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Abstract

In this paper we present boundary conditions appropriate for the vorticity formulation of the two
dimensional incompressible viscous Navier-Stokes equations. These boundary conditions are incor-
porated into a finite difference scheme and the resulting method is of the "vorticity creation” type - La.
vorticity is generated at the boundary to insure that the tangential velocity boundary condition is
satisfied, The results of computations with this finite difference method are presented for flow past a cir-
cular cylinder. A difference scheme and computadonal results for a model probiem, the Prandt! boun-
dary layer equations describing flow over a semi-infinite fiat piate, is also presented.







Introduction

In this paper we present results concerning boundary conditions for the vortcity form of the
time dependent 2-D Navier Stokes equations. Our primary resnits are a derivation of appropriate
boundary conditons for the vortcity and a description of a finite difference scheme which incor-
porates these boundary conditions. The finite difference method is used to calculate flow past a cir-
cular cylinder, This problem was selected so that our computational results could be judged by a
comparison with existing computational and experimental results. The problem of flow past a
cylinder is also of interest because of the difficuity which is introduced by the fact that the fluid
domain is infinite. In this paper we present a technique for overcoming this difficulty. We also dis-
cuss boundary conditions for the vorticity form of the Prandtl boundary layer equations and present
a finite difference method for computing solutions of them. We caiculate flow past a semi-infinite
flat plate and compare the resuits with the Blasius solution. The reason for considering the Prandtl
boundary layer equations is primarily to aid in the exposition of the ideas and techniques used in
working with the vorticity form of the Navier-Stokes equations. However, there is independent
interest in these equations. We are able to exhibit a finite difference scheme in which the boundary
condition implementation is a direct analog of that used by Chorin in his vortex sheet algorithm (5,
6, 7]. We thus find that a technique which has appeared to be of value only for vortex blob
methods has an analog which may be useful within the context of finite difference schemes. Our
computational resuits on both the problem of flow past a cylinder and flow past a flat plate indicate
that the boundary conditions which we present here can be incorporated into finite difference
schemes in such a way that the evolution of vorticity in the finid and on the boundary is accurately

predicted.

Many different techniques for overcoming the difficulty of vorticity boundary conditions have
been employed in numerical methods. There appear to be three classes of schemes. The first class
are those schemes which exploit the relationship between the vorticity and the stream function on

the boundary. (See among others [12, 15].) The second class are those schemes proposed by




Quartapelle and Quartapelle and Valz-Gris [16, 171, In these papers it is shown that in order for the
boundary conditions on the velocity to be satisfied, the vorticity should evolve subject to an integral
constaint. The schemes presented in the papers essentially consist of insuring at each time step that
the approximate vorticity satsfies this constraint. The third class of schemes are those employed in
vortex blob methods and were inroduced by Chorin (4, 3, 6, 7]. In such methods vorticity is inoo-
duced on the boundary in a way which ensures that the boundary conditions on both components of
the velocity field are approximately sadsfied. Judging from the fact that one can obtain reasonable
results with each type of scheme, we conclude, that, although these schemes appear to differ
greatly, they must be implicitly satisfying some specific vorticity boundary conditons. One of the
motivations of this work was to find a representation for the vorticity boundary conditions which

would shed some light on this issue.

The derivation of our vorticity boundary conditions is based on two key observations. The
first observation, one contained in the work of Quartapelle and Valz-Gris, is that the boundary con-
ditions on the velocity induce a constraint on tﬁe vorticity. The second observation is that the con-
straint can be‘ ensured by requiring that it be satisfied at an initial time and by requiring that the
tme derivative of this constraint vanish, The requirement on the time derivative leads to explicit
boundary conditions for the vorticity of an integral-differential nature. The derivation of numerical
methods which use these boundary conditions can be accomplished by mimicing the derivation of
the continuous boundary conditions with discrete :)perators. This procedure is used © construct a
schemne for computing flow past a circular cylinder, Since the vorticity boundary conditions ensure
that the vorticity will evolve subject to the appropriate constraint, our numerical method is similar
to that which would be obtained by an implementation of Quartapelle and Valz-Gris's technique.
However, in our implementation it is immediately apparent that vorticity creation occurs on the
-boundaxy as a direct consequence of the requirement that the time derivative of the constraint van-
ish. Thus, the method exhibits varticity creation on the boundary and in this respect is similar to
those propaosed by Chorin. (In the case of the boundary layer equations', there is a direct analogy.)

This suggests a connection between Chorin’s techniques and the technique of evolving the vorticity



subject to a constraint. We have not been able to clearly see a connecton between the schemes
which incorporate our boundary conditdons and those which might be obtained using the ideas in
[12, 15]. We are confident that future investigations will show that the methods are c¢losely related.
Cther than provide a demonstration of accuracy by a comparison of our computatibnal results with
other schemes and experiments, we have not performed an error analysis of our scheme, We are
hopef_ul that our representation of the vorticity boundary conditions will facilitate such an analysis,
This representation may also be useful in the analysis of previous numerical schemes - particularly

those due to Chorin.

In the first section we discuss the origin of the problem with vorticity boundary conditions
and then present our derivation of appropriate boundary conditions for the vorticity. Before dis-
cussing the numerical imi:lememation of these boundary conditions we discuss, in the second sec-
ton, boundary conditions and a finite difference scheme for the Prandtl boundary layer equations.
In the remaining two sections we we present a finite difference scheme for computing flow past a

circular cylinder and discuss results which were obtained with this scheme.

The author would like to thank Dr. Claude Greengard for his helpful comments concerning

the problems considered in this paper and the reviewers for thier helpful comments as well,




1. Derivation of the Vorticity Boundary Conditions

The equations we are concerned with are the two dimensional incompressible Navier-Stokes

equations,
5—7:" + (@ V)T = ~VP + vam (LI
V-t=0 (1.2)
™) =By for xeaQ . (L.3)

Here @ is the velocity, P the pressure and v the viscosity. We assume the fluid is of constant den-
sity equal to one. Q is the region in R? with boundary 3Q. ﬁ(a) is the velocity on the boundary

(often taken to be idendcally zero).

In the vortcity formuladon of (1.1)-(1.3) the velocity field ¥ is taken to be the sum of a velo-
city field due to an irrotational flow and a velocity field due to a rotatonal flow. Let ¢ be the
potential for the irrotational flow and ¥ the stream function for the rotational flow. We assume ¢

satisfies

0 a—“’:‘s‘-rs on aQ .

A
¢ ar

]

Here & denotes the normal to the boundary.

Let ® be the vorticity. By taking the curl of equation (1.1) one obtains the following equa-

tion for the ransport of vorticity,

aa—‘;’+ﬁ-Vm=vAm . (1.4)

Here
T = (ber 0,) + (¥, -¥,) ‘ (L3)
and ‘¥, the stream function, is determined from the equation

AY = -



¥Y=0 on 3Q . (1.8)

The boundary conditions given above for ¢ and ¥ guarantee that the normal velocity boun-

dary condition is satisfied. To satisfy the tangential velocity condition we must also have

-%-3- =h{a) for aedQ2 (1.7

where &() = ~(E - - (¢,,6,) - ] and Tis the unit tangent to 3.

In the translation of the equations from primitive variables (1.1)-(1.3) to the vorticity form
(1.4)-(1.7), boundary conditions for the vorticity are not obtained. Moreover, it appears that (00
many boundary conditions are given on the stream function. (Both those in (1.6) and (1.7) must be
satisfied.) However, a bit of thought reveals that the freedom in choosing the vorticity boundary
conditions occurs precisely because the stream function is over determined. For, unless there is
some mechanism for manipulating @ in the interior of the domain, the problem which defines ¥
will not, in general, be well posed. It is therefore not surprising that a common thread which runs
through all numerical implementations is the manipulation of the vorticity, usually near the boun-
dary, in a way which ensures that both (1.6) and (1.7) are satisfied. Of course, this over determina-
tion appears only because of our desire to first compute the vorticity and then secondly the stream
function. The boundary conditions (1.6) and (1.7) are quite appropriate when considering the
steam function as the primary variable i.e. these boundary conditions are consistent with those

necessary for the biharmonic operator occurring in (1.4).

Quartapelle and Quartapelle and Valz-Gris [16, 17] show that one can close the equatons for
the vorticity by adjoining a constraint which ensures that (1.'6) and (1.7) are simuitaneously
satisfied. The basis for their methods is the following theorem given in [16]:

Theorem. A function & in Q is such that ~€ = AW, with Wi, =a(a)and _4_38_\;_'_ = b (o), if and only

if



;j; nd0= [(@ (a)-g-% - b (@) (L8)
for all functions 7 such that An =0in €

The numerical methods presented in [16,17] for soiving (1.4)-(1.7) consists of requiring that
the approximate solution satisfy (1.8) at every timestep. One of the drawbacks of these methods is
the necessity of computing and storing the discrete versions of the harmonic functions used in the
implementation of (1.8). In later work (18] it is shown that this problem can be avoided and that
the impiementation of (1.8) can be reduced to solving a boundary integral equation. That such a
reduction i3 possible suggests that by enforcing the projection condition (1.8} they are implicitly
implementing some boundary conditions for the vorticity.

In our derivation of an explicit representation for the boundary conditions we assume the
viewpoint, suggested by the work of Quartapelle and Quartapelle and Valz-Gris, that one should
consider the evoluton of the vorticity as a constrained evolution. However, instead of finding the
constraint on the vorticity and adjoining it to the equations as t'hese authors do, we proceed by
finding conditions which ensure that as the vorticity evolves the constraint will automaticaily be

satisfied. To do this, we first express the constraint in a different form than that given by (1.8).

We assume that the boundary condition (1.6) is used to determine ¥ and consider the "extra"
boundary condition (1.7) as a constraint on the vorticity. To express this constraint we use the

Green's function, G(z,s), for the domain Q. This function is the solution of
AG(x,s)=8() xeQ Gles)=0 aedQ
where 8(s) is a Dirac deha functon located at 5 £ Q. We have

Wix) = - [ Gx,s)(s,0)ds
Q

so that condition (1.7) can be written as

L[ Glaw)s £)ds = - b(@) foraedQ . (1.9)
g



To find boundary conditons which ensure that solutions of (1.4) induce a stream function

which satsfies both (1.6) and (1.7), we find boundary conditions which guarantee that the deriva-

tive with respect to time of the constraint (1.9) vanishes. We require

2 -Q-J; Glo,s)os,t)ds + @) =0 for a g o0
¢ 3w

If we use the fact that @ is a solution of (1.4) and the Green’s identity

_ _ {96
w(x) = Egc;(oc,.‘:)e.m(s,:)ds aL aﬁ’(x,a)m(a,:)da

we find
ia—j G(o, s)e(s,t)ds =0
ot ARG
= _[G(o:,s) = {(s.0)ds =0

- -@-—j Glan )T+ Vals 1) + vAa(s, N)ds =0
arh

g -9 .
= Vaﬁ’i Gle, 5)A(s, ¢ )ds = 9?'1"3J; G(ee,s)[T - Vals, ) ids

do 3
'E;%* = a?(my)m(y,z)dv———iG(a,s){ﬁ Vo(s,1)lds . (1.10)

This is an integrai-differential equation which determines the boundary values. Values satis-
fying (1.10) and used as data for (1.4) will ensure that the time derivative of (1.9) will be zero, If

we assume that the inital vorticity satisfies (1.9), then we will have ensured that this constraint,

and hence (1.7), is satisfied for all tme.



2. Resuits for the Prandtl Boundary Layer Equations

In this section we apply the ideas of the previous section to the Prandd boundary layer equa-
tons. This set of equations, which we shall use to describe laminar flow over a half-infinite flat
plate, is a simpler set of equations than the 2-D Navier Stokes equations, and yet when expressed
in the vorticity formulation possesses the same pmb%ems with vorticity boundary conditions. We
shall derive the continuous boundary conditions for the vorticity, and then implement a numerical
method using these boundary conditions. Results of computations with this numerical method will
be presented. A similar discussion concerning the implementation of numerical methods for the 2-D

Navier Stokes equations will be presented in the next section.

In the vorticity form, the Prandtl boundary equations describing flow over a half-infinite flat

plate are
iﬁ-’-«}-ﬁ-Vm:vg—z-ﬂi -(21)
ot dy? . )
' du -
®=- % (2.2)
U=u.+ fco(x,s,t)ds (2.3
y
Y du(x s.,t)
v -! = (2.4)
with boundary conditions
u=v=0 ay=0 x20 (2.5)
g=u, at y=+m= and (u,v)={(u.0) for x <0 . (2.6}
Here (u, v) is the velocity and ® the vortcity. The domain is the quarter plane 0 € x S =

and 0 gy oo

As is the case with the Navier Stokes equations, when one reconstructs the velocity field

from the vorticity using (2.3), it is not automatic that the boundary condition on u in (2.5) will be
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Consider now. the following fractional step scheme which uses the finite difference approxi-
madons given previously,

= X
Wij — 9

Lo A @ 0 2.14)
Bt
ktl _ = kel
e Rz 2.15)

(2.14) is a discrete approximation to the advection component of the equation, while (2.15) is an

approximation to the diffusive component. The normal derivative boundary condition

8B, =l & A, @) FA L@ 0 .
dy o= E,[ ) ldy | (2.16)

is incorporated into the finite difference stencil occurring in (2.15). The upper boundary condition

0w

is —8; {;i,» = 0. One can show, as with the explicit scheme given previously, that if the velocity

field induced by w* satisfies (2.5) then the velocity induced by w**! satisfies (2.5} as well.

The boundary condition (2.16) expresses the fact that there is a fux of vorticity into (out of)
the fluid. Our goal is to find the amount of vorticity per timestep that is introduced by this boun-
dary condition so that we may compare this with the amount of vorticity which is introduced at the

boundary in Chorin's vortex sheet algorithm.

Given ®* *!, the result of an Euler step using (2.14), we can consider the vorticity o**!
obtained using (2.15) as being the sum of the solution 1o two separate problems. The first piece is
an approximate solution to the diffusion component of the equation with homogeneous boundary
conditions and ®* *! as initial data. The second piece is an approximate solution of the diffusion
component of the equations with normal boundary condition (2.16) but with homogeneous initial
data. It is the contribution of this latter piece of the solution which is the amount of vorticity intro-
duced by the boundary condition (2.16). Th.ls vorticity, @, is that defined by

Bi,j = oy,

= vD*M~
3 = VD}.D C!)gf‘j

¥




m?-j’l#mikvi K Py -
“—'—§}__=Ai.i(ﬁk'°’ )+ DyByer; ¢

where A; j(ﬁ‘", ) is the second order approximafion to the convective e n (2.1 and

To construct & we usé the trapezoidal rule t© approximate the integral in (2.3)- We ass
no vorticity above the ine ¥y = Yo and hence u = W. for points above this line. For the remat
points (f S n) we use

i (mi.p + ml‘.p+i) d}’

ui.j=u-+ 2

p=i
v i3 appmximated using

1 Uity ~Wi-lp Wip pet — Ti-lprl
3T 2k M Zdx ) ay

{e. a mapezoidal rule approximation to (2.4) in which central differences are used 1@ appra
the -derivatives of u. At points on the '1eft and right computational boundaries second orc

gided differences are used in (2.12) instead of central differences.

It re‘mains to specify the boundary conditions used for the vortcity- At the left edg:
computational poundary, the inflow side, we assumed that there is 0o vorticity imm
upstream. At the right edge of the computational boundary we assured outflow boundar
tons - L.e. the vortcity is unspecified at points just outside of the computational domain. A
and bottom of the domain we specify the normal derivative of ©. This data was incorpor
the difference stencil using the method of fictiious points: For points on such boundartes.
ral difference occurring in (2.10) uses 3 point just outside the computational domain. Thi
eliminated by using the normal derivative boundary condition. For example, at pomts aa

the second derivative term is approximated by

2y, - W0 2 0@

d}'z dy B‘y L0

D;D;m{'o =
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Thus, aithough Chorin’s scheme and the above finite difference method are based on very
different discretizations; the strength of the vortex sheet created at each timestep on the boundary
is the same. Furthermore, while not a proof, the existence of this finite difference analog of
Chorin’s method swongly suggests that Chorin’s treamment of boundary conditions for the Prandtt
equations is just a particular implementation of boundary conditions obtained by requiring the van-

ishing of the time derivative of the constraint imposed by the no-slip velocity condition at the plate.
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(2.13) was integrated to steady state. The mesh chosen was uniform in each directon and the

. 2
tmestep was chosen so that & < nﬁn(%, %,5‘3). No instability was observed for this choice

of paraxr;eters. In figure 2.1 we present a comparison of the Blasius solution and the computed
solution at locations x=.25, x=.5 and x=.75 along the plate. (The exact solution used is that given in
(19]). Here dx = dy = .025 and & =.005. The difference between the u velocities of each solu-
ton is plotted versus the similarity variable 7 so that each profile can be compared with the others.
The velocity profile which is most in error is that near the leading edge of the plate, x=.25, This is -
to be expected since the number of points resolving the important features of the velocity field is
.1ess at this station than at stations further down the plate. However, the maximum relative 2rror of
all the profiles is less than 1%, At the station located at x = .5 the maximum error of the tangen-
ual velocity was 4.804%, 1.212%, and .242% for mesh widths .1, .05, and .025 respectively, and
hence the method appeared to be converging at a rate of at least second order with respect to the

spatial discretization.

We conclude this section by discussing the relation between a method introduced by Chorin
for solving the Prandd boundary layer equations and an analogous finite difference scheme. In [5],
Chorin uses the method of fractional steps and vorticity boundary creation to solve equations
(2.1)-(2.5). The discretization he uses is based on computational elements which are segments of
vortex sheets. The basic timestep, ignoring the precise implementation detnils, is as follows: An
approximate solution of the inviscid equations is advanced one time-step (equation 2.1 without v).
This leads to a vorticity distribution which induces a velocity feid which does not satisfy the
tangential boundary condition on the plate. If the velocity field at location idx on the plate is u;,
then vortex sheets of cumulative stength 2u; are created on the boundary. These sheets are then
allowed to participate, with the sheets already in the fluid, in a random walk which approximates
one step of the evoluﬁon of the viscous terms of the equation. If a sheet leaves the computational
domain in this latter step, it is deleted. These steps are then repeated to advance the solution in

time. (For an elementary discussion of the method see [7].)
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with initial condition @y, = 0 and boundary condition {2.16). Working through the algebra we

find that @ is non-zero only at the lower boundary (the points with j = (), and is given by

A . x ; ,
_ 28_{ Z[Al.p +g(ﬁ*,m )+ A!.P(E*’m )]dy . (2.17)
dy p =0 2

;.0

From (2.14) we have

and using this expression in (2.17) we arrive at

~k+l k kbl k
- L [(VH - ©; -0 ; - @
mf_cn: 2 E[( i,p+l :,p-ﬂ.) i,p :,p) ]dy

20 2

A BEL B

S

d 2.18
et T @.18)

In this last simplification we assume cn,—’f ; satisfies (2.3) discretely, i.e.

k k
LA + W
+ Z ( ‘:,p-ﬂz l.p)

220

dy =0

The expression on the right in equation (2.18) is precisely the u velocity at the plate which is
induced by &* *!, ie. the slip velocity at the plate induced by the vorticity after one step of Euler

flow. Thus, again denoting the slip velocity at the point idx as u;, the amount of vorticity induced

-“21.1; .
on the boundary is -a—y- In light of the formula for velocity reconstruction (2.11) this amount of

vorticity induces a jump in velccity at the wall of —u;. Thus, a sheet of strength u; has been gen-

erated at the boundary.”

With regard to Chorin’s mcthéd, sheets of cumulative strength ~2u; are generated at every
boundary point. (The strength of a sheet is equivalent to the opposite of the jump in velocity which
it induces.) However, due to the random walk which these sheets participate in, haif of the sheets
introduced on the boundary will exit the computational boundary (on average). Hence the cumula-

tive strength of the vortex sheets from the ith boundary point which actually enter the fluid is —u; .



satisfied. Similarly, boundary conditons necessary to ciose eguation (2.1) are not given, We
proceed, as in the first section, to derive boundary conditions by expressing the condition on u in
{2.5) as a constraint on the vorticity and then setting the time derivative of this constraint equal to

zero. Using (2.3), the constraint on the vorticity is
u.+-_jm(x,5,t)ds=0 x20 and: 20 . . 2.7
Thus we require
%?Im(x St)ds =0
= ;j%—?(x,s,t)ds =0

= 2
= g—ﬁ’-Vco+v%-°2ids=0
y

dw 1t :
= =55 ly=0 = VJ;{TI Volds | ‘ 2.8)

(2.8) is the desired boundary condition and when added o (2.1)<2.4) closes the equations. We
now consider a numerical method for solving these equations which incorporates these boundary

conditions.

Our computational domain is the rectangular region described by the points (x, y) such that
O0<x<x. and 0<y < y.. The mesh we use is rectangular with widths dx and dy in the x and y
directions respectively. The values of the vorticity and w.;locity are computed at the grid points
(fdx, jdy) and are designated by «;,; w; and v;; with 0<i <m and 0<j<n. To approxi-
mate (2.1) we use a one step explicit method (Euler’s method) to advance the solution in time, and
approximate the advection term @ Vi using a second‘ order upwind differencing scheme due to
Colella [8]. (We believe the results are relatively independent of the advection scheme used.) The

second derivative term was approximated by central differences. Our scheme is thus expressed by
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3. A Finite Difference Method For Flow Past a-Cylinder

In this section we present a finite difference method for calculating flow past a circular
cylinder in two dimensions. The construction of this scheme illustrates one possible technique for
incorporating the boundary condition (1.10) into a numerical Lnethod. There are many other possi-
ble discretizations, some of which are computarionaﬂy; more efficient, but we have selected this

particular one because of its relative simplicity.

Let ¢ be the potential which corresponds to a uniform flow about the ¢ylinder with an onset

velocity parallel to the x axis and of magnitude U, at x = —w, We use polar coordinates and
denote @ as the vorticity and (u, V¥ =1 + ¢,, Vv + -i-d,)g) as the radial and tangendal velocity com-

ponents respectively. With this notation equation (1.4) in non-dimensional form becomes

= D) (5 5 =g (3.1)

7aUn
v where v

The Reynolds number Re is based on the cylinder diameter and is given by Re =

is the viscosity of the fluid and », is the cylinder radius. The velocities U and V are determined

from the stream function ‘¥ by the relations,

. Ll2¥ G 2%
u= r o V= or G2
A% = - (3.3)
o,
¥=0atr=r, and nmg‘aﬂ;ﬁrd%o . G4
L

This last requirement, the specification of the circulation of the velocity field induced by ¥ at

infinity, is necessary for the equation determining ¥ to be well posed.
Equation (3.1) is to be satisfied in the domain Q described by 7, <7 <ee and 028 < 2.
On the cylinder boundary, dQ, we require that u =0 and v = 0. If we use the expression for ¢,

»

2
6=ULr + ’7“) cos(8)
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and set r = r, then these boundary conditions imply that
U, 8)=0  V(r,, 8) =2U. sin(8) 0s6<2m . (3.5
If we denote by G{(x.,y) the Green’s function corresponding to the problem (3.3)-(3.4) the constraint
on the vorﬁcity is
'3;—? £ Glon s)a(s, t)ds = -2U.sin(B). & = (,cos(8), 7,sin(®) 0s0<2n . (36)

Here 7 is the normal pointing into the cylinder. As derived in section !, the boundary conditions

which will ensure that the time derivative of this constraint vanish are

dw . 4
— = __ v .
I + aﬁ,‘Laﬁ,(a’Y)m(\’-f)dY J-G(U-.J')['U Wi, t)lds (3.7

The finite difference grid used was uniform with mesh width dr and 46 in the r and 6 varables
respectively. Qur computational domain is described by an annulus - the set of grid points
idr,jd9 such that r, <r, +idr Sr, +ndr=r, and 0<jd0 <md® =2n Here r, is the
outer or "far field" radius of the computational domain. We denote the vorticity and velocity distri-
bution at time k& by o and ¥ =(u*,v*) respectively. We used the stndard five point
differéncing for the La;;lacian in polar coordinates, which we demgnar.e by A%, and a second order
approximation (a modified upwind scheme) to the advection term T -V due to Colella [8]. We
designate this by A(T*,@*). (The choice of the approximation method for the advection terms of
the equation is not a key element in the derivation of the boundary conditions. We chose this par-
ticular one out of the variety available because of its’ stability characteristics and its’ lack of
numerical diffusion.) We used a first order explicit method for the time integration of the equa-
tions. In the interior the scheme is given by

kvl _

ot
Here the sub-indices (i,j) which refer to the values at the node (idr,jd6) are suppressed. The

Q —-A(ﬁ" *)+—A‘ k (3.8

velocity field 7* used in (3.8) is obtained by solving
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AV = (3.9)
and then using central difference approximations to (3.2) to obtain approximations to the velocities.

In order to close equations (3.8) and (3.9) we must specify boundary conditions on the sur-
face of the cylinder and at an arificial computational boundary » = r,. We shall discuss the boun-

dary conditions related to this artificial boundary first,

The effect of a finite computational boundary at r = r, introduces complications in calcula-
tion of (3.8) and in the solution of Laplace’s equation ¢3.9). As regards the treatmeﬁt of the vorti-
city wansport equation (3.8), we follow the simple procedure of eliminating any vorticity which
exiss the circular boundary with radius r, — dr (i.e. at the end of each time step, the vorticity
which is in the outer ring of computational nodes - those at r = r, - is set to zero). The sum of
vorticity which is deleted is saved, for this quantity is necessary in the consistent calculation of the

stream function P,

As regards the calculation of the stream function, we form an approximation to the solution
of (3.9) by utilizing a standard fast Poisson Solver for the grid points in the computational region
rq £r <r, coupled with “infinite" boundary conditions {2]. The infinite boundary conditions are
derived by requiring that the solution in the finite component of the domain (r, < r <r,) match
with an appropriate solution in the infinite component (r > r,). Such'a matching condition can be

" explicitly obtained because the simple geometry of the problem allows one to compute the infinite
component analytically. This procedure, based on ideas from domain decomposition techniques for
elliptic problems, is similar to that used successfully by B. Fornberg in his steady state calculations
(11]. In the implementation of infinite boundary conditions it is necessary to specify the circulatio-n
about the contour r =r,. We set this circulation equal to the total amount of vorticity which has

exited the computational domain. With respect to our specific discretization, the amount of circula-

tion accumulated at each time step, ck, is given by

c*=-Fwk r,drdd 05jdos<2n
7

In essence, we are moving the vorticity which has departed from the computational domain out to
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inﬁniry. As will be seen from the computational reslults, this simple treatment oif the far field boun-
dary  condigons - using outflow .boundary conditons for the vorucity transport equation and
“infinite” boundary cenditions for the Laplacian in the stream function calculation - works surpris-
in.giy well.

Thé other boundary conditions which must be deal't with are the conditions on the vortcity at
the surface of the cylinder. As in the derivation of the vorticity boundary conditions, we set ¥ = 0
on the cylindér boundary and consider the normal derivative boundary conditon on ¥ as the con-
straint to be ‘satisﬁed. There are two possible paths to follow in the construction of a finite
difference scheme which incorporates boundary condition (3.7). One path is to use the discreﬁza-
tion of the equations in the interior (3.8) and incorporate a separate discretization of (3.7) near the
boundary to close them. If this path is followed, then it is likely that the boundary conditions
corresponding to a discretization of (3.7) will not guarantee that a discrete approximation of the
constraint (3.6) will be satisfied exactly at each timestep. However, assuming that the discretiza-
tions are done in an intelligent fashion, we expect that over a given time interval (;5.6) will be
satisfied up to an error which diminishes as the discretization is refined. Unfortnately, such an
implementation is not particularly well suited w computations in which a steady state or long time
solution is sought. For such solutions, it is desirable to ensure that the error in a discrete approxi-
mation to the constraint (3.6) be independent of the time interval. (This ensures that the final solu-
tion satisfies the boundary conditions with an acceptablé accuracy.) The other implementation path,
oﬁe which can be used to derive methods suitable for such calculations, starts with a discretization
scheme for the interior equations (3.1) and then specific boundary conditions which correspond to
such a scheme are obtained by mimicing, with discrete operators, those arguments used to obtain
(3.7). The result is a method in which a discrete version of (3.6) is satisfied up to numerical
rbundoff at every time step. In our calculations of flow past a cylinder we were interested in com-
puting steady state solutions (in order that our results may be compared to existing computational
results) so we chose the latter implementation path. We obtain our boundary conditions on the vor-

tcity by following the derivation of the boundary conditions for the continuous case, but using
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discrete, rather than continuous operators.

We denote by D, the standard cne-sided finite difference approximation to the normal deriva-

tive at the cylinder surface:
Wg,; = Wy, ;

dr
We denote by A§ the five point finite difference approximation to the Laplacian in which values on

D@ =

the cylinder boundary are taken to be identically zero. With this notation, the stream function at
ime & &t is given by
¥ = (6ot
A discrete approximation to the constraint (3.6) is thus
| DA w* = -2U.sin(j d6) . (3.12)

This constraint holds for all points, (r,,,/d8), on the surface of the cylinder. In this expression, the
inverse of the discrete Laplacian in the computational region is computed using "infinite domain"”

boundary condidons.
In order to ensure that this constraint be satisfied by the numerical scheme, we require that
the discrete time difference of the constraint vanish, ie.,

D, (A a**! - DA ot

8¢ =0

If one uses the equations which @ satisfies, then this becomes

kel _ ok
Do(ady () = 0

- DH(AO")"(—A(u",m*)-é--I%G-A‘m")--o . (3.13)

In this last expression the evaluation of the discrete Laplacian incorporates the yet to be determined
vorticity boundary values. In the continuous case, integration by parts is employed ard the Lapla-
cian occurring in this last expression is transformed to a functional of the boundary vorticity. We

refrain from doing the discrete version of this (because it leads to an expression which is not
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computationally useful) and instead proceed to show how (3.13) can be used t¢ obtain 2 useful
expression for determining the boundary values of . Assuming that the constraint (3.12) on the
vorticity is satisfied by interior values of w*, we find an equation for a vorticity boundary values,

which we designate wf, We write (3.13) as

_ 2 .
DoAf -G o) + gadet + %A‘mb =0 . (3.14)

Here we are evaluating %A“mﬁ by extending wf to be zero in the interior of the domain. The

terms involving A(u*, ") and Afw* are completely known at time k8t, thus equation (3.14)
becomes an equation for of alone. (We are maldng the implicit assumpton that the approximation
to the convective term for the vorticity does not involve boundmy'va.lues of vorticity,) From this

last expression we obtain an equation for @f,
-1, 2 - 2
Di(A8)™ (g 4% @) = Do(ad) ™ (AG*, o) - 2=Adt) (3.15)

In our computation, the right hand side of this equation is computed by evaluating each of the
operators in tum, starting with the advection terms and the Laplacian, The discrete system on the
left hand side of (3.15) (the order of which is equal to the number of boundary points) is then
solved for the vorticity boundary values. These values are then incorporated into the interior finite

difference scheme (3.8).

One may be concerned about the invertability of the operator on the left hand side of (3.15).
Consider a function p defined on the boundary of the cylinder. The inner product
(P, Da(A§)™(A%D)) can be cast in the form (Tp, (A& Tp) for a rank n finite difference operator T
from R" to R™™. Here (,") refers to the natural inner product defined on the interior mesh points
- products of values times an integration factor r dr 48, Also, the action of the discrete Laplacian
upon p, A%p, is evaluated assuming that p is extended to be zero at interior points of the domain.
From this observation and the result that the finite difference operator (A§)"! (inverted assuming a

fixed circulation at r =r,) is negative definite, it follows that the operator in (3.15) is negative




.deﬁnite and hence non-singular.

If one uses a direct method to solve (3.15) then it is necessary to form the operator on the
left hand side explicitly. Cne can form the matrix representation of (3.15) by considering the opera-
tors action upon a basis for /. In our particular application of flow past a cylinder, this requires
very little work because the cperator is represented by a circulant matrix. The matrix can thus be
constructed after calculation of the operators action on one basis element. Furthermore, the matrix
is diagonalized by the discrete Fourier wransform, so the inversion of the resulting matrix equation
can be carried out efficiently using the fast Fourler transform. In other situations this will not be
possible, but we note that the matrix only depends on the mesh size and does not depend on the
physical parameters of the problem. There is some similarity of the operator oceurring in (3.15)
and that which arises when one employs domain dec.omposition techniques for solving elliptic
boundary value problems [1]. In the latter case iterative methods have proven remarkably efficient

and it is quite likely that fast iterative methods for solving (3.15) are possible.

One item to be discussed is the choice of initial conditions. In order that our boundary condi-
tons be effective, we must ensure that the inital vorticity satisfy the constraint (3.12). For the
Prandti boundary layer equations, the choice of initial vorticity was easy to determine. For this
problem, the choice of initial conditions is a bit more difficult. We wouid like an initial vorticity
distribution which is non-zero only 'on the boundary - ie. a set of initial conditions which
corresponds to an impulsively started cylinder. A problem occurs because in the discrete equations
the vorticiry, if confined to the boundary points aione, does not induce any.velocity. Only interior
values of vorticity are used to form the right hand side of the discrete approximation to (3.3)-(3.4).

However, a suitable vorticity can be obtained by solving
D,.(Ag)-l(-;—ead ©f) = - 2U.. sin(j d8)

for values on the boundary, ¢, and defining

'm°=b for (idr,jd8) ¢ Q—-a3Q
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= @ for (idr,jde) & aQ

It can be checked that this vorticity distribution, while not satisfying the consmaint at time ¢ = 0
iself, has the property that after the first time step the approximate vorticity, @', will satsfy the
constraint. For £>1 the use of boundary conditions (3.13) will ensure that the remaining @* saisfy

the constraint.
We now summarize the basic steps of the algorithm

[0] Construct initial data °.

Il Given o* compute F = A(u*,0*) - %A&'w" . T is determined by solving AZYP* = -@f

with appropriate boundary conditions and then differencing' the result. In the computation of
W* the circulation at 7 = r, is set equal to the opposite of that mass of vorticity which which

has exited the computational domain during the previous & steps.

(I Determine the boundary vorticity @4 by computing the solution to
1, 2 - i
Da(A¢) ‘(Eﬁ‘mf) = Dy(a§)~'F

(1] Construct w**! by using the difference equation

0 = of + 8 (-AQt ") + %A‘ w*)

in the interior of the computational domain and using the boundary vorticity computed in
step [II]. Remove the vorticity from the outer ring of computational points, those at r = r,,

and accumulate the amount of vorticity deletad.

In the next section we will discuss numerical resuits obtained with this method. As with
Prandd’s boundary layer equations, this algorithm is analogous to those used by Chorin. Consider

the quantity @, the result of one step of the Navier-Stokes equations using homogeneous boundary
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values for the vortcity,

- of
ot

el

= Ak kY 4 2 Adok
= (-Au ,w)+Reﬁo03)

Assuming that the constraint (3.12) on the vorticity is satisfied at time k8¢, we find that the right
hand side of the equation which determines the vorticity boundary values in step [II] can be

expressed in terms of @, Le.

D - o
&t

@ 2U,.sin(0
) =Dy Zy » 22

Du8§)F = Dy A o) + o) = DA™

Thus, as in Cherin's schemes, the right hand side is proportional to the error (or slip) in tangendal
velocity at the boundary. (The amount of vorticity actuaily introduced into the fluid is roughly pro-
portional to the slip, for when the values of w§ are incorporated into the interfor scheme the factor

8¢ vanishes, cf. section 2.)
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4. Computational Results

In this section we present some numerical results which were obtained with the method
presented in the previous section. Our primary goal in these computations was to assess the accu-
racy of the approximation of the vorticity at and near the cylinder surface (as this is a quantity
which is most dependent on the implementation of vorticity boundary conditions.) For the Reynolds
numbers considered here (4 - 50) the polar grid which we used proved satisfactory. For higher Rey-
nolds numbers in which vorticity dynamics far away from the cylinder surface need to be resolved
this grid is not satisfactory. Other grids, such as those successfully used by Fomberg in his steady
state calculations {9, 10, 11], would be more efficient at resolving these features. Aitemativel.y, it is
possible to couple the results of our finite difference scheme near the cylinder surface with a
Lagrangian vortex blob m;athod to evolve the vorticity away from the cylinder surface. Such a

scheme is currently being implemented and will be discussed elsewhere.

In our calculations we concentrated on two measures of vorticity which have physical
significance, the pressure distribution and the coefficient of drag. Both of these gquantities can be
written as functionals of the boundary vorticity and the normal derivative of the boundary vorticity,
For a point 8 on the cylinder surface the pressure is given by

-]
P(6) =Py—vr, {% do

where r, is the radius of the cylinder. P, is the forward stagnation point pressure and the integral
is taken from the forward stagnation point clockwise around the cylinder surface. The drag is

given by
= 10}
D=v | (0 - —)sin8dd
[ @5
In our calculations we measure the scaled non-dimensional counterpart of these quantities. The

drag in this latter case is referred tb as the coefficient of drag C, and is given by C; = :/z_-?}?“ .
pPydrs
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In our calculations Uy = 1.0, r, = 1.0, and p = 1. The Reynolds number of the flow was
varied by changing the coefficient of viscosity. The computations were carried out with a Hme-step
chosen so that the scheme was stable. For the Reynolds numbers considered here, the timestep was
limited by the stability restiction imposed by our use of an explicit scheme to calculate the
diffusion of vorticity. (The constraint imposed by the advection scheme was less severe than that

for the diffusion scheme.) Thus, in our computations, a timestep & was initially estimated on the

basis of the requix;ement that & < & d9

v In practice the timestep had 1o be taken slightly smailer

than this estimate - but not exceedingly so.

The change in time of the coefficient of drag for flows with different Reynolds numbers is
plotted in figure 4.1. The rate depends somewhat on the Reynolds number, the higher the Reynolds
number the more rapid the initial convergence to steady state. By time ¢ = 40 an approximation to
steady state appears to have been reached for each Reynolds number. The coefficients of drag at
the final times are presented in table 4.1, along zhé results of computations by Keller. and Takami
[13, 14] and the experimental work by Tritton [20]. (We chose these resuits as representative sam-
ples of the great body of results which exist for viscous flow past a ¢ylinder.) The agrzement is
generally good, although our results for Reynolds numbers less than 50 appear to be somewhat

high. However, we are within the experimental error of the results given by Tritton.

3

AN o0

Table 4.1

Comparison of the coefficient of drag C.
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The effect of numerical parameters upon the drag coefficient is illustrated in figures 4.2 and
43, In fgure 4.2, we plot the change in drag with respect to the mesh size for each Reymolds
number. In order to reduce the computational labor, the time at which the drag was measured was
¢t =20.0. This is not steady state, and in particular, it is not the same time used to measure the
drag which appears in Table 4.1, but sufficiently close to steady state so that the general conver-
gence trend in the drag cqu.ld be ascertained. These results indicate that for the Reynolds numbers
cdnsidered, our computational grid was sufficiently fine to evaluate the drag coefficient accurately.
In figure 4.3 the change in drag associated with a change in the far field radius is plotted. We
found the effect of the computational radius on the drag a bit surprising. A computaticnal radius of
21 cylinder radii appears 1o be sufficient to yield accurate drag results - this is not a particularly
distant computa:ioﬁal radius. Secondly, as the Reynolds number increases, it appears that one need
not increase the far field radius. In fact, it appears that one can reduce it. This result is very nice,
for it means that calculations of flows at much higher Reynolds numbers may not need a
correspondingly larger far field radius. This is the opposite conclusion which might be inferred
from the steady state calculations of Fornberg [9, 10, 11]. In those calculations it is readily
apparent that as the Reynolds number increases, one must increase the far field radius in order to

capture the steady state solution.

We were interested in the effect of the far field radius on the pressure distribution. To inves-

tigate this, we concentrated upon the effect of this boundary for ReynoIEé number 50. In figure 4.4
. we plot the pressure at the cylinder boundary corresponding to an outer computational radius of 6,
16, an& 26 computational radii. Fortunately, as an examination of this figure provides, we find that
the pressure is not greatly effected by the far field boundary conditon either, The most significant
effect of the far field boundary is to increase the pressure drop from the front to the back of the
cylinder. In light of the formula which defines the pressure, it appears that the primary effeé: of
hav.ing a close computational mdius is to increase the flux of vorticity from the cylinder surface,
That this occurs when the computational boundary is close to the cylinder seems plausible, for our

computational boundary is a perfect absorber of vorticity and hence "draws" more vorticity away
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from the cylinder wall. At higher Reynolds, when the flow is non-stationary, it is not clear that a
similar mechamism wiil occur. Further numerical work should clarify the situation in the latter cir-

cumsiance.

Lastly, we were interested in the effect of using a first order upwind scheme to approximare
the advection term in equation (3.1). This interest arises because upwind schemes can be very
inaccurate, yet remain popular because of their simplicity and stability properties. We thought that
it would be of interest to investigate the quality of the solutions which could be obtained with such
schemes. For this purpose we concentrated on flows at Re=50, and used corner wansport upwind
(8], a variant of the st_andard upwind diffefence scheme which includes the upwind cormer points in

the difference stencil.

There were sigmificant differences in the results between first and second order upwind.
When using the finest grid, the drag calculated at time ¢ = 20.0 by the second order scheme was
1.50453, while that obtained with the first order scheme 123395 - a difference of 17%. The fact
that the drag was lower was‘ an unexpected result The upwind schemes are known for tht;.ir

numerical diffusion and we had thought the calculations would yield a result corresponding to a
| more viscous flow, i.e. a higher drag coefficient. However, one must be careful about drawing con-
clusions about the nature of a numerical solution based on the coefficient of drag alone. In figures
4.5a and 4.5b we present vorticity cor.ltours obtained with a first and second order upwind scheme.
In figure 4.5¢ we present the vorticity contour for a Reynolds number 20 solution (obtained using a
second order method.) As is evident from the figures, the first order upwind shares properties simi-
lar to the lower Reynolds number calculation. In particular, there is a lower maximum verticity
on the surface of the cylinder (Ist order Re = 50; 0y, = 6.618, 2nd order Re 50; @, = 7.822 .and
2nd order Re = 20 ;Wpm,, = 4.673) and a greater angle between the vorticity contours and a tangent
to the cylinder surface. That this qualitative similarity is not reflected in the drag coefficient is due
to the fact that this coefficient is r.he‘p;oduct of a scaling factor and a functional of the vorticity,

namely, the integral
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T3
J’(wua-‘g)sinede : 4.1y
Q

"Although the drag coefficient decreases as the Reynolds number increases, the factor (4.1) actually
increases with increasing Reynolds number. For example, for the second order scheme, this
integral has the approximate values 9.8, 13.2, 21.2, and 37.6 for Réynolds numbers 4, 8 , 20 and 50
respectively. __For the ﬁrét order upwind scheme, the value of the integral is about 30.8, reflecting
the fact that the computed vorticity field corresponds to a more diffusive calculation. Thus, the
coefficient of drag for a diffusive scheme, being the product of a smaller integral factor times a
smaller scaling factor, can be expected to be smaller rather than larger than the correct coefficient,
In figure 4.6 we plot the coefficient of drag versus a measure of the mesh size, Vor® + 982. From
this figure we see that at the finest grid level used, the first order upwind has not converged and
thus the difference in the drag is understandable. It is clear that a second order scheme is superior

and should be used.
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3. Conclusion

In this paper we have given a derivation of appropriate boundary conditions for the vorticity
associated with the velocity field of an incompressible, viscous fluid in two dimensions. The. key
point in the derivation of these boundary conditions is to realize that the evolution of the vorticity
is a constrained evolution, and boundary conditions can be determined by requiring that the time
derivadve of the constraint vanish., We have also presented a method which incorporates these
boundary conditions. In the case of the Prandtl boundary layer equations, the method which results
is analogous to Chorin's vortex sheet method {5] which is of the vorticity creation type. For the
complete Navier-Stokes equations, the implementation has similarities to Chorin’s original vortex
blob method {4] and is formaily equivalent to an implementation of the projection method of Quar-
tapelle and Valz-Gris [16,17]. These observations provide an interpretation of the relation between
two apparently different methods. Both methods are designed to ensure that the constaint on the
vorticity is satisfied - it is just that Lhelcrea:ion algorithms accomplish this by insuring that the dme

derivative of the constraint vanish,

Our numerical results for flow past a cylinder indicate that accurate schemes which employ
our boundary conditdons can be constructed. Moreover, the results indicate that the difficulties
associated with an infinite computational domain are not overwhelming, and can be overcome with
a straight forward procedure. The acc;nacy of the scheme we present is satisfactory for low Rey-
nolds numbers (perhaps up to a few hundred), but it is not especially efficient for high Reynolds
number flows. Many improvements can be envisioned, for example, using a different grid to
resolve the vorticity dynamics downstream from the cylinder or a different time-stepping procedurs.
One of the benefits of héving a concise description of the vorticity boundary conditions is that it

facilitates the implementation of these improvements. .
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Figure 4.52

Vortcity Contours for First Order Upwind, Re=30, -.5 o -7.25 (5.
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Vorticity Contours for Second Order Upwind, Re=50, -.5 w0 -7.25 (.5).
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Vorticity Contwurs for Second Order Upwind, Re=20, -.5 1o <725 (.5).
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