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Abstract
When solving the linear system Ax = b. the condition number K{4) = J4ll |4~ ifisa

useful mcasure of the sensitivity of the solution x under perturbations A4 and Abto A and
b. respectively. It is widely appreciated, however, that K[ 4) is often an overly conservative
estimate. We introduce the notion of an “effective” condition number K, = H.{A,b},
which gives a more accurate measure of the sensitivity of x. by taking into account the
actual values of b. The effective condition number provides insight into why observed
numerical errors may fall below theoretical error bounds. We consider the effects on %
of perturbations A4 and Ab. which may determine the influence of A, in a particular
solution algorithm. We present applications to a fast Poisson soiver and a Vandermonde
system solver that demonstrate the usefulness of K, and the related perturbation analysis
of linear systems and solvers.

1. Introduction

Consider the solution of the linear system
Ax=b (1)

where A is a nonsingular n x n matrix and x and b are n-vectors. A fundamental question
is the sensitivity of the solution x under perturbations to 4 and b. Such perturbations

are unavoidable. for example. when one represents (1) in finite precision numbers.

A sensitiviry analvsis often gives insight into the stability of numerical algorithms for

solving (1). It is well-known that the condition nuniber

K (A) = 4471 (2)
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plays a central role in such an analysis. In fact, the following two perturbation bounds can

be fonnd in most textbooks on the subject [3]:

(a) If A(x + Ax) = b + Abh. then

u..,%.fﬂ A M o
AT %)
(b) If (4 + Ad}{x = Ax) = Db. then
laxl L. o ladl
T axy < A W

In practice. however. the bounds in (3) and (4) are often overly conservative estimates of

the actual relative errors in x.

It should be noted that the bound in (4) is sharp in the sense that given 4 and b.
there exists a A4 for which the equality sign in (4) holds for an induced matrix norm {10].
The bound in {3). however. is not as sharp. One can only say that given 4. there exist b
and Ab for which the equality in (3) hoids. If both 4 and b are given. then the bound
in {3) may be unachievable for any Ab. and in these cases. the condition number K (4)
is not a good measure of the sensitivity of x under perturbations to b. Various authors
[4.7.9] have discussed this situation in the literature. Viewing A4 as the perturbation to 4
obtained in a backward error analysis of a given method of solving (1) with finite precision
numbers, the particular A4 that produces equality in (4) may not be achiéved in practice,

rendering that bound overly pessimistic as well.

In generél. the sensitivity of x in (1) depends not only on 4 but also on b. For
this reason. in this paper we introduce the notion of an “effective” condition number
K, = K{A.b) for the linear system (1) that explicitly accounts for the values of A and
b. This condition number is based on the singular value decomposition of 4. One of our
goals is to identify classes of problems for which K, will provide a more accurate estimate

of the sensitivity of x. -
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For example. in the case of Ab # 0 and A4 = 0 we shall derive a formula for A,
which not only depends on the relative sizes of the singnlar values of 4. but also on the

projection of b onto the left singular vectors of 4.

Different algorithms for solving (1} may or may not achieve the smaller perturbations
to x indicated by K,. Considering the totality of rounding errors introduced in a finite
precision calculation as a perturbation A4 to the matrix 4. it is clear that the size of the
computed Ax depends on A4 and Ab, as well as on R,. Thus it is also relevant to apply
the effective conditioning analysis to particular solution algorithms: Theorem 2 may be

interpreted in this manner.

In genefal. the case A4 # O and Ab =0 isr more complicated and we show that
K., = K(4) is the best that one can do for a general perturbation A.4. However. for
special classes of A 4. it is possible to derive an e#pression that is @ much sharper estimate
of the sensitivity of x than rhat provided by K(4). Van der Sluis considered such a
family of perturbations [9] to columns of A. Here we shall show that. for a rather general
class of A4, the previous formula for K, is also a good measure of the sensitivity of x to
perturbations A4d. This result. embodied in Theorem 2, also helps.to identify a class of

algorithms which can take advantage of effectively well-conditioned problems.

We shall present two examples and a summary of numerical compa.risons which dermon-
strate the usefulness of this new concept of an effective condition number. The first exam-
ple is the solution of Vandermonde systems, for which we show that oscillatory right-hand
sides can give much smaller relative errors in x than would be predicted by K(4) alone.
The second example is the solution of a Poisson equation. for which we show that smooth
right-hand sides are the ones that are effectively well-conditioned. We also indicate why

fast Poisson solvers are able to exploit the low effective condition number of this problem.

The idea behind the effective condition number is not completely new — it has been
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widely appreciated that the usual condition number is not always a good estimator of the
actual error in a computation {2]. For example, in the numerical simulation of semiconduc-
tor devices, the matrices that arise are often so badly conditioned that the usual condition
number estimates would pr.edicr no correct digits even in 64-bit precision. However. such

simulations are very successful and do produce useful results.

We present the effective condition number as a tool for investigating specific classes
of problems and certain solution algorithms. It is likely that other effective condition
numbers (not based on the SVD) will provide additional insight into the error behavior
of linear systems and algorithms not considered here. Simpler condition numbers do exist

(for instance. K (4.b) = ||4A7||Ib]|/|lA~!b])). but they do not always provide the insight

obtained with our effective condition number.

The structure of the paper is as follows. In the next section. we shall motivate the
notion of an “effective” condition number from a physical point of view. Then in section 3.
we shall develop the effective condition number K .{4.b). In section 4. we apply a similar
analysis to the case Ab = 0 and A4 # 0. The numerical examples will be discussed in
section 3 with concluding remarks in section 6. All norms used in this paper are Euclidean

IlOTrIms.

2. Physically Stable Systems

The notion of an effective condition number can he applied to physical systems as well
as to mathemnatical systems. In this section. we shall look at a simple physical system
whose sensitivity depends not only on its intrinsic structural properties, but also on the

nature of the external forces on it.

Consider an elastic beam supported at its two ends under load:



INSERT FIGURE 1

A simple mathematical model for this physical system is
uzr = flz), u{0)=1u(1)=0 (3)

where u{z) is the displacement of the beam and f(z} is the load. After a standard centered

second-order finite difference discretization of (3}. one obtains the linear system
Lu=f (6)

where L is a tridiagonal matrix and the components of u and f are the displacement and
load at the mesh points. Thus the sensitivity of (6) under perturbations in f is related to

the sensitivity of the physical displacement under perturbations in the load f(z).

Consider a load f{z) = sin 7z

INSERT FIGURE 2

and another load f(z) = sin pmr where p is a large integer.



INSERT FIGURE 3

It should be physically intuitive that the situation in Fig. 3 is much more unstable than
that in Fig. 2. In Fig. 3. the displacement u(z) is much smaller than in Fig. 2 because the
oscillating load tends to cancel itself out. Therefore, a perturbation to f(r) of the form

6 sin vz would produce a large relative change in u(z) for Fig. 3.

Referring to the linear system (6). it is clear that the “effective” sensitivity depends
not only on the matrix L. but also on the special form of the right-hand side f. This
analogy has also been made by Hammarling and Wilkinson [4]. who also discuss the case

of no load with nonzero boundary conditions.

3. Effective Condition Number K, (A.b)

We shall now make precise the notion of effective conditioning by deriving an expression
for K, = K.{4.b) that incorporates the special form of b. A bound on A, involving Ab

as well is developed following Theorem 1.

Let 4 have the foilowing singular value decomposition:

4=Uv0zvT - (7)

-

where

U =[uy,....u,

are the left singular vectors.



are the right singular vectors. and

are the singular values. ordered so that oy > ¢4 > ... 2 0, > 0. Thus A{4) =0y /0,.

Next define two projection operators P and P, by

P.=U UL, 1<k<n (8)
where

Up = [Upgaps- - Un] € R,
and -

ij‘ EI—[.TkUE. (9}

Our first principal result is

Theorem 1. Let 4 have the singular value decompesition (7). If 4x = b and 4(x +

Ax) = b + Ab. then

. | Ab]|
et < Ko (A by k) ——, for 1<k<n. . 10
T S el Bik) Ty (10
where
\ -1

- oy On_kst (”Pkb“)
I&d A. bk} = 11
(4-b:k) = =25 L0 (11)

and P, is the projection operation defined in {8). Morecover. if one defines the effective
condition number K, by:

K.(4.b) = min K,(4.b:k).

then

K.(4.b) < K(4). (12)
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Proof. Let

and
n
Ab=) 4y (14)
1=
Then the solution x can be written as
n
3.
X = '—I’Vi. (15)
i=1
Taking norms, we get
n 32
5 :
I<ll? = 3" =
n 2
> N é}_
- L—l 0.2
f=n—k+1 ¢
(16}
1 = 3
2| 5 a)
~k=1 \i=n—k+1
AN
2
an*k+l
Next, from the expression for Ax
n
- &;
Ax=A"1Ab=) v,
g;
=1
we get .
n . 2 n 19
3 6;\ "~ 1 «— ,» “A . -
laxip =30 (%) s 5 =0 17)
. i Ty - T

i=1 : =1

Combining {16) and (1T). we get (11). (Note that a tightrer bound than (17} could be

derived from additional knowledge of Ab.)

Since P,b = b. we have

K {4.b:n) = K(4)



and so (12) follows. O

The impiication of the theorem is that if. for a particular value of &, the right-hand
side b projects largely onto the first & left singular veerors of 4. i.e.. that ||[Pcb]] = ||b|l.
then the effective condition number A, is approximately bounded above by o,_¢_{/on-
which could be much smaller than K(4) = ¢,/on. e.g.. for k¥ « n. A major advantage of
[ .

may over-estimate errors in x. From this point of view. the singular value decomposition

this effective condition number is that it provides insight into why K (4) = |4~

|4

does not play an essential role in the theorem; one may usefully consider anv orthogonal

factorization of A in analyzing problem-dependent conditioning.

Example 1. If b = u,. then we can take k¥ = 1. and A.(4.b} = 1. In other words, if
the right-hand side is a multiple of the left singuiar vector corresponding to the smallest
singular value, then the linear system 4Ax = b is perfectly conditioned with respect to

arbitrary perturbations in b.

Example 2. If b = u;. then A (4.b) = K ,{4,b:n) = A{A). In this case. the effective

sensitivity is no smaller than the sensitivity given by A (4).

Note that Example 1 does not ne_cessarily imply that one can solve for x with a precision
that is independent of A (.4}, because numerical solution procedures typically introduce
errors that can be construed as perturbations to .4 as well. Take, for example. Gaussian
elimination with complete pivoting. We will consider a typical backward error bound [8]

for the computed solution x in

(A+E)X=b (18)

in which the error matrix E can be bounded by

NEH < p(n)[|4]lzp.. ' (10}



with z,, the machine precizion and p(n) a slowly growing polynomial in n. From (18), one

can view x as the exact solution to a perturbed problem with
E % = Ab. , (20)
Now if b = u,. then one can expect

=AY (21)

iy 1
x| = o

Therefore. using (10) with & = 1 in this case gives

HEx]]
bl
A7 lem

1% — x|
I}

< K.(A.b)

~ p(n)]|4

= p(n) K{A)zm. (22)

Thus the computed solurion could still grow with A (A4}. and so Gaussian elimination seetns
unable to take advantage of an especially nice right-hand side. However. as we shall see
in sections 4 and 3. it is possible for other algorithms to produce extraordinarily accurate

results for right-hand sides with small effective condition numbers A,.

Before proceeding. we want to make one remark. We note that A,. as defined in
Theorem 1. is independent of Ab. A tighter bound in (10} can be obtained by taking into
account additional knowledge about Ab. It can be verified that instead of the bound in
(17). we could use
i
il

n-£

laxi® <

i 1 p
1P abi® + ;HPfAbllz- (23)

to derive

—13 2 o
![_\xi‘ Sk ”Pkb” O k=1 / ”Pkb“ v =1 .
W=y | onee (IIPf-LAbn) +( = (o) ) Y

for 1 £ k, ¢ € n. and therefore in this case the bound depends on Ab. The bound in (10)

corresponds to choosing { = n in (24). However. if Ab lies primarily within the span of
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a few left singular vectors corresponding to larze singular values. then a much improved
bound can be derived. For example, if there is an £ such that P;Ab =0 and P*aAb = Ab

for £ £ £ then by choosing £ = £7 in (24) we can refine (10) to

A _ @kt (IPD)Y T IIADY
T ( bl )

b

which could be much tighter than {10) if 0,.4 > 0,. To give a more specific example.

let Ab = 8u,; then by taking £~ = n — 1 we have improved (10) by a factor of ;/c,.

4. Effective Conditioning Under Perturbations to A

We now consider the solution of (1) under perturbations to 4. thus solving the nearby
(4+AA)x = b. and apply the rechniques of section 3 to develop bounds on the sensitivity
of X. We represent the error bound under perturbations A4 as A, = A/(4.b.A4). It is
useful to note that A applies to backward error perturbations as well as true perturbations
to 4. Thus K can be used to investigate the error properties of numerical algorithms.
The following two exampies show that. for the perturbed problem (4 + A4d)x = b, an
error bound A that is to be sharper than the upper bound A {.A) must employ information

about the nature of the perturbation AA.

Example 3. If A4 =¢ A. then it is easy to verify thas

Then K, = 1 in this case. independent of 4 and b. but depending on the structure of A4,

Example 4. If 4 = diag{A;. Aao .o Ap). with Ay > A9 2 ... 2 A, > 0, the right-hand
sideis b= (0..... 0.6,)T. and A4 = 6 I. then one can verify that
|a<] § _ A fiaAll _ o 1A
" d I oe— = = k{4 .
[Ews Rl i v 1y A Y



Thus K, = K (1) in this case. due to the form of A 4.

The above examples show that the special form of A4 has a crucial effect on a problem’s
effective conditioning. If one js willing to make assumptions about AA. then sharper
bounds can be derived. For instance. Van der Sluis [9] has considered special classes of
A A based on perturbations to columns of A. In this paper we consider the effect of a

different class of A4, which depends on a spectral decomposition of A.

Theorem 2. Let 4 and 4 be matrices having nearby singular value decompositions (with
=~ = diag(oy..... On). 012022 ... 20, >0and T = diag(6y,....0,), 01 262> ... 2>
o, >0)

A=USvT and A=CEVT (25)

such that ) _
UTU = I “}’Eu, ”EU.H 5 €y

VIV =T+ E,, ||E <e.

and

|

S =T+ B, WES| < 6.

All

I/l

is necessarily small. although the converse is not true.) If Ax = b and 4% = b, then

for small positive values £,, £,, and £, such that e, +¢£,+£, < 1. (In this case ||-1—4

X =x|| _ a-k-1 ([ PD| - g+ eyt € | -
TS on (ubn y) for 1skse. (20)

Proof:

Writing x — x as (:1" I~ 4 -Hhb. it follows that

Ik - x)| = JTE 0T —veE- 1Ty

HVTVE-I0Tr - - hoTo|

=1 (T + E)= (I + E)(I + E,) - £~ UTh]. (25)

12



Repeated use of the triangle inequality gives

which is conveniently bonnded above by

bl (20 + 20 + 20)

x—xl| € - 29
| < On (1 = {5y + 2, + 24)) (29)
The denominator is split into its projections on Pj and P,;L as
n 2 2
=3 2 S BB ey < (20)
o? T ol
i:l 1 n"k‘f'x

Combining terms vields {27). O

Due to the form of perturbations 4 ~ 4.

. o o ket IR
ng(.-&.b.AA)—I\E(A.b)—l%n!cxgn =, (Hb”

In general. if ¢y = {|471 = A711/Il4 7} then

[% — x|

Il

although ¢ y may be much larger than [[AA4

< K (A.b)e 4.

. Theorem 2 determines = 4 = (e, + 2, +
gu}{(1 = (¢4 + 24 + ) "1 as a normalized bound measuring the difference of certain pairs
of matrices A~! and A~!. The conditions of Theorem 2 can be relaxed to consider other

cases in which [|(4"! = 4" 1}bi] is small.

The import of Theoreny 2 is that the solutions of certain pairs of related linear systems

. . - i
can differ by approximately A ,(Ad.b): 11114?[" which may be less than A (.4)1%1 In terms
of numerical algorithms. if a method of solving 4x = b in finite precision actually solves

the nearby problem A% = b with A satisfying the assumptions (26). then the actual solu-

tion error is determined by the effective condition number A, and the small perturbation



£ 4. For a stable rizht-hand side b (i.e.. ||Pibjlz = {|blly while 0,__; € o) and an

[ A

A1 ) the error || — x|| could

effectively well-conditioned solution algorithm (i.e.. £4 =
be much smaller than suggested by K{Ad) = g1/e,. In this case. the analysis of errors in
computation incorporate~ information about the effective condition number and the errors

introduced by the solution algorithm. The fast Poisson soiver example of section 5.2 will

make clear the usefulness of this combined approach.

5. Applications

In this section we present two examples that demonstrate the relevance of effective
condition numbers. In the first example. we provide insight into the well-conditioning of
the Bjorck-Pereyra algorithm 1! for Vandermonde systems by reference to Theorem 1.
The second example indicares that a fast Poisson solver can achieve substantially better
error performnance than Gaussian elimination. as suggested by Theorem 2. Numerical

simulations verifving this hypothesis are summarized in Fig. 4.

5.1 Vandermonde Systems

A Vandermonde matrix is defined in terms of a set of scalars aj.a9,....a, by
1 1 . 1
Q ag Cn nxn
4= . . . e m™"*" . {31)
n-1 _n-1 n—1
aj i% .. Qg

The associated linear syvstems

Primal Ax=b {

[ )
(]
L

Dual ATz=f (

Lo
[

arise in a variety of applications. such as polynomial interpolation and function approxi-

mation. It is well known that Vandermonde systems can be extremely ill-condirioned. Yet

14



there exist efficient algorithms {1] which have been observed empirically to give extraordi-

narily accurate solutions.

Higham in a recent paper [5] proved that. under the ordering assumption 0 < o <
ay < ... < ¢y, the Bjorck-Pereyra algorithm [1] produces a relative error in the computed
nonzero components of x that is independent of the condition number K (A4), provided

that the right-hand side b in (32} has a sign oscillation property:
(—l)"bEZO, i=1.2.....n. (34)

As an application of our Theorem 1, we shall now show that, under the ordering as-
sumption, the'singular vectors u, and v, of 4 have a sign oscillation property and thus
right-hand side vectors b with property (34) can induce a small effective condition number
K. The backward error analysis perturbations to A in solving {32)-(33) then determine
the size of the resulting errors. The present argument explains why an extremely accurate
solution method might exist, due to properties of the Vandermonde system. Higham's pa-
per [3; indicates why rhe Bjorck-Pereyra algorithm computes such accurate results, given

an effectively well-conditioned problem instance.

For 0 < ay < ... < ap. the matrix 4 is totally positive [6]. Thus its singular vectors
have the sign oscillation property that u; and v, have k — 1 changes in sign. In partic-
ular, the left singular vector u,, corresponding to the smallest sin;gular value has the sign
oscillation property (34). For most vectors b obeying (34) the projection {|P b{[/i|b|| will
be non-negligible. and hen(;e K, is small for this case. Thus there can exist Vandermonde
solvers able to exploit the xiall effective condition number A, of right-hand sides b with

the sign property (34). Apparently the Bjorck-Pereyra algorithm is one such method.

5.2 The Fast Poisson Solver Example

Because the special perturbations in 4 assumed in (26} are observed in practice, The-

15



orem 2 applies to cerrain commonly used solution methods for linear systems. However.
Theorem 2 does not apply universally. For instance, it is widely appreciated that Gaus-
sian elimination does not necessarily soive a related system 4% = b with 4 satisfving the
assumptions in {26). if we interpret £,. 2,, 2, to be hounded in size by some polynomial

function in n times the machine precision.

The class of Fourier transformn methods applied to Poisson’s equation on n + 2 grid
points with zero boundary conditions. namely Eq. (6) in section 2. has the special structure

necessary to emplov Theorem 2. It is well known that L has the eigen-decomposition

L=U"1AU e R"™™ . (35)
where
A =diag(iy. Ao ... Anle  Ap= -4(n + l)z'sin“’ ( n?—jl) . 1<5<n (36)
and
U= (IL[‘J')?:J-zlf ;= sin ( ;:—_;—I) . (37)

The fast transform methods use the a priorf knowledge of the decomposition (35-37) to
compute u as U~'A"1Uf. where U~!, A~!, and U7 obey (26) with =, =,. and =, no
more than approximately n times the unit roundoff error. The errors incurred lie in
the floating representation of the factors and in the matrix vector multiplications. The
matrix multiplications are accomplished by fast Fourier transforms, which are known to
be quite srable. and rhe divisors {5}, are related to the {o;}7_, by |lo; — &;|| < zllo;l

for 1 €1 < n. similar to the perturbations of Example 3.

We have computed solutions to the equation Lu = f for several choices of f and several

numbers of mesh points m. Figure 4 shows the errors recorded in solving with a smooth

right-hand side [, = sin [ 225 ) by the fast sine method and by Gaussian elimination with
s k m~ 1 .

16



partial pivoting, and in solving a random right-hand side high in oscillatory components
by banded Gaussian elimination (in both one and two dimnensions). Onr theory in section 4
predicts that the effective condition number for the fast sine solver operating on smooth

¥

right-hand sides should be much smaller than K{L}=0O(m").

The order growth of the oh=erved error has two components. a polynomial in m {which
seems well approximated by the average number of arithmetic operations per point) and
the condition of the linear system being solved. In Fig. 4. the curves show error growth

0.73 1.8

proportional to m” ‘¥, m 1.9

. m!?, and m>? for the four cases. Because the average num-
bers of arithmetic operations per point are. respectively. O(log m}. O(1). O(1), and O(m?)

as m — oc. the observed effective condition numbers of the solved systems are of orders

9. m!9 and m!9. respectively. While the fast sine solver does not achieve O(1)
effective conditioning. it does perform substantiaily better than the tridiagonal Gaussian
elimination solver on the smooth (sinusoidal) input. Furthermore. it is clear that effective
well-conditioning of the problem instance is not emploved by the Gaussian elimination
solver, as both smooth and noiéy right-hand sides vield high error growths. This example
illustrates the benefits of using a solution method that can take advantage of a known ma-
trix decomposition to exploit an effectively well-conditioned problem instance. in particular

a fast Poisson solver composed entirely of fast transforms.




INSERT FIGURE 4
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6. Concluding Remarks

In this paper. we have introduced the concept of an “effective” condition number for
linear systems. which provides much sharper estimnates of the solution’s sensitivity to per-
turbations in b. We derived an expression for A, depending not only on the ratios of
certain singular values of .4 but also on the projection of b onto the right singular vectors
of 4. We showed that for special bs. the effective condition number could be much smaller
than the usual condition number. A similar ahaiysis was emploved to demonstrate that
certain pairs of nearby linear systemns maintain the ef'!'ective condition number. More-
over, algorithms exist which can take advantage of effective well-conditioning to produce
unexpectedly accurate results. The usefulness of the concept was demonstrated in two

applications.

The concept of effective condition numbers and the related analysis of nearby linear
systems rigorously expiain why one may obtain better numerical results than expected
from K(4) alone (z.g.. the fast Poisson solver example in sec. 3). provide an intuitive
framework for applving this concept to other situations (e.g.. semiconductor simulation)
and may lead one to investigate properties of other algorithms that take advantage of

intrinsic stability in the problem instance.
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Fig. 1. Elastic beam under load.

Fig. 2 Beam under sinusoidal load sin 7zx.
Fig. 3. Beam under sinusoidal load sin pwr.
Fig. 4. Relative error in computing solutions to the Poisson equation Lx = b in

single precision.




load f(x)
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Fig. 4. Relative Error in Computing Solutions to the

( Poisson Equation Lx = b in Single Precision
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. Random x*. SGTSL tridiagonal solver 1D, 20 repetitions

* Random x*. SGBSL banded solver [2D , 20 repetitions

n

A linear regression fit of the observed errors to the equation err = yn"2™ %!
vields the following coefficients.

Test case 4 ¢ errin = 1)
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