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Abstract

We present an algebraic analysis of some domain decomposition preconditioners on ir-
regular regions. We analyze a preconditioner proposed in [3] for the interface system and
prove that, for all L-shaped regions and some C-shaped regions, it produces a convergence
rate that is independent of gridsize and aspect ratios. We prove that the condition number
of the preconditioned capacitance system is bounded by 2.16 for all L-shaped domains.

We also give some results for other simple irregular geometries,

1. Introduction

We consider the problem of solving an elliptic partial differential equation on a domain that
is broken up into rectangular subregions. By using domain decomposition or substructuring tech-
nigues, the problem is reduced to separately solving approximate problems in the subdomains and
updating the solution at the interfaces between two or more subregions. For the class of domain
decomposition methods considered in this paper, the basic idea consists of the following: the differ-
ential operator is discretized on a grid imposed over the domain, which is partitioned into several
subregions. Then, by applying block elimination to the discretized equations, a system is derived
for the unknowns on the interfaces between subregions. This system is sometimes called the ca-
pacitance system. Forming the right hand side for the interface system requires the solution of
independent elliptic problems on the subdomains. For certain constant coefficient problems on reg-
ular domains, fast direct methods can be applied to the solution of the interface system [3, 6]. Such
is not the case, however, for more general operators or irregular domains. For efficiency reasons the
system must then be solved by iterative methods, such as the preconditioned conjugate gradient
method. Once the solution is known on the interfaces, one more elliptic problem must be solved
on each subdomain with the computed values as boundary conditions.
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Figure 1: The domain {1 and its partition

In order to illustrate the method, we will apply the process described above to a simple region

{1, which can be decomposed into two rectangles () and 2o, with interface I'z, as shown in fig.1.
Let

Auv=f (1.1)
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represent the discretization of the differential operator on 2. By reordering the variables, the
system (1.1) can be written in block form as:

(«411 Ais (ul f1\
Agn Aoz uy | =1 fa
\ Al; AL Ass \ uz \ f3 j

where the indexes for v and f corespond to gridpoints in Q;, {23 and T3, respectively. Based on
the following block decomposition of the matrix in (1.2),

m—,
)
2

-

Aqy I ATt A
A= Az I AZ Ao , (1.3)
Az Az C I

where C is the Schur complement of Aaz in A, i.e.
— T 4~1. 4T 41

the system (1.2) can be solved as follows:

Step 1: Solve

A= fi (1.5)
Agoze = fp (1.6)
Step 2: Form .
g = f3 - “"1{321 —_ 4“1%'32’2 (1.7)
and solve
Cuzg =g (1.8)
Step 8: Solve
Anur = fi — Aisus (1.9)
and
Agpup = fy — Agaug (1.10)

Steps 1 and 3 correspond to solving independent problems on the subdomains. The matrix C
given by (1.4), sometimes called the capacitance matrix, is dense and expensive to compute. It is
possible, however, to compute the action of C' on a vector v at the cost of solving problems on the
subdomains with boundary conditions on I' given by v. Therefore, the interface system (1.8) is often
solved by preconditioned conjugate gradients (PCG). Since each iteration involves solving problems
on the subdomains, it is essential to keep the number of iterations low. For this reason, much efort
has been devoted recently to the construction of good preconditioners for the capacitance matrix [7.
1. 8. 3. 6]. Many of the preconditioners proposed are spectrally equivalent to the exact boundary
operator. They therefore yield convergence rates that are bounded independently of the gridsize.
The method is particularly suited to problems for which the subproblemns can be solved efficiently.
for example, when the operator has separable coefficients. When the subdomain problems cannot
be solved efficiently but they can be approximated by separable operators, it is possible to derive
block preconditioners for the original system based on preconditioners for the interface system [9,
2, 4.

In [3], the case of a constant coefficient operator on a rectangular domain divided into two strips

is analyzed. For this simple case, it is shown that, for many of the preconditioners proposed in the
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literature, while the condition number of the preconditioned system can be bounded independently
of the gridsize A for a fixed domain, it can grow as a function of the aspect ratio of the subdomains.
Roughly speaking, the aspect ratio of a rectangle is the ratio between its width and its height. For a
precise definition, see theorem 2.3 (note: for one of the preconditioners proposed in (1], the bound
grows when ouly one of the subdomains becomes narrow). A fast direct solver for C based on
Fourier analysis can be derived from the exact eigenvalue decomposition of the capacitance matrix.
This operator takes aspect ratios into account and solves exactly the interface problem for the case
of constant coefficients on a rectangle divided into two strips. It is therefore proposed in [3] to apply
it as a preconditioner for interface systems on irregular regions or for variable coefficient operators.
We will call this preconditioner Mg. For the case of a five point finite differences discretization
of the Poisson equation on a regular grid of size h = %1—, M is formally given by the following
decomposition:

Mg = W,diag(A,)w Tl | (1.11
) i}

where W, is the matrix of sine modes of dimension n. Its elements are given by:

(sindgwh)” (1.12)

wij(n) = g

fori,7=1,...,n, and the eigenvalues \;, j = 1,...,n, are given by

ey ma+1 2

’\J'(n?mlim?) = (1 _ ,Tffar}—l + 1-— 7?_?124-1
J 7

where m; and mz are the number of grid points in the y-direction in ©; and 025 respectively,

o; = 4sin? ((7111)%) (1.14)

2
2
el as
Ny = 1+?f~—\/a,~+2-’- : (1.15)

The preconditioners proposed in [7] and [8] have the same eigenvectors as (1.11), but the
eigenvalues are those of the square root of the one-dimensional discrete Laplacian, namely /55

in 7} and \o; + f‘f— in [8]. Onme of the preconditioners given in [1] has eigenvalues equal to A; of
{1.13), with m; = ma.

In this paper, we are interested in analyzing (1.11) as preconditioner on irregular domains
and in particular, we want to study the dependency of the convergence rate on the gridsize and
the shape of the domain. Many of the preconditioners, when applied to an L-shaped region, have
convergence rates that are bounded independently of the gridsize. The bound, however, depends
on the relative aspect ratios of the subdomains. All of the preconditioners, except for Mg, are
known to deteriorate when one of the subdomains becomes narrow. In section 2, we show that
on any L-shaped region, the preconditioned capacitance matrix for Mg has a condition number
that is bounded by 2.16, independently of gridsize and aspect ratios. Given an L-shaped region,
there are two ways of separating it in two rectangular subregions. We prove. also in section 2. an
interesting property of the preconditioner Afc, namely that the convergence rite is not seriously
affected by the way we choose to subdivide the domain. In section 3, we Ji~ uss the extention of

and

4



some of the results in section 2 to other shapes. In the proofs of sections 2 and 3, we often use a
common operator, which describes the interaction between two perpendicular interior interfaces.
This operator is analyzed in detail in the appendix.

2. L-shaped regions

In this section, we want to describe the interface operator and its preconditioners, for the
simplest irregular shape that can be decomposed in rectangular subregions, namely an L-shaped
domain. Consider the Poisson equation on the region {2 of fig. 2.

n
my Ql
P4 g
ma Q2 I's {3

Figure 2: L-shaped domain

It is clear that either interface, I'y or I's, will divide the domain into two rectangles. We might
ask ourselves the question: is a particular decomposition better than the other? In this section
we will. show that, for the particular preconditioner we analyze, the difference between the rates
of convergence for the two decompositions, if any, is always very small (see theorem 2.1}. We also
give a bound for the condition number that is independent of the mesh size and the subdomain
aspect ratios.

Let the linear system

Au=f (2.1)
represent a standard second order five point discretization of differential equation on a regular grid
imposed on the domain 2, where the gridpoints on the subdomains have been reordered first and
then those on the interfaces I'y and I's. Consider, for example, the domain {2 as the union of two
rectangles divided by the interface I'y. By the process described by equations (1.5} to (1.10), an

interface system of the form
Cyug =g (2.2)

can be derived for the variables on I'y. The capacitance matrix Cy is the Schur complement of A4
in 4. The matrix 4 can be also decomposed as follows:

(A I A3'P
A_(PT C45>< I ) ’ (23)

An Arg
A = Agg . P=| 434 Ags
A3z Ags

where



and Cys is the Schur complement of 444 and Ass in A, ie.,

Cis = (A‘*4 ) 455) - PT4z'P

, . 1. {2.4)
_ ( Ny , — g ey A2s )
~ AT AT Aoy Ms ’

with

My = Ay — AT AT A — ALLAS Aoy (2.5)
and

— T 4~1. T 4-1
My = Ags — ApgAzy Aoy — AzsAzg Aszs. (2.6)

The matrix My would be the capacitance matrix for T'y if the domain (3 were absent. Similarly,
M; would be the capacitance matrix for I's if the domain {2; were absent. In fact, they are nothing
but the preconditioner Mg described in the previous section. Both Ay and Mj; have eigenvalue
decompositions of the form (1.11), with eigenvalues given by A;(n,m;,ms) for j = 1,...,7n and
Ai{ma,n,ng) for ¢ = 1,..., mg, respectively.

The matrix Cy of (2.2} is, as we mentioned earlier, the Schur complement of Ay in A, but it
can also be written as the Schur complement of Ay in Cys. Therefore, we can derive the following
expression for Cy in terms of Ady:

Lemma 2.1. The interface matrix for I'y in © can be written as
Cy=M;+B'B , (2.7)
where .
B = (~Ms)"2AL A5 40y . | (2.8)
|

The preconditioner proposed in {3} for C4 would correspond to using Mg = Afy. Since My is
negative definite, we can choose \/—Afy as a symmetric preconditioner for Cy. Let us define the
preconditioned matrix:

Cy= (M)~ 20y (~My)™ Y2, (2.9)
then, by (2.7), we have .
Cy=~I,+VTV | (2.10)
where V € R™M2X% i5
V = B(-M,)"V? | (2.11)

Similarly, by deriving expressions for Cs analogous to {2.7) to (2.10) and using Mg = M;s as a
preconditioner for Cs, we can prove that

Cs = —In, +VVT . (2.12)

We can make some inmediate observations. First, if n = mg, Cy = Cs and therefore, both
ways of decomposing the domain would be equivalent. When, for example, n > mg, VIV is rank
defficient, and therefore Cy has at least n — my eigenvalues that are equal to one. On the other
hand, g # 0 is an eigenvalue of VTV if and only if /4 is an eigenvalue of VVT. Therefore. all
eigenvalues of C are also eigenvalues of Cg and viceversa, except from, possibly, the eigenvalue 1.
We summarize this in the following:



n=3l,m2=7 n==063,m2=15
svof V a{Cs) svof V a(Cs)

0.18204 0.96686 2.165E-01 0.95312
0.03868 0.95850 6.816E-G2 0.59535
0.00514 0.99997 1.578E-02 0.99975
0.00045 0.99999 2.971E-03 0.99999
0.00002 1.00000 4.607E-04 0.99999
0.00000 1.00000 5.863E-05 1.00000
6.00000 1.00000 6.082E-06 1.00000
5.003E-07 1.00000
3.610E-08 1.00000

Table 1: Eigenvalues of preconditioned capacitance system
for an L-shaped region

Theorem 2.1. Ifn = mo, then é‘4 = Cs. Otherwise, all eigenvalues of €y that are different from
one are also eigenvalues of Cs and viceversa. Moreover,

- 1
KC)) € — e
< T,
and )
1
KO < v

Proof. The first part of the theorem was proved earlier. Since VTV and VV7 are symmetric and
‘non-negative definite and €3 and Cs are negative definite [5], |[VV7|l; = IIVTV||s < 1, therefore,
the eigenvalues §; of VTV and VVT are in [0,1). Suppose, for example, that n > my. Then, all
eigenvalues of Cy are between 1 ~ Binay and 1 and all eigenvalues of Cj are between 1 ~ Hp4, and
1 ~ Bymin. Then, we have

A 1 1
K({Cs) = = -
(C4) 1= fmes L= VIV
and ) )
K(és) _ T 16mm <

- L ﬁma:c 1 ”VTV”Q

From the results of theorem 2.1 it can be shown [5] that, given some equivalence conditions for
the initial guess, the difference between the number of iterations when PCG is applied to Cy with
preconditioner My and the number of iterations when PCG is applied to C5 with preconditioner
M, is at most one, In practice, however, both cases should be essentially equivalent when some
of the eigenvalues of VV7 are very small. Numerical computations show that the eigenvalues 3; of
VTV and VVT decrease very quickly with 7. Therefore, in finite precision, only a few eigenvalues
of C4 and Cj are different from one, which leads to rapid convergence of the PCG method when
applied to either matrix. Moreover, it also follows that K(C4) & K(Cs). For example, for the
L-shaped region with corners: (0,0), (3,0}, (3,0.25},(1,0.25), (1, 1.25) and (0, 1.25), for n = 31 and
63, table 1 shows the singular values of V' and the eigenvalues of Cs, computed in single precision.

We conclude that either way of decomposing an L-shaped region into two rectangles produces
almost the same convergence rate, when preconditioner A is used. Moreover, we will be able to
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give an analytical bound on the condition number of the preconditioned capacitance matrix. This
bound is derived from a bound on the norm of the operator VTV, But first, the following theorem
will give us a useful expression for the elements of a unitary transformation of V, where W,, and
Wi, are defined by (1.12).

Theorem 2.2. Let
V= Wi VWo . (2.13}

Then, ||V||2 = ||V|l2 and the elements of the matrix V are given by

2 sin — sin 0%
e — + n=+1 (214)

W T Dl s 1 s ( T4 o)

fort=1,...,mg and 7 = 1,...,n, where

3}4) = \/}Aj(n,ml,mg)l , -9,(5} =N/ |A|'(m2,n1n3)|

(m)

and o} (me)

and 0" are given by (1.14).

Proof. The operator Ag},A{;A% in (2.8) corresponds to Q14 of theorem 4.2 (see appendix). Then,
by replacing (4.6) and (1.11) in (2.8) and (2.11), we have (2.14).
|

As theorem 2.1 suggests, in order to find a bound for the condition number of the precondi-
tioned capacitance system, we need to bound the norm of V, or ||V|| Since we have an expression
for the elements of V, we can bound ||V{]; and ||V ||e and then use the property:

Vll2 < VIVIRIV oo

The results are summarized in the next theorem. A proof can be found in [5]:

Theorem 2.3. Define the aspect ratio for domain 0y in fig. 2 as o = 2L Then,

me+1
3) IVl < V& 0.733 and |[V]leo < \/2 0.733.

b} [VTVIlz < VI = IV(13 < V{1V lleo < 0.54.
¢} For all gridsizes and all L-shaped regions,

K(Cs) <216 and K(Cs) <216 . (2.15)

In our experiments, condition numbers larger than 1.2 have not been observed. The bounds

(2.15), however, are fairly tight for the expression y/ ||‘i7|}1||‘7'||°°, as was shown by numerical exper-
iments with large values of n and ms.

We would also like to discuss briefly how the parameter ng (or, respectively, my) affects the
performance of preconditioner My (Ms). Clearly, as n3 tends to zero, the domain 0 approaches
the shape of a perfect rectangle. The preconditioner Ay should reflect tlns by becoming the exact
boundary operator. In other words, K(C4) should approach one. We can verify that this is the case
as follows: vj; in (2.14) depends on na only through X;(ma,n,na) (defined in (1.13)), which tends

to infinity when the aspect ratio % tends to zero, and therefore v, tends to zero. However, we
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can see that this dependency is very weak, because Aj(mz,n,n3) tends rapidly to an asymptotic
value independent of ng when such aspect ratio grows. Only the fact that

)\_,-(mg,n,ng) e 2\/CT_J (2.16)

is used in the proof of theorem 2.3, which is true for all values of ng. The discussion above implies
that the performance of My as a preconditioner for Cy is fairly independent on how irregular the
region is.

Incidentally, since only (2.16) was used in the proof of theorem 2.3, the bounds (a) and (b) for
VTV || hold for other preconditioners as well, as long as (2.16) holds (7, 1, 8]. The bound given in
(c), however, does not hold for other preconditioners for which the preconditioned system cannot
be written in the form (2.9) or (2.12). In fact, the preconditioned system is always of the form
X+ VTV, where the norm of X may grow when the aspect ratio « of domain Qg tends to zero (see
[3] for an example on a T-shaped region),

3. Other irregular regions

Some of the expressions and results of the previous section are more general than they ap-
pear and they can be used as basic components for more complicated regions that are unions of
rectangles. For example, a C-shaped region can be subdivided as indicated in fig. 3.

n Ty
0 9]
my 1 - 4
Tq 8
mo 92
Tz
ma Q3 Ty

g

Figure 3: C-shaped domain

Similar to L-shaped domains, the region of fig. 3 can be separated in three rectangles by either
T's and T'7, or I's and Ty. A system
g _
Cﬁr (‘Lt.'y) = ge7

can be derived by block elimnination for the interfaces I'g and I'7. This system can be preconditioned
with a multistrip operator Mgy described in [6]. Afg7 solves, exactly, the problem on a rectangle
divided into three strips. Similarly, a system

g _
Cgy (uo) = ggy

can be derived for the interfaces I's and Iy, which can be preconditioned by a block diagonal
preconditioner, with diagonal blocks Ay and Ay, of the form (1.11).
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I

Iy R I's

T3

Figure 4: Interaction between interfaces

By arguments similar to the previous section’s, the preconditioned interface system for I's and
I'7 can be written in the form

é’e-,r = (—A:fﬁ'z)_1/2057(——1\{[37)-1/2 =-I+VTy

-1/2 , -1/2
s _ f — My 0 — Mg 0
GSQ:( 0 -Mg) 089( 0 -Mg) ,

=—J+VVT

and similarly,

for certain matrix V e R{mitma)x2n A unitary tranformation V of V can be written as a block
two by two matrix whose block elements have expressions similar to the matrix V for L-shaped
regions [5] By theorem 2.1, we have that both ways of dividing the domain are almost equivalent,
and K(Ce7) and K(Cgo) are bounded by

1

=77 &y

When my = ma = n, K(é’m) = K(égg). For the case when my == ms < ma, the results of theorem
2.3 can be applied in the following theorem. We refer the interested reader to [5} for the proof.

Theorem 3.1. Let p{(a} and pk () be bounds for {|V||; and ||V||e for an L-shaped domain like
fig. 2, where a is the aspect ratio for the domain {1y in the picture. Given a C-shaped region like
fig.3, if my = ma < mg, then

2) Vil € Zozert (mitf) and [[Vileo < oo (2EY).

B) IVTVI2 < IVIE = IVIE < IVIhiIVle < 0.62.
¢) K(Ces7) < 2.63 and K(Cgo) < 2.63 for all gridsizes and all C-shaped regions such that
mi = Mg < Mmao.

4. Appendix

The interaction between interior edges

In this appendix we will analyze the operator that represents the interaction between two
interfaces of a given subdomain. Let the region R of fig. 4, with edges I't for k = 1 to 4, be a
subdomain of (0. Let n; be the number of gridpoints in I'; and ng, the number of gridpoints in T'5.
The corner points are not included in the edges I';. They may or may not be interior to €.
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Let A be the discrete Laplacian operator defined on the domain 1. If the interface Ty, for
k < 4, is interior to {2, then we can define P, the submatrix of A that represents the coupling
between gridpoints of R and gridpoints on T'y. We are interested in describing the operator Qy
which takes a vector v defined on the gridpoints of Iy, solves a Poisson problem on R with the
boundary values given by v on I'y and zero elsewhere and produces the restriction of the solution
at the set of gridpoints in R adjacent to I'x. Such operator can be written as follows:

Qu = PTAZ'R (4.1)

where Ap represents the discrete Laplacian operator on R. When Iy and T; are parallel, the
operator Qy is diagonalizable by Fourier modes. We illustrate this case by describing Q5. The
case Qg4 is completely analogous. The proof of the following theorem can be found in 6].

Theorem 4.1. Let Wy, be the matrix of sine modes of dimension ny, (1.12}. Let Q13 be the operator
that represents the coupling between interfaces I'y and T's, defined as in (4.1). Then,

Q13 = Wy, D13Why,

where the matrix D3 is diagonal, with diagonal entries given by

2 1—ny
djj = \/’Y}’ (m) ) (4.2)

with .
(12
= Hf_g,, {1)+m.__(af ) (4.3
V= 2 aj 4 )
and .
(1) _ 402 J7
o, =4sin o 1) (4.4)

The operators @2 and Q4, on the other hand, are not diagonalizable by Fourier modes,
Moreover, they are, in general not square, but n; by ng rectangular matrices. It is possible,
however, to describe the elements of the matrices

Q2 = W, @12Whn, and Q4 = Wn,Q14Wn,

where the elements of W, , I = 1,2, are given by (1.12), as follows:

Theorem 4.2. Let the operator Q14 that represents the coupling between interfaces T'y and T'y be
defined as in (4.1). Then, the elements of the matrix Q4 are given by

ﬂ:il Sin 1’1211 (4 5)
\/(nl + 1) (ne + 1) o"{l) -+ 05.2) '

2 sin

14
95 =

fori=1,...,ny and 7 = 1,...,ng, where a}” = 4sin2ﬁ-1—;, for ! = 1,2. Similarly, the elements

of the matrix Q19 are given by

ole NLET : in
2 S15 | s1n a1
(4.6)

12
45 \/(nl +1){ns + 1) o.l{l) +o_g2).
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Proof. In order to simplify the notation, we will use direct {or tensor} products to define the various
operators. The eigenvalue decomposition of the matrix Ag is well known and it is given by

Ap = (I’VQ 3] ‘Vl). A (FVQ @ PVl) (47)
where A is the nino x ning diagonal matrix whose diagonal elements are
AJ = —-0"(1) - 0'1(-2) .

with J = (7 — 1)ny+4,fori = 1,...,n; and 7 = 1,...,ny. The matrices P; and P, can be written
as:
P = 85_2) ® 0 (48)

Pi=Loe  (49)

where Ij, for | = 1,2, is the identity matrix of dimension n; and eg) is the first column of [;. By
replacing equations (4.7) to (4.9) in (4.1} and then applying the following two properties of tensor
products;

) XV} =XTg¥Tand

i7) (_’&’1 N ® YQ) = (.Yl_Yg) & (YlYQ) ,

we have:
Qu = (W) e i) 5! (W2 @ (W) (4.10)

and therefore,
G4 = ((egm"wz) ® L) A7 (@ (W) (4.11)

Then we can see that the 7-th column of (4.11) is given by

[2 4,7 ([, (e 7w L)
v sin T (crj I + diag{o; )) Wy ey

from which (4.5) follows.
Similarly, (4.6) can be derived by using

P=L&el (4.12)

ny
instead of (4.9).
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