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1. Introduction

Vortex methods have received a great deal of attention in the past decade and have found
numerous applications in turbulent combustion([11],[22]), boundary layer theory [6], aerodynam-
ics calculation([5],[15]), and flow through heart valve[16] among others. In the vortex methods,
the interaction of the computational vortices mimic the physical mechanisms in the actual flow
so that the effort is focused on the variables of the most interest and the region of the most

interest.

As we know, vortex methods are primarily used to simulate the incompressible flow at high
Reynolds numbers. Usually such flow will develop certain fine scale structure after some time.
Due to the limited capacity of the available computing facilities, it is practically impossible to
resolve all the small scale features in the flow. Naturally, one would like to know whether or not
it is possible to obtain long time convergence in flow variables such as averaged velocity profile
and mean stream-line distribution if the small scale structure is not well resolved by the compu-
tational particles. Accuracy of vortex methods over a long time interval has been studied by
Perlman [20] and Beale [3] for 2-D Euler equations with piecewise smooth vorticity. Recently,
Sethian-and Ghoniem [23] have studied experimentally the convergence of vortex methods for
two dimensional incompressible flow at high Reynolds numbers. They observe qualitative numer-
ical convergence in such flow variables as eddy sizes and average velocity profiles even with a
relatively few number of particles.

In this paper, we study 2-D Euler equations with highly oscillatory vorticity. We make a
simplified assumption that at certain time ¢, the vorticity distribution is of two scales, i.e.

o{x,rg) = Mp{x; iec-). We then analyze the convergence of the vortex methods for the Euler equa-

tion in the case when the oscillatory wave is not well resolved by the computational particles.
The classical convergence analysis for smooth solutions ( see e.g. [11, [4], [7], [12], [21] ) can
not be applied directly here. The error constants will grow inversely proportional to the oscilla-
tory wave length €. In order to show convergence, one needs to take into account the cancella-
tion among high frequency vorticity components at different space locations. Ideally it would be
desirable to require that the error is small if the grid size is below a limit which is independent
of the small scales. This is not possible in general. However, we can show that the convergence
is essentially independent of the oscillatory wave length € . The concept of convergence essen-
tially independent of € was first introduced by Engquist in [9]. It means that the numerical
solutions converge as long as the grid size does not belong to a set which has an arbitrarily small
measure independent of € ( see Definition 1 in section 3 ). Thus for almost all samplings of the
grid, we can obtain convergence independent of the oscillatory wave length € .

We would like to point out that for the oscillatory problems, convergence essentially
independent of the wave length € is the best we can hope for. The fact that we need to avoid a
set in the ratio between the wave length € and the grid size reflects the nature of the oscillatory
problems. This is not limited by the techniques we use. In the vortex method, since velocity
depends on the moving space average of initial vorticity ( see Theorem 2.2 ), it is necessary that
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the moving space average of the initial numerical values approximate -that of the exact initial
values. It is obvious that this can not be achieved for all samplings of grid independent of € .

The main results in this paper are stated and proved in section 2, 3 and 5. In section 2, we
prove that at ieast up to a finite time the velocity field and flow map have uniformly bounded
first order derivatives independent of the small scale €. Moreover we show that the homogenized
velocity and flow map are governed by the same Euler equation but with homogenized initial
vorticity. More precisely, the velocity field corresponding to the oscillatory vorticity converges
strongly to the velocity corresponding to the averaged initial vorticity. The rate of convergence is
also given. These results are used in the section 3 and 4 where the vortex method is shown to
be convergent essentially independent of € . This is done by using the techniques in the conver-
gence analysis for smooth flows and taking into account cancellation in the oscillatory com-
ponent. Following the same line but using only the Holder continuity of the velocity field, we
also prove the convergence of the vortex method for any finite time. In section 5, the weak con-
tinnity of the Euler equation is proved using the classical compactness argument. As a conse-
quence, the homogenization result mentioned before is established for any finite time.

Our numerical experiments in section 6 give qualitative convergence results for the vortex
method. We observe that the size of the error for oscillatory vorticity in vortex methods is of the
same order of magnitude as that for the smooth vorticity. This indicates that the error constants
in the error estimates for vortex methods are essentially independent of the high frequency vorti-
city components. On the other hand, the size of the error in finite difference approximation for
oscillatory vorticity is O( 1/e ) larger that that for the smooth vorticity. Also vorticity at later
time is dissipated considerably in the finite difference methods, in which case the numerical solu-
tion could potentially converge to wrong solution in problems when the small scale vorticity
plays an important role.

We mention that similar convergence analysis of particle methods for the Carleman model
with highly oscillatory data has been given by Engquist[9], and homogenization theory for sem-
ilinear hyperbolic systems with two scales initial data has been studied by McLaughlin, Papan-
icolaon and Tartar ([19], [24]). See also [10] and [13] for more discussions along these lines.

2. Homogenization results

The two dimensional inviscid, incompressible flow of constant density is govemed by the
following Euler equation:

du _
= + WVu =-Vp,

2 Vu=0, x,ueR?
where u is velocity, p is pressure.

For smooth initial velocity, smooth solution is known to exist for all time and is unique

([14], [17D).



The particle trajectory, denoted as X (¢, o), satisfies

ax (e, o) _
J df - N(X(t, a):t)a

22 [ X0, o) = o

We are interested in the case when the initial vorticity is of the form
o :
6(0) = @o(0-=)-

We assume that wy(ct,3) is a smooth function in & and B, wy(o;f) is 1-periodic in each
component of B. Moreover we assume that @, has finite support contained in { a; 1| <R }.
The vorticity transport equation is given by

ow _

5 + (u- Vo = 0,
(23) o
w(o,0) = coo(oc;-g).

Thus we have

2.4) @, 0).t) = aa,0) = mg(a;%).

On the other hand, the velocity can be expressed in terms of the vorticity by the Biot-Savart
law

(2.6) u(x,t) = [K (x-2)o(z 1)dz = [K(x-X(, Ot))cog(a;%)da
with K given by
2.7 Kx)= 7 (X2, X1)-

mix i

Throughout this paper we will use C and ¢ to denote generic constants which are indepen-
dent of parameters €, # and 8. We will also use the following notations.

Denote X~1(¢ x) as the inverse mapping of X (r,0), that is
X, XWx)=x, X, X¢tow)=a

Define
W)= [ @olr;y)dy ,  Glr; =) = wplxs =) — Bolx),
0.1 £ £
and
- -1
W, = WX X)), 0 = 0 e X g 253

An important observation is that the velocity field has bounded first order partial derivatives



independent of € , although the vorticity is highly oscillatory. This is described by the following

proposition:
Proposition 2.1 max {||9;x (,)] ) and =X (). are bounded

independent of € up to a ﬁmre time T, where T depends on initial vorticity but is independent of
€ . In particular, if the solution of the Euler eqiation is steady , then T can be arbit-arily large.

The proof will be given at the end of this section.
Theorem 2.1 For 0 <t £ T, we have
|u(z.1) - [ K(z=X (t,00@p(c) do} < Ce | log(e) |

where T is given in Proposition 2.1 .

Proof. This follows immediately from Lemma 2.1 below and Proposition 2.1 .

Theorem 2.2 Let T (x, t) be the velocity field corresponding to the mean initial vorticity
@Wolx). Then we have for any 1>5>0

luGe, ) —w(x, )| <C (e|loge) P=°, for 0 <T.
The proof will be given at the end of section 3.
Let R« = R (1+1/2llogll..))exp (2iogll.T). It can be shown easily that for 0 St < T, w(x,1)
has support contained in the region { x; Ix! £ R« } and

max 1X (¢,0)| < Rx.
tob<R

Lemma 2.1 For z= X(t, o ) with | &t | SR , we have

(2.8) | 3K @=y)@0 1) - ©EN)dy | <€ (1 + max (19X ¢ )],
2.9) | KG-y)a0 1) dy | < Celog (&) max {19, X (r.)l.),

where 0; is the partial derivative with respect to the ith space variable, and the integration is
carried out on a circular disk {x; 1x1<2 Ry }.

Proof. We give the proof for (2.8) only. (2.9) can be proved similarly.
First we decompose the right hand side of (2.8) as

2.10) JoKGEy)ap.) -0 dy = [ 8K (z-y)(@z.t) — DO 1)y

le—ylse

-t [ K@E-y)dy + j 9; K (z=y )@ 1 )dy.
e-ybe k-ybe

Since the flow is incompressible, the determinant of the Jacobian matrix of X (£,00) is identi-



cally equal to one. We have

~ _ 02X, =0X,
(2.11) [9:X7¢.2)1=10;X, 0,00 T = Lagf;2 aixll

where o is evaluated at X~1(r,2).
Thus we have

(2.12) max {19, X 71 M) < {E‘%{HBIX N},

which implies
| [ 3K@)@0.1) - 6.0 dy |

lz—ylse

C
213 <= max {RX)) [ 1aKE)lz -y |d
£ lI<gi<2? lr—yke

c
S"ég%{llaix(f e} ‘TL: j0: K ()l nldm = leng%{IlaaX(h')llw],

where the constant ¢, is bounded by the first order partial derivatives of ®p(x; ¥).
Now let’s study the second term on the right hand side of (2.10)

(2.14) In=tzt) [ 0;K(z-y)dy.
b—zpe

Note that | z | € Rs for ! o | £ R . Recall that the integration is over {y; 1y | £2 Rs }. Thus
we can split the integration into two parts

(2.15) In=ozt) [ 3K(-y)y + 0.1 [ 3k G@=y)ay.
R.2y—zp>e Re<iz~yl
lyls2R.

Clearly, the first term on the right hand side of (2.15) is equal to zero. The second term is
bounded by

lol. | |3iKE—)ldy = 2oglllog3).
Re<z—y|<3R

Therefore we obtain that
(2.16) | 121 < 2flogllelog (3),

By change of variable, the last term on the right hand side of (2.10) becomes

Iy= | 3;K@=y)®.t)dy = { BiK(X(t,oc)—X(t,ﬂ))CoO(B;-E)dB,
k-ybe X (00X (2 B)f> € €

Rewrite



o (g dy = A 92 g1
0) ’ - ¥ » + L] ?
o(q E) wilg e & )+ wolg e )

where w;, w, are defined by
1

wi(gip1p2) = Q@P1.P2) — [0o(g:P 19 2dp 2
0
2.17)

1 11
wolgip 1) = [0o(qip 12 2dps — | [oo(gip 1o )dp dp .
0 00
Note that
1 1
(2.18) [wilgppddpa =0 . [walgp)dpr =0 .
0 0
Furthermore we express wi as
92 gz
41 42 d 41 s 41 s
(2.19) wigs——)=—— | wylg;—,=)s - | Owy(¢;—T)ds,
£ e dqy algy) e ¢ ) a(‘gz) e &

where 0,w,(g;p) is the partial derivative with respect to the second variable in g, a(gy) is any
function of ¢;.

Obviously we have from (2.18)
qz

q
(2.20) | [ wi@—= s [< e
algy) £t

92
q1
2.21) | j d w (g ;——-,i)ds | < cq.
alqy) € & '
By substituting w in (2.19) into the last term in (2.10), and performing integration by parts
for the first term on the right hand side of (2.19) in ¢, in each appropriate subdomain, we can
show using (2.20-21)

| [ K& X(.g)wilg:T)dg |
Kexr-X{.q)e €

< c4€ max {lo: X ()} | 820K (M) [dn + ¢5< ¢qmax {10; X (.} + €5,

séq(iBR.
where we have made use of the fact that @, has bounded support. Consequently there is no con-
tribution from the boundary terms when performing integration by parts.

Similar argument applies to w, term. Hence we have proven that the last term on the right

hand side of (2.10) is bounded independent of € . Combining this with the results in (2.13) and
{2.16), we complete the proof of the lemma.
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Now we can give the proof of Proposition 2.1.
Proof of Proposition 2.1:
Differentiating both sides of (2.2) with respect to ¢;, we have

(2.22) %(B,-X(r,a)) = 9;X 1(2,000,1 (z,1) + ;X 5(t,00)0,u (z,1)

where z is evaluated at X(t, o ).

We need to obtain a bound on o;u (z,t).

(2.23) dup) = .é. [_s?fi ]o)(z ) + [ 9K (=3 )@ 1) = 0, ))dy

where the integration is on the circular disk { y; |y 1 € 2R« }, {§; ;} is the Kronecker delta.
To bound the last term in (2.23), we first study the case when @ is replaced by 0. We get

224) | ,K @)@ 1) - Bz 1))y |
< I J a“K(Z"‘“‘y )(@_@ !t) - _(-D-(Z ’I))dy ! + | j a;K(Z"'}’)@()’ ’I) - —G)_(Z ’t))dy I
br—zls1 1<y—z[<3R.

3R.

1
1 1
<c7 ool {E%{llaix (¢t} J.-r-é—'r-rdr + cglloglle. f ?-rdr
- 1] i

< ¢7 llolly . max (I0: X (2, M} + csllaglllog(3R4 ),

where lloyll; .. = maxio; wo(05 B)l...
I=i<2

For the term with ® replaced by ® in (2.23), Lemma 2.1 applies. Thus we have proven
(2.25) | 9;u(z,t) | S cliwglly,e max {lI8; X (¢ )} + d log R+ ) llegll.e,

where ¢ and d are universal constants.
Let M (¢) = max {||0;X (¢,)ll..}, then M(t) satisfies

1<i<2
%M @) SMEC-M@)+D)

with C = clloglly. , D =d |log (3R:) [ {loll..
As a result of (2.26), we obtain

(2.26)

(2.27) M()(1 -

exp(Dt)) < exp (Dt).

D
C+D C+D

Hence we conclude that for T < %‘-log ((C + D)IC),

(2.28) {naé {1l9;X (¢,)]l..} is bounded independent of e for 0 <t<T.
<i<



Differentiating (2.2) with respect to t, we get

¢ dyianel 4
(2.29) = (E;X (t, o) = dIX @) u(z,e) + o X o(r,000,u (z,1).

Since {na)é {I9; (¢ )|l) is bounded, application of Gronwall inequality to (2.29)
sig
implies that !I%X (¢,)|l. is bounded independent of € up to :dime T. It follows then -
2
from (2.29) that II%X (¢, is also bounded independent of € .
T

In the case when the solution of the Euler equation is steady, we can easily
modify the proof above to show that fnag; {16 u (¢,7)..) is bounded independent of €
<ig

and ;na_); {JI9; X (¢,)l.} up to arbitrarily large time T. Thus it follows immediately that
<is

2
max {]19;X ¢,)|l..} and ]I-—‘-i-—X (r,)). are bounded, because the right hand side of
1i<2 dr?

(2.26) is now a linear function in M(t). This completes the proof of Proposition 2.1 .

Remark 2.1 The difficulty in obtaining a long time estimate in the general case
is due to the nonlinear nature in the characteristic equation (2.2). We end up with a
guadratic form in the right hand side of (2.26).

3. Convergence of the semi-discrete vortex methods

Solving Euler equation (2.1) is equivalent to solving the following system of equations by
coupling the velocity equation (2.6) into the characteristic equation (2.2),

ax(t,o) _ . B
= = [rx@o-x By ao(P; e)a!B

(3. X (0,00) = au.

Let Q, = {aj; o = (ih, joh), @; € support of g} ,Xj(r) EX(I,U.j). We denote by
X ‘-"(r), u,-"(r) the approximations of X (z,0;), u(X (z,0;),2) respectively.
In the vortex (blob) method, we approximate the integral in (3.1) by finite summation and

solve (3.1) for a finite collection of vortex blobs ([6], [4] and [1]). In the two dimensional case,
the algorithm is as follows

dx /) A 1 2
el jhezn,,K s& ()X )0k
G2 X/(0) = o,
3.3) ubt)y= Y K&Ho-XI0)Nw;h?
Jhelly
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where ©; = 0glx;), K5 =K *{s, {5 is a cut-off function satisfying

1, x 6 ..
(B.4) Cs(x)=-é-2-C(—8-) , O0=h% with g<1.

Assumption 1 We assnme that wg(x; - )eCj with r 2 3. {(x) belongs to C? and is radial
symmetric, satisfying | {(x)dx = land |{(x)|<Ldx 72 forlx 1> 1.
R2

For smooth flow, convergence properties of vortex method have been established in [1}, [4],
[71, {12] and [21]. In our context, these analyses implies convergence of the vortex method if the
small scale features are well resolved by the computational particles. However, this is often times
unrealistic. It is generally expected that vortex method would still perform reasonably well even
when the small scale features are not well resolved. Theoretically it would be desirable to prove
convergence even in this case.

The classical concept of convergence only takes into account the size of the grid. In our
problem, errors in the sampling of the grid is also significant. Therefore we need to modify the
classical concept of convergence.

Definition 1: (Engquist [9]) The approximation u”" converges to u as 4 — O essentially
independent of & if for any t© > 0, T > O there exists a set s (&,hp)<(0,hg) with

measure (s (,h1g)) 2 (1-t)hg such that

Gty —ull<t, 0<1, <T

is valid for all & es5(g,hg) and where h; is independent of €.
Define the set s (€,ip) as follows:

s(Ehg) = (O<h<hg (kh/E) € Qi——t Pa , 21 ‘ 13/2) for i =0,1,...,[ho/(2e)1+1, OxkeZ }.

For 0 < k; < h,, we define the set s,(g,h1,h5) by

T
|3/2 ! |3/2

s, (Ehyhy) = (hSh<hy; (khie) € 21 ) for O<k|s(1/h V0D,

for i=[h/Q2e)],...[ho/(2e)+], keZ}

where r is related to the degree of regularity of @, as in the Assumption 1.
Then the measure of s (g,h) is bounded from below by

measure of s(&hg) 2 ho(l — E )} 2 ho(1 = 31).

3!2

Similarly, the measure of s, (€,h1,45) is bounded from below by (hy—h)(1-37).



Theorem 3.1 The numerical solutions of vortex method (3.2-3) converge to the exact solu-
tions of the Euler equation essentially independent of € . More precisely, there exists a positive
constant hg such that for 0 < t £ T, all hes (8,hg) and any positive s, we have

I XEe) - X o), < C3,
I ul() - X (o)) Il < C3Y°,

provided that & and h satisfy the relation
(3.5) h|log (k)| =c8*% and e<h.

Corollary 3.1 All the estimates in Theorem 3.1 are still valid if we replace the set s (g,hg)
by s,(€,h,ho) in Theorem 3.1.

Remark 3.1 Theorem 3.1 is very encouraging. It tells us that we do not need to resolve
all the small scale features in the flow and we are still able to obtain useful approximation to
certain flow variables for almost all samplings of particles. One disadvantage of Theorem 3.1 is
that the set 5(g,hg) excludes almost all the rational numbers for € small. Since computers can
only generate rational numbers, Theorem 3.1 can not be used directly to practical computation.
On the other hand, the number of particles we use in practical computation is always finite, And
the grid size usually has a lower bound ( h 2 h; ) which is limited by the computer capacity.
Thus we can use Corollary 3.1 in which the set s,(gh,h,) excludes only those numbers near
{i/k} with k| € (UADYC-D, The value of (/)Y 45 small in general. For instance,
(1/h )Y = 10 for r=3 and h=0.001. Therefore there are more than enough numbers available
in a computer to make Corollary 3.1 meaningful.

In order to prove theorem 3.1, we need to use a number of technical lemmas.
Lemma 3.1 ( Beale and Majda ) With time t fixed, we have
C, B=0
max | DPKs(z-X;(e)yy;) | h? < { Cllog8| |Bl=1
| <RIy 1= Cob cst, - IBl=2

for ail z with| z | <R«, provided that h is small enough. Here C depends only on R«, Cy .
See [4] for a proof.

Lemma 3.2 Assume that | {(r) | € Lor™"2, we have

| Ks(x)|SL81, forO0<r <o

|Ks(x) ~K(x)| S L8232 for 8<r<e
This was proved by Hald [12].
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Lemma 3.3 Suppose that f (y) € C"(R) (r23) is I-periodic in y and | f()dy =0.
(6.1}
Then for all h € s(g,hg), we have

. Xy
> f(j)lﬁcf’”v‘

askh<h

where x;, = kh, and C is independent of h and € .

Proof. We follow closely the argument given by Engquist in [9]. Since f(y) is periodic, it
can be expanded in a Fourier series

f &) =X a,exp Qnimy).

1
The Fourier coefficient ag is equal to zero since _[ f(y)dy =0. Moreover since f(y)e C”,
0 .

we have | a,,] £ Clm[”. Thus we obtain

— x.
pl=| T f)1=l ¥ T auerpQuimye)]
askh<b € askhshb m

C

= a exp 2mimx ey | .
lmzaﬂ) " asgsb ¢ m§0 bnf |1 ~ exp (2nimh /e)
For hes (g,hg), we have

\1-exp (2rimh /)| = Rsin (mmh e} 2 4t/(m3?),  m=0.

Hence we obtain for he€s(g,/p) the following estimate
32
ID|<s 3 —C-lﬂl— <Cuit ,forr 23
m»0 lml (41)

This completes the proof of lemma 3.3 .

Corollary 3.2 Lemma 3.3 is still true if we replace the set s (€,hg) by 5, (€,h1,19).

Proof. Let M = (1/AY~D, Arguing as in the proof of Lemma 3.3, we have for
hGSr(E,hl,hz)

D=l ¥ a, Y expQuimxe)|
m#0 a<kh<bh

<3 €, 5 <
ocimett Iml|1 = exp @rimhie)] gyt Il by

CI/T + < C1/T + Cz.

—_—2
Mr—l_(h 1)

Thus the proof of Corollary 3.2 is complete.
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Lemma 3.4 For all hes(ghy), we have

T Chllog(® 1 [BFO,
> aﬁKa(x_Xj(f))mo(a';—é‘)hzlﬁ{Ch/a’ IB=1,

jr'iEQ;,

Proof: Rewrite

qd1
doigid) = w;(qﬁ— iz-) + walgi=)

where wy, w, are defined in (2.17).

Denote the two dimensional index j = (L,k), o; = (ih ,kh). Then

Cl
T PR - X, (0w (o= 2 2 PR 5(x — X; 1 (1))w (. k,--——~)h2
Jheld, E i=a k=c{i)

It can be verified directly that

CIORE o x s d(iy-1 o
3 oPK s — X (w0 g3—=) = E oK s(x =X; 4y(1) X W0 g5
k=c (i) € k=c (i) k=c (i)
aQxt g 3 k o
(3.6) - Y (OFK§x=X; g (1)) — K s(x=X; 4 (1)) 2 wilO grp—2)
k=c (i) I=c(i) &
d(l)— B (I,',I o; g
- X OPKr—X; (1) E W1 pe =) — w1 g3—)).
k=c(i) I=c (i) £

The first term on the right hand side of (3.6) vanishes since ®g has bounded support.
Observe that

Q1 Q; O
W1(°5i,k+1§‘“"“"”é ) - wl(ai.k;—é )= haZWI(ai.k;_;') + 0%,
and [ 9w (04 4:B1BdBr = 0= | w0y ;BB By,
[0,1] {013

where ijl(a;B) represents the partial derivative in the j-th component of o variable.

Furthermore, since X (z,0) has bounded first order partial derivatives in «, we find.

| OPK 50 =X (8,0 441)) — PR 5(x =X (1,04 1)) | < ch lerﬁa)ii Oh| 3%PK 5(x—X (t, oy 1 )+ )l

Wi sC

Therefore, by using Lemma 3.3 we obtain
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-
| T Pl = X; (0w (05— k| <

jhed,
<ch T max [0%FKx-X(r, )l tch T [PKsx-X G, )
| jh | <R [oF1 | k| <R
yjicon

In light of Lemma 3.1, we have proven Lemma 3.5 when @; is replaced by w;. Similarly
we can show that Lemma 3.5 is true when @y is replaced by w, . :

Consistency Lemma Suppose that € < h. For all hes(ghy), there exists a constant C,
such that

3.7 Nu@ @) - T KeX()-X;Noh iy < C (3713 + h llog (b))
jhef,

provided that h < & , where C, is independent of h and € . The estimate (3.7) is still valid if we
replace the set s (€,hg) by 5, (Eh.hq).
Proof. We first study the case with wy in (3.7) replaced by @,

Define e as

m = [K(X;(t) = X (1,a))Tp(oyd o = [K5(X; (1) — X (¢, 0)To()d o,

where the integration is over a circular disk containing the support of @y,

Since [ K@)y = Mije Ks(3)dy = 0, we get

IR
am = [(K(z—y) - Kgz—y) X X 7(t,y)) - TX ¢t ,2)0))dy , with z=X;(2).

From this, we find

2L
i< on [ =% max 9;X 71, - il max 8o Ol 7 rdr
k-ys T4 ¥

(3.8)
3r2

+ anz Il “"}'572"“ Hlm(iﬁo)(maxlla,-x—l(r’.)"m M3 r ar,
-y[>8 i

where we have used Lemma 3.2 , and the Holder norm H,(®,) is defined by

[&50(x )-GOy )
lx—y[* .

(3.9 H (@) = sup
x#y
Since X~1(z,y) has bounded space derivatives, inequality (3.8) gives

(3.10) | & | € €182 + 81415
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Define ed as

ed = [K 5@ (1)-X (1. )Bglodd o — ¥, KX; (1)-X (1,07 ))0o(ex; )k
Jhell,

H

Y (f K 5(X; (1)=X (1, 00)B(00)d oy d oty — K 5(X; (£)=X (¢,00; )Yt D 2 )
jhEQ;, Bj

where B; = { (0, @) ; |oty—/ 1A|Sh/2 , otg—j3h]<h/2}. Then we obtain

ed | < Ch max | DPE§X;(1)-X; @t )yy;) |
led | jheZQ,,Eyilscohi ° / !

where we have used Proposition 2.1 and | B | =1.

Lemma 3.1 then gives
(3.11) led | < Ch | log B) |
It follows from (3.10) and (3.11) that

(312) | [KREGO-X@.e)Boledo - 3 KX (0)-X; ()Tl )h? |
jhel,

=|am +ed | < C (873 + b log (§) ).
Now let’s consider the case when wy in (3.7) is replaced by @g. Theorem 2.1 implies

(3.13) | jK X; ()X (¢ ,a))cﬁo(a;%)da | < Cellog(e) |
On the other hand, Lemma 3.4 implies that for all €5 (€,hy),

(3.14) | 3 Kol 0)-X; 0)oloyi—L)4? | < Chl log B) |
jhelly :

Thus we have proven that for all h € s(g,h¢)

(3.15) |l jK(X,-(r)—X(r,a))cSo(a;%)da- )y Ka(X,-(r)—X,-a))cSo(aj;%)h? .

jhety
SCylelog@® |+ h|log®)|)

Hence the Lemma follows from (3.12) and (3.15).

Stability Lemma Assume for some Ty 20

(3.16) ax | XF@) ~X;(8) | < 8.

Jh
O<t<T.

Then there exists a constant C; such that for 0 <t < T, the estimate
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(3.17) lut)- T KX @)X @)o;h? e € Cs | XA = X;0) iy
Jjheld,

holds for all h € s(g,hg) provided that h < 6 , where

(3.18) tafp=( %2 gl
jhel;

Remark 3.2: The estimate (3.17) is still valid if we replace the set s (g,kg) by s, (€1 1,9).

1 4 2 )Uu.

Proof. We first consider the case when w; in (3.17) is replaced by @, Since Gy(o) and
X (¢,0) have bounded first order partial derivatives in o, the argument in the proof of the 2-D
stability lemma by Beale and Majda {4} applies. Therefore (3.17) is valid in the case when g is

replaced by @;.
Now let’s study the case when g in (3.17) is replaced by @y
Define es 1(i) by

es1)= 3 KoK, (ol )h? = T Ko ()X [ o(oyi—0h?
jhell Jheldy

Since @y is uniformly bounded independent of € , Beale and Majda’s argument in the 2-D
stability lemma [4] can be applied to the term es1(i). We then obtain

(3.19) IHes1G) lipp < Call XM - X () Ny
under the assumption (3.16).
It remains to estimate the term es 2(i) defined below

o\ PPN O, .2 h YRR R
es2(iy= 3, KaX;@)-XjNogloy;——)n" - 3, KaX(1)-Xj (1)) oglon;;—=)h"
jHesy € jheQ, €

Rewrite es2(i) as
1

es2() = X;(0)-XPe) ¥ ([ DK§X @)X )+0X; (1)-X](2))d ) 030(%,'“—)}12.
jhe, 0O

We are left to estimate

K5 . o; oKs - o;
| (2 =X 1) Bgler;:—L)R2 | < | —2 (=X, ())plet; ;== | +
jhEZQ* ax,- 4 0N I ]hEZQ;. aX£ J 0 £ |
8K5 K . 8K5 - ] (Xj 2
(3.20) +|jh§),\, ( ) (z-X;@)) - o, (z—X; (1)) Yaop(at;; 2 |,

Lemma 3.4 implies that the first term on the right hand side of (3.20) is bounded by a con-
stant for h € s(g,hy) ifh<d.

On the other hand, the last term in (3.20) is bounded by
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(3.21) 3 max | DPRS-X; (04 | | XX, @) | Gollh®.
jhety DASCd
B2

By Lemma 3.1 and assumption (3.16), (3.21) is bounded by C&/6 = C. Thus we have pro-
ven :

les2G) Mgy < Co I XPE) = X () N

Therefore we have

Il 3, Ko@) O)ejh? Iy
JRELL

=)l es1() + es2() llpp < C5 |l X)) - X, () Il -
And this completes the proof of the Stability Lemma.

Now we can present the proof of Theorem 3.1
Proof of Theorem 3.1 . Let ¢;(t) =X,-"(r) - X;(¢). From equations (2.2) and (3.2), we
obtain
€;(2) = uf(t) — uX; (1))

(3.22) =[uf) - ¥ K& ()X;(t)wh%)
jhel,

+[ T KsX ()X Nwh? — uX; (1)) 1.
Jhell,

Assuming (3.16) and (3.5) hold, we can apply the Stability and Consistency Lemma to the
first and second terms in the right hand side of (3.22) respectively. We then obtain for all h e
5(&ho)

(3.23) &) Ly < Cs N g@) llpp+ C. 8%, for 0<+r < Ty,
where T is defined in the Stability Lemma. The existence of such a positive T« was shown in
[3].

It follows from (3.23) that

|[ é"(t) "L#SW(!) , 0t £T,,

where w is the solution of w’ = C,w + C, 8%, w(0)=0.

Thus, for allh € s(g,hg)
(3.24) lle;@) lpp S CBW™ , for 052 < T,

provided that (3.16) and (3.5) hold. Here Cy is bounded by exp{{ C;+C,))T). Definition (3.18)
then gives
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(3.25) max | e; ! < pom e () “L,.“ < C051+2s—2(1+3_v)/u)_
i

Choose i large enough so that u>2(1+3s )/s . Then for h small, we have
rnax | €; | < COSHS < 5/2
4
Hence T« = T and (3.25) is valid for 0<tr<T". This completes the proof of Theorem 3.1.

| proof of Corollary 3.1 : The proof is exactly the same as that of Theorem 3.1.

Now we can present the proof of Theorem 2.2 .

Proof of Theorem 2.2 . Denote X (7,00 as the flow map .conesponding to the mean initial
vorticity 0. )

dX“‘_g’ % _ (K&, o) - X PHBBMB; KO, o) =

f

Let o; = (i1h, ioh). Then we have
d —
Fr(X(t’ o) ~ X, a)) =1 +1;
where I, and J; are defined as follows

I, = K&, 0)-X (1, Byeo(B: —E—)dﬁ ~ (K@, o)X (¢, B)Bo(BIB,

I = KX (@, a)=X (¢, BY@(B)B - [K & (2, 0;)-X (¢, B)T(B)dB.
In light of Theorem 2.1, we have

(3.26) |1, | < Ce|log ()]

By Proposition 2.1 , X (¢,&t) has bounded first order partial derivatives. Moreover X (z, o)
and ®; are smooth. Following the proof in the Consistency Lemma, we can show

| JRX @, o)X, BT dB- T KX (t, o)X (1, B)@p);h* | < C ™17 + k| log(h) D,
jheldy

| K&, 0)-X @, BY@edB - 3 K& (¢, )X, B)@p) A2 [ < C G2 + & | log(h) .
| jhe,

Arguing as Beale and Majda did in their proof of Stability lemma [4], we can show

32D | 3 KX, o)X, B@ A2 = 3 Ks@(t, o)X (2, B;)@o);h? llpp
jheQ, heDy

SCIX@, o) =X, o)) lpps
provided that || X (z, &;) = X (t,0;) .. €8 for 0 €t < T
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Choose & =¢ and 8% = £ | log (k)| ( 5>0 ). Combining above results, we arrive at

i %(X(r, OL;')—X“(I, o)) ”Lhﬂ G X, Oti)—.f(r, o;) ”L,.“ +C, §l+2s . for 0<1<Ty |

We end up with exactly the same differential inequality as in the proof of Theorem 3.1. We
obtain by the same argument

X, o)-X (¢, &) flo €C 8, for Ost<T.

Since both X (¢,o) aﬁd X(t, o) have bounded first order partial derivatives, we conclude
that for 0 £t <T

| X, )X (t, @) l. € C 8 = (| C log(e) P'*
and

Iu(t, 237, 2) . £ C 8 = €] C log(e) D',
This completes the proof of Theorem 2.2 .

In the proof of Theorem 3.1 , we made use of the fact that the flow map and the velocity
field have uniformly bounded first order partial derivatives. This was established only for a short
time, Regularities of the solution to the Euler equation have been studied in the early work of
Kato [14] and McGrath [17]. Among other things, they proved that the velocity field is almost
Lipschitz continuous and the flow map is Holder continuous under the assumption that the initial
vorticity is bounded. More precisely, they showed that given any T>0, there exists a constant C
such that for 0g: <T,

(3.28) lu(et) —u@.0)|<C llogh | x =3 [ (1 +xg-y))
(3.29) | X(t,0) =X (s,B) | £ C ([o—P| + |r=s] ),
where O<A<l, C and A depend only on T and ||ogll., %(s) is defined by

log(l/sy, 0Oss<1,
x(s) = 0, s21.

Using these results, we can extend the convergence results in Theorem 3.1 to any finite
time. This is the content of the following theorem:

Theorem 3.2 The numerical solutions of the vortex method converge to the exact solutions
of the Euler equation essentially independent of € . More precisely, given any T > 0, there exists
a positive number hg such that for &>nb | hes(ghg), we have

X (¢) ~ Xl <C 51+,

4+30+A2

where § = o

, C depends onlyonT.
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L

The proof of Theorem 3.2 goes along the same line as our proof of Theorem 3.1 . Instead
of using the results in section 2, we use only the Holder continuity of the velocity field and the
flow map. Details of the proof are omitted here,

4. Convergence of the Time-Discrete Vortex Methods

In practical computation, we need to discretize the characteristic equation

dx/Xr) B UL R
e jhg:i‘l,. K 5(X"(1)-X; (t))wo(%,—‘e Y
4.1) X"'(O) =,

by some finite difference methods.

Here we are only interested in proving convergence for the simplest time differencing
scheme, since the semi-discrete vortex methods do not converge faster than O(h) if € < h.

Denote by X/ the approximation of X (¢,, o;). We use the simple forward Euler method to
approximate (4.1). We obtain an equation for X

XPH=XP+ At Y KgXP-XPo;h?
jhef,

4.2
“-2) Xio =0,

Q)
where ©; = mg(a-;?)-

For simplicity, we will present only a short ime convergence proof for the fully discretized
vortex method. A long time result can be proved similarly.

d3X
Let Cy = or;xras? I --C-itT(t, ‘) {l.. Denote by C4=max{C,C.,C;}, and Cg=exp(C4T),

where T is defined in Proposition 2.1, C, and C; are constants in the Consistency and Stability
Lemmas respectively.

Theorem 4.1 Suppose that L > 3 is a large constant, Then for nAt €T and h € s(g,hy),
we have

X7 = X; () Iy S CsAr + 81),
(4.3)
I uf = u; () lipp < Cs(Ar + 81%),

for all At | h and & satisfying the relation
(4.4) Cs(Ar + 815 )RY* < B,

Proof: We follow closely the argument by Anderson and Greengard in [1] and prove the
theorem by induction.
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The case n=0 is trivially true.
Suppose that for n 2 1, we have

n—1 )
(4.5) | XF = X () llpp S CatAt( T (14C A1) Y(AL+81),
Jj=0
Note that
-] .
CLALS (14C A1) = (1+C,ArY* — 1 € exp (C4T) = Cs,
Jj=0
Then (4.4) and (4.5) imply
(4.6) NXP =X @)l < &

Therefore the Stability Lemma applies at the (n+1)-st step. At the (n+1)-st step, we find

I XPH = X (i) e = W X] + A2 3 KgXP-XP; h% = X (t,+A0) Dy
JheQ,

ax.
S IX] = X300 lpg + 1 X PHAS— = (13X, (A0

+Ar Y KsXP-XPoh? - At T K oX (6,)-X; (t, ) k3| p
jhety jheQ :

+ A1 T KX (t,)-X; (1, )08 = At [K X, (t,)-X (1, ,a))mo(a;%)da s -
Jhell,

2
By Proposition 2.1, -§-?~:X (t,0) is bounded independent of € . Applying the Stability and
4

Consistency Lemma to the last two terms in above inequality, we obtain for h € s(g,k¢)

X240 = X, (1) Npp S (RAICOIXE = X; (1)l + C1A1% + C, Ar8H

-1 .
< (14AIC )C 4At ("z (14+C 4AtY YAr+8145) + C At (Ar+81+)
j=0

= C 4Ar( f;(1+c4m)f WAL +31+5),
j=0

where we have used the induction assumption.
By induction principle, (4.5) is true for all n £ T/At. This proves Theorem 4.1 .
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5. Weak continuity of the Euler equation in velocity-vorticity formulation

Our main result in this section is the following theorem:

Theorem 5.1 Consider system (2.1) with initial data wy(x ), where € is a small parame-
ter. Assume |logll,- < C,
(5.1) wo(x ,£) = Wy(x) € L™(RY  weak *,
and the support of wy(x.e) is contained in a ball B(OR). Ler {u(x,;), w(x;t,e)} and

[F(x,1), B(x,t)} denote the solutions of (2.1) with o(x,0,8) = wy(x,8) and ©(x,0) = Wy(x)
respectively. Then

(3.2) ux,t,e) = u(x,t) pointwise in (x,r)
and for any te [0, o)
(5.3) o(x,2,€) — B(x,t) weak * in L™(R?).

Remark 5.1 As an easy consequence, we see that part of Theorem 2.2 is valid up to any
finite time, i.e. the homogenized equation is still the original Euler equation. But we don’t know
whether the estimate still holds or not.

Remark 5.2 Examples given by Diperna and Majda [8] show that for the 3-D Euler equa-
tion, the homogenized equation will not be the original Euler equation if the initial velocity is
oscillatory. In this direction, some homogenization results have been obtained by McLaughlin et
al {18] nsing formal asymptotic analysis.

Proof of Theorem 5.1 . The theorem will be proved by a classical éompactness argument
on u(x,z,e). Let T be any fixed number in (0, +e). Denote by | * || the norm in C, ([0,T xR ),
the space of continuous bounded functions. First from

u@xre)= | K@-y)a®.redy,
B{OR)
we have

lu@se)|<ClloCtole [ [Kax-y)|dy C (18l <C.
B(O.R)

Next we prove equi-continuity. From (3.28), we have
luxte) —u@.r.8)[<Clx -y [ (xx-y) + D).
Therefore for any O<A<1, there exists a constant C independent of € such that
lu(x,t,e) —uyte)|<Clz -y

On the other hand, by a change of variable, we obtain
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Luet) —u@,se)| =[] Kax-y)oG.1 e - 00.s.e)dy |
=] [{K (=X (,00) = K (x=X o(s,00)} operg)d o],
where X .(¢,0) denotes the flow map associated with {u(x,2,£), ©(x.,f,6)].

Letd =|X S(r,oc)l-— X (5,00 L B (x,2d) be thc disk with center x and radius 24, inen

|| (KGa=X 0,00 - K(x=X(s,00)} @p(oe)dal
B(x,2d)

Y C 4

do do
<C
B{xj:zd)(lx—X (1,00 TR o

On RZ\ B (x,2d), we have
| K (x—X (1,00) = K (x~X (5,00) | €] VK (x=%) | | X (6,00 — X (5,00 |

<Cd|x-X0,0F

where % is on the segment connecting X .(¢,0t) and X (s ,o0). Thus

| [ (KX 0,0) - K@-Xs5,00)) ogoe)dol
R2\B(x2d)
do.
<cd < Cd log(R«/24d).
2d dx~X ot @R fx —X (00|

where we have used the fact that wg(,€) has compact support, and R« is defined in section 2.
Using (3.29) we get
| (x,t,8) — u(x,5,6)| < cd log(lid) < ed* < cle—s[V.
Notice that u (x,z,€) decays as |x|—+eo uniformly with respect to € ,

lucnsc | 2.
sogy 12|

By Ascoli-Arzela Theorem, we can extract a subsequence {u(x,?,€;)} such that
(5.5) u(x ) = a(x,t) in CIOTIXR?) as k—r+oo.

Let &(x t) = d,i, — d,lf; where (i}, &,) = i (x,t). As a consequence of (5.5), we have
(5.6) [ e ,1.60)00 1)dxds — [ B GG H)dxdt , as k — +oe,

where 0(x,2)eC o(R2x[0,T)), the space of continuous functions in R2x[0,T) with compact sup-
port. For ¢eC1(R3x[0,T)), this can be proved directly using integration by parts. A standard
density argument proves (5.6) for any e C o(R*<[0,T)).
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The next step is to prove that {#{x,z), ®(x,)} is a weak solution of (2.1) with initial con-
dition @(x,0) = @y(x). More precisely, we will show that for any q)eCl([O,T J%R?%) with com-
pact support in [0,T )xR?,

.7) ] B @ Ye) axds - j $x )T )dx = 0.
RA{0.T] ot

As {u(x,t,e), o(x,;,e)}} are classical solutions to (2.1), (5.7) holds with #(x,z), @(x,?)
replaced by u(x,z,€) and w(x,t,g) respectively.

Then from (5.6), we have
(5.8) | oGy ,Sk)—quxdt - [ ©x ,r)%‘?ldxdz,
R0 ot RB0T) 4
and

O LEN@VO)dxdr = | B ,.1)@V)dxds.
R&%{0,T] R%{0,T]

From (5.5) we also have,

|| olxte)w g - Tx b)) Vodxde |
R[0T

<C | luGrg)-ukxp)] | Vo|dxdt -0,
RE40,T]

Therefore, we obtain

(5.9) [ O6.te)E ) Voydd — [ ®@Vo)dudr.
R[0T R[0T

(5.1), (5.8) and (5.9) together imply (5.7). It is easy to see V- = 0 in weak sense. Hence
we have shown that {7 (x,t), @(x,2)} is a weak solution of (2.1).

From classical results on elliptic equations, we know
HVuCre)llr2<C loCe,e) ;2= C.
On the other hand, by Young’s inequality we have
(e ,Ek)”Li(R?-) = (K *w)(, aek)"LZ(RZ) s ||K[|LE(B (O.R)) [tz gl 2 < C.
Therefore we obtain
| ZC) llgagrey < liminf || w (2 .8) ey < C.

Hence Z(x,t)eL=([0,T1.H(R?).
Similarly we can show #(x,t)e C ((0,T], L*(R?)). _
It is proved in [2] that the weak solution of (2.1) with wy(x)eL®™ is unique in the class
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u(x e L=((0,T1L.H RHMHC (0,T1.LHR?%). We have shown that i7(x,t) is indeed in this class.
Consequently the limiting function #(x,t) is unique. From this we conclude that the whole
sequence {u(x,r,e)} converges in C([0.TIxR? to @(x.1), and {w(x,r,e)) converges weakly to
@{(x 1), where [u(x.t), ®(x.t)} is the unique weak solution of (2.1) with ®(x.0) = @y(x ).

It remains to show (5.3). Let X (¢,&) denote the flow map of the limiting flow. Then from
(5.5) we have

(5.10) X (t, o) > X(t,0) ase—0

uniformly in B (O,R) for any fixed te[0,T]. Now for any function ¢(x)e Cy(R Zyandt 2 0, by a
change of variable, we get

| otre) = | egleeeXfa)de
B(D.R) B(O.R)

= | 0g(0LE) [OCX (t,)) ~ OX (£,00)}d &t + [ wooe)pX (t,a)d .
B(OR) B(OR)

The first term goes to zero for ¢(x)e CO(Rz) because of (5.10). The second term goes to
J D)X (z,00)d o = [@(x #)d(x)dx. This proves (5.3) and the proof of the theorem is com-
plete,

6. Numerical results

The numerical experiments are carried out for the 2-D Euler equation with radial symmetric
vorticity distribution. We test the convergence of the vortex method when the highly oscillatory
vorticity is not well resolved by the computational particles. To compare with the finite
difference method, we also compute the solution using a Lax-Wendroff type of scheme for the
Euler equation in streamline vorticity formulation. An advantage of using a radial symmetric vor-
ticity is that we can obtain the exact solution explicitly.

‘We choose the initial vorticity distribution to be
5.0(1x)3(0.5+sin (21:%1) . kl<1,

(6.1) o(x,0) = 0

iz 1.

In the vortex method calculation, we distribute the particles at time t = 0 by polar coordi-
nates, and approximate the ordinary differential equation (3.2) by the forward Euler method.

Let J=01.J2) » 7 = joh and AB(j) = 2nh /(6rj). Define

91 -_-leeUz) ’ COJ, = CO(rj,O).

Denote by X[ the approximation of X (z,,0;), and ul* the approximation of u (X (z,,%; ).t, ),
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where o;=(8;,r;) , t, = nAt. The fully discretized vortex method is given by

[ Xin-i—l =X‘." + Ar Z KS(X:'—XJH)Q)JFJ}IAB(J)

jhEQj.
(6.2) 5
\ 7 l X,‘U = ai ,
(6.3) wP=& T KsXP-XDa,rhde().

jhely

In our experiment, we choose 8=h%8 ¢ =7 /213. In table 1 and 2, we give the numerical
errors in velocity at t=0 and t=4 respectively. We observe the numerical stability and conver-
gence essentially independent of € . '

For the finite difference approximation, we use the Lax-Wendroff type of scheme to approx-
imate the Euler equation in streamline vorticity formulation

ow ELO) 0® _
W +u8x +vay = {

co((x WY )30) = (Do((x Wy ))a

(6.4)

where the velocity is given by

o 9%
6.5 A A
6.5) “ oy Y ox
The stream function ¢ is coupled to the vorticity by
(6.6) Ad = —.

Denote by ;, #f; and ¢;*; the approximations of w(x,t) , u (x,r) and ¢(x,¢) at x =(ih,jh),
i= n At respectively.

The finite difference scheme is given by

1_
o7 = of; + At ()] + At(oy)];

6.7 o
6.7) ®f; = 0glh.jh)
where
(6.8) (@) = —ul; DOl ~vi; DYoL,

(6.9) (@) = (WP ity 0, +2Uv Gy +v, Oy +VULy @, 020 VY, 0.
We approximate each term in the right hand side of (6.9) by central difference scheme, e.g.
(@) =Dl (©x); =DIDIaf;, (0,); =DiPyal;.

The streamline function ¢ is updated by
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(6.10) DID*or + DIDY oM = —off,

and the velocity is computed by

1Pl . Yy antl
g T MUY

6.11 )
e i = -D3er

where the difference operators D§ etc. are defined by

DEfey =l j—fipi2h,

DYfLy = Ula~fipih o DIfl; = (FL=f i pih.

In the above scheme, we have made use of the fact that the velocity is time independent. To
solve the Poisson equation, we use the known exact stream function to give the boundary condi-
tion for (6.10).

Table 3 displays the errors at t=4 in velocity using the algorithm (6.7-11) for smooth vorti-
city ( € =1.4 ). We observe a second order convergence in space and time. In table 4, we com-
pute the errors at t= 4. in velocity with € =0.0148. As we see, the sizes of the errors grow, indi-
cating that the error constants become larger if € < h . Moreover the rate of convergence reduces
to first order.

In figure 1, we plot the vorticity obtained by the finite difference algorithm (6.7-11). In
comparison with the exact vorticity distribution in figure 3, we see that the vorticity is consider-
ably dissipated at t=4 away from the origin. In figure 2, we display the vorticity distribution for
the vortex method calculation for t=4 at the approximate particle locations. There is no numeri-
cal dissipation in vorticity for vortex methods. The exact initial vorticity has been built into the
algorithm since the vorticity is conserved along streamlines.

‘We can see that in the model considered in this paper, velocity behaves quite well although
the vorticity field is highly oscillatory. Thus it is not surprising that the finite difference method
could still provide good approximation for the average vorticity. This can also be seen from the
analysis of linear problems by Engquist {9]. Our homogenization result indicates that the velo-
city only depends on the average vorticity. This may explain why the results in table 4 are still
reasonable. However, the dissipation error in the vorticity could potentially damage the solutions
in problems when the higher order powers of vorticity play an important role. In this case we
could expect that the vortex method will outperform the traditional finite difference methods if
the small scale features are not well resolved on the computational grid.
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Table 1 : Vortex method calculation: £ = 0.0148 , at time t=0

Errors in velocity field in {0,1] on x-axis
Gridsize L1-norm L2-nom Max-norm
0.200 0.034255 0.046638 0.085578
0.125 0.014554 0.015486 0.021995
0.050 0.003391 0.005391 0.014Q75
Table 2 : Vortex method calculation: € = 0.0148, at time t=4
Errors in velocity field in [0,1] on x-axis
Gridsize Ll-norm L2-nom Max-norm
0.200 0.039724 0.052350 0.093256
0.125 0.017793 0.023809 0.042253
0.050 0.007579 0.010647 0.024781

* In the calculation above, we have chosen timestep size =space grid size




Table 3 : Finite difference calculation: € = 1.4, at time t=4

Errors in velocity field in [0,1] on x-axis

Gridsize Li-norm L2-norm Max-norm
0.200 0.005148 0.005991 0.009136
0.125 0.001267 0.001528 0.002852
0.050 0.000197 0.000241 0.000436

Table 4 : Finite difference calculation: &£ = 0.0148, at time t=4

Errors in velocity field in [0,1] on x-axis

Gridsize L1-nom L2-norm Max-norm
0.200 0.063400 0.081830 (0.123438
0.125 0.044858 0.055485 0.082049
0.050 0.016700 0.026616 0.081283

* Tn the calculation above, we have chosen timestep size = space grid size
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Emsﬂa 1; Finite difference solution ® on [0,1], h=0.05, £=0.013, t=4.
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Figure 2: Vortex method solution @ on [0,1], h=0.05, 8=h98 £=0013, t=2.
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Figure 3: Vorticity field w on [0,1], € = 0.013 .
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