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ABSTRACT OF THE DISSERTATION

Universal Power Spectrum for Wave Turbulence:
Applications to Wind Waves, Flicker Noise, Solar Wind Spectrum,

: _ and Classicidl Second Sound
by

Andrés Larraza
Doctor of Philosophy in Physics
University of California, Los Angeles, 1987

Professor Seth J. Putterman, Chair

Stationary solutions to the kinetic equation describing wave-wave interactions are
obtained by means of dimensional estimates and in exact form from the collision operator.
The solutions are ixitcrpreted as the turbulent spectrum in the inertial range and are shown to
be local. At lowest nonlinear order one obtains the results of weak turbulence theory. As
the low frequency power inputis increased, the power spectrum of wave motion converges to
auniversal 1/f noise for non-dispersive waves in more than twodimensions, and to 1/° noise
for deep gravity waves. It is also shown that a wave turbulent system is elastic and it can
support a propagating energy mode with similarities to second sound. The conditions from
parabolic to hyperbolic energy tranport are discussed. A parallel connectionto He* fordrift

wave turbulence in plasmas is made and order of magnitude estimates for the plasma
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diffusivity are obtained. It is also suggested that 2 wave turbulence picture can be used to

understand the magnetic field fluctuations in the solar wind.



INTRODUCTION

- In contrast with the problem of turbulence of an incompressible flow, the theory of
wave turbulence which describes systems of driven nonlinear interacting random waves,
offers a tractable systematic statistical closure. The statistical problem is formulated in
terms of a Boltzmann equation for waves which forms the basis for the description of
wave turbulence.

The physical understanding of turbulence in an incompressible flow is still far from
complete. Predictions on the onset of turbulence when a system is driven far from
equilibrium or prescriptions for dealing with higher order correlations and the turbulent
transport which dominates the molecular transport are not available.

By turbulence, one means those processes in open driven systems which are
dominated by a random redistribution of energy among the effectively infinite degrees of
freedom. The turbulent redistribution of energy (generally due to time reversible
nonlinear processes) dominatgs those precesses (such as linear transport) which would
bring about therfnodynamic equilibrium. Turbulent steady states can arise when there
exists a mechanism whereby energy can be transferred from the degrees of freedom
coupled to excitation to the degrees of freedom coupled to decay.

“Turbulence of incompressible flow is governed by the Navier- Stokes equation for

the flow velocity v

_'
?{:-—-?-V7+VV2?—%Vp (0.1)



with the extra condition
Vv=0 (0.2)

for incompressibility.

The first term in (0.1) is the nonlinear inertial force (convective term) as required
by Galilean covariance, the second term is the viscosity force with kinematic viscosity v,
and the third term is the force arising from pressure gradients. The flow is
characterized by the Reynolds number R=ugl/v, where u, is a typical flow velocity
(mean flow) with a typical length scale L of variations of the mean flow. The
Reynolds number represents the ratio of the inertial force to the viscosity force and can
also be viewed as the ratio of the excitation mechanism to the stabilization mechanism.

Taking the curl of (0.1) yields
2 9 = VX[V + VW2V 0.3)

which with (0.2) yields two equations for the divergence and the curl of v.

In principle (rotational) turbulence in a classical fluid is fully characterized by (0.2)
and (0.3) but the general solution is far from clear. In order to elucidate some
qualitative properties of the flow it is convenient to decompose the flow velocity into

Fourier components with wave vector R

V@Y =T YR nexp(k) (0.4)

k

The convective term excites flow modes with different length scales (sum and difference

of wave vectors), and as R increases shorter length scales modes are excited. Viscosity




tends to damp the excitations and provides a mechanism for stabilizing the flow. When
R passes a critiéal value R the excited modes become unstable and the flow becomes
turbulent.

With low Reynolds number R-Rg, only a few modes with long length scales are
excited and a finite number of ODE's are said to provide a description of the flow. For
large Reynolds number R¥R¢, however infinitely many modes with short length scales
are excited and closure schemes for the statistical deécription are required. In this case,
turbulence is described by the energy cascade and the vortex stretching (Kraichnan,
1974).

Measurements of the energy spectrum of rotational turbulence over more than three
decades done by Grant, Stewart, and Moilliet (1962) in a tidal channel flow, showed a
power law dependence with an exponent very close to the value -5/3 predicted by
Kolmogorov (1941) and Obukhov (1941). This was a high Reynolds number experiment
(~10%). The Kolmogorov-Obukhov law is true in almost every high Reynolds number
homogeneous isotropic turbulent flow.

By turbulence, we are refering to a variety of phenomena observed in high
Reynolds number flow. The specific application that we have in mind, here, considers
homogeneous isotropic vortex turbulence where one can take full advantage of the
symmetries of the Navier-Stokes equations from which the qualitative picture for local
turbulence provided by Kolmogorov can be obtaihed. In arriving at the Kolmogorov-
Obukhov law, we will adopt the point of view described by Frisch (1980) which, as we
will ‘sc'e later can be adapted to the problem of wave turbulence.

Frisch considers four main ideas. First, the redistribution of energy among length
scales is dominated by inertial nonlinearities and not by the kinematic viscosity. This in
turn implies that there are three regions in phase space. The energy containing region

where energy is introduced at a rate € at low wave numbers; the inertial range, where



nonlinearities will carry the energy to higher and higer wave numbers until a point it
meets the dissipation range here real viscous effects dominate and energy is eventually
converted into heat. The inertial region is the range of scales over which direct energy
injection and viscosity are negligible. N

Stationarity, the second idea, is established through the cascade mechanism just
described above. By stationarity we are not implying a stagnant inertial equilibrium.
Dynamical quantities of a particular length scale fluctuate rapidly about a characteristic
value. Average measurements will yield a typical value of a dynamical quantity in a
given scale.

The third idea into the Kolmogorov picture is locality, that is, that the rate at which
energy rolls over from one length scale to the next in the inertial region is a function of
the energy contained in that length scale.

Finally, the most subtle of all the ideas is translational invariance. We will now
use this framework to arrive at the -5/3 taw and point out how translational invariance
has been used.

1

Let E,, be the energy in length scale £,, where £ =22, kn®n ) and L is 2
n n o

reference length. The characteristic velocity variation over the structure of size £ is, in
the inertial range,

v ~En/p) 2 (0.5)

The characteristic time over which the energy in eddy n goes to eddy (n+1), the tumover

time, is

tn ~ zn/Vn (0.6)



According to the locality hypothesis, the energy transfer rate from £, to £p4 18

and is a constant for the entire inertial range. This follows from stationarity and
because we are dealing with inertial forces, energy is conserved. Thus using (0.5),

(0.6), and (0.7), one readily gets the discrete spectral intensity
Eq ~ (pe2)! AL 2P | (0.8)
To get the spectral energy density we note that-
E = ; En = j'u(k)dk = I_;_ u(kn)Aky 0.9)
where Akp =kp41 - kn = 1/&p ~kn. Thus
(k) = EQk ~(pet)' kP (0.10)

The translational invariance idea has been used in the derivation, for we have
assumed that smaller and smaller structures are space filling. In principle it is possible
to have a self similar response which is not space filling. This latter idea has been
invoked to explain intermittency (Frisch, 1980). We will not discuss this here.

The above presentation is only phenomenological. One would need to solve the
statistical problem from the Navier-Stokes equation where only the inertial range is
concerned, so that the results would be independent from the excitation and dissipation.

By doing so a hierarchy of equations for the cumulants is obtained, whereby the rate of



change of the n-th order cumulant depends on cumulants of order (n+1). This leads to
the fundamental difficulty of closing the system to describe the high wave aumber
behaviour with low wave number forcing. Closure procedures compatible with
Kolmogorov's law have been developed (Kraichnan, 1971). However, those closure
- schemes are not systematically derived from the Navier-Stokes equation but based on
some ad hoc assumptions about the nature of the statistics. A consistent derivation of
(0.10) from (0.2) and (0.3) is still lacking.

The bottom line of the problem is that the hypothesis of locality has not been
strictly proved. Locality enters the problem as a convergence fest of the integrals
involved in the closure problem. Convergence can be shown for some closure
procedures for low order cumulants but it is not readily guaranteed for higher order
cumulants. Indeed, even if the _distribution is initially Gaussian or quasi-Gaussian, the
energy exchange between modes may set up a statistical correlation between them. By
the time a significant change of energy has taken place, a sigr;iﬁcant non-Gaussian
distribution may have been set up, making the locality hypothesis a questionable issue.

The origin of all these fundamental difficulties is that in the theory of turbulence of
an incompressible fluid as described by Navier- Stokes, there is no small parameter
available. Indeed, in the reversible high amplitude limit (0.2) and (0.3) have no
parameters with dimensions. The only time scale available is the nonlinear turnover
time (in the inertial range) or the diffusion time (in the dissipation range).

The turbulence problem for waves has properties analogous in many respects to
those of o‘rdinary hydrodynamic turbulence (Zakharov, 1984 and references therein), but
without all its difficulties. Namely, regions of wave number can be separated in k-space
such that the turbulence has a universal power law spectrum determined only by the
magnitude of the energy flux in the region of large k. Formation of the turbulent

spectrum takes place as a result of the nonlinear process of interaction of waves in the



inertial region.

If £ denotes the energy spectrum function for waves of wave vector K, and nj =
€y /ey denotes the action density, where mk=co(l'3) is the frequency of linear waves with
wave vector K, Litvak (1960) and Hasseiman (1963) obtained the equation for the slow

rate of change of € or ny due to nonlinear interactions

ng = I[{ny} , (0.11)

where I{ny} is an integral operator, the collision operator, and is quadratic in ng for the
case of magnetohydrodynamic waves considered by Litvak, and cubic in ny for gravity
waves on water derived in Hasselman's paper. Both Litvak and Hasselman used as a
closure problem the ad hoc assumption that the random waves were statistically
Gaussian. It was later shown by Benney and Saffman (1966) that this hypothesis was
unnecessary when they considered a system of random, spatially homogeneous dispersive
waves. Using a multiple time scale method, they established a closed integro-differential
equation like (0.11) for the energy spectrum. Newell and Aucoin (1971) extended the
ideas of Benney and Saffman for the case of sound waves in two or higher dimensions,

where the group velocity depends on direction of the wave, and prc;vides a

* semidispersive nature.

There are three time scales in a system of interacting waves, namely the period of
the wave, T; the nonlinear interaction time, T, and the lifetime of the wave determined
by molecular transport, Ty, In order to fix ideas let us consider Ty»>tc. This situation is
realized in a turbulent system. Thus we can think of describing the problem of weakly
interacting spatially homogeneous random waves for a conservative system, for which
T, Closure of the hierarchy of equations for the cumulants for dispersive and

semidispersive systems comes from assuming that there is an initial instant at which they



are smooth and factorize into products of lower onés. Then on a time scale T,
factorization of higher cumulants by products of lower ones prevails. It is these terms
that describe the energy transfer mechanism which occurs in a system of random waves.

The formation of the turbulent spectrum characterized by nonlinear wave-wave
interaction considers the inertial range. In this region the principal term of the kinetic
equation (0.9) is the collision integral implying that the specific form of the source and
the sink is quite unimportant. The stationary solutions of the Kolmogorov type are
solutions of I{ng}=0. The properties of locality can be verified directly. Translational
invariance is a consequence of wave number conservation in the process of resonant
interaction of waves.

Unlike the Kolmogorov spectrum that is determined from considerations of
dimensionality and similarity, the spectral energy density wyng of local isotropic
turbulence requires an additional relation between the flux and the spectrum. This is
because of the appearance of an additional local characteristic which is the phase
velocity of the wave. This additional relation is imposed by the kinetic equation. To
determine this relation, consider u®=mknkkd'l. Energy conservation requires that in the

inertial range

gpt-+g%=0

which we obtain by multiplying (0.11) by the frequency and the density of states with d
the dimensionality of 4 space. The energy flux, Q, over the spectrum is determined by

the equation

S e (%



Stationarity requires I{ny}=0 and Q=constant non zero corresponds to a Kolmogorov
fype spectumi.

The organization of this work is as follows. Chapter I deals with the spectrum for
wave turbulence of two particular systems: gravity waves on water and acoustic waves,
with applications to wind waves and 1/f noise. The obtained spectra is based on
dimensional estimates and on the Kolmogorov picture for turbulence adapted to waves.
Thc kinetic description for waves, although not explicit is used by invoking the basic
" nonlinear resonant interactions among random waves. Following Larraza and Putterman
(1987), we consider first the underlying equations that describe the system of waves and
establish a set of basic realizability inequalities for an inertial range. The dimensional
estimates give spectra proportional to a power of the frequency, that because of the
resonant nature of the wave-wave interactions are particular to the system. For deep
water waves the leading order nonlinearities yield a power spectrum proportional to &
whereas for sound the off equilibrium spectrum is @/ (Zakharov, 1984).

As the strengh of the external drive is increased one expects that higher order
nonlinearities become important in determining the steady state. These higher order
terms modify the power spectrum and in the limit of infinite nonlinearity lead to a
saturation phenomenon where the spectrum of deep water waves goes as @S , the
Phillips spectrum for wind driven occan waves (Phillips, 1977), and the spectrum of
sound waves goes as o' (Larraza, Putterman, and Roberts, 1985). Based on estimates
of the global Mach number for the Phillips spectrum we motivate these universal power
spectra.

Chapter II follows the treatment of Larraza, Putterman and Roberts, (1985) and
considers universal spectra for waves from the formal point of view of a kinetic
equation. A set of similarity transformations is used to arrive at these spectra and the

properties of locality are verified directly within the kinetic equation.



It is found that there are two solutions that give a stationary p.owcr spectrum. The
first corresponds to equipartition of energy in a closed system. The other solution is a
consequence of self-similarity and has a nonzero constant flux of energy over the
spectrum, and 2 1/f dependence on frequency. The two solutions are physically
differentiated by a boundary condition in 4 space, the flux of energy at long wavelength.

Chapter III shows that a wave turbulent medium can support a propagating energy
mode with similarities to second sound (Larraza and Putterman, 1986). Following the
ideas of Putterman and Roberts (1982, 1983) consideration of a complete theory of wave
interaction is made. This includes scattering of sound by sound to cméw sum'a‘n.d
difference frecuencies represented by a collision operator; refraction effects due to 2
slowly varing sound intensity and background; and reaction of the backgroqnd flow due
to variations in the distribution of acoustic noise. With this picture adapted to wéve
turbulence we establish the conditions for the transition from parabolic to hyperbolic
energy tranport. The consequences of this turbulent second .sound for, plasma
confinement are discussed at the end of the chapter.

Finaily Chapter IV is an overlook at future problems. In particular it elaborates
about how wave turbulence might be a possible mechanism of observed phenomena, for
example magnetic field fuctuations driven by the solar wind. '

Spccnlatidns about 1/f noise as the ultimate low frecuency spectrum for any wave
turbulent system are made based on the renormalization of the dispersion law,

We comment on the possibility of turbulent second sound in the ocean with

applications to predictions on storm variations.
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CHAPTER 1

BASIC EQUATIONS AND SCALING ARGUMENTS

For a barotropic fluid, conservation of mass and Newton's law take the form:

dpdt+ Vpv=0 : . (1.1)
p[373t + GV)¥) = - Vp + pE + nV2¥ + (%mr,)V(v-v’) 1.2)

where p, v, p are density, velocity and pressure and where the first and second

viscosities N, { are assumed constant. The irreversible viscous forces are derivable from

the divergence of a viscous stress tensor
- onfor; = V2V, + (%ﬂ*";){v(v“_f,ﬂi (1.3)

In describing surface water waves, we use the incompressibility condition
p=constant and V-v=0. However, the motion should be supplemented with boundary
conditions at the free surface, z = E(x,y.t), where (x,y) labels the coordinates of the

surface. One boundary condition is the continuity of the stress across the free surface,

- that is

11
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pnj + Tijnj + ox(X,y,ini = Pohi ' (1.4)

where n is the normal vector to the surface, K(x,y,t) is the curvature of the surface with

surface tension G, and pg is the ambient pressurc. The second boundary condition
g% + VVE = v, (1.5)

states that particles on the surface move with the tocal fluid velocity.
The small amplitude dispersion law implied by (1.2), (1.4), and (1.5), in the case of

an inviscid fluid of depth h is
©? = (gk + ok’ /p)tanh(kh)

For deep water (kh » 1) and long wavelengths (gp » ok?) the dispersion law reduces to
w? = gk which corresponds to deep gravity waves. It tumns out, as we will see later,
that most of the energy for surface waves in the ocean is found in deep gravity waves.
Corrections to the phase velocity due to surface tension results in 3 parts in 10* for @ =
10 rad/sec and 3 parts in 10® for © = 1 rad/sec. ‘

For sound waves the motion away from a boundary is irrotational, yet compressible.

Neglecting g and taking time derivative of (1.1) and subtracting the divergence of (1.2)

yields
9? platz - Vzp = 82 (pViVj + ‘!:u)larlarj (1.6)

Equation (1.6) should be supplemented with an equation of state relating the

thermodynamic quantities involved. For a barotropic fluid, p=p(p). Expanding p in a
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Taylor series
p = P, + €23p + 'h (@ pidp?)o(8p)* + .

where p = p, + 5p enables (1.6) to be rewritten in the form
- m
00 _ 2v25p = 2 ovivyrip + V2 [ﬁ‘rg—p% ™ RE)
m=

The small amplitude dispersion law for a lossless medium implied by (1.7) is @=ck.
For wave propagation, one requires that the system undergoes several oscillations
before it decays to a value 1/e its original amplitude. This implies that the period of the

wave must be much smaller that the wave lifetime due to molecular viscosity or
 » ok? (1.8)

where o = 1/p for gravity waves and & = (@13 + {)/p for sound waves in a barotropic
fluid.

When the medium receives a large energy imput at long wavelength, modes with
higher wavenumber are going to be excited due to nonlinear interactions. As in the
Kolmogorov picture, an inertial range occurs when the reversible nonlinear terms in the
equations of motion dominate the damping due to the linear irreversible terms such as
molecular viscosity. Turbulent transport dominates molecular transport and the latter

can be neglected. The requirements for an inertial region is

wa » ak (1.9)

13



where a is the amplitude of the wave. In order to keep a wave description for the
system of interacting waves one has to require that the Mach number for waves, the

ratio a of the amplitude of the wave to the wavelength, be small
ka<l - (1.10)

For deep water waves with @ = gk, (1.10) implies that the acceleration of a fluid
particle on the surface shqu_ld be less than gravity in order to preserve a wave
description. Wave breaking ("white-caps" formation) occurs in high wave number
regions and is responsible in the end for energy and momentum losses in a gravity wave
system. For sound waves (1.10) implies that the ratio v/c of the particle velocity to the
speed of sound be small.

Consistency of 7(1.8), (1.9), and (1.10) implies that
o > koa » ok? (1.1

For gravity waves (1.11) requires that the rotational region of the flow be small
compared to 1/k. Then throughout the rest of the fluid we have potential flow as for an
ideal fluid. Note that the flow obtained from solving the equations for an ideal fluid do
not satisfy the boundary conditions (1.4) which require that certain combinations of the
space derivatives of the velocity should vanish. Thus within a thin surface layer the
corresponding velocity derivatives decrease rapidly and by (1.8) this does not imply large
velocity gradients. For these approximations, the energy dissipation in a deep gravity

wave is (Landau and Lifshitz, 1959)

¥ = 2nk?/p = 2nwt/pg?

14




For clean water and ® = 1 rad/sec, 1/y~3.1 years and the viscous decay lengih w/vk ~
106 Km, while for @ = 10 rad/sec, 1/y ~2.67 hours and w/vk ~10 Km. Condition (1.8)
is very well satisfied in this frequency range. For & =1rad/sec, wa/ka ~10° a/cm, so for
a~lm we get an amplitude 7 orders of magnitude higher than the critical amplitude of
10-5em for which @a/ko=1, and two orders of magnitude less than the corresponding
wavelength; while for ® ~ 10 rad/sec, waka ~ 1_0“ a/cm and consistency with (1.10)
demands amplitudes no larger than 60 cm ‘which are 6 orders of manitude bigger than
the critical amplitude.

Under the strong assumptions (1.11), the fluid equations describing the inertial

range for gravity waves in deep water are
Vip =0, Vp20as z = - (1.12a)

%L . Vovg = 200z
at z = E(x,y,t) (1.12b)
% L (veR +g8=0

where ¥ = V& and V+V = 0 for incompressible potential flow.

For sound waves (1.11) results in the equation

2 2 m
gﬁi’- - c2Vigp = ar—?a?(pvivj) +V? Y_-_m_ltg_p% &)™ (1.13)

Although kinetic equations for wave turbulence can be derived from (1.12a,b) for
gravity waves and (1.13)for sound waves, we will follow here the simpler Kolmogorov

dimensional approach and study the process whereby wave energy cascades from one

15



length scale to the next. We label the properties of successive scales with subscript n

so that we have the wavenumbers
k, = 2"/2, (1.14)

For sound waves the energy per unit volume on this length scale is:

t

E, = (€2/po)(8py)? | (1.15)

The key to the cascade argument is that the rate at which energy rolls over from
one length scale to the next is a function of the energy contained in that length scale -
(locality). For sound wavcs‘ the lack of dispersion implies that the basic nonlinear
interaction is a three wave resonance so that waves with frequencies ; and w; scatter
to produce waves with frequency @3 = @ t ;. To leading order this effect is
produced by the term in (1.13) with m = 2 and therefore yields a rollover time t, for the

wave energy given by
1/t, = 0,G?E,/pc? (1.16)
where G = 1 + (p/c)dc/dp is the macroscopic Gruneisen coefficient (the symbol Z means

equality except for a numerical factor). The stationary state then follows from setting

the rollover rate equal to the inﬁut rate Q

Bl =Q (L.17)

The discrete stationary spectrum then is

16



E, 2 [Qpc?/@,G?]!/2 (1.18)
so that the continuous power spectral density is

e(w) = [Qpc2/02j1’21m3/2 (1.19)

The energy per unit area of water waves is

U, = pet&a | (1.20)

These waves differ from sound wave in that the strong downward dispersion
requires that the leading interaction effect be produced by a four wave process. Thus

instead of (1.16) one has

% oKiE, | (1.21)
Seeking a steady state with

U t, = q (1.22)
yields the power spectral density

u(w) = g?[qp?] /et (1.23)

For weak wave turbulence one finds (1.19) for acoustics and (1.23) for surface

17
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waves on deep water. From (1.16) and (1.21) one can establish a weak condition for an
inertial range which will require that the turnover time ty; be less than the lifetime of the
wave. In about the time ty which is larger than the characteristic period of the wave,

an effective energy transfer takes place; hence one has the time scales satisfying

T <ty € Tgy
where T is the period of the wave and 1q is the lifetime of the wave due to molecular
~ viscosity.
For many years ocean waves have been described by the Phillips spectrum

(Phillips, 1977) wherein

u(@) = pg?/a’ (1.24)

which differs from (1.23) as regards to the power of ® and its independence of the value
of the energy input q. For this reason (1.24) is thought of as corresponding t0 some
~ kind of saturation regime. Numerous technical causes for saturation have been proposed
especially white- capping. We would now like to argue that the passage from (}.23) to
(1.24) can be understood in terms of higher order nonlinearities, i.. in terms of higher
order wave processes.

Figure 1.1 shows the stationary frecuency spectrum of wind generated waves. The
logarithmic vertical scale covers six decades. Plotted is the frequency spectrum of the
mean square surface displacement, which is proportional to the power spectral density

and is fitted to

d(0) = Pgtw?
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Figure 1.1 Frequecy spectrum of the mean square surface displacement

for deep gravity waves.
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where B=10-? is a numerical constant. One can see that over the frequency range
considered in Figure 1.1 the requirements (1.11) are very well satisfied. An estimation

of the square of the global Mach number over this frequency range gives
M? = [ d(e)k?dw =2.3x10°2

which is a considerable number. This motivates one to consider higher order
nonlinearities as the saturation mechanism.

We can arrive at an expression for the rollover time from energy transfer
considerations and from the nature of the dispersion law. Since we are dealing with
energy tranfer among waves, the contribution from each interacting wave varies as the
product (k,‘ﬁn)z. Dispersion for gravity waves requires that the number of interacting
waves be greater than three. For a four wave process the expression for the rollover
time rcd.uccs to (1.21), which we can now generalize, The cascade time for an m wave

process will be, therefore,
1, = ok, (g 2m2)

which with (1.20,1.22) yields (1.24) in the limit m - oo,

This suggests {h;z following picture for the transition from (1.23) to (1.24). As the
power input to wave motion is increased higher nonlinear effects come into play and
shift the exponent of @ in the steady state power spectrum. In practice one should
observe a response somewhere between (1.23) and (1.24) depending upon which range of
m dominates. |

In the acoustic case an m wave (i.e. m phonon) process leads to
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1ty % @,G3(Eyfpe?)"”

where G, is determined by the nonlinear equation of state in (1.13). Now one finds

)”('“"I ) (1.25)

en(®) = 2% ( Q/pc? Gl
which in the limit of large m goes over to 1/f noise. !

For semidispersive waves the redistribution of externally imposed energy by high
order nonlinearities leads to 1/f noise. The type of nonlinear effect which saturates the
nondispersive spectrum at 1/f noise also saturates the deep water spectrum at ®™ noise
(1.24).

Recently Phillips (1985) has called into question the use of the saturated spectrum
(1.24). He implies that the fit of experimental data taken over many years to (1.24)
rather than (1.23) may have been motivated by a lack of appreciation of the theory of
energy balance of various processes in the weak turbulence limit. To this extent it
should be emphasized that the generalization of Hasselmann's kinetic equation
(Hasselmann, 1963) to higher order nonlinear effects will yield spectra with exponents

between those of (1.23) and (1.24).
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CHAPTER 11

KINETIC THEORY OF WAVE TURBULENCE

i

The results of the previous Chapter were obtained based on dimensional estimates.

They give the right power law dependence for deep water waves in the ocean and provide a

framework to generalize to other systems like 1/f noise. However they do not account for

the transition amplitude from weak turbulence (1.19) or (1.23) to the stronger wave turbulent
regime as represented by (1.24) or (1.25), nor provide a proof for the locality hypothesis.

In regards to the first point we should say that this is still an open question. A similar
problem exists in the theory of phase transitions. Namely, the determination of the critical
exponents is directly drawn from a set of thermodynamic restrictions supplemented with a
scaling hypothesis, but the actual value of the critical point cannot be computed for most
systems. .

Most real systems will have nonlinearities of all orders .préscnt so that the equation of
motion will include a sum over m, the order of the nonlinearity. For water waves the
nonlinearities come from the boundary conditions at the free sutface (1.12b), while for sound
waves, the convective term and the equation of state are the sources of nonlinearities as
implied by (1.13). The connection which we propose between the mathematical results
(1.24) or (1.25) and the real power spectra is that as the input power Q is increased, higher
order (higher m) nonlinear terms will dominate the response because the kinetic equation for

em is proportional to (m-1) powers of epy,. Although the actual response may be due to the
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effects of many different nonlinear coefficients, the frequency dependence of the spectrum
wiil accumulate {at iarge drive) at a 1/f spectrum for sound waves or ata 1/f* spectrum for
deep water waves.

The second point, locality, will be discussed at the end of this Chapter.

For concreteness considersound waves of amplitude 8p inamediumfor whichw=ck so

that the nonlinear wave eguation takes the form

828p/8t2 - 'c2V28p = Vz{((}m+ 1c2/pm'I )Bpm} 2.1

for an "m+1" wave (or so-called "m+1" phonon process) characterized by the nonlinear
coupling coefficient G, 1'. The cquilibfium density is p and the V2 on theri ght-hand side of
(2.1) expresses conservation of momentum as would, for instance, be implied by the Euler
fluid mechanics (Landau and Lifshitz, 1959). For the three phonon process
G3 = 1 + (p/c)dc/dp. The equation of state for pressure p(p) has nonlinearities of all
order so that for m >2, Gm_l_lczlpm'1 ~ (Bmp/apm)/m!.

- Ourmainresultis that from Eq. (2.1) the stationary isotropic spectral intensity for m+1
wave processes is (within a numerical coefficient) given by (1.25):

)llm

2
€y 1 (@ ~ B [ Qpc?aG 2.2)

m+1
where Qis the rate at which wave energy is supplied per unit volume at long wavelength. For
the sound field the power spectrum is the Fourier transform of the square correlation of 8p so
that f e(w)dw = (czlp)<(8p)2> is the total wave energy density.

As the order of the phonon process increases (m —oo), e (@) smoothly approaches a 1/f
power spectrum. The stationary wave spectra for m+1 = 3,4 have been known for some time

(Zakharov, 1984, and references therein); what appears to have been overlooked is the fact
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that the seif-similar spectrumcan be calculated for all m and has 1/f noise as an accumulation

This result is independent of dimension and applies for d > Z.

point.
The kinetic equation for the wave action n(E’), defined by (czlp) <8p2> = f&)n(l—(’)dl? for

general m will have the form (see Appendix):

i = 1{n@} = | [dt wad f® @3)
53 :

where

dt=dl dl,..dk ; s=(s;s); §; =l (2.4)
m m_
W) = HERs R) 6[1? Yoos 1‘2] [ ®+) simi] ; 0,0,>0 2.5
i=1 i=1
n_s)
f(l?) = 00 R, Y_ o = n(ki) . (2.6)
&
Fbr a nonlinear wave equation of the form (2.1)
@7

~[*G2 oo™ 1 ik oy ke

Considera typicalterminthe collisionintegral {2.3) which corresponds totwo incoming

waves and m-1 outgoing waves:

fn) ==+ P012..m) f dt W(l?,l?l 122...k*m) F(k*,l?l |12’2...E’m) (2.8)

" ﬁ' and

Here P(012 m) denotes summation over cycles of (012...m), the index "0" denotes "k

the minus sign occurs whenever R appears as an outgoing wave:
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WEE R,.R ) = AKE K. K ) 8®K K,k ) x
1 1 m 1 m

X 8(m+(01—(02—~...— com) (2.9)
= 1. 1 1 1 .
f(ﬁ,l?lllgz...l?m) = nnny..n [H + q - H; — - -ﬁ:] (2.10)

The functions H and f (and W) are symmetric with respect to exchange of arguments, among
the incoming waves or among the outgoing waves. For isotropic media, H, f, W are invariant
‘under simultaneous rotationof all the m+1 vectorarguments through the same angle, and w(K)
= (k). Furthermore, we consider a system for which @ and H are homogeneous functions
of k so that .

0(k) = APa) @2.11)

HQRAR AR, AR ) = ke ARR, R, £ ) (2.12)

.and therefore the degree of homogeneity of W is £—d-B. For Eq. (2.1) [and therefore H given
by (2.7)] '

Z=m+l, B=1 (2.13)

All the processes in (2.8) can be put into the form of the first term by an appropriate

variable transformation. To this end consider the process

(9;9;, 119,09k -G 1)
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where we have provisionally denoted the intégration vaniables by "q" instead of "k".

Generalizing Kats and Kontorovich (1973} we make the change of variable:

=3 -

9 = A8miir1 E)m-h-l

- - . .

G4y = A i1 E; l<jsmi

=3 - , , .

Q= O iy Biiegas 1 SSSil (2.14)

where g is a rotation and A an extension given by:
gk =k A =kk, i:l‘c’/kn (2.15)

so that éE’ is shorthand for the matrix multiplication g aka wl-lerc it is a right orthogonal
matrix; f;z stands for two rotations. This set of transformations is meaningful only in the
inertial range where decay and direct energy injection can be ignored. To the extent that
inertial effects dominate (generally referred to as locality), the domain of integration is left
unchanged by the transformations (2.14) (Kats and Kontorovich, 1973).

From the symmetry and homogeneity properties of H and the Jacobian implied by
(2.14);

ﬁ(a’ia}i'i'l L"Ei’i' 1 ) a(a.)i+a)i+ 1""..."‘?"-. ."‘q‘)i- 1 ) ><

2= - -
X B(mi+mi + 1—...—(1)—...-mi_1) f(qiqi+ll"'qi- 1) dqi ..dq m =
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= (A )" AERE LR ) 8RB R)—. R ) x

m-i+1

X 8@+, -wy— ) F . (A k)RR (2.16)
where r = 2+md-B, A_ = (Ag) o and

= = 2

f (A K) =fATK A RILAR RAR .. AR Q.17

Applying this transformation to all the terms in (2.8) yields:
Tn) = [ av WREJ.E) {FRR L.E ) + M (A, k)
-ohMA K - L - ATE (A K} (218)

We seek a self-similar solution to I{n) = 0 of the form

n= Ao’ (2.19)
for which
i"(l?,li'lt...l? D= Am(oxol...mm)Y [@7 + coiy - miy —— “}r;xY]
(2.20)

F =1 "PYIRR IR )

so that (2.18) becomes
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-~ V o~ -~
in)=0 _[ dt WERK|.R ) fRR,..R ) x
-V Y -v -V
x {@ + O -y - @ }o@a2n

where

v = my + (£ + md - By/f (2.22)
There are now two solutions to I(n) =0. The first corresponds to equipartition of energy in a
closed system and is realized by 7= —1. It leads to the vanishing of f as is seen from (2.20)
and the 8" function restriction on the conservation of energy (or ) as given by (2.5) or (2.9).
The other solution is a consequence of self similarity as well as energy conservation and
corresponds to

v=-1, 7v=—2+mdymp (2.23)

The spectral intensity is given by

d-1
e(w) = nok /(dw/dk)

noH

This approach can be used toscale "n" for very general interactions in isotropic homogeneous

media. Application to Eq. (2.1), thus using (2.13) for £ and B, yields for (2.23)
y+d = ~(m+1)/m (2.24)

so that e(m) has the frequency dependence (2.2). The complete expression (2.2) follows from
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the method of Kats (1976) by setting the "k" space energy flux Q equal to a constant

where

Q) ~ fk 0™ 100) de @25)
and corresponds to flow from low k to high k. From (2.19,2.21) we find

1=DWkPYd - where D(-1) =0
Therefore (2.25) yields

Q) = gAY bl
so that as v 3 -1 and the self-similar solution is approached, we find

QW) = @D/dv),__; (@pkP) 2.26)

For Eq. (2.1) (thus taking B = 1)

D= AT ™ eyG2 oo™ ! 2.27)
where £is a dimensionless numeric and £(-1) = 0. Placing (2.27) into (2.26) yields Eq. (2.2).
Equipartition, ¥ = -1, leads to Q = 0.

The change of variable (2.14) transforms the argument of the collision integral (2.8) as

well as the domain of integration. The stationary self- similar solution (2.19) is obtained

from (2.8) by neglecting contributions which arise from the transformations of the various
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endpoints of integration. Physically this means that for these turbulent states the nonlinear
development of a sound wave at wave number k is dominated by its interaction with waves ki
near k ("locality"). Thus the vah'ditf.r of (2.19) is contingent upon the convergence of all
contributions to I(k) that are due to intermediate arguments of integration ki that are far from
k. Denote the endpoints by k0 (the energy containing region) and k 4 (the dissipative region),
sothatk o< k<k 4 As we will see below a direct calculation of the contributions to I(k) from
l/im, -4 and (k/kd) l/m -4

contributions vanish as k o <0andk 4 2o Thus for an arbitrary but finite number of waves

these two regions yields respectively (k o/k) k™. These endpoint
the similarity range is effectively infinite.

To prove this, one has to realize that the conservation laws allow one to explore many
possibilities. Let us consider the convergence of the integral (2.3) for the small wave number

region. In particular consider
kl’.""km-l « k,km
Bearing in mind that the distribution n(l?i)—bo when ki-:O, we establish the fact that the

divergent terms are nynyn m—l(nm - n) in the first component of (2.8) and

00,1 m—l(n -n m) in the (m -1)th component. Calling 3 = E’lhﬂz----—ﬁ);n_l and

p= gm-l”gi_gz_'"'ﬁ) m-2» and integrating with respect to E’m by using the momentum

conservation law, gives for these terms

Tz [dr( ﬁ(m?ll ‘22"'E’m-1£+q nlnz---nm_l(n(fc’ﬂ_f) - n(®)) x
X Sty —(R+d)) - ﬁ(E’m_l,l?—fa*l ?'E'I"'Em-z) X

10y N 1 @) - n®-B) 8w, | +oR-Pw-0,~a_ ) (2.28)
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where
dv = dR R
For small k,k . 4
ARR,| Qz...gm_l,l?;q’) = AR KPRE-E )=
= (klkf'km-l)kz’
and
B(0+®~wy——_ 1 ~0R+J) = do_ +oE-Pro-0—-0_ )=

e 1 Lo =
= 80k ky—k kD=8

for Ef = B With account of this, the integral (2.28) reduces to the form

HH

~x 2 d%n Ko ke
I=k EkiESkj fdt kKoK 1297 1, "m-1 §

By evaluating the powers of wave numbers kl’m’km-l’ we establish that the integral

converges at zero if

dm-1D)+m+ym-1)>0
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The left hand side of the inequality is equal to 1/m and thus we have the convergence at low k
guaranteed.
By considering the convergence of (2.3) at large wavenumbers, let us look at the

range

R

The divergentterms as kl’k2"°° are those linearinn 1 and Iy in the first and third co'mponcnts
of (2.8). Calling f}’: R- E’3— —E’m, and c_f = ?3 -R- E)4 — _E)m’ by the same token,
integrating over E’2 we obtain an integral of the form

T2 [ dvdgk,~k )3 8k-ky-k 4-----12113‘) x

X Dan,cn (E-g—lr_:;i)

where

dr' = dR|dRydR,~dR
The convergence condition as kl-r-o reads

1+d+y<0
with the left hand side of the inequality being equal to —1/m the inequality is satisfied.

The nonlinear processes considered here lead notonly to the scattering of wave energy

from one frequency to another but also to the renormalization of the dispersion law. In
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general these effects will maintain the linear relation between @ and k, but ¢ will become a
function of Q. Thus the frequency dependence of the spectrum (2.2) will be unaltered
although ¢ will depend upon total noise power.

Although the result (2.2) is independent of d, it should not be applied to d < 2 as Newell
and Aucoin (1971) have argued that (2.3), (2.6) cannot be justified for d < 2.

Many systems receive a significant input of energy at low frequency. Consider for
instance the oceans which are driven by large tidal forces on a daily, monthly, yearly period.
The self-consistent limiting power spectrum for waves in these systems is 1/f noise.

Although wave turbulence is quite different from vortex turbulence, the corresponding
controlled wave experiments have not yet been carried out. We think that it would yield
valuable insight into the 1/f problem if, in a controlled apparatus, the transition into and out
of 1/f noise could be measured as Q is varied. Depending upon the manner in which a given
system is excited, the total power input may be different from Q, the net power input to the
wave motion.

Equation (2.21) has two power law solutions: equipartition of energy in a closed
system and nonlinear self-similarity in a driven open system. Each of these responses follow
fromconservation of energy. Following the discusion of the previous chapter, the strength of
the input energy Q will determine the power law for the spectrum. For large encrgy input a
1/fnoise spectrum atlow frequency will prevail, and at higher frequencies the wave amplitude
will be such that the weak wave turbulence conditions will determine the power law which in
the acoustic turbulence case is /2. For even higher frequencies the thermal bath dictates
the nature of the spectrum. The schematic representation of the most general power
spectrum of a driven system is shown in Figure 2.1. The transition frequency for the w3/
region to equipartition should occur when the basic dimensionless ;rariablc Qpct /T2’ G is
of order unity.

Thus we see that 1/f noise is as basic to off equilibrium response as equipartition is to
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equilibrium. The extent to which many phenomena exhibit 1/f noise may be a measure of

how far the enviroment is from equilibrium.
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Figure 2.1 Power spectra for wave turbulence
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CHAPTER HI

ELASTICITY OF WAVE TURBULENCE

i

In this chapter we emphasize that the wave turbulence is elastic so that its energy
fluctuations, instead of diffusing (parabolic motion), propagate as waves (hyperbolic motion).
The transport of energy in a wave turbulent medium is therefore greatly enhanced so that it
should be very difficult to confine energy to localized regions. As a particular application of
these ideas we proposé that the elasticity of wave turbulence (turbulent second sound)is the
cause of the anomalous transport which significantly limits the effectiveness of devices
designed to achieve controlled plasma fusion.

Liquid He* exhibits the most striking transition to a state with anomalously high
transport. As it is cooled through T} = 2.17°K a 107 increase in the transport is made
apparent through a sudden cessation of boiling (Atkins, 1959; London, 1954) Itis misieading
to refer to this loss of energy confinement, as He* transforms from the worst to the best
known thermal conductor, as being due to an anomalous diffusivity since the equation of heat
flow has become hyperbolic (Landau, 1941) rather than diffusive. The phenor:enon
- whereby fluctuations in the power spectrum of the excitations (e.g. phonons) of He*
propagate as waves is called second sound. In this state the effective transportis increased by
a factor of 22 /22 relative to the normal state (London, 1954; Putterman, 1974). Here a/Z is
the ratio of a characteristic vessel size to the excitation mean free path.

‘We will show that the second sound is not limited to the near equilibrium He?* superfluid

and that it is also a property of classical wave turbulence. Although superfluidity is usually
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ascribed to quantum effects such as Bose condensation (London, 1'954), off diagonal long
range order (Penrose, 1951; Yang, 1962), and quantized excitations (Landau, 1954), anumber
of the macroscopic properties of superfiuidity including second sound and the twofluid theory
can be derived from the single component classical Euler hydrodynamics (Putterman and
Roberts, 1982 and 1983). In this approach the normal fluid motion is characterized by the
geometrical acoustics of the high frequency solution of a one component barotropic fluid and
the superfluid motion is the long wavelength solution. This is the method to be applied
below to the far-off equilibrium wave turbulent state of a classical fluid.

Al fluids other than helium have a viscosity atlong wavelength and should therefore be
described by irreversible equations at the Navier-Stokes level. Our use of reversible
equations to derive turbulent second sound is based upon the fact that in the turbulent state
the linear irreversible transport processes are small compared to the reversible nonlinearities.
Thus to the extent that the wave motion in the medium is driven far from equilibrium a real
classical fluid will mimic superfluidity and yield second sound in the wave turbulence.

In a plasma wave turbulence and anomalous transport are probably due to the highly
anisotropic drift wave motion (Horton, 1984; Liewer, 1985). Prior to commenting upon the
plasmas, we first facilitate insight into the general properties of wave turbulence by studying
the much simpler acoustic field described by the Euler hydrodynamics for a fluid of density p

and velocity v:

dp/dt + V-pv = 0 (3.1)
avIdt + (WV)V = - (1/p)Vp(p) (3.2)

L1 1 -4

where "p" is the pressure. Viscosity "n" has been dropped from (3.2) since in the turbulent

‘ - . . .
state p("}’-V)? >>MV2V. We have taken the expansion coefficient to zero so that pressureis a
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function of density alone. Following Putterman and Roberts (1982, 1983) one seeks a

3]

) of the form

solution to (3.1,3.
p= po(?,t) + fpl (E',F’,t)[cxpi@(l?,?,t)]dl? + C.C.
V= @0 + M ETDexpio®T.0)dR + c.c.

where the subscript zero denotes the slowly varying background and the integrals are over the
shorter wavelength sound waves. We have explicitly allowed for the possibility that the
intensity of sound at wave number k might be a slowly varying function of position. This
refraction effect is one of the three basic nonlinear processes implied by (3.1,3.2). The other
processes include the scattering of sound by sound to create sumand difference frequencies
and the reaction of the background flow due to variations in the distribution of noise

P1 (E',?’,t). The equations which describe these processes follow from (3.1,3.2) and are

on dw dn Jw dn

3T+EEEF;—E?iEE=I{n} (33)
?T‘:O ==V [pﬁo + fpl Vi *dR + c.c.] (3.4)
No 9 o2 v[o,+ L] 3.5
9t + (Vg'VIV, = - ¢O+T'&"5 (3.5)

where n(l?,?,t) =g, /ck, @ =ck + ?o Kis the dispersion law with sound velocity ¢ = (opiop)} /2,

& = [dpip; U = [nck dR: &, = (c*/po)ip1 2 ()| + polvi 2 (®)l. The collision integral 1 is some

quadratic functional of n and describes the production of sum and difference frequencies.
" Formation of the turbulent spectrum takes place as a result of the interaction of the

waves in the inertial region of phase space where nonlinearities dominate viscosity. In this
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region the kinetic equation (3.3) yields a stationary isotropic solution n, corresponding to a
constant flux of energy Q, = Jl{no}(odl? from the input at low frequency to the heat reservoir
at high frequency (Zakharov,1984) with

n, = AJoY; A, = bpc® [Q‘,/pchz]”‘2 (3.6)

where b = 1.37, Y= 9/2, @, = ck and G = 1 + (p/c)dc/dp is the macroscopic Gruneisen
coefficient. As we saw in the last chapter higher order nonlinearities can modify the
exponent ¥y of the wave turbulence (3.6).

Due to the conservation of X in a collision of sound waves I{n}=0 has a slightly

anisotropic generalized solution (Kats and Kontorovich, 1973)

n =n, — BW + 803,)9n,/30, | G.7)
where \-v’, 0 are constant. For the turbulent state this solution is valid only to first order inw.
The near steady state motion is obtained by letting w,0 vary slowly with ?, t. The equations

for the relaxation of po,?o,fv',e come from (3.4,3.5) and the moments of (3.3) with respect to

@,k . To calculate these moments one needs to note that to the right order

dn on ¢ dn, ¢
~5k =~ 5k =~ Gk

The collision integral being a quadratic functional of n will, due to the anisotropic solution
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(3.7) result in
“’ -~
1{n} = [{n,}{ 1 - 2v0 - 2¥%k )

where we have in mind the evaluation of the moments f{ ? } I{n}dl? ,which by (2.25)arenon-
zero. The last term comes from considering the integral

'

- [ a0, da,k 5@-F, - El)-—— (% - i 0 ~Gesk)?])

which because of the dispersion relation @, = ck and the frequency restriction in the three
wave precesses reduces to
=28 {40 do,s®@-R -K)
- 1 kz - 1 2 1
Here dQ;is the element of solid angle for K. and k; is a unit vector in the direction of K. With

these considerations the moments of the kinetic equation with respect to @ and Kand to the

right order in the perturbed quantities yield

8_ ——BV (w + vo) = - 2v8Q, (3.8)
2 27wQ, *
B Byt pVe=-go (3.9)

where B ﬁ—fr.ooz (Bnolacoo)dﬁ) and we have retained only those terms which are at most linear

in W, 3‘, and spatial gradients. In this manner (3.4,3.5) become

3P/t + V-(po¥, + powW) = 0 (3.10)



a"’ 2 2
a—:9—+c—;~Vpo+BgV6=U[%] VP, @3.11)

where we have set B = (p/c)dc/dp and used [d%c/dp? |<<(de/dp)? /e and
o = foRa

so that p, = B/3c? is the turbulent density to be thought of in parallel with the normal fluid

density of He*. Substitution of the solutions
0= 9'cxpi(K-? -Qt); W= fv*'cxpi(ﬁ-? - Qt)
Do = Poo + P'expi(RT - Q1) ; Vo = Vexpi(RT - Q1)

intoequations (3.8,3.9,3.10,3.11) leads toasystem of four homogeneous equations with four
unknowns. The secular solution gives a fourth order dispersion law in the frequency €2 and

wave number K:

u*[14+6iQ,/p.c? Q] — u2[2p,B/p+4/3-3p, B p+(6iQ,/pc® Q) x
x (1+Bpy/p— 2B2p/3p)1 + (1-p/p) 13- (1+1mpfp] = O

where u= Q/c Kand squares of the imaginary terms have been neglected. The dispersion law
describes twodifferent propagating modes uy ,uz . Oneis the mechanical first sound mode and
the other is the propagating energy mode. The real and imaginary parts of the dispersion law
determine the speed and damping of these waves. The key parameters are B, p/p and

Q,/pc?. If one introduces the frequency @, at which energy is being injected into the wave
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turbulent system then (3.6) yields

Qo _ pt 2 3 2.(9__.'“..
i 5 (ww) @ G

= Sy
which is approximately the inverse quality factor for the second sound. We observe that
turbulent second sound cannot propagate at low . Above some minimum 2 the damping
will, however, be sufficiently small 50 as to allow propagation as shown in Figure 3.1 where
Im uz /Reu; is plotted as a function of K/k, (k¢ = @y, ) for B=1/2 and p/p = .5. In line with
the inertial range approximation,

1/4
(Qupcten,G? ) >>noy/pc? (3.13)

which trivially follows from (1.9), (1.15), and (1.18),we have neglected damping due to the
background viscosity which contributes to Imu;/Reu; as n Qpc?. Figure (3.2) shows
Reu) > versus p,/p,. Figure (3.1) shows Imu; 2/Reu; 2 versus p,/p, fork /K = 1.

Second sound in equilibrium in liqiud helium corresponds to the case Qo =0 and ngiven
by a Planck spectrum. Thus the r.h.s. of (3.8) and (3.9) would vanish in He* and second
sound would propagate without damping in the limit of low frequency "Q". "The off
equilibrium cascade sets up its own intrinsic damping (in addition to 1) which leads to a low
frequency cutoff below which turbulent second sound is over damped.

As in the near equilibrium theory of superfiuidity we expect that the equations for the
reaction of the background only make sense when the background is not totally depleted or
P < Po. Combined with the requirement that the dimensionless damping (3.12) be small we
obtain the basic inequality which governs the appearance of second sound in acoustic wave

turbulence:
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<1 (3.14)

The entropy density of this wave is kB_ﬁﬁdfc’. This integral must be cut off at the high end of

the inertial region which is determined by the value of @ which yields equality in (3.13).

The general stationary off equilibrium solution to I{n} = 0 is no(Q,,T,w). For low ©
this solution becomes (3.6) and for high witasymptotes to the equilibrium spectrumn, (T, )
=1,(0,T,w). If alocal equilibrium ansatz like (3.7) is now appficd ton., by assuming that T
is slowly varying one is led to equations that are similar to (3.8,3.9) but have Q, = 0. In this
case the inertia of the noise is labelled p,(instead of p,) and is given by B(n,) /3c?. Second
sound in the thermal distribution can occur only when p,<p In almost all systems n, is
significantly large out to very high ® and unless some natural cutoff exists py, is much grater
than p (forequipartition n., = kg T/w). For dielectrics (e.g. He*)atsufficiently low T, Wien's
law provides the cutoff. Atordinary T it therefore appears highly improbable that systems
could have thermal second sound. On the other hand it is remarkable that the inertia p, of the
turbulent noise is convergent (Y> 4) and that a fully classical system at finite T should exhibit
second sound if it is sufficiently far off equilibrium. In this case it is the variations in the
phase space energy flux Q = Q, + 8Q which lead to variations in n,(Q,T,w); Eq. (3.7)

corresponds to 8Q/Q = 2‘y(G+ﬁ-\"3lc), and to the turbulent inertia

pw = [ 19n,(Q,T,0)/0Q]5QKdK

The differentiation of n, with respect to Q provides for convergence at high @. Thermal
noise is still present but its role is only to dress the background properties of the fluid (Eq.
3.1,3.2) relative to which the kinetic theory of the turbulent waves is developed.

The conceptof second sound in plasmas has been addressed in the literature (Tsytovich,

1977 and references therein). These works fail to include the reaction of the background
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(3.10,3.11) and the intrinsic damping due to the cascade. Thus their results are invalid at
long wavelength. In the absence of background reaction there is no counterflow and
therefore no second sound. The fact that the key inequality (3.14) plays no role in these
references casts doubt on the relevance of those calculations to second sound. Furthermore
none of these papers connect the second sound with the long-standing problem of anomalous
transport. This situation is partly reminiscent of Peshkov's initially unsuccessful attempt to
excite He? second sound with a pressure transducer (Peshkov, 1944).

While the above calculation predicts second sound in classical acoustic turbulence this
phenomenon is general and thus it should also appear in other situations such as turbulent
wind driven waves on the ocean and drift waves in a plasma. Regarding inhomogeneous
plasmas we expect that via various instabilities a discharge injects energy into the drift wave
spectrum at some low frequency @, . This energy then cascades, due to nonlinear drift wave
interactions, to higher and higher frequencies until at some ., it is dissipated by transport
processes. The physical means whereby energy is injccted or dissipated are completely
different and in order to have an extended inertial range they must be well separated in .
The steady state drift wave spectrum corresponding to (3.6) would follow either from setting
the drift wave energy flux Q = constant, or by balancing the sources (injection), sinks
(dissipation) and drift wave collisions "I". Itis not yet clear whether the observed Spcctrum
(Brower etal., 1985) can be explained by leading order nonlinearity or whether higher order
effects are essential; but the observation of a power law dépendence in Brower et. al. gives
some reason to believe that there may be an inertial range in the drift wave response.
Fluctuations in this spectrum could then propagate as second sound and be an efficient
vehicle for the escape of energy, thus working against confinement. Furthermore the second
sound is itself nonlinear and can display a spectrum of harmonics. This is a possible
explanation for the temperature-like fluctuations observed in an already wave turbulent

plasma (Arunasalam et al., 1977).
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The parallel between wave turbulence and superfiuidity enables one to motivate an
approximate expression for an effective diffusivity. We consider the response of the medium
to a small variation in energy density described by a V8. The system responds with an

internal convection wherein the center of mass stays at rest (cf. 3.10)

pove + pW =0 (3.15)
and the spatial energy flow is (cf. 3.8)

3B @+ %) | (3.16)

Now in the steady state the dynamical equations (3.9) and (3.11) yield

Bve. 3 ﬁVpo + —Mb = V2@ + W) O Ga
c? B B2

ol = \v) .
2. Vo +B VO U[p) Po (3.18)

where, in parallel with the superfluid case we have included the effects of viscosity'n. in the
equation of motion of the turbulent waves. This term would follow from our basic kinetic
equation in a Chapman-Enskog type expansion. From (3.17) and (3.18) we find

B VO + %}Quav" = INVE(E + W) (3.19)

where terms of order p,/p have been assumed small. In the case in which the irreversible term

in Qp dominates; the energy flow is
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1nd . 2 1 Pne B2
3 B(w + vp) = 1 P)6'YQ0 Vo (3.20)

which in view of (3.8) implies a wave turbulent diffusivity

(1 _0n¢?B s o _pne? paa '
D = (1 -, - 0~ Pa, (3.21)
where we have used (3.12). !

In the case where irreversibility is dominated by m, the solution to (3.19) follows the He*

case directly and yields

2.2 2.2
_a’c P, a”¢ P, :
D = T30 = T2Depo (3.22)

where "a" is determined by some geometrical confining length. By D, we mean a classical
diffusivity i.e. N,/po.

Background reaction is a key to the realization of this transport due to "internal
convection” (London, 1954; Putterman, 1974) where the center of mass stays at rest. The
appearance of a characteristic geometric size "a" in the diffusivity (3.22) indicates that a
hyperbolic response has been forced into a parabolic framework (Putterman, 1974)-. For the
near equilibrium superfluid D¢ =1,/p, (N, is the normal fluid viscosity) and fe(m)dm =p,c?
is roughly the thermal energy density. For the wave turbulent plasma fe(m)dm 2 p,c? is
determined by the drift wave fluctuations. The energy content of drift waves appears tobe an
involved issue (Horton, 1984). Rather than attempt a detailed picture we will scale the
parameters by setting U 2 <(8p)? >cp? /p which is surely an underestimate. Here ¢y, is the
drift wave velocity and < > indicates an average. The classical diffusivity of the plasma is
determined by the magnetic field limited random walk so D, = 6cop“ /&, 2NV, where 0y, is the

plasma frequency, @, theelectron cyclotron frequency, N the plasma number densityand V,,
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the thermal velocity. Taking B=20kG N=2x10'?em?, kpT = 400ev yields D ~8cm?/sec.
For these parameters the dnift wave fluctuations were measured (Mazzucato, 1976, 1982) as
<(Bplp,)*> =2.5x10-5 with"a" = 16 cm. and cp ~ 10° cmy/sec. This yields for (3.22) D, -
6.x10° cm?/sec which is about a factor of 10 higher than the experimentally determined
anomalous diffusivity corresponding to a confinement time of 5 ms. Unlike parabolic
estimates of transport which yield a lower bound, hyperbolic estimates normally yield an

+ upper bound. Since theinjection frequency @y, willscaletocp/a the diffusivity determined by
the cascade (3.21) appears for these numbers to be about the same as (3.22).

In some experiments (Grieger et al,, 1985) it is found that there is adrop in confinement
time as density is increased. We think it worthwhile to interpret these effects in terms of the
inequalities (3.13, 3.14) required for turbulent second sound.

Finally we must emphasize that as the energy content of He* isincreased by increasing
the temperature, the diffusivity increases at firstand then precipitously falls to zeroat T, . In
parallel with this fact we propose that as the wave turbulence in a plasma is increased a point
will be reached where p, - po and second sound will be localized to diffusion and the
confinement time will rapidly rise. In order to predict the parameters at which controlled
fusion will suddenly be made possible requires detailed experiments on the power spectrumof
drift wave turbulence for many regimes as well as anelucidation of the energy content of drift

waves of given amplitude.
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Sun. Superimposed on the large scale field structure are numerous small scale variations
which result from waves and discontinuities in the solar wind (Burlaga, 1972).

No clear picture nor a unique interpretation of the variable slopes of the spectrum for
solar wind has yet emerged. The spectra vary with solar wind conditions and apparently
represents fluctuations in Alfven waves. These are incompressible excitations of the fluid
with a small amplitude dispersion law @ = ¢, k, where ¢, = B/(4nm,n) is the Alfven phase
velocity with B the magnetic field, m, the protons mass, and n the density of protons. Typical
values of the parameters at 1AU are n=6 protons/cm® , and B=6Y, so thatc, ~50 km/sec. For
weakly nonlinear Alfven waves, equipartition of potential energy of the field fluctuations and
kinetic energy of the flow occurs. Soa measurementof the magnetic field fluctuations could
correspond to an Alfven waves spectrum.

A possible interpretation of the spectrain terms of waves is to consider the solar wind as
a turbulent medium. One could argue that the power spectra of variations in the magnetic
field might be due to MHD turbulence where the two characteristic lengths of the turbulent
spectrum are the size of the turbulent region itself and, at the other extreme, the proton
gyroradius (which might be the characteristic length for dissipative processes). The
structural similarities of the MHD equations and the hydrodynamic equations might lead one
to consider adapt the wave turbulence picture just developed in the previous chapters. In
fact, Troshnikov (1963) and Kraichnan (1965) incompressible MHD turbulence theory
consists of asuperposition of weakly nonlinear Alfven waves and the spectrum they obtained
is proportional to f-3/2 in the inertial range of wave numbers. This could explain the central
piece of the spectrum taken by Mariner 4 (Siscoe et al., 1968). As for the low frequency part
of the spectrum, it is assumed that the Mariner 2 data were obtained during an unusually
disturbed period of time (Russell, 1972). This might indicate that the energy input into the
waves was 5o large that the spectral energy density accumulated at 1/f noise.

A wave turbulence description for a system of interacting waves has to satisfy the basic
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inequalities (1.11). For an ambient magnetic field at 1AU of approximately 6y, the

corresponding wave Mach numbers

M=31§ (fBz(m)dm]ln

range from 107!, in the 1/f region, to 10-2 in the f-3/2 region. As for the dissipation
mechanism for Alfvén waves it could very well due to the statistical acceleration of particies
at the cyclotron frequency which is of the order of 10! Hz for protons at 1AU. For this time

scale, a nonlinear kinetic description of the waves can be written as

de@) , 9 . (@) | “.1)

Here 3Q/9m =-wk? (dk/0w)I{n}, and for the damping process in question Y(®w) = constant.

Stationarity requires that

o
3% = ~y(w)e(w) (4.2)

A solution e(®) ~ ®% and the three wave process implied by the nature of the dispci'sion law

yield for o the relation
W+2=0 4.3)

and thus a = -2 in agreement with the observed power law spectrum for the frequency range
10~ Hz to 1Hz of Fig. 4.1
The explanation of the spectra for solar wind in terms of wave turbulence although

plausible, will require further theoretical and experimental study. A complete theoretical
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where By is the ambient magnetic field and <B? > is the integrated power spectral density. In

parallel with the acoustic turbulence we may write the spectral density as
B2 (w) = B} (%g Jir g3
0

An inequality like (3.14) would read

Q < <B?>
2
B2 Q Bi

nr

Q 112
( Bi ) <1
Using the parameters in figure 4.1 for this frequency range we find a value (Qo/B§) 2
10-8sec-!, for which <B2>/Bf = 10-2 < 1. Itis in principle possible to have turbulent second
sound in weak wave turbulence magnetic field fluctuations in the solar wind.

In conclusion, wave turbulence appears to be relevant to a broad spectrum of natural
phenomena. Furthermore, wave turbulence is a more tractable theoretical subject at this time
because of the existence of a close kinetic theory which presumably describes the approach to,
and fluctuations about, this state. Future theoretical work should focus on higher order
correlation functions e.g. <n;n2 > - <ny ><ny >. Especially we also look forward to the first

controlled laboratory experiments on wave turbulence.
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- APPENDIX

In this appendix we give the general guide for the formulation of Eq. (2.3). Starting
with equation (2.1)

2 G 2
%7529 —c2V23p = V2 -—I-;-;";-}-f—(ﬁp)m

we fourier transform with respect to the coordinates

az pk 2 Gm+ 102 ) E’
Ttz t @b = —p'ﬁ,‘"_“'l““k fdtk 8(?1+R2+..-+ m —E’)pkl...pkm
where

-
ikex o, _
8 =[pe™ R ; p =px

oy =ck

We now introduce canonical variables a, and af through

kpl {2
Py = ﬁ)”z ( ak + a’fk)

from which we obtain the equation
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day
~a——- + i a, = - f dt, vkk;“g‘“km 5(1?14» 2+---«;«E)m -B) x

X (ak]+ a’fk])---(akma— a’fkm) (A1)
where
Vi iy = [“‘Trr(il?"rn‘%é;g“)“m#) Y2 Gk “km )12
We now express (A.1) in the compact form
aa
~a—+1cokak=—1)_ fd‘c,‘ x [E’ Y s,k)al a’“ (A.2)
=1

{s}

where az"— a,a 1o

o a: . We now consider the evolution for the square correlation

function
<a;a;:> = nkS(E' - ?)53 "

for which we multiply (A.2) by a:‘. and add it to the complex conjugate equation

on 8(1? ) =-i r fd‘ck{ VT? ? Y 1] <a;:-"a:: a*>
{s}
- v;'ISi? [1’(" L 8§ ] <a;j1...a;t:mak> (A.3)

The mean value <a:l"-a:i’> decomposes into the sum of products of spectral
1P

cumulants
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8 [f"is1 ]Ii; _;; g [a(y ]
‘ 192 'p Y1

=

The sum term reduces the available phase space giving zero contribution to the evolution of
the energy spectrum. Rather, that term introduces small nonlinear modifications to the phase

velocity of the waves. Equation (A.3) becomes

o e 8®-B)=-28K-B)Im} [ar 8(R-) sk) x
{s} i=1

‘IS g *s

xV | : (A.4)
Rl Kk kol

At this point, motivateci by the asymptotic analysis of Benney and Saffman (1966) we
use the cumulant discard approach, which states that correlations higher than the second
develop ata very low rate. Odd correlation functions are assumed to decrease rapidly with an
increase in order, while the even ones are factorized with improved accuracy via square

correlations at t=0. The time variations of <a:! "-a:P> are slow and can be neglected. From

T
(A.2) we find that

-i( o - Y_ §{ Oy, ) <ar! a’t a:m > =

i =t i m
uxr fd'ck{ Vi s ? Y R <a Sieatm oath et >
m m
{s} 1 1
m '
y-~ 4 Vsi 8( E)‘ - y_ ]—(’) "1 sl | g5i%m s; ...a"; veegSM
i1=1 1871 i:l ] m ] ; "

where the slashed quantity is to be deleted from the correlator. The RHS of the above

expresion gives, by use of the symetries of V?I 2
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[ -1 ( o ' Oy
RHS = 2i{ V?ISE 2 3l k- 8 E}ij D) M) D)

i~
i=1

m .. m
“.L st Vi\;'; ?; 8( E)“ —Z—ls}'ﬁ’l'] nknk; ﬂk'z "’ﬂk; .-"nkr:'l
1 = 1=

1

+ other terms that reduce the available phase space.

Finally, using the identity Im(x+i€)= nd(x) we arrive at (2.3) where

HRsK)=1Vy, 2 1%
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