J__ |KJ_k(K)I0 [(_1)J‘_krk(g)]d0]]E = O(E )!

and so now we need only prove (A.3.3). A direct calculation can be given to
show that {A.3.3) follows from (6.16) and (6.17}; we indicate the details only

in the case N = 0,

In fact we consider only the first block-component of the vector
equation (A.3.3) in the case N = 0; that is, we indicate a proof of the

‘result (cf. (6.15),)

1/¢
nox/e) = | [Amearngla) + Bixi-eoirglo)|do

0
(A.3.4)

oo o0 ?
+A(x,0)f0no(a)da + B(x,l’)foro(a)da = Ofe)

for 0 {x£1 a8 € = 0*. The proof of the corresponding result for ihe

second block-component will follow zlong the same lines.



Adding and subtracting terms, we first compute

l/¢ : oo

t! B(x,l-ea)&’o(a)da = B(x,l)f:.\’o(o}da - B{x,1) f S'O(a)da
l/¢
(A.3.5)
l/¢
+ [B(x,l-éo') - B(x,l)]&‘o(o)da,
from which there follows (see (6.25)0)
1/¢€ o
t[B(x,l-—va‘.cr)&'O(r:f)dar - B(x,l)foi'o(cr)da = O(e_?/e)
(A.3.8)
1/¢€
+ [ [Bxi-eo) - Bx1]54(0)den

{
The regularity of B and Taylor’s theorem yield B(X,l—eq) - B{x,1l) =
0O{ltee, and then (6.25)0 and (A.3.8) yield

l/¢e .
B(x,1-co)g(o)do ~ Blx1)[ Fo(eddo = O(e), (A.3.7)

|

uniformly for 0 {x <1 as € = 0*. This last result shows that (A.3.4} will

follow now from
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1/¢€ o0 7
ng(x/€) = {[ Alx,e0)ng(o)do + A(x,c))fono(a)da = 0(e), (A.3.8)

and so we turn to a proof of (A.3.8).

An analogous argument as that used in obtaining (A.3.6) shows

similarly the result

1/¢ o
A(x,ea)no(a)da —A(X,O)Iono(a)da = O(e“‘?/a)

(A.3.9)
1/e
+ r[ [AGe0) - Ax0)]ng(0)do.

In estimating the last term on the right side of (A.3.9) we must take into

account the jump discontinuity (see (5.10))

Alx,x7) - Alx,xh) T neg(X) (A.3.10)
and so we write
l/¢ x/€
I [atieo) - Ax0) | nylorde = i‘ [atre0) - Ax0) | 2g(0)do
| ,
(A.3.11)

fo)~



1/¢
+ J [A(x,ec) - A(x,O)]nO(a)da.

x/€

A = A(x,s) is smooth for 0 < s < x, and so a Taylor theorem argum.ent and

(6.25)0 imply

x/€
t[ [Ameo) - Ax0) ] nglerdo = o(e), (A.3.12)

which with (A.3.11) yields

l/€ , 1/€
t[ [A(x,ca)-A(x,O)]nO(o)da = O(F) + f [A(x,ea)—A(x,O)]no(a)da. (A.3.13)
/

X/ €

The left side of {A.3.8) can be evaluated with (A.3.9), (A.3.13)}, (6.16)0 and
(6.25)0, and we find

l/e o
nolx/€) - i Alxea)ng(alde + A0 [ ng(e)de
{A.3.14)

1/
= O(e) - jE[Jneg(m + [Alexeo) - aeg0)]]2g(o)de.

x/e

A Taylor theorem ai'gument can be used with (A.3.10} to show Jneg(o) +
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[A(e:’i’,eo)-— A(E}'E,O)] = O(l)ee uniformly for o > X, and the desired result

of {A.3.8) follows then from (A.3.14} and (6.25},.

Further details are omitted (cf. Smith [1985] for details in various

related calculations).

Appendix A.4 Existence, Unidueness, and Estimales

For small €, we give here a direct proof of existence and uniqueness
for solutions of (1.1} and we obtain appropriate a priori estimates for the
solutions, subject to the eigenvalue condition (5.1) and subject 1o a
requirement that the jump matrix J 1is large in a certain sense. To this
end we require ihe fundamental solutions F = Fneg(x’s) and FpoS =

neg

Fpos(x,s) characterized as

E%Fneg(x’ s) = Jneg(x)Fneg(x, s) for x # s, Fneg(x,x) = I
{A.4.1)

;%Fpos(x, g8) = JPOS(X)FPOS(X, s) for x # s, Fpos(x,x) = Ip,
where J and J are the diagonal blocks of the block diagonal

neg pos
jump matrix J{x} as in (5.3), with eigenvalues satisfying

Re A(x) £ ~kq < 0 for all eigenvalues ax) of Jneé.(x), and ‘
(A.4.2)

Re X\(x) > thy 2 0 for all eigenvalues A(x) of Jpos(x), :

uniformly for 0 < x ¢ 1, for some fixed consiant £y >» 0 as in (5.1).
The fundamental solutions Fneg(x’s) and Fpos(x,s) satisfy  the

appropriate adjoint equations with respect to s,
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-F

2R, (% 8) = Fpo (% 8)I (s,

e

£
[
o

€2 F 05X 8) = “F o (%, 8T (s),

and the following well known estimates of Flatto and Levinson [1955] hold

{cf. Exercise 7.1.5 of Smith [1985]):

_"CO(X—E;)/€ for 0

IFreg®s®) s IFpog(sm] < Cge

|~
m
I~

x <1, (Ad.4)

as € = 0+, for any fixed constant « gatisfying
0 < xpy < kqs {A.4.D)

and for some fixed positive constant Cp where o and Cy, are

independent of € as € = 0f. In the special case that Jneg(x) and
J

are diagonal matrix functions, then the fundamental solutions F

pos(x} neg

and Fpos are also .diagonal, given as the matrix exponentials Fneg(x,s) =
1%

exp -;:-ISJneg and a similar formula for Fpos' In this case, in (A.4.4) one
can take

Co =1 (in the diagonal case) - (A.4.6)

provided that one uses a matrix norm [l satisfying IDiég[dj]I =

max | d jl for any diagonal matrix.

The following condition (A.4.7) seems natural for the problem at hand

because this condition simply requires that the jump discontinuiuty should

be sufficiently large, as measured here by the positive constant Ky in

Q20



(5.1) and (A.4.2). For example the single eigenvalue ax) of J(x)
coincides with  J(x} in the scalar case {m = 1), so that the condilion
(A.4.7) requires directly in this case that the real part of the jump must be

sufficiently large.

Lemms A.4.1. Let the data h and K in the sysiem (1.1), or eguivalently
the data f, g, A, B, C, and D in the gystem (5.8), be Dpiecewise

differentiable, except for jump discontinuities as in (5.10), where Jneg and

Jpos satisfy (A.4.2). Lel the constants C, and £, in (A.4.4) satisfy
CO[II?K(O,-)IIW + NI-PYK(L, )1, + ”leléo] < xg (A.4.7)

where P is the projection of (5.4). Then there is a positive pumber €,

such that (1.1) has precisely one golution w for 0 (& £ €p and this

solution satisfies the integral estimate

ity < const. [ IPh(0,€) + [I-P)h(L,e)l + I Ny] (A.4.8)

and the poiniwise estimaie

fwix,e)l < L const.[1Ph(0,€)] + 1(T-PIa(L,e)l + iy | (A.4.9)

for 0 < x <1, for a fixed constant independent of € as € = o*.

Proof: The system (5.8) can be differentiated with (5.10) to give

’

' , 1
eu (x) - J___(xulx) = ~f (x) + fozAx(x,s)u(s) + B_(x,8)v(s)]ds,

1 {A.4.10)
-g () + [ 10 mehuls) + D (xs)v(a)]ds,

neg

ev ’(x) -J

pos(®V(X)

[eds]



where we suppress the dependence on € of f, g, u, and v. This

gsystem (A.4.10) can be integrated using the fundamental solutions of {A.4.1)
and (A.4.3) to give |

cu{x) = aneg(x,O)u(O) - I:;Fneg(x’s)f /(s)ds

1 (A.4.11)
X .
+ IOFneg(x,s)Io[Ax(s,t)'u(t) + BX(S,t)v(t)]dt ds
and
1 . :
evix) = EFPOS(X,].)V(I) + IXFPOS(X’S)g (s)ds
- fopos(x,s)fo{cx(s,t)u(t) + D (s,t)v(t)1dt ds,
where Ax(s,t) = Ax(x,t) x=s and so forth. The iwo equations of (5.8) can be

evaluated separately at = 0 and at x = 1 and then used to eliminate

X
the terms w(0) and +v(1) in (A.4.11)~{A.4.12), and in this way we find the

sysiem

I
®
R

™
+
&3
m

—
< g
Nt
®

u(x)
' (A.4.13)

vix) = »(x, €) + 4 [8] =),

where again we suppress the dependence on € of u and v, and

where the functions g and » are given as
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X
o= ux o) = 2foF x000, € ipnegms}f (s, €)ds),
(A.4.14)
: 1
» = »(x, €) := -l-[-F (x,1)g(1, €) + J'F (x,8)g (s e)ds]
- ' -t pos’g’ ‘pos’g ’ s
X
and where the operators iRe and ‘Je .are defined by the formulas
1
ﬁﬁw(x) = R, [3](}:) = %[Fneg(x,O)g[A(O,s)u(s) + B{0O,s}v({s)]lds
< 1 (A.4.15)
+ JOFneg(x,s)fo[Ax(s,t)u(t) + B (s,t)v(t)]dt ds],
and
1
Sewix) = 8 [8](x) := %[Fpos(x,l)g[c(l,s)u(s) + D(1,s)v(s)]ds
1 1 (A.4.16)
- JXFPOS(X,S)IO[Cx(s,t)u(t) + D (s,t)v(t)]dt ds,
for any wvectors w = [3] We use ithe Banach space B of continuous
vector functions w = [E] where u = u{x} and v = v(k) are continuous

vector functions of respective dimensions n and p on 0 < x < 1, with

norm

Hwlil = Ilu”l + livlll (A.4.17)



. i 1
where IIuI!I = Iolu!, llvll1 = Iolv!, with  |ul and |vl taken in

terms of any convenient vector normg& on c” and CP. The system

(A.4.13) can be written more briefly as

w=¢ +dw for wiB, (A.4.18)
with
R w
- | H = ul ._ €
g = [p] and Zw = ;:[v] = Lg w] (A.4.19)
€

for any vector w.

Routine calculations using (5.4), (A.4.4), (A.4.14)-(A.4.17) and (A.4.19)

yvield the estimates

Co ,
el < [!?h(o,e)i + [(I-P)h(1,e)! + Ilh n]’

ol
. C ) . (A-4¢20)
HEH < é[n‘px(o,-)nw + UE-PE(L, )iy, + NE M, ],
where HLn denotes the induced operator norm while il-ll,, denotes

the maximum norm. The assumption (A.4.7) and the estimate of (A.4.20) for
L yvield now the condition NLH £ ¥ for a fixed positive ccnstant v
< 1, with v independent of €. It follows directly that (A.4.18) has one

o
and only one solution w, given by the Neumann series w = Z{,kgb,
k=0
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and this solution satisfies the bound

wil < T2 vl (A.4.21)

Moreover, from (A.4.18) one has the pointwise inequality

Iw(x, €}l < l¢(x, €}l + lLw(x, €)1, (A.4.22)

and the results (A.4.14)-(A.4.17) and (A.4.19)-(A.4.22) yield directly a bound
of the type

§
1

fw(x,e)l S_%const.[EﬁDh(O,e)l + [ {I-P)h(1,e)] + Ilh’!l] (A.4.23)
for 0 < x <1, 0 < € £ €y for some fixed €4 ? 0, where -1l is

defined as in (A.4.17) and (5.9). These results show that the system ({A.4.13)
has one and only one solution, and the solution satisfies estimates of the
type (A.4.8) and (A.4.9).

This solution of (A.4.13) also satisfies (A.4.10}, which implies directly

the result

eulx) + f(x,e) = {A.(x,s)u(s) + Bix,s)v(s)]lds + a

1
Oy ot

(A',4'24)

1
eviz} + gix,e) £[C(x,s)u(s) + D(x,s)v(s)lds + &8

for suitable wvector constants of integration a ~nd B. The two



equations of (A.4.13) can be evaluated separately at x = 0 and at x = 1,
and we find directly with (A.4.14)-(A.4.16) and (A.4.1}) the results a = 0
and A& = 0 for the consiantis in {A.4.24). We conciude that the solution of

(A.4.13) also solves {5.8), and the stated results of the lemma follow

immediately. |
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