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1. INTRODUCTION

in [7], [8], and [9] we have introduced a class of essentially non=
oscillatory (ENO) schemes that generalizes Godunov”s scheme [2] and its second
order extensions ([10}, [1]) to high order of accuracy.

Ip this paper we present a modification_of the.ENO schemes which is
designed to prevent smearing of linear discontinuities.

Let (Iy x[tq,topy)ls where Ty = [xg_y/poXpur/ols % = o t, = kr, be

a partition of R xRY.  Let E? be the the "cell-average" of wu at time
Ty l.e.,
(1.1) Eg =-%»{ u(x,tn)dx.

j

The cell~average of the solution to the initial value problem
(1.2) u, + f(u)g = 0, u{x,0) = uo(x)

satisfies

-+l _ -n ~ o
(1033) uj = uj - A[f(xj_'_l/z,tn;u) - f(xj—1/2’tn;u)}

where A =1/h and

T
(1.3b) Fx,tsu) =2 [ £lulx,tn))dn.
0

The ENO schemes can be written in the standard conservation form



| n+l n = = n
= - PP . s s = IR {ﬁ‘\-‘_r 1 -
. (1,4a) vy vy k(fj+i/z ﬁj-1/2) 2 LB (rdevily;
here fk denotes the numerical solution operator and ?3+1/2, the

numerical flux, denotes a function of 2k wvariables

= f(vD o

n
(I.lib) J-k+1’ ®s vj+k)

Fin1/2

which is consistent with the flux f£(u) 1in (1.2), in the sense that

Tlu,u,eee,u) = £(u). Unlike standard difference schemes, v? in the ENO

schemes 1is a high-order approximation to the cell-average E?,

in the numerical scheme (1.4)

and not to

n_ =-n
@

j h|

and comparing it to relation (1.3), we see that 1f the numerical flux

the point value u(xj,tn). Setting v

= F(u"

j"'k+1 st 'E_l;'"k) can be expanded as

172

S — p T ' T, o+l
(1.5a) f(uj-k+1"..’uj+k) = ?-é f(u(xj+1/2,tnfn))dn + d(xj+l/2)h + 0(h )

then the truncation error

(1.5b) a?*l - (B W = Aldlxy, ) - dxy_y ;) T + 0™,
1s  0(hT*l)  wherever d(x) 1is Lipschitz continuous, i.e., the scheme (l.4)
is r=th order accurate in the sense of cell averages.

The most important ingredient in the ENO schemes is a procedure to re-
construct a plecewise-smooth function w(x) from its glven cell-averages
{55}. This reconstruction, which we denote by R(x;ﬁ), is a piecewige~

polynomial function of x that has a uniform polynomial degree (r - 1) and



satisfies:
(1) At all points x for which there 1s a neighborhood where w {3

smooth
(1.6a) R(x;W) = w(x) + e(x)hT + o(nTH!y,

(11) Conservation in the sense of

;1172 _ _
(1.6b) £/ R(xj + g;w)de = i3
_ xj-1/2

(111) 1t 1s essentially non-oscillatory
(1.6c) TV(R(-3®) < TVE + 0!y, p > o
where TV denotes total variation in X

Using the reconstruction (1.6) we can express the abstract form of the

ENO schemes by

(1.7a) Eh(r)-ﬁ'= A(I)+E(t)eR(+;W).

Here A(I) 1is the cell-averaging operator

(1.7b) A(I)vw = 1 w(y)dy
TIT /

and E(t) 1is the exact evolution operator of the IVP (1.2), {.e.,



(1.7¢) , u(e ,t) = E(t)uo.
We note that (l.7a) with the plecewise constant reconstruction

(1.8) R{x;w) = ;;j for X4o1/2 <x< Xi41/2

is exactly the first order accurate Godunov’s scheme [1]; (1.7a) with the

plecewise linear reconstruction

(1.%a) R(x;w) = “‘;j + Sj(x - xj) for xj-l/Z £x < xj+1/2
where
{(1.9b) Sj = Wx(xj) + 0(h),

is the abstract form of the second order accurate extensions to Godunov’s
scheme described in [10], [1], and [7].
In the first order case (1.8), the scheme (l.7a) can be expressed in the

conservation form (1.4) with the numerical flux

here fR(uz,uz) is an approximation to the flux at the origin in a Riemann
problem with wu; to the left and uy, to the right.
In the second order case (1.9), the numerical flux of the abstract scheme

cannot be expressed in a simple closed form, and we approximate it by



NO R, L R
(1.11a) Firrrz = Fier72 = € a0V g0172)
where
L n R : . n n .
(L.11b) vy 4/, = V4 + QL - Aa?)S?/Z, Viel/2 ™ v§‘+1 = h(1 +ay,080,,/2%

here a? = f'(v?).

In this paper we pay speclal attention to the second order accurate
scheme (l.11), because at present this seems to be the state of the art. This
class of second order schemes (with various choices of S;) performs raﬁher
well in smooth regions and shocks. However, it exhibits excessive smearing of
linear discontinuities, i.e., contact discontinuities. Usually such discon-
tinuities are smeared more and more in time at the rate O(nl/3), where n
is the number of time-steps. To understand this smearing we note in (l.7)
that whenever a discontinuity in the reconstruction R 1is propagated by the
evolution operator E into the interior of the cell, then the cell-averaging
operator A(I) replaces this sharp discontinuity by a smeared transition. 1In
the linear case there Is nothing to stop this process and therefore it goes on
forever. In the case of a shock wave, the fact that the characteristies con-
verge 1into the shock counteracts the smearing, and a steady progressing
profile is obtained.

The above ohservation is the basis for the artificial compression concept
[3]. 1In order to prevent the excessive smearing of a linear discontinuity one
can artificially induce convergence of the numerical characteristic field at

each monotone strip of the solution. This can be accomplished by modifying



the expression of the slopes S;, or by a@ding a corrective term to the
numerical flux (1.11) {see [4]). The main advantage of artificial compression
is that it is easy to use. The primary disadvantage 1s that one has to be
extra careful (which alsc means to do a lot of checking...) not to generate
unphysical discontinuities by ;pplying it too strongly, where it need not be
applied at all, We refer ﬁhe reader to [6] for more details,

The plecewise-parabolic method (PPM) of Colella and Woodward [1] includes
a mechanism to detect contact discontinuities and to correct the scheme by
using a "steeper”" reconstruction. The PPM proved itself to be a robust high
resolution scheme in a large number of numerical tests [12]. 1In this paper we
present a technique, which we call "subcell resolutiom," that 1s close 1in
spirit to the PPM but is somewhat different in its methodology.

The present scheme is a "souped up" version of (1.11) in which the linear
advection part 1s boosted to third-order accuracy (in Ll—sense) and is
capable of 'ptopagating linear discontinuities perfectly (within 3rd order
accuracy). The main ingredient in the new method is the observation that the
information in cell-averages of a discontinuous function, unlike that of point
values, contains the location of the discontinuity within the cell, e.g., the

cell-averages w

h]
RS
(1.12a) G} =qu, J-= 0 .
g 421

with uy - between u; and ug, are identical to those of the step~function



x < (8 -%)h

Y1,
(1.12b) wix) = s B = EE:E! .
. U™y,
up x> (6 - EOh

Using this observation we can modify the ENO reconstruction of [8] to recover
exactly any discontinuous quadratic function from its cell-averages.

In order to retain the relative simplicity of the numerical scheme (1.11)
-we use the new reconstruction to correct only the linear advection part. The

new numerical flux is

- =ENO -

12 112 = Fpenga * 88

bere ;j+1/2 is the flux through X441/2 due to the linear advection of
the difference between the modified reconstruction and the plecewise~linear
one (1.9). 1In the constant coefficient case the scheme (1.13) is exact for
discoﬁtinuous quadratic initial data.

Later on in this paper we present the extension of the "subcell resolu-
tion" concept to any finite order of accuracy, and also extend the scheme to

the Euler equations of gas dynamics,

2. ENO RECONSTRUCTION
In this section, we describe one of the techniques to obtain an ENO re-

} of a piecewise smooth function

3

construction. Given cell-averages {w

w(x), we observe that



it 1 il

_ Xi+1/2
(2.1a) Y- WPy = WXy g9) = Wy )
j=1/2
where
X
(2.1b) Wix) = [ w(ydy
. Xo '

is the primitive function of w(x). Hence we can easily compute the point

values {ngi+l/2)} by summation
i —
(2.1¢) W(xi+1/2) h Z Ve
3=,
Let Hp(x;u) be an interpolation of wu at the points

accurate to order m, i.e.,

(2.2a) Hm(yj;u) = u(yj),

L 2 -
(2.3b) 8 (gu) =3 ) + o™ ™), 0 <2 < m.

L m L - -
dx dx
We obtain our '"reconstruction via primitive function"
defining
d .

(2.4) R(x;w) = Hr(x,W).

Relation (1.6a) follows immediately from (2.3b) with g2 =1

tion (2.1), i.e.,

{yj}, which 1s

technique by

and the defini-



R(x;w) = %;{- Hr(x;W) = %"; W(x) + 0(h")

= w(x) + 0(h").

Relation (1.6b) is a direct consequence of (2.3a) and (2.2), i.e.,

*341/2 d
AT, R(e5w) =& | 5 B (x,W)dx

dx
*4-1/2

1 1 -
= F {Hr(xj_'_l/z;w) - Hr(xj-]./z;W] = F {w(xj+1/2) = W(xj_llz)] = wj.

To obtain an ENO reconstruction, we take Hr in (2.4) to be the new ENO
interpolation technique of the author [5]. In this case, Hy(x;u) is a
siecewise=polynomial function of x of degree m, which is defined {omitting

the u dependence) by
‘2.5a) Hm(x;u) = qj+1/2(x) for Yj £y X< Yj+1

vhere q §+1/2 is the unique polynomial of degree m that interpolates u

it the mtl points

(2.5b) Sm(i)

{Y“_l st ’Yi+m}

for a particular choice of 1 = i(j) (to be described in the following). To

satisfy (2.3a), we need



U120 = ulrds gy /9 gqg) = ulygy)s

therefore, we limit our choice of 1{(j) to
(2.5¢) : j-ml < 1(3) £ 1.

The ENO interpolation technique 1is nonlinear: At. each iInterval
[yj,yj+1}, we consider the m possible choices of stencils (2.5b) subject to
the restriction (2,.5¢), and assign to this interval the stencil in which u
is "smoothest™ in some sense; this is done by specifying 1(3) 1in (2.5b).

The information about the smoothness of u can be extracted from a table

of divided differences. The k-th divided difference of u
(2.68.) u[yi’yi+1l...’yi+k} = u[Sk(i)]

~is defined inductively by

(2.6b) ulSy(1)] = uly,)
and
(2.6¢) ulS, ()] = (uls, _,(4+1)] = uls,_, (DD /(v =y,)-

If u(x) 1s m times differentiable in [yi,yi+m} then

(2.7a) u[Sm(i)} = %T-u(m)(g), for some yLS £ < Yi+m®



1f u(p)(x5 has a jump discontinuity in [¥{)944q] then
(2:7b) als (1] = 0™ P P)]), 0 ¢ p < w1

([u(P)} in the RHS of (2.7b) denotes the jump in the p-th derivative).
Relations (2.7) show that Iu[Sm(i)]] is 2 measure of the smoothness

of u in Sm(i), and therefore can serve as a tool to compare the relative

smoothness of uw 1in various stencils. The simplest algorithm to assign

§,(1(j)) to the interval [yj,yj+1] is the following:
Algorithm I. Choose 1(j) so that

(2.8) luls,AGNI| = min  (|als_(D]1]}.
. J=mt1<i<]
Clearly (2.8) selects the "smoothest" stencil, provided that h is
sufficiently small, -
In order to make a sensible selection of stencil also in the "pre-

asymptotic" case, we prefer to use the following hierarchial algorithm:

Algorithm II., Let 1, (j) be such that S (ix(§)) is our choice of a (k+1)-

point stenecil for [yj,yj+1]o Obviously we have to set

(2.9a) 1,(4) = 3
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To choose 1iy43(j), we consider as candidates the two stencils

. L
R

which are obtained by adding a point to the left of (or to the right of)
Sk(ik(j)), respectively. We select the one in which u 1is relatively

smoother, 1i.e.,

L =1 £ Julsg, 1] < |ulst, 1]

(2.94) £ .(3) = .
ktl ik(j) otherwise
Finally we set 1(j) = i (j).
Using Newton”s form of interpolation, we see that the polynomials
{qk(x)}, 1 S_k £ m, corresponding to the stencils sk = S (1(3)) selected
by Algorithm II, satisfy the relation

k+l]

(2.9e) qk+1(x) = qk(x) + u[$ I, (x-vy).

vesS
This shows that the choice made in (2.9d) selects qp,; to be the one that
deviates the least from qp. It is this property that makes Algorithm II

meaningful also for h 1in the pre—asymptotic range.
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3. [ENO RECONSTRUCTION WITH SUBCELL RESOLUTION

In this section, we show how to modify the ENO reconstruction of the pre-
vious section so as to allow for the recovery of discontiquities in the in-
terior of the cells.  To illustrate the procedure, we first consider a dis~
continuous plecewise polynomial function w(x) of the form

PL(x) x < X4

(3.1a) w(x) = ’
PR(x) x > X,

where Pr(x) and Pp{x) are polynomials of degree less or equal s
(3.11) deg(PL)_ﬁ 8, deg(PR)_S 8.

We assume that w(x) is actually discontinuous at xq» 1l.e.,

(B1e) Py (xy) # Ppx,)

and that the discontinuity 1s located in the interior of the interval IG

(3.14) X179 <%y < X} /2°
(See Figure la.)

Next we denote the cell-averages of w(x) in (3.1) by {E}} and con~
sider the ENO reconmstruction R(x;Ww)  applied to these -data. To simplify
our presentation let us denote the polynomial defining R(x;w) in the
cell Ij by Rj(x;ﬁ). Clearly, provided h ig sufficliently small, the

Stencils assigned to cells {Ij}, j # 0, are selected from the smooth part of
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Ry(x;w) = B (x) + 0(0") for 3 < -1
(3.2)

Rj(x;:) = Po(x) + O(hr)- for j > 1.
R(x3w) in I does not introduce spurious oscillations, however it does mnot
provide an accurate approximation to the discontinous function w(x) eitﬁer
(see Fig. 1b). Using (3.2) and the information contained in the cell~
average Eb, we can easily rectify this situation as follows: We extend
R_;(x;w) to a point z im T, from the left, and extend R, (x;w to
z from the right and then approximate the location of the discontinuity in
the cell Iy by finding a value of z that will fit the cell average
Eb (see Fig. le). This 1is done by finding a root of the algebraic equation
Fg(z) =0 where

z X1/2
(3.3a) Fo(z) ol {f R_l(x;?v')dx + _£ Rl(x;?r')dx - Fo.

When h is sufficiently small, the data near the cell I, approach those of

a step—function. Therefore, as in (1.12) we expect to have
(3.3b) Fo(x_y /p)*Folx, 1p) <0
and a single root of Fu(z) = 0 in Ip; we denote this root by 8¢

(3.3¢) FO(SO) = O,




it follows from (3.2) that
- = r
(3.3d) leo xdl 0Ch™).

What we mean by "ENO reconstruction with subcell resolution” is the modified

ENO reconstruction f{(x;;) which is defined in this case by

(3.4a) ﬁj(x;'ﬁ) = Rj(x;?) for j # 0
i _ R, (x;w) for x_1/2< x < 8,
(3.4b) Ro(x;w) = - .
Rl(x;w) for 90 <x K< X572

Clearly it follows from (3.2) and (3.3d) that R(x;W) is an  O(hT)

~

approximation to w(x) in the L; sense, i.e., forany a and b

. by .
(3.5) . [ |RGx;™) = wix)|dx = O(hD).
a
We observe that if the polynomial degree s in (3.1d) is less or equal
(r = 1) then the primitive functions of Pp, and Pp are polynomials of
degree less or equal r, a-nd therefore Hr(x;w) in (2.5) 1is exact except at

In. Hence,
(3.6a) Rj (x;w) = P, (x) for < -1
(3.6bp) Rj (x3w) = PR(x) for 3> 1,

and consequently 90 = x in (3.3). Thus we have shown

d



(3.6¢) s <r-1 = R(x® = W(x).

We turn now to describe the algorithm defining AII{(x;W) for a general
piecewise~smooth function w(x). As in the previous example we take ﬁ(x;}';)
in Ij to be Rj(x;m, unless Ij_ is suspected of having a discontinuity

of w(x) in its interior. In the latter case we check whether

(3.73) Fj(xj--E/Z)'Fj(xj-!-l/Z) S 0,
where
| 2 _ X3+1/2 _ _
(3.7b) Fj(z) - {{t Rj_l(x;w)dx + _L Rj+1(x;w)dx} - e
j=1/2
If (3.7a) holds, then there is a root z = Bj’
(3.7¢) Fj(aj) = g, xj-1/2 < ej £ xj+1/2

in the cell Ij, and we define R(x;w) 1in this cell to be

. Rj_l(x;;w_) for x,_1/9 <x< 0,
"R (x3w) = ' .

h ey
Rjﬂ(x,w) for Bj <{x < xj+1/2

(3.7d)

If (3.7a) does not hold (which means that either there is no root in Iy,
or that there is an even number of roots in Ij), we take Rj(x;'v'l') to be
Rj(x;;w_).

let ¢ be some measure of the non=-smoothness of the reconstruction

3
R(x;w) in Ij, e.g.,
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g« -
= [ R(x,50)], 1 <k<rl,

(3.8a) g
j dx h| - -

or a combination of such derivatives. Our algorithm identifies cells which
are suspect of harboring a discontinuity of w(x), as those which attain a

local maximum of "non-smoothness" of the reconstruction, i.e.,

(3.8b) - g, >a and ¢, >0

k| j=1 3 j+1°

We summarize the algorithm defining §(x§§) by:

If
{(3.9a) °j > °j~1’ g. Z.cj+1 and Fj(xj-1/2)°Fj(xj+1/2)-S 0
then

i _ ijl(x;'t?) for Xy-1/2 <x < ej
(3.9b) Rj(x;w) = _ ;

Rj+1(x;w) for ej < x < X441/2

otherwise
(3.9¢) ﬁj(x;a = R (x;W).

In an Appendix, we present analysis which motivates the choice of condi-
tion (3.8b). In the following we make several remarks and observations

about ﬁ(x;w), the "ENO reconstruction with subcell resolution.”



(1) ﬁ(x;ﬁ) is indeed essentially non-oscillatory (ENO). This follows from
the fact that local maxima are isolated, i.e., if (3.8b) holds for 1L,
it cannot hold for neither Ij-l nor Ij+1. Consequently, if ﬁ(x;;)
is defined 1in I; by the discontinuous (3.9b), then in I4-; and

Ij+1 it is defined by (3.9¢), i.e.,
(3.10) ﬁj_l(x;G) = Ry, (x3%), ij+1(x;$) = Ryyy ().

(2) 1f, as in the example (3.1), there is a discontinuity of w(x) in the

interior of I,, then

(3.11a) = 0o™®), o, =0(1), o, =0(1)

% 1

where k- 1is the order of the derivative used in (3.8a).

Therefore, provided h 1is sufficient;y small, we get that
(3.11b) 9 > o=1, 9 > Tys
and also as in (3.3b)

(3.11¢) Fo(x-1/2)'Fo(x1/2) < 0.

This shows that ﬁ(x{ﬁ), as defined by the general algorithm (3.9), will

recover any real discontinuity of w(x).



(3) We observe that condition (3.9a) may hold also in the smooth part of
w(x) near a local maximm of ]dkw/dxk|. In this case the algorithm
places a discontinuity at 6 i irn the interior of Ij. However,

because of the smoothness of w(x) there. and (1.6a), we have
: T
(3.12) Rjtl(ej,?e) = w(ej) + 0(h7),

Consequently the jump is of the size of the reconstruction error 0(hY).
We recall that the original ENO reconstruction is discontinuous. at
{xj+1/2}. Therefore, the effect of the algorithm (3.9) is to replace the
two discontinuities at Xjm]/2 and .xj+1/2 by a single one at Bj.
(4) We observe that in order to evaluate Rj(x;an in a cell Ij which
contains a discontinuity at Bj, we have to find out whether - x > ej
or x < aj. Assuming ej to be the only root of Fj(ej) =0 in
Ij, as is the case for a real discontinuity, we can use the logic of the
interval-halving technique to evaluate Rj(x;iD without actually

computing ej. To do so we calculate Fj(x) and compare its sign with

that of Fj(xj-IIZ) or Fj(xj+1/2):

Rj_l(x;ﬁ) if Fj(x)°Fj(xj-1/2) >0

(3.13) R(x;%) = _ .
Rj+1(x;w) otherwise

4. A SECOND ORDER ACCURATE ENO SCHEME WITH SUBCELL RESOLUTION
In the following we describe how to incorporate the reconstruction with

subcell resolution into the ENO schemes, so as to improve their resolution of
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linear discontinuities. In this section, we present the derivation of (1.13),
which 1s an improved version of the second order accurate MUSCL-type scheme
(}.11). In the next section, we shall generalize these ideas to any order of
accuracy.

We start with the piecewise—parabolic reconstruction R{x;w) which 1is

defined by (2.4) with r = 3, i.e.,

-‘— u_d'__ .
(4.1a) R(x3w) i H3(x,W)
where W is the primitive functiom (2.1b) of w(x), and Ha{x;W) 1is a
piecewise-cubic ENO interpolation. Let 1 = i(j) be the left endpoint of the
stencil (%y.1/7s Xy41/2> X4+3/2» Xi+5/2) assigned to the interval
(xj41/2' xj+1/2) by (2.8) or (2.9) or some other ENO technique;

3~2<1¢<3  The parabola describing R(x;w) in (x5-1/25 xj+l/2) is

given by.
: d3H3(x;W) _ _ - 2
(4.1b) Cj = T = (W1+2 - 2w1+1 + Wi)/h
_ d2H3(x;w) _ _
(4.1¢) 8y = T lx=xj = (W, W)/ (-1 1/2)hcj
(4.1d) R(x;w) = (w, - hz C.) +585,(x-x,)+ 1 C.{x=-x )2
. Xo¥ jTE j 3T i’

Using the algorithm .described in (3.9) we now define ﬁ(x;ﬁ), which
modifies R(x;w) in (4.1) so that it includes a discontinuity in the
interior of each cell Ij which meets condition (3.9a). Ideally, we would

like to use the schene



n+l

] JE(T)R(s 3vD),

(4.2) v = A(I

j
which is third order accurate in Ll-sense (but only second-order accurate in
the maximum norm). However, the proper approximation of the numerial flux of
(4.2) 1is much more complicated than (1.11), since it 1is one order more
accurate in time, and.oﬁ top of it one has to account for discontinuities
crossing the boundaries of.the cell during the time-step. Bearing in mind
that the main fault in the MUSCL-type scheme (1.11) that we want to correct is
the smearing of linear discoﬁtinuities, we settle for the simpler second order
scheme (1.13), which will be identical to (4.2) only 1in the constant co~
efficient case.

Our basic scheme remains

n+l

(4.3a) v YE(xL{s;v™)

= A(Ij

with the plecewise linear reconstruction

(4.3b) L(x;w) = w, + 5,(x - x,) x€l

i j i

as in (l.11) we approximate its numerical f£lux by

NO R, L R
(4.4a) Eivi2 = Te2 = £ Ogh1/20 341727
where
L _ _ R = N - n n
(4e6b)  wi g = VD R(L - 2aSY/2, viy s = Vi - BCL +aal)sTL /2.



. T, . T —————

We take S5 in (4.4b) to be (4.lc), and observe that by (2.3b)

-

(4obc) 55 = wy(xy) + 0(h?),

which 1s one order higher than (1.9b). Consequently, as the UNO scheme of
Harten and Osher [7], this scheme is truly second order in all Lp norms
(unlike TVD échemes which are first-order in L and second order only in
Ly).

We introduce subcell resolution into the scheme by modifying its numer—

ical flux to be (1.13), i.e., we consider the scheme

_ atl _ n _ ¢ - T
(4.5a) vy =y A(fj+1/2 fj—1/2)
- -ENO -
(4.5b) fj+l/2 = fj+1/2 + 8i41/2°

In the constant coefficient case,

(4.6) u +au = 0, a = const.

we define gj+1/2 to be

(4.72) g =2 fT [&(x - at; v - L(x - at;v™h)lde
/8 84+1/2 T j+172 ~ 3BV j+1/2 ; :

Since in the constant coefficient case

: ~ENO a ,* . .n
(4.7D) fj+1/2 = ;-,(f) L(xj+1/2 - at; v )dt



D

we get that
T w
—— a . n
(4.7¢) fj+1/2 = ;—é R(xj+1/2 at; v )dt.

This shows that in the constant coefficient case (4.6), the scheme (4.5) 1is
identical to (4.2). Consequently, it 1is exact' for discontinuous parabolic
data of the form (3.1), ) '
Next we derive an expression for éj+1/2 in the constant coefficient
case (4.7a); this will later be generalized to the nonlinear case by "freez-
Ing" the charasteristic speed within the cell,
In the constant coefficient case, (4.7a) can be rewritten as

412,

(4.8) [R(y;v™) = Liy;v™]dy.

. _1
84172 =7
X541/2-a1

First let us assume a > Q. When

(4.93) i(x;vn) = Rj(x;vn) in Ij’
then

- 1 xj+1,2 n n a 2
(4.9b) 83412 = T/ (R, (y;v7) = L{y;v)1dy = 35 (v = 1)(2v-1)h C,s

xj+1/2-am

here v = ja.
When there 1is a discontinuity in the interior of Ij, ﬁj(x;vn) is

given by (3.9b), i.e.,
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Rj_l(x;vn) X3-1/2 £x< Bj
(4.10a) %(x;vn) = |

(x;v™) 8, <x<x

R § XS X0

and we have to find out whether (x - at) is larger on smaller than

j+1/2
We recall that for (4.10a) to hold the relations

Gj.

(4.10b) P8 =0, Flx

j §(%5-172)°F5(Ry4p72) £ 0

have to be satisfied, where Fj(z) is defined by (3.7b). Using the basic
idea of the interval-halving method for calculating a root of algebraic equa-
tions, we can find out in which of the two cases we are in without actually

calculating Bj (see Remark (4) at the end of the previous section). All

we have to do is to compute F (xj+1/2 at) and compare its sign to that

Of Fj(xj-l/z)’ inEo,

) >0 = x

- ar)-F (x,_ 341/2

3+1/2 - ar £ ej

) < 0 = =x ar > 8

ET)'F (K j+1/2 - e jl

To express the integral in (4.8) let us introduce the notation

Yq 2 ¥,"X
(4.11) b (y,,7) =[ R GuvPdx = [ - g cy + 38 RARE X I

41

In case X2 & Z_Bj, we get from (4.8) and (4.10a) that

- 1 n, 1l n
(4.123)gj+1/2 = ?'{bj+i(xj+1/2 - at, xj+1/2) - ax[vj + 5-(h - at)SjI}.



When xj+1/2 - ar ¢ Bj, we use the fact that

x
j+1/2
%-f R(x;vn)dx a v;
X3=-1/2

to express the integral in (4.8) by

x x -at x ~at
j+1/2 j+1/2 =, §+1/2

i R(x;v")dx = hvi- [ R(x;v")dx = hv~ [ R _l(x;vn)dx;

x -at I % I % 1

j+1/2 j-1/2 3-1/2

Rearranging terms we get in this case

A - 1 n _ at o0y _ -
(4.12b) 844172 = = {(h - at)(vj -_El-sj) bj_lcxj_l/z, X541/2 at)}.

To summarize, the definition of %j+1/2 in the cagse a > 0 is:
(4.13a)" 18 = 3L (y = 1)(2v -~ Dh%
#+1/2 T2 h

unless the discontinuity condition (3.%9a) holds for Ij; in the latter case we

define

(4.130)*%
Tt
(h-ar)(vj- gisj)-bjﬂl(xj-1/2'§+1/2-ar) if Fj(xj+1,2_at)-Fj(xj_1/2) >0

TBy+1/2" o
bj+1(xj+1/2-aT ’xj+1/2)-a'f [vj + 'Z(h"'a'[ )Sj] Othemise

Similarly for a < 0 we get:
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(4.132)" T85_1 7 = 5 (DD,

unless the discontinuity condition (3.%9a) holds for Ij; in the latter case we

define

(4.13b)7

' n_1 ' _
-bj_l(xj_llz,xj_uz--at)'-a-r{vj--nz-(h-l-a-r)lsj if Fj(xj-1/2)'Fj(xj-1/2 at) >

]

t€i 1 /5
j-=1/2 n_ at )

bj+1(xj_1/2—ar,xj+1/2)f(h+at)(vj- -~ Sj otherwise

Note that the expressions (4,13) are formulated as the contribution of the

cell Ij to the numerical flux ;. Thus, if a > O, the contribution of

~

from the Ij cell goes to gj+1/2, while if a < 0 this contribution goes

By=1/2°

In section 6, we extend the subcell resolution ideas to the Euler equa-

to

tions of gas dynamics. Since shocks are highly resolved by the original ENO
scheme, we apply subcell resolution only to the linearly degenerate
characteristic field in order to improve the resolution of contact dis-
continuities. In this case the characteristic speed, which is the velocity of
the flow, is not a constant but a function of the solution itself. Neverthe-
less, we use the same expressions as in (4.13), except that a 1n Ij is
replaced by ajs and v = Aaj. We compute the cor;ective flux é in the
following way: First we preset ; = 0, and then we sweep over the mesh and

collect contributions to g from each cell: 1If 25 > 0 we add the RHS of

(4.197 to if a; < 0 we add the RHS of (4.13)" to éj_”z,

By+1/23
Note that if a54] < 0 and ay > 0, then ;j+1/2 gets contributions from

both Ij " and Ij“'.{'
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5. EXTENSION TOC HIGH ORDER OF ACCURACY

In this section, we describe the extension of the ENO scheme with subcell
resolution to arbitrarily high order of accuracy. As in the second order case
(4.5), we introduce subecell resolution to the high order accurate ENO schemes

via a corrective flux éj+1/2’ i.e., we consigler the modified scheme

nt+l n - -
(5.13) Vj Vj A(fj+1/2 fj_llz)
- «FNO -

First, we describe briefly the derivation of jfcl)/Z' Wel refer the
reader to [8] for more details. Let L{x;w) be an r-th order accurate
reconstruction of w(x), such that
(5.2a) -fl;f Lix;w)dx = W,.

3 b

3

As before we denote the (r-1)-th degree polynomial describing  L(x;Ww) in

Ij by Lj(x;?i), and express it in the following Taylor expansion

_ -1 ”bk K~ 4k _
(5.2b) Lj(x;w) = kI=0 ' (x - xj) R Dk = -;;-E L(xj 3W).

Let uj(x,t) be the solution to the initial value problem

{5.3a) u, + f(u)x =0, u(x,0) = Lj(x;;).

Since the initial data in (5.3a) are analytie, we know from the Cauchy-



Kowalewski theorem that uj(x,t) exists uniquely and it is analytic for some

time 0 <t <c. Therefore, its Taylor expansion around x = Xy and ¢t =0

s 1 x Ky o m k-m
G0 e = L L () P © Oy
(-5 P T T O

is valid for 0 <t S-tc and x sufficiently close to Xy Using (5.3) we

define vj(x,t) to be the truncated Taylor expansion

‘ 1 1 k Ky m k=-m
(5.42) v (X,t) = z % 2 (m) Dm k=m t (x - x,) )
k=0 " m=0 *

3 3

(5.4b) |vj(x,t) - u (x,t)| = 0(h%).

3

The coefficients %m = in (5.4a) can be computed directly from the
»

known coefficients {ﬁk} in (5.2b) (note that B _, k = ﬁk) by successive

0’
differentiation of the partial differential equation and substitution=--see [8]

for detials.

Finally, using an appropriate numerical quadrature to approximate the

NO
integral in (l.58), we define 3+1/2 to be

(5.5) ] A CH R I »
. j+1/2 © Vit E 172V 0V 441 Kya1 72077 0
Here By and Y, are the coefficients of the numerical quadrature. In

the second order case we use the mid-point rule: K =1, Bk =], Y ™ %-. In

the third and fourth order case we use the Gaussian quadrature: K = 2,



-3 =L -1/3 =L 3 -
By =By =T s Y =3 (1 - 1//3), Yy =5 (1 + 1//3). Note that the second
order accurate scheme (1.11) is identical to (5.5) with r = 2.

Next we describe the derivation of the corrective flux ;j+1/2 in
(5.1b). Let R{x;w) be another reconstruction of w(x) which is at least
r-th order accurate. Using the algorithm (3.9) we define ﬁ(x{ﬁ), its
modified version with subeell resolution. As in the second order case (4.7a)
we define §j+1/2 in the constant coefficient case to be

- a b n n
gj+1/2 = ?.é [R(xjﬂ./2 - atjv ) - L(xj+1/2 - at;v )]dt
(5.6)

X
j*/2
f [RCy;v™ - L(y;v™Mldy.

X341 /2=ar

#
dlr—-

We note that relations (4.7b) - (4.7¢) hold for any r; therefore, we can
state that the scheme (5.1) in the constant coefficient case is identical to
(4.2) in general. Coﬁsequently, if the reconstruction R(x;Ww) is exact for
smooth polynomial data of degree r, then the ENO scheme with subcell resolu—-

tion (5.1) is exact for all initial data of discontinuous plecewise-polynomial

functions of degree less or equal r.

Let us denote

T2
(5.7a) d_(y,,¥,) =£ [R_(xv™) = L_(x;v™)]dx,
1
4]
. n - . n
(5.7b) Cm+1/2(y1,y2) = £ [Rm+1(x,v ) Rm(x,v ) ldx.
1

Using these notations we can evaluate ;j+1/2 by the following expressions:
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If a > 0, then

+ N
(5.8a) ng+1/2 = dj(xj+1/2 - a1,x1+1/2),
unless
+ ‘
(5.8b) ¥ > Sy10 9y Z°j+1' Fj(xj+l/2)'Fj(xj-1/2) L0

in which case

301273055101 72) + Oy 2 Rypy 197aT5%44 1)
.
{5.8¢) ng+1/2 = if Fj(xj+1/2)'Fj(xj+1/2-aT) >0

dj(xj+1/2-aT’xj+1/2)+Cj-l/Z(xj-1/2’xj+1/2”aT) otherwise.

If a < 0, then

(5.8a)~ ng_l/z - "'dj (x;}—l/Z’xj*-i/Z - at),
unless
(5.8b)~ oy > gy oy Z.°j+1' Fj(xj+1/2)-F3(xj_1/2)_s 0,

in which case



m3]-

-dj(xj_lfz,xj_llzwaT) + C.+1/2(xj_1/2-ar,xj+1/2)
(5.8¢)” T84-1/2 = if F (xj+l/2).F (xj_llz;ar) >0

~at) + C -at )} otherwise

'dj("j-llz"‘j-llz 3-1/2("3-1/2"‘j-1/2

We observelthat up to this point we have not specified L(x;w) and
R{X3W). One possibility is to generalize the set up of the second order
accurate scheme in section 3 as follows: Let r be the desired order of
accuracy of the scheme. We start with a reconstruction via primitive func-

tion R(x;w) which is one order higher, i.e.,
(5.9a) | R(x3W) = S H__ (x3W);
* ’ dx "+l 77

here W is the primitive function of w, and H,..; 1is the ENO interpolation
of section 2. As before we denote the polynomial of degree r defining

R(x;W) in I, by Rj(x;'ﬁ'), and rewrite (5.9a) as a finite Taylor

expansion:
Dk dk+1
(5.9b) R (x; W) = kg,o "1l (x - X ) » Dk = Faﬁl(xj W)

Using {5.9b) we now define L{x;w) to be

( ); w) ) rfl e
5.10a L.(x;w) = (D +a h D + (x - x ) 5
3 k=0 <1
where
0 for k odd
{5.10b) = .

Z-k/(k+1)! for k even
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L, (x:;w) is a polynomial of degree (r - 1) which reconstructs w(x)
i
in Iy to 0(hT). We observe that
dr—l _ dr-l 2
{5.10¢) ——;:T-Lj(x;w) = Dr“l = =T w(xj) + 0(h");
dx dx

this, as (4.4) does in the second order case, eliminates some of the non-
smoothness in the reconstruction error which is due to the adaptive choice of
stencils. Consequently, the ENO scheme based on this reconstruction is r—th
order accurate in all Lp norms, including the maximum norm. Note that the

correction to the first term Iin the RHS of (5.10a) takes care of the conserva-

tion property (5.2a), i.e.,
(5.10d) =1 Ly (xsidx = .

Remark: There are other reasonable choices of L{x;w) and R(x;W).

We may choose

oy oL 4 . = o d ]
(5.11) L{x;w) = Hr(x,W), R(x;w) = Hr_'_l(x,W)
Or aven
(5.12) L{x;7) = R(x;@) = % H_(x;W);

note that the expression for E5+1/2 in the latter case is much simpler

since dj(yl,yz) =0 1in (5.7a).



6. EULER EQUATIONS OF GAS DYNAMICS

In this section, we describe how to apply the scheme (5.1)‘to the Euler

equations of gas dynamics for a polytropic gas:

(6.1a) ‘ut + f(u), =0
(6.1b) u= (p,m,E)T
(6.1c) £(a) = qu + (0,P,qP)T
(6.1d) P =y - 1)(E - 4 pq?).

Here p,q,P and E are the density, velocity, pressure and total energy,

respectively; m = pq is the momentum and Y is the ratio of specific

heats.,

The eigenvalues of the Jacobian matrix A(u) = 3£/3u are
(6.2a) aj{u) = g - ¢, ag(u) = q, a3{u) = g+ ¢

where ¢ = CYP/p)I/Z is the sound speed.

The corresponding right-eigenvectors are

1 1 1
(6.2b) rl(u) = (q -c ), rz(u) ={ q |, r3(u) =1q+c )
H - qc¢ lqz H+q

7 c

hera
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(6.2¢) H= (E+P)p=c/(y = 1) + 44

is the enthalpy.
To compute a left-eigenvector system {zk(u)} which is bi-orthonormal

to {r (u)} in (6.2b), we first form the matrix T(u), the columns of which

are the right-eigenvectors in (6.2bj
T(u) = (rl(u).rz(u),r3(u))

and then define 1,(u) to be the k-th row in Tﬂl(u), the inverse of T(u).

We get

8 (a) = 7 (b, + a/e,~bjq - 1/c,b))
(6.2d) 22(d) = (1 - bz,blq,-bl)

23(u) = -;_--(b2 - q/c,-blq + 1/c,b1)
whe;e

‘ 2
(6.2¢) by = (v = 1)/e
1 2

Given {v;}, approximation to {Exxj,tn)}, we use (6.2d) - (6.2f) to
")

evaluate the locally defined characteristic variables at(vj

(6.3a) ﬁf = zk(v;)v? for i = j ~ r,eee,j+r and k = 1,2,3,



Note that j  is fixed in (6.3a) while 1 varies over the points which
are relevant to the selection of the stencil for the cell Ij. Thus, the
elgenvector system {zk(v;)}§=1 should be regarded in this context as a
constant system of coordinates. Next we apply our scalar algorithm to each of
the locally defined characteristic variables in (6.3a), i.e., we select a
(possibly different) stencil for each of the characteristic variables and de~-
fine R (x;ﬁk) by (5.9); then we combine these scalar reconstructions by

3

: 3
(6.3b) R, (x3v?) = ) R.(x;ﬁk(vn))r (v,
] k=1 J 377k]
As in section 5 we rewrite the r—-th degree polynomial (6.3b) as a finite

Taylor expansion, except that now the coefficients {D,} in (5.9) are

vectors. With this convention in mind we proceed to define the vector recon—

struction Lﬁ(x;vn) and the numerical flux T?f?,z by (5.10) and (5.5),
respectively.
We turn now to describe the vector ;j+1/2’ which introduces the

subcell resolution to the numerical flux (5.1). As we have mentioned earlier
in this paper, we use subcell resolution only in the linearly degenerate field
(k = 2 in (6.2)) in order to improve the resolution of contact discontinui-
ties. We do so by applying the algorithm (5.8) scalarly to ;ﬁe linearly

degenerate characteristic field k = 2 as follows:

We define
(6.4) = |, (v a R (x,;v")| for some k, 1 <k < r = 1
. O'j ) Vj -dx_lé. j xj,v or me s S sr y
1 n z n xj+1/2 n n
(6.5) Fj(x) = gz(vj) gl Rj_l(x;v Ydx + £ 33+1(x;v ddx - hvj}

*3-1/2



T
and similarly
Y2
n n
(6.6a) ' dj(yl,yz) =£ zz(v;‘){nj(x;v ) = I-j(x;v ) ldx
1
Y2 .
(6.6b) Cm+1/2(y1,y2) = £ zz(v?)[2m+1(x;vn) - Rﬁ(x;vn)]dx for m = j-1,3.
i

The characteristic speed of the 1linearly degenerate fileld 1s the flow
velocity q; which can be of different sign in different regions. The defini-

tion of in (5.8) is formulated as the contribution of the cell

8y+1/2
Ij to the numerical flux. Therefore, it is convenient to program the
calculation of the numerical flux in two stages: First we evaluate

. _ =ENO

by (5.5) for all j. . Then we sweep over the mesh again and collect the con-

tribution of each cell to the numerical flux. Using FORTRAN conventions this

can be described by:
n
If q, >0 then

+ 1 _ n n,,

1 n n
=172 = Fge172 7 7 43 g/20%gm172 T TIPTR:



-37-

Yext we check whether the discontinuity condition

(6.9) oy > oi1r 9y 2-°j+1’ Fj(xj-1/2)°Fj(xj+l/2)-S 0

{s satisfied. If one or more of the inequalities in (6.9) is not true, we
move on to the next cell. If all the inequalities in (6.9) are true we pro-

ceed to calculate as follows

If q; > 0, then

(6.10a)" &, =
|

n Y
cj'1/2(xj—1/2'xj+1/2- qu) otherwise
and
+ T =F n
(6.10b) fj+1/2 = fj+1/2 + Sjrz(vj).

If q‘j? < 0, then

Cyp1/2gm1/am TP Rger/2) HE Fy(Ryy ) Fy(xyyypm 1ap) > O

(6.10a)" 6j=

n
cj—1/2(x3-1/2’xj_1/2’ qu) otherwise

and

- n

Once we have completed the calculations in (6.10) we move on to the next

cell.
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7. NUMERICAL EXPERIMENTS
In this section, we present results of several computer experiments with

the ENO schemes (5.5) and their modified version with subcell resolution
(5.1); we refer to the latter as ENO/SR.

In all these experiments we have used
(7.1) o, = | ROx, ;v™)|
) i &Yy

and similarly k =1 in (6.4) for systems. In all the calculations reported
in this section we have used a CFL number of 0.8. The continuous line in
Figures 2 = 8 represents the exact solution. The circles in all Figures
represent values of R(xj;vn) at the time specified.

We start with the scalar constant coefficient problem
(7.2) u +u =0, u(x0) = uo(x), -1 {x<1

t X

with periodic boundary conditions at x = 1. 1In this case, we take
(7.3) B fR(ul,uz) = uye

First, we present numerical experiments with the highly discontinuous initial

data
..xsin(% 52 -1 <¢x< -.}
(7.4a) u, (% + 0.5) = |sin(2nx) ] |x} < %—
2x-1-sin(3rx)/6 §.< x <1

Note that the RHS of (7.4a) is shifted by (~0.5) for purposes of display. We



0 1 1
(7.4b) v L uo(x)dx E{UO(xj+1/2) UO(xj-l/Z)]
where UO is the primitve function of wug(x). 1In Figures 2 to 6, we show
results with h = 1/30 (i.e., 60 cells) at: (a) t = 2 (after 1! period = 75
time steps), (b) t = 8 (after 4 periods = 300 time~steps). In Figure 2, we

show for sake of comparison the results of the MUSCL-scheme (l.11) with a

slope s? defined by
(7.52) st = m(2(v],, = v, 7 vh- Vi, 2] - T g

here m(x,y,z) 1is the minmod function

s « min(|x|,]y],|z|) 1if sga(x) = sgn(y) = sgn(z) = ¢
(7.5b) m(x,v,z) = .
0 otherwise
In Figure 3, we present results of the second-order accurate ENO scheme (4.3),
and in Figure 4 we show results of the corresponding second order accurate
ENO/SR (4.5) with (4.13)%. In Figure 5, we present the results of the fourth-
order accurate ENO scheme (5.5) with ¢ = 4, and in Figure 6 we show the
corresponding results of the fourth-order accurate ENO/SR (5.1).
Next we demonstrate the kind of accuracy to be expected from these
methods in smooth problems by calculating a refinement sequence for the

periodic constant coefficient problem (7.2) with initial data

uo(x) = gin{rx).



1 1 1
T h . = =
n Table 1. we show the resnlts at ¢ 2 with h T35 T3 (i.e., 8,

16, and 32 cells, respectively). The quantity r, 1in this table is the

"computational order of accuracy” which 1s evaluated from two successive cal-

Te

culations by assuming the error to be a constaat time h ~; clearly this

definition 1is meaningful only for h sufficiently small.

We turn now to present numeriéal experiments with the Euler equation of
gas dynamics (6.1). In these calculations we take y = l.4 and fR(ul,uz)

='fR0E(u1,uZ), where

3 .
ROE 1 - *
(7.6a) £ ) =g [£Qu) + £lap) = T S le W in @i,
with
(7.6b) | 8 = Ek(u)(uz- ul);
here 3, 4 and r, - are the eigenvalues and the left- and right-
eigenvectors, respectively. u is a particular average of u; and up

which is defined by:
(7.6¢) 3= I, B oa EIVED, ¢ = & - DY 17207
here < > denotes arithmetic average, il.e.
<b> = : (b, + b,).
7z 1 2

In Figures 7 and 8, we show results of the Riemann initial value problem



uy x <0
(7.7a) u, + f(u)_ = 0, u(x,0) =
X Uy X >0

with
(7.7b)(pL, 9y s PL) = (0.445, 0.698, 3.528); (pR,qR,PR) = (0.5,0,0.571).

These calculatiéns were performed with 100 cells, h = 0.1, CFL = 0.8 and 85
time-steps. In Figure 7, we show the density computed by the second order ENO
scheme and in Figure 8 we show that of the corresponding ENO/SR,

Finally, we present numerical solutions to the problem of two interacting

blast waves:

uy, O.E x < 0.1

(7.8a) u(x,0) = U 0.1 < x < 0.9
u 0.9 {x<1
whefe
(7.80) oy =py=pp =1, a =g, = q5 =0, P, = 103, P, = 1072, P, = 102

the boundaries at x = 0 and x = 1 are solid walls. This problem ﬁas
suggested by Woodward and Colella as a teéf problem} we refer the reader to
[12] where a comprehensive comparison of the performance of various schemes
for this problem is presented. We refer the reader to [8] for a detailed
description of the implementation of the solid waill boundary condition in the

ENO schemes.



we ghow the density at t = 0.038 calculated by the second
order accurate ﬁNO/SR with 800 cells and CFL = 0,8, The circles in this
figure represent values of R(xj,pn); the continuous line 1s Jjust the
piecewise-linear interpolation of these values. Comparing these results to
the solution presented by Woodward and Colella in [12], we find that it shows
all the important features of the-various interactions and thus can be con-
sidered a "converged” solution. We use this piecewise-linear interpolation of
the calculation with 800 cells as the "exact solution" in Figures 10 and 1l.
The circles in Figures 10 and 11 are reconstructed values of density in a
caleulation with 200 cells. In Figure 10, we show the calculation by the
second order accurate ENO scheme; in Figue 11 we show the results of the
corresponding ENO/SR.
In the following, we make several remarks and observatioms conceruning the

numerical results presenﬁed in this section.

(1) In all our calculations we find that the subcell resolution technique is
capable of producing perfectly resolved linear discontinuities. Observe
that if R(x;v") has a single intermediate value at a discontinuity then

this discontinuity is perfectly resolved by i(x;vn).

(2) When we study the effect of higher formal order of accuracy in the calcu-
lation of discontinuous data by the ENO schemes, we find that the most
noticable improvement is due to the reduction in smearing of the linear
discontinuities. However, when we compare the second order and the
fourth order ENO/SR schemes we see that the improvement is primarily due

to higher accuracy in the smooth part of the solution. Consequently,



(3)

(4)
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there is not sense in going to higher order when solving a Riemann IVP.
To justify the increased computational cost assoclated with higher order,

one needs a lot of structure in the smooth part of the solution.

Comparing tﬁe solution of the interacting blast waves (7.8) by the second
ordér ENO/SR to that of the PPM in [12],.we find that the ENO/SR is more
accurate. The ENO/SR highly resolves all three contact discontinuities
in the problem, while for some reason the PPM resolves well two of the
contact discontinuities but smears the one which results from the shock
interaction.” Another possible explanation for the difference in accuracy
may be due to the fact that the ENO/SR 1is uniformly second order
accurate, while the éPM (because of 1its monotonicity constraints) reduces

to first order accuracy at points of local extremum.

The numerical results for the Euler equations of gas dynamics clearly
demonstréte that shocks are highly resolved by the original ENO schemes,
and subcell resolution is not needed there. In any case, the expressions
for §j+1/2 have to be modified bgfore applying subcell resolution to a
genuinely nonline#r field, as follows: (i) a; should be replaced by
the speed of the shock. (ii) Dissipation proportional to

(aj+1/2 = a4-1/2) should be added to a centered rarefaction wave.
Fortunately, if the discontinuity condition (3.9a) is met 1in the cell
Ij- then ﬁ(x;v") 1s continuous at x.Jﬂ/2 and no interaction terms
need be added to the numerical flux. However, one has to account for the
fact that the wave from the interior of Ij crosses its boundaries

during the time-step,
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APPENDIX: Derivation of the discontinuity condition

The reconstruction R(x;W) is by definition discontinuous at
{xj+1/2}. In regions of smoothness of w(x) the jump: of the reconstruction
at X3+1/2 is of the order O(hT). When a discontinuity of w(x) is located
in the interior of Ij, then the discontinuities of the reconstruction at
X541/2 ‘are fragments of that of w(x). (See Figure lb).

In order to recover a possible discontinuity in the interior of each
cell, we ﬁould like to associate the reconstruction with the boundaries of the
cells {xj+1/2}, rather than the cells themselves. Let §5+1/2(x;§3 be the

polynomial description of such a reconstruction which is valid in. the neigh-

borhood of kj+1/2. Once this is done we consider reconstructing w(x) in

_ ﬁj_llz(x;aj for Xio172 £ % < ¥
(A.1) R,(x;w) =

Rj+1/2(x;53 for Bj £x< xj+1/2

if possible, i.e., if there is a ej such that

(A.2a) ?-‘j(ej) =0, %1 L84 <X
where
. ] 2 N _ Xj+1/2 _ _
{A.2b) Fj(z) = F'{£ Rj-1/2(x;w)dx + £ Rj+1/2(x;w)dx} - Wy
j=1/2

1f there is no such 8 we define

j’
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(A.3) ﬁj(x;?ﬁ = Rj(x;ﬁ)-

The only thing which is left open at this point is the definition of
§j+1/2(x§$). It is most natural within the framework of the ENO reconstruc-

tion to select the "smoother" of Rj(x{F) and Rj+1(x;ﬁ), i.e.,

Rj(x;w if °j < cj+1

(A.4) 'f{jﬂlz(x;‘-v') = o .
Rj+1(x;w) if aj|z %41
Here cj is a monotone increasing function of the "non-smoothness", such as
(3.8a). Note that since Ri(x{E) is associated with.a stencil of points,
(A.4) 1s equivalent to assigning a stencil to X541/2 the boundary of the
cell.
We observe that there is a certain ambiguity in the definition of

ej need-noc be unique. We remove most of this
ambiguity by adopting a policy of "no unnecessary changes", and agree that

rﬁj(x;w) in (A.1l) since

A.S R = = B =

(A.5) j-1/2 =Ry o ﬁj+1/2 Ry = R, =R,

i.e., 1f one of the candidates for extension into Ij is no smoother than the
original Rj, we just retain the original definition in ﬁj' From the
definition (A.4) of R we can rewrite (A.5) in terms of o, as

{(A.5)" g. g

Hence we conclude that we define ﬁj(x;w to be (A.1l) only if
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(A.6) cj > aj-l and cj 2.°j+1

which 1is the discontinuity condition (3.8b). In this case %

and §j+1/2 = Rj+1 and the definition (3.9) follows.

3-1/2 = By
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Figure la. w(x) in (3.1); circles denote cell~averages {w.}.
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Figure 1b. The ENO reconstruction R(x;W). The circles denote the given

values of the cell-averages {w.}.
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Figure le. The modified ENO reconstruction with subcell resclution ﬁ(x;i)

(3.4). The circles denote the given values of the cell-averages {w.}.
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Figure 7. Second-order
ENO Scheme: Density

(85 time=-steps).

Figure 8, Second-order
ENO/SR: Density (85

time=gteps).
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Figure 9. Second-~order ENO/SR. Density at t = 0.038 with 800 cells.



Figure 10. Second-order-
ENO. Density at ¢t = 0,038

with 200 cells.

Figure 11, Second~order
ENO/SR. Density at

t = 0.038 with 200 cells.
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