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ABSTRACT

The multigrid algorithm is a fast and efficient (in fact provably optimal) method for
solving a wide class of integral and partial differential equations. In addition, it is a
natural choice for implementation on parallel computers because of the parallelism
inherent in the algorithm. Over the past several years, there has been increasing research
into parallel multigrid algorithms, ranging from purely theoretical studies to actual codes
running on real paralle] computers, some built with multigrid algorithms in mind. It is our
goal in this paper to provide a brief but structured account of this field of research.

1. INTRODUCTION

The multigrid algorithm is a fast, efficient method for solving a wide class of integral
and partial differential equations. This algorithm is now used in many areas of scientific
computing (such as computational fluid dynamics and structural mechanics). The algo-
rithm requires a series of problems be "solved" on a hierarchy of grids with different mesh
sizes. For many problems, it is possible to prove that its execution time is asymptotically
optimal. In addition to the strong asymptotic results, it has been demonstrated that a
properly implemented multigrid code is competitive with other algorithms on meshes of a
modest size.

“The development of parallel computers leads one to search for parallel algorithms.
Multigrid is a naturai choice because of its success in serial computations and because of
the parallelism: inherent in the algorithm. Over the last several years, there has been
increasing research into parallel multigrid methods, going from purely theoretical studies
to actual codes running on parallel computers, to special computers built to facilitate run-
ning rultigrid algorithms. While it is too early te write the final word on this subject,
much experience has been gained and several ideas and trends have emerged. Although
the literature is still scarce and not easily available, it is our purpose in this paper to pro-
vide a brief account of the state-of- the-art in this research area.

For the sake of brevity, we restrict our attention to multigrid algorithms on multipro-
cessor -systems. For work on vector and pipeline computers, see [29] and [41]. Multigrid
algorithms are also used in other parallel methods. For example, see Tang [44] for use of
multigrid in parallel domain decomposition methods.

2. MULTIGRID ALGORITHMS

We give only a brief sketch of a typical multigrid algorithm applied to weil-behaved
linear elliptic partial differential equations (PDEs). More detailed descriptions of more
general multigrid algorithms can be found in [5], [23], and [42]. An excellent introduction
to multigrid can be found in [28]. :

Assume that a given elliptic partial differential equation is approximated by a discrete
set of equations (finite differences or finite elements). The computational task {for which
we use rultigrid ) is to solve the discrete set of equations. We denote these by
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Au = b

where 4 is a matrix, b is a vector, and v is the vector of unknowns for which we seek the
solution. It is useful when thinking about multigrid methods to consider the solution as a
superposition of waves of different frequencies (say a Fourier decomposition). We will make
reference to this frequency decomposition throughout the paper. A simple multigrid { "V*
cycle ) method consists of the following three steps. First, apply a relaxation scheme (i.e.
an iterative method like Jacobi, or SOR} to an initial approximation. Typically, the diffi-
culty with these relaxation schemes is that while they can efficiently reduce the error in a
subspace of the frequency domain, they do poorly in another subspace. However, within
multigrid the relaxation scheme must only reduce the errors associated with the high fre-
quency domain. It is usually possible to find such a relaxation method when solving ellip-
tic equations. Thus, after a few relaxation sweeps, the error in the current fine grid
approximation is dominated by low frequency components. Since the error is smooth, it
can be accurately approximated on a coarser grid. Thus step two is to form a correction
equation (to solve for the error in the eurrent approximation), project an approximation to
this equation onto a coarser grid, and "solve" this system on the coarse grid. Finally, step
three is to interpolate this coarse grid correction to the fine grid and add it to the fine grid
approximation to get a new fine grid approximation. Since the coarse grid correction
equation is only an approximation to the true correction eguation, we must repeat the
three steps until convergence.

It is important to notice that to solve the coarse grid equation one can use this same
multigrid idea recursively. On the coarse grid we can perform relaxation to reduce the high
frequency errors {which correspond to the middle frequencies on the fine grid). Project a
correction equation on yet a coarser grid and continue,

We summarize this procedure with the following code segment.
proc multigrid(b,u,level, RelaxSweeps)

if { level = CoarsestLevel ) then u ={d;.. )%
else
for k = 1 to RelaxSweeps do
Relaxation(b,u,level)
ComputeResidual(b,u,level,residual)
ProjectResidual(level,residual,ProjRes)
Multigrid(ProjRes,v,level+1,RelaxSweeps)
Interpolate(level,v,correction)
u = 1 - correction

endif

There are many extensions and variations to the above algorithm. For example, there
are "F" and "W" cycle algorithms which visit the coarser grids more often that the "V"
cycle described above. Another variant is the Full Multigrid Algorithm {FMG), which sys-
tematically generates initial approximations to the solution on a given grid by recursively
calling the multigrid procedure to obtain a solution on the next coarser grid and interpo-
lating it up.

The convergence literature of multigrid methods is quite vast. The general idea is that
high and middle frequency errors are reduced on the finest grid. This is due to the nature
of the relaxation method. The lower frequency errors which are difficult to reduce on the
fine grid are instead reduced on coarser grids {where they appear as higher frequency). We
state without proof that under suitable conditions (usually obtainable for elliptic equa-
tions) it is possible to derive a multigrid method which converges in a constant number of
iterations regardless of the mesh spacing, h . This property is quite extraordinary when one
compares it with the O (1/&) rate of convergence using SOR with optimal acceleration
paramefer on a two dimensional domain.

Though a rigerous analysis of the rapid convergence properties of the multigrid algo-
rithm are beyond the scope of this article, we do present a simple data flow argument
which can be used for obtaining lower bounds on convergence rates [12]. We assume that
to solve an elliptic problem, each point within the interior of the domain must receive
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{directly or indirectly) some information from all the boundaries of the domain. This is
obvious when one considers that a change of the boundary conditions will change the solu-
tion over the entire domain. Consider the point SOR method applied to a standard 5
point discretization of Poisson’s equation on a square. After k relaxation sweeps, each
interior point receives information from ail points that are within a distance k {where dis-
tance is measured by the minimum number of horizontal and vertical moves to adjacent
points that must be performed to walk from one point to another). Thus only after 1/4
iterations will all points in the interior receive some information from all the houndaries.
Therefore, a lower bound on the rate of convergence for the SOR method is O (1/4).

By contrast, within a typical multigrid algorithm each interior point receives informa-
tion from all the boundaries in one iteration. Specifically, consider a multigrid iteration
defined by performing one relaxation sweep on each grid level. Further define the coarse
grid spacing on level, 7, as k; = k;_,/2. Then if we use only a j-grid algorithm, each point
receives information from ali points that are a distance 27! from it. This implies that if we
coarsen down to a one point mesh, the update to any given point using the multigrid algo-
rithm combines information from all the points inside the domain as well as the boun-
daries. Thus the required boundary information is received in omne iteration. Therefore, a
lower bound on its convergence rate is O ( 1 } which is the actual convergence rate.

3. DESIGN AND ANALYSIS OF PARALLEL ALGORITHMS

In this section we present some criteria for designing and evaluating parallel algo-
rithms. Though this task is complicated by a multitude of computer architectures, it is
possible to describe some general principles that are valid on any parallel machine.

The main new task that faces the user of a parallel computer is how to decompose his
problem so that all the processors will be as busy as possible. The ideal is to have each
processor computing all the time. However, this ideal is rarely obtainable for a number of
reasons. Communication overhead and load imbalancing are the twe most prevalent and
will be introduced in the next few paragraphs. A more detailed discussion of how these
problems arise in multigrid will follow in later sections.

When utilizing a parallel computer, each processor typically has a separate subtask of
the original problem. Due to the nature of most computational tasks, it is necessary for
these subproblems to share information with each other. The degree to which this infor-
mation sharing presents a problem is to some extent architecture dependent, Regardless of
the architecture this sharing either directly or indirectly imposes delays { communication
overhead) on the execution time of the program. In some systems {message passing) ‘each
processor has its own local memory and is interconnected to the others by some kind of
network. To share information between two processors messages must be sent from one
processor to another. Typically, the communication time varies depending on which two
processors wish to communicate. Therefore, a given processor can communicate directly
with those which it has a direct connection but must route messages through intermediate
processors to communicate with others. Since this message passing represents overhead,
the user should try and decompose his problem so that there is as little data sharing as
possible. He should also map his problem so that most of the data sharing, occurs between

- processors which are close to each other. On other systems (shared memory) there is no

direct penalty for sharing information between processors. All the processors share the
same memory so that no explicit message passing is needed. However, in these systerns
there are delays associated with memory conflicts, These conflicts occur because the limited
access to the memory that is allowed at a given time is exceeded by most parallel pro-
grams. To some extent these delays are beyond the control of the programmer.

Besides worrying about communication delays the user should consider load balancing
when he partitions his problem among the processors. Specifically, a system is load bal-
anced if all the processors have an equal load (amount of work) to perform. It is generally
considered desirable to have the system as load balanced as possible. Typically, load
imbalance implies that some processors are waiting idle for other processors to compute
intermediate results that they need before they can continue. The more load balanced the
problem is, the less time will be spent by processors being idle. Usually depending on the
problem and the algorithm, this load balancing may or may not be easy.

To evaluate parallel algorithms we introduce two standard performance measures.
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Let » be a measure of the problem size (for a PDE this might be the mesh size). Let p be
the number of processors used to solve the problem and let T'{n,p) be the execution time
for a problem of size » with p processors. The "speedup" in a parallel algorithm is the
number of times faster that the parallel algorithm runs (with say p processors) than with
Jjust one processor. That is

S(n,p) = 284
T(n,p)
Notice that the optimum speedup is $(n,p}=p. With this in mind we define the "effi-
clency”, E (n ,p ) of a parallel algorithm.

E(n.p)=S(n.p}/p

Therefore the efficiency gives a measure of how well the entire machine is being used (with
E(n,p) = 1.0 as the best).

It should be noted that the efficiency of an algorithm does not alone indicate the qual-
ity. What one is really interested in is a comparison of the execution time of the best serial
algorithm against the execution time of the best parallel algorithm, Many times it is possi-
ble to identify an algorithm with a very high efficiency (for example using the Jacobi itera-
tive method to solve a system of linear equations) that is poor because the corresponding
serial algorithm is poor. In general, the best parailel algorithms (where by best we mean
those which execute the fastest for a given problem) usually have good serial counterparts.

4. PARALLELIZING PDE ALGORITHMS

In this section we briefly discuss some techniques and considerations for writing one
grid parallel PDE algorithms. We defer the discussion of mmultiple grid algorithms and of
adaptive grids to later sections.

By far the most common way of assigning subtasks to each processor is by dividing
the domain of interest into subdomains {one for each processor). Each processor is respon-
sible for updating the variables associated with its subdomain only. There are two primary
issues in this decomposition.

1. Choosing the size and shape of each subdomain.
2. Choosing which processor is assigned to each subdomain.

H the algorithm is to run on a shared memory machine, the processor assignment to
subdomains is unimporiant. However if an algorithm is to run on a message passing
machine, the mapping of the domain to the architecture usually attempts to assign neigh-
boring subdomains to processors that are directly connected to each other. The principle
assumption is that the updates are local in nature {i.e., requires only information from
neighbors). Many mappings which match adjacent subdomains to adjacent processors {or
close to adjacent processors) for different kinds of machines have been studied. Some of
these will be discussed in the next section in the context of the mmultigrid algorithm.

Determining the size and shape of the subdomains can be complicated if the PDE
mesh is complicated. The hope is that by correctly choosing the size and shape of the sub-

domains, each processor will have an equal amount of work, and the amount of communi-

cation between processors will be kept at a minimum. The easiest situation is when the
grid is uniform. In this case it is often assumed that the amount of computation is directly
related to the size of the grid. Therefore, by dividing each of the subdomains into fairly
equal sizes one feels reasonably assured that each processor has approximately the same
amount of computation to perform. The situation is a little more difficult when the grid is
not uniform or when there are local grids. These will be discussed later in the paper.

In addition to mapping the domain onto the architecture, the user must choose an
algorithm such that the computations within the separate domains decouple as much as is
possible. For example, consider solving a PDE on a square using the SOR method. Assume
that we divide the square into subdomains by simply imposing a grid on top of the square.
These subdomains are then assigned to different processors. In addition, assume that the
PDE discretization corresponds to a five point stencil at the interior points. H we use a
standard row-wise ordering (starting from the lower left corner) $o perform the SOR
updates, then the updaie at the point (1,j) must wait until the values at (i-1,j) and (i,j-1)
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are both computed. This implies that & significant percentage of the processors will be idle
waiting for relevant information to be computed. If, however, we use a red-black ordering
of the points much more parallelista can be achieved. Specifically, we label all points (i,j)
such that the sum of i and j is an odd number as red points and all other points are
labeled as black points. Notice now that the updates for all the red points depend only on
the values of the black points, and the updates for the black points depend only on the
values of the red points. To implement a parallel red-black SOR solver (with one point per
processor), we need only to repeat the following steps.

1. Simultaneously update all the black points.

2. Simultaneously communicate this information to the red points.
3. Update all the red points in parallel. .

4.  Simultaneously communicate this information to the black points.

Of course, to determine the value of each of the two aigorithms one must also com-
pare the rates of convergence as well. In general, the issues raised by the previous example
are typical. In particular, often a small change to a standard numerical algorithm yields
an algorithm which is still consistent with the problem and is much more parallelizable
than the original algorithm. However, in comparing the two algorithms one must also
assess the numerical properties of both algorithms. One class of such algorithms are the
asynchronous methods [2]. The general idea is that there is no explicit synchronization for
updating the solution values. Each processor simply applies the formulas to update its
variables. In using the update formulas the current values of the variables are always
taken. -In the above example there would not be an explicit order of updating variables.
Each processor updates its variables independently of the other processors.

Finally we mention that splitting the domain into subdomains is not the only way to
parallelize a PDE code. One set of examples are the parallel FET algorithms. Some other
parallelization ideas with multigrid in mind can be found in [6].

5. MULTIGRID - PARALLELISM WITHIN EACH GRID

From the comments of the previous section we can conelude that it should be possible
to perform in parallel the operations associated with any given grid in the multigrid algo-
rithm, In particular, if a proper relaxation scheme is chosen (Jacobi, Red-Black SOR), it is
possible to perform the relaxation, interpolation, residual calculation, and the restriction
on any given grid in parallel. This is accomplished by performing a domain partitioning
and a corresponding mapping to the computer architecture, The communication cost
depends crucially on how this mapping preserves the locality of nearest neighbor sub-
domains on the fine grid as well as the coarser grids. Moreover, each grid within the
hierarchy of grids in the standard multigrid algorithm must be processed sequentially and,
therefore, on the coarser grids many processors could be idle. The effect of the mapping
and the load imbalance on the parallel efficiency of the algorithm will be addressed in this
section.

5.1 Theoretical Complexity Results

Before evaluating the performance of some parallel multigrid algorithms, it is
appropriate to consider some theoretical complexity resulis for solving PDE's in parallel
and for executing the multigrid algorithm.

First we derive the optimal asymptotic time for solving a general elliptic partial dif-
ferential equation discretized with a mesh containing N grid points. We assume that the N

grid points are partitioned among P processors (that is, each processor contains %

points). A lower bound can be derived by considering the time it takes to determine the
solution at just one grid point in the domain. The primary assumption is that to solve an
elliptic partial differential equation requires some information from all the points in the
interior. This can be justified by looking at the globa! nature of the Green's function for-
mulation of the solution. That is, the solution at any point in the domain can be written
as an integral over the whole domain. In matrix terminology, this corresponds to a dense
inverse of the operator, which implies that the solution is a linear combination of the
right-hand side (or the forcing funetion) at all points within the domain. Thus, consider
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the time it takes to collapse information from N points into one point. The best that can
be done within each processor is O(—P—), since each point must be visited. The optimal time

to combine the P pieces of information {one value per processor) into one number is
Oflog P} (using a tree visiting method ). Thus a lower bound on the time for solving an

elliptic partial differential equation is 0(—?} +log P). This result appeared in [12] and is
consistent with [49] where more details can be found.

Notice that the above arguments were presented without any considerations of com-
puter architecture. The primary assumption was that even though the information effect-
ing the solution at a point is strongest in the local vicinity of that point, to solve the ellip-
tic problem enfirely required global information. Thus an important feature for a fast
parallel method is that it must allow global information to reach all points in the interior
rapidly (preferably in O(1} time). Of course the above arguments neglect the architecture
at hand. If one has an algorithm which globally inixes information, it is equally important
that the parallel architecture allows this global information to be itransmitted rapidly
{preferably in O(log P) time). By modifying the above arguments we can derive a lower
bound that includes the communications topology (for a message passing system) given by

D{—-‘; + log P + diameter {erchitecture )), where the diameter of the architecture is the max-
imurm distance between any two processors.

Multigrid is one of the few global methods. An update to a given point in the interior
is based on global information from around the domain. Let us derive the asymptotic exe-
cution time of a "V" cyele multigrid algorithm when communication delays are ignored.
We assume that the next coarser grid is defined from the current grid by using an h to 2h
coarsening, We also assume that we continue coarsening down to a one grid point mesh.

Finally, we assume that each processor is given a subset of N grid points that it must

update and that the relaxation scheme is fully explicit (i.e. all points can be relaxed at
once - such as the Jacobi method). This implies that all the operations in the multigrid
algorithm {e.g. interpolation, restriction, residual calculation, relaxation) can proceed in
parallel. Let us, for simplicity consider only two diménsional problems. To perform the
operations on each grid in the hierarchy will take time proportional to the maximum
number of grid points assigned to any processor. At each coarser level we have 1/4 as
many points per processor as the previous level until we reach a situation where we have
one point per processor for log,P levels {at which point we reach the one point grid). Per-
forming the appropriate operation counts, we have

N
l“h? log, P
N 4 4 N
E=c 5 A =028 .
wor, 50_:4‘}3-1-? O{3P+ogP)
Since a proper multigrid algorithm converges in a constant number of iterations, we can
state that the multigrid algorithm is asymptotically optimal in parallel as its execution
time is identical to the lower bound derived earlier.

5.2 Communication and Architectures

In this section we comsider computer architectures, corresponding domain-processor
mappings, and the communication needs for implementing parallel multigrid algorithms.
The comments in this section hold primarily for message passing systems. Our fundamen-
tal goal is to look at the data flow in the multigrid methed and to determine architectures
and mapping which support this data flow at a minimal communication cost.

The fundamental difficulty which makes multigrid methods more difficult to parallel-
ize than simple relaxation schemes is the hierarchy of grids. Most of the difficulty occurs
when the current grid in the multigrid process contains one point per processor and the
next grid must be mapped to the architecture. To simplify the explanation we start by
discussing a two-grid method where there is one point per processor on the fine grid. Most
of the proposed schemes start by partitioning the domain into subdomains and assigning
these to different processors for the fine grid operations. For the coarse grid there are two
different general processor assignment strategies that have been advocated. The first is
that a coarse grid point is assigned to the same processor as its corresponding fine grid
point was assigned to. This approach seems natural and straightforward, but there are
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some difficulties. In particular, when the fine grid contains only one point per processor,
many processors are idle on the coarse grid. This follows from the fact that there are far
fewer coarser grid points than fine grid points. Unfortunately, this implies that two neigh-
boring coarse grid points are not necessarily in neighboring processors even if the neighbor-
ing fine grid points were. For example, consider a two dimensional processor mesh where
each processor can comrmunicate directly with its nearest neighbors. Further, assume that
each processor contains one grid point, Then to implement the relaxation, interpolation
and restriction on grid level k (where k=0 is the fine grid) requires communication over
paths of length 2*. Clearly this can lead to large communication delays on very coarse
grids.

A second approach is to shuffle the grid points into different processors during a tran-
sition from one level to the next. Often it is possible to maintain the property that neigh-
boring points are assigned to neighboring processors. In this way it may be possible to
maintain relatively cheap communication costs. Once again the extent to which this is a
problem depends on the problem size and the machine size.

We now describe a few of the architectures that have been advocated and their
corresponding multigrid algorithms.

One such topology is the Perfectly-Shuffled-Nearest-Neighbor (PSNN) array studied
by Grosch [22]. The architecture is defined in the following way. There are an odd
number, n, processors. Processor i is connected to processors i +1 mod n, i —1 mod n , and
to processor 2i mod n. A multigrid algorithm with an & to 2h coarsening can be easily
implemented on this topology. Suppose we have a one dimensional problem with n grid
points on the fine grid to be solved using an n processor system. We map grid point i to
processor i . Then we can shuffle all the odd points which define the coarse grid into neigh-
boring processors. Specifically, we assign ¢ {where i is odd } to processors 2i mod » and
the coarse grid points are contiguous. We omit the details and simply state that this
architecture can be generalized to higher dimensions. The PSNN architecture has many
nice features. In particular it seems relatively straight forward to implement (i-e., there are
a fairly small number of interconnections to be made). Second, it is possible to maintain
nearest neighbor connections on coarser grids of the multigrid algorithm.

Another architecture considered by Chan and Schreiber {9 is in the form of a
pyramid. One way to implement a multigrid process on this architecture is to assign to
each level in the pyramid a different grid level, After the relaxation and residuals are com-
puted on the fine grid, the points corresponding to the next coarsest grid level are shuffled
to the next level of the pyramid. Once again this topology maintains nearest neighbor con-
nections on all multigrid levels. Notice that while the communication overhead on this sys-
tem is fairly minimal, one must process many multigrid problems at once to fully utilize
the processors, Otherwise all pyramid levels except for one are idle at a given time. In
their paper Chan and Schreiber derive asymptotic results for the speedup and efficiency of
multigrid algorithms ("V" cycle, "W" cycle, and "FMG™) on this architecture. Despite the
presence of many idle processors, optimal asymptotic speedups can be obtained.

In Kolp and Miernedorff [30] they discuss multigrid implementations on two different
computer topologies: nearest neighbor meshes and trees, We first discuss the nearest neigh-
bor systems. In their paper they formalize the notation for arbitrary dimensional nearest
neighbor systems applied to arbitrary dimensional problems. A b-dimensional nearest-
neighbor system consists of a processor located on the cross points of a b-dimensional
orthogonal grid. Hach processor is coupled to those processors which are connected to it
by a grid line. The easiest case is when the dimension of the machine is the same as the
problem being solved. Here the domain is decomposed with a mesh that corresponds to
the processor mesh. Neighboring domains are assigned to neighboring processors in the
usual fashion. When the dimension of the domain and the processor system do not match,
more complicated algorithms are given for performing a family of mappings which keep
neighboring domains in neighboring or close to neighboring processors. The primary
disadvantage with these nearest-neighbor networks is that the communication distances
grow as we move to coarser and coarser grids. In fact, it is these growing communication
needs which are the main restriction in these systems. Using their mappings they compute
asymptotic speedup and efficiency results for the nearest-neighbor system. In addition,
they determine algorithms which yield asymptotically optimal speedups. A tree structured
topology is also considered in [30], together with a corresponding algorithm. The
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algorithm for mapping the subdomains essentially maps all the subdomains to the leaves of
the tree in a way that will minimize nearest neighbor communication. Since all processing
within the tree occurs at the leaves, many processors are not used in the computation.
Computed asymptotic results are given for the tree architecture as well. In general, the
path lengths by which nodes must communicate is not the primary restricting factor in
performance. Instead, performance is limited by the overlapping of messages near the root
of the tree (where the most traffic occurs).

Next, we consider the hypercube architecture which is probably the most studied of
the ones presented in this section partly because many hypercube systems are comimerciaily
available. A p-dimension hypercube system contains 2¢ processors. The interconnection
topology is best described by assigning to each processor a unique p -digit binary number.
There is a direct communication link between any two processors whose binary numbers
differ in exactly one bit. Hypercube architectures have many favorable properties that are
making them attractive in parallel computing circles. The primary advantage is that many
different structures can be efficiently mapped to the hypercube graph. This includes rings,
grids, and trees. In the context of multigrid there is a very nice property of the hypercube
architecture that was pointed out by Chan and Saad in [10]. There is a mapping (specifi-
cally called the binary reflected gray code mapping) such that on the finer grids (grids
where there is at least one point per processor) all communication for a basic multigrid
algorithm is nearest neighbor. On the coarser grids (when there are fewer points per pro-
cessor) all communication paths for the basic multigrid method are of length two. That
is, -even on the coarser grids the communication remains local. The main disadvantage
with the hypercube is that it is probably the most difficult of the architectures mentioned
in this section to build on a large scale (due to the large number of interconnections).
However, despite these difficulties very large systems {up to 65000 processors} which are
commercially available have been built. A few of the available hypercube computers
include : Intel iPSC, N-cube, Connection Machine, Ametek’s System 14, FPS’s T-series
and the Princeton/NASA Navier-Stokes Computer.

There has been much analysis as weil as computer codes which have been written on
hypercubes. We discuss in this section mainly those results which reflect on the communi-
cation aspects in the algorithm. Many studies have considered the size and shape of the
general subdomains used in partitioning the region (see, for example [33], [34], |39}, and
[48]). The results differ somewhat depending on the machine but there are some general
conclusions. For those machines that cannot perform parallel message transfers and where
there is a large startup overhead cost in sending messages, it is usually preferable to divide
the domain up into strips that go from one end of the domain to the other. The primary
advantage of the strips is that only two sides of the region must communicate via mes-
sages. If, however, one has a system capable of parallel message transmission and where
the message start up time is not too large, it is preferable to divide the domains up into
boxes which are as square as possible.

In [14], Chan and Tuminaro developed timing models to predict the execution time
and efficiency of a multigrid process as a function of hypercube communication parame-
ters, grid size and cube size, taking into account communication costs. These models have
been verified with computer codes on the Intel iPSC. Their general findings along with
those of others [7] is that the greater the size of the problem as compared to the size of the
hypercube, the better efficiency that can be obtained. Unfortunately, as the ratio of the
size of the problem to the number of processors approaches one, the efficiency decreases.
This effect is more noticeable for large processor systems than for smaller systems.

There have also been studies ({12}, [39], and [48]} discussing the use of "V" "W and
"F" cycles in terms of efficiency on the parallel machine and overali execution time. An
interesting point was raised by Naik and Ta’asan [39] concerning the comparison between
the "V" "W" and "F" cycles. While it is true that the "V" cycle is better load balanced
{it has better paralle! efficiency) because it spends less time on the coarse grids, it is not
necessarily the better method for solving a particular problem to a given accuracy because
its convergence rate is often not as good as the "W" or the "F" cycles. In fact, in their
numerical experiments {a driven cavity problem on a 128 by 128 grid), the "V" cycle is
often the slowest, especially for small number of processors.

Other studies of implementation of multigrid algorithms on hypercubes include: Thole
[46] where results of experiments on the Caltech Cosmic Cube are described, Thole [45]

162

g

=

where anisotropic problems are considered, Bassett [1] who applied a parallel multigrid
method to a petroleum reservoir simulator on the Ametek System 14, Nosenchuck-Krist-
Zang i40] who did a performance projection for using multigrid on a time dependent
Navier-Stokes equation on the Princeton/NASA Navier-Stokes Computer, Van de Velde
and Keller [48] who discuss a parallel implementation of a multigrid method with local grid
refinements in conjunction with Schwarz’s alternating procedure for a three-dimensional
nonlinear elliptic problem. See also Hall-Salama-Lyzenga [24] and Cisneros [15].

Finally, we mention one additional architecture which is being built by the Suprenum
project. This machine was designed with the intention that the multigrid algorithm would
be one of its principle uses. The architecture nses a nearest neighbor mesh where each ele-
ment in the nearest neighbor mesh is a cluster of processors. The intent in this design is
that it represents a somewhat lower cost model than a hypercube but can still perform glo-
bal communication operations relatively cheaply. More details on the architecture and mul-
tigrid implementations can be found in {3] and [26}.

5.3 Load Balancing

The primary objective in load balancing is to divide the workload equally among the
processors. On uniform meshes, it is relatively easy to divide the domain into partitions
with approximately equal number of mesh points. Unfortunately, a load imbalance can
still occur because the multigrid algorithms use a hierarchy of grids which must be pro-
cessed sequentially. This leads to fewer points than processors on some grids and results in
many idle processors.

Assume we have one point per processor, our finest grid is a p by p mesh, and we
continue coarsening down to a one point mesh. Then the percentage of utilized processors
is

]ngpl 4
im0 4f - Slogp +3°

A similar analysis for a three-dimensional problem shows that the percentage of utilized
processors is about 8/(7Tlog p + 7). Thus, utilization varies inversely with the logarithm of
the total number of available processors.

Notice that while the communication difficulties are primarily related to message pass-
ing systems, this idle processor situation is cornmon to all parallel processing systems,
Many studies have been conducted to understand the extent to which these idle processors
degrade the parallel performance. See, for example, [7], {14] and (32]. It is clear that the
crucial factor is the number of grid points per processor on the finest grid. That s, if the
size of the finest grid results in many grid points assigned to each processor, then the loss
in efficiency of the overall method due to idle processors is insignificant, The exact point
where the idle processors are considered significant depends on machine parameters, partic-
ulars of the multigrid algorithm (say "V" cycle or "W™" cycle), and the amount of compu-
tation per point. It seems fairly safe to say that when solving modest grid sizes (around
128 by, 128} on small processor systems (say less than 100 processors), it is not necessary
to be overly concerned with the idle processor problem. However, for large parallel
machines (like the Connection Machine [32]), the idle processor problem could be signifi-
cant.

We next list a few straightforward approaches to handle this idle processor problem
which make only very minor changes to the basic multigrid algorithm. The simplest idea
is to treat the one point per processor grid as the coarsest grid and to solve it via repeated
relaxation. This is without a doubt the easiest to program {significantly easier than pro-
gramming the standard multigrid algorithm where processors are allowed to go idle).
Unfortunately, if there are many processors this implies that one is iterating on a very
large grid. Often the relaxation procedures on large grids are very slow; in fact, so slow
that this relaxation can sericusly dominate the execution time of the algorithm. An alter-

-native is to consider solving the coarsest grid problem inexactly by using only a few relaxa-

tion iterations. However, this can hamper the overall convergence rate of the multigrid
iteration and cause a loss of the h-independent convergence. Other schemes advocate col-
lecting all the information in one node and using some sequential solution technique on the
one ncede. One nice aspeet of this approach is that it is also a fairly simple algorithm to
code (once again easier to program than the logic for the idle processors need in standard
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multigrid). One can implement more complex coarse grid solution techniques as the coarse
grid is essentially solved sequentially. Another nice feature of collecting the information
into one node is that it avoids the coarse grid communication difficulties of the standard
multigrid algorithm. The main problem with these schemes is that they sacrifice a lot of
parallelism {especially on large processor systems) by assigning what may be a large task
{solving the coarse grid equation) to only one of the processors.

In general, all of the approaches mentioned above do not usually perform as well as
simply continuing the standard multigrid process letting processors go idle on coarser lev-
els. We should point out that the logic necessary to implement processors becoming idle
and then active again is far from trivial, and in general on a small processor system one
might wish to use one of the simpler schemes mentioned above.

It should also be pointed out that if many multigrid problems are being solved, it is
possible to compute them simultaneocusly in a way that reduces the inefficiencies of the
coarser grid levels. One method described by Brandt [6] will be illustrated using the solu-
tion of two one dimensional problems to be solved by a two-grid method. One approach is
to perform the fine grid operations for each problem using all the processors in turn. Then
project the coarse grid equation for one problem on half the processors and the other
coarse grid equation on the other processors. An even simplier scheme is just to split the
machine into two pieces and solve the two pieces independently. On the fine levels, the pro-
cessors will contain two points and on the coarse levels each processor will have one point.

6. CONCURRENCY AMONG HIERARCHY OF GRIDS

We now discuss some alternative multigrid-like algorithms which are designed to more
effectively attack the idle processor problem. The basic idea in all of these algorithms is to
make use of the idle processors to carry out concurrent iterations on more than one grid.
In this sense, they are significantly different from standard multigrid algorithms; in partic-
ular, their convergence behavior is often not well understoocd. Though these algorithms
show promise there is no accepted method which is clearly superior. For simplicity in the
descriptions that follow, it is assumed that there is one point per processor on the finest
grid of a one-dimensional mesh. We only consider how to extend the algorithm to the next
coarser mesh as the generalization to yet coarser meshes follow logicaliy.

Gannon and Rosendale {20] were among the first to advocate such a concurrent itera-
tion approach. Their method, Concurrent Iteration (CI), enables simultaneous iterations
on all grids. We briefly sketch the idea behind their aigorithm. During any given iteration,
there is a variable w; associated with each grid, G,. At the end of each iteration the
current approximate selution is given by

finext
g
k = coarsest
where in order to simplify the notation we have omitted the interpolation operator. It is
understood that each u; is interpolated to the finest grid before the sumination takes place.
In addition, at each iteration the current residual is given by a summation. That is
finend

residual = Y pp.

k= coarsert
Essentially in one iteration the following ocecurs:

1. The current residual is redistributed among all the grids using restriction and interpo-
lation: operators. The general effect of this redistribution is to move the lower fre-
quency errors to coarser grids.

2. Relaxation iterations occur on all grids.

3. A new residual ( p,’s } is computed.

One can see that the basic idea of the algorithm is that coarse grids are used to solve for
the low frequency errors while finer grids solve for the higher frequency errors. In their
paper Gannon and Van Rosendale illustrate a convergence proof (without the strong k
independent convergence of traditional multigrid). In addition, Chan and Saad [10] have
shown how to map this algorithm to a hypercube keeping the communication needs local.
Unfortunately, there are still many idle processors in a hypercube implementation. The
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problem stems from the fact that, for high dimensional problems, the total number of
points in the concurrent iteration scherne is not close to a power of 2. Since hypercubes
usually contain 2? processors, this implies that many processors are unassigned.

A similar idea was used by Greenbaum {21] and Swisshelm, Johnson, and Kumar [43].
Before any smoothing is done on the fine grid, the residual is projecied onto each of the
coarser grids and used as the right-hand side for systems of linear equations on each grid.
These problems are then approximately solved concurrently on each individual grid via
relaxation and collected to obtain a final solution. Greenbaum further proposed a method
for collecting the coarse grid solutions, Fach solution is combined with those on finer grids
in such a way as to make the residual on the finer grid orthogonal to the interpolated
approximate solution. If the matrix A is symmetric positive definite, this minimizes the
A -norm of the error in the combined approximation.

A more recent algorithm is due to Frederickson and McBryan [19]. The idea is essen-
tially to do multiple coarse grid eorrections instead of one. For the one-dimensional prob-
lem one does two coarse grid corrections; half the processors do one coarse grid correction
{which will correspond to all the odd grid points on the fine grid} and the other half com-
pute the other problem (all the even points on the fine grid). The hope is that by combin-
ing maultiple coarse grid corrections one will improve the convergence rate of the multigrid
algorithm. Frederickson and McBryan demonstrated this algorithm by applying it to the
Poisson equation (in 2 dimensions). First, they specify the restriction and prolongation as
local stencils with constant unknown coefficients. Using these it is possible to derive an
error expression for the resulting multigrid iteration. This error expression can then be
used to determine optimal coefficients for the restriction and prolongation operators.
Their resulis {(using these operators) indicate a significant improvement over the standard
multigrid method.

A related method has been proposed by Douglas and Miranker [16] and can be viewed
as a generalization of the previous method in that it allows for multiple coarse grid equa-
tions. A main difference is that they propose to eliminate the relaxation sweeps. In their
paper they derive sufficient conditions for the restriction and prolongation operators that
correspond to convergence in one iteration. They illustrate with some examples on the
Poisson equation as well as on a variable coefficient problem favorable convergence rates.

In both of these methods the choice of the restriction and prolongation operators is
eritical to the convergence rate. In fact if the wrong operators are used one can get slower
convergence {or even divergence). In principle these restriction and prolongation operators
determine how to split the problem into multiple pieces and then recombine then back into
one solution. If one views multigrid methods from a frequency point of view (where essen-
tially different grids are solving the solution in a different frequency range}, then these
methods are very different from standard multigrid, However, il one views multigrid as a
method which uses the different grids to solve the solution in differeat subspaces, then
these methods are not so different. The different coarse grid equations are in effect solving
the residual equation in different subspaces. More research is needed to determine princi-
ples which indicate how inexpensive operators should be chosen to achieve rapid conver-
gence.

Chan and Tuminaro [12] proposed another algorithm to tackle the idle processor
problem. The basic idea is similar in spirit to that of Gannon and Van Rosendale [20].
Fine grids are used to reduce high frequency errors and coarse grids are used to reduce low
frequency errors, in the spirit of the standard muliigrid algorithm. Once again consider
only a one dimensional problem with one point per processor on the finest grid. In this
algorithm the residual is formed as in standard multigrid algorithms. This residual is then
split into two components (ie. two systems are to be solved). One component contains
mostly the middle and high frequencies while the other component contains the low fre-
quencies. The splitting is accomplished using local smoothing techniques to form the low
frequency component and simply subtracting this from the original residual to get the
other component. The system containing the low frequency component on the right-hand

. side is projected onto the coarse grid and is solved by recursively calling the multigrid pro-

cedure. The other system is "solved" concurrently using additional relaxation sweeps on
the fine grid. Chan and Tuminaro have demonstrated that it is possible to generate supe-
rior convergence rates using this splitting principle when compared te standard multigrid
algorithms, Unfortunately the algorithm is a little more difficult to program than some of




the other algorithms mentioned. In addition, when analyzing the total execution time one
must contrast the better convergence rate with the additional time taken per iteration due
to the splitting step. Under this light it does not always pay to perform this splitting. We
would like to mention that Kuo [31] considered a similar idea based on using digital filter-
ing principles in the design of inter-grid transfer operators in multigrid algorithms,

The concurrent multigrid algorithms presented so far are designed for hierarchy of
grids each of which covers the whole domain. However, multigrid algorithms can be
applied to more general hierarchy of grids. For example, in adaptive mesh refinement
algorithius, locally refined grids are often created. Concurrent iteration can also be carried
out in such situations. Hart and MaeCormick [25] proposed such an algorithm based on
the fast adaptive composite grid method {FAC) [36]. FAC uses overlapping global and
local uniform grids for the adaptive solution of PDE’s. The simplest case to consider is
when there is one global mesh covering the entire domain and one local finer grid covering
a subregion. Basically one cycle of a two-grid coarse-to-fine FAC algorithm consists of the
following steps : Use the current approximation to compute the residual on the composite
grid. Solve a correction equation on the coarse grid defined by using a projection of the
residual on the right-hand side. Use this correction to update the approximation, compute
the composite grid residual, and solve a mew correction equation on the local fine grid.
Finally, update the current approximation using the new correction. Unfortunately, the
sequential nature in solving the grids creates load balancing problems. For example, if a
fixed mapping of subdomains to processors is done, then processors assigned to domains
not containing local grid points wiil be idle when the local grid is processed. To alleviate
this problem Hart and MacCormick [25] propose an asynchronous fast adaptive composite
grid method (AFAC) which allows the local grids and the global grids to be processed in
parallel. The basic idea is to split the current residual into components by projecting it
onto different spaces (appropriate for the different grids), Then one iteration of a simple
AFAC algorithm is to solve on each grid a corresponding system of equations with the
appropriate projected residual component as a right-hand side. Then the sum of the inter-
polated solutions to these systems is taken as a correction to the current approximation.
We omit the details of the efficient parallelization of this algorithm and simply state that
the convergence rates of the AFAC algorithm are comparable with the FAC algorithm.

7. LOAD BALANCING FOR IRREGULAR MESH PROBLEMS

For the most part, we have to this point assume fairly uniform grids, for which it is
relatively easy to find domain-processor mappings that achieve good load balancing. In
general, non-uniform grids present a problem: How to partition the domain to keep the
processors load balanced? The answer to this question in some sense depends on whether it

is known beforehand what the grid densities and communication needs are or whether they
are determined dynamically.

) McCormick and Quinlan {35] list a few attributes that they consider desirable in
assigning processors to grid points. They include:

t. Each processor should be assigned to exactly one connected subregion.
2. Each subregion should be rectangular {or as close as possible).

3. Each processor should be able to determine the subregion it is assigned to as well as
the processors assigned to neighboring subregions.

Assignments should exploit the communication topology of the machine.
Balanced on both arithmetic and commaunication loads.

Dynamically executable to account for changing environment.

The assignment scheme should be parallelizable.

We now present a few methods. Once again there is no method that is clearly considered
better than the others. More research in this general area is certainly needed.

Simmulated annealing is a method that has been increasingly used in load balancing
algorithms [17]. The basic idea is to set up a mathematical analog between an optimiza-
tion problem and a variational characterization of the equilibrium state of a physical sys-
tem, the solution of which can then be found by physically motivated and rapidly converg-
ing (the annealing) algorithms. For the load balancing problem, the objective function

e
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conld be chosen to consist of two terms: one to reflect the load imbalance and the other
the communication cost. The main advantage of this approach is that it finds the optimal
solution to both the load balancing and the communication problem. However, due to the
combinatorial nature of the optimization problem, this is usually obtained at a consider-
able cost, especially when the number of partitions is large.

A somewhat less expensive approach is a class of methods that we shall describe as
Alternating Direction Decomposition. In these methods, the main objective is to obtain a
simple and systematic mapping that will balance the load. The main idea is to seguen-
tially partition the domain in alternating coordinate directions.

The simplest methed in this class is the recursive binary decompesition {RBD)
method [4]. This method proceeds by first subdividing the domain into two parts by a par-
tition along one coordinate direction such that the load is approximately equal in each sub-
domain. Then one partitions each of the newly created partitions along an orthogonal
coordinate direction in a similar fashion. This procedure would then be repeated recur-
sively until the correct number of subregions is preduced. Load balance is obviously
guaranteed but communication cost is not necessarily minimized.

One potential problem with the RBD method is that the resulting partitions are not
well organized for determining one’s neighbors. To overcome this problem, McCormick
and Quinlan [35] proposed a related method, which they called the multilevel load balane-
ing (MLB) scheme. The idea is to partition into more than two subregions in each coordi-
nate direction at a time and stop the recursion after each coordinate direction has been
visited once. For example, in two dimensions the result of this algorithm is an interconnec-
tion of rectangles which are grouped into strips, The MLB method is designed to be used
in conjunction with the AFAC algorithm mentioned in the previous section.

An even simpler approach is the method of scattered decomposition [38]. The pro-
cedure is to map a small reglon of the domain onte the processors using a regular nearest
neighbor mesh mapping and cover the whole domain with repeated copies of this processor
mesh. The motivation is that if the granularity of the nonuniformity of the mesh is not
smaller than that of the small region, then on the average each processor will get a similar
load {e.g. number of mesh points.) The main disadvantage of this method is the higher
commaunication cost due to the finer granularity of the mapping. The main attraction is
its simplicity and general applicability - for example problems with local grids,

Finally, we discuss a partitioning due to Mierendorff [37] that specifically considers
local grids. Suppose our problem consists of two grids : one covering the entire domain and
the other covering the upper right quarter. The idea is to partition the entire domain not
covered by the local grid over the entire machine. One should then partition the local grid
over the entire machine. They show some examples of how this can be done maintaining
nearest neighbor connections on nearest-neighbor machines. Using this total partition each
processor is assigned a region of the local grid and of the entire domain. Thus, even when
just the local grid is being processed, no processor is idle. We have indicated how the algo-
rithm proceeds for one local grid. When there are many local grids one must split the grid
sequence into a series of subsequences. Within each subsequence one fixed partitioning is
used. However from one subsequence to the next there is a new partitioning and data is
shuffled, The unfortunate difficulty with this scheme is that each processor is now
assigned a series of little subdomains instead of just having one. This corresponds to more
complex programming and logic.

8. IMPLEMENTATIONS

Many of the algorithms that have been described in this paper have been implemented
on a variety of parallel computers. To date the authors are aware of multigrid implementa-
tions on the Caltech Cosmic Cube [33], [46], the Intel iPSC [7], [14], [18], [33], [39], the
f&nietek System 14 [1], the Connection Machine [32], and the now-extinet Denelcor HEP
34|.

Other research efforts consider the software aspects of programming multigrid (and
other numerical methods) on parallel machines. As was mentioned earlier, McBryan and
Van de Velde [33] describe a machine dependent library of subroutines which they use to
implement their multigrid algorithm. The library is such that the code which uses the
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library never needs to make explicit reference to machine dependent features. Therefore,
another machine which contains the same library could run the same multigrid code.

Finally, we mention that while most of the codes discussed in this paper are used to
solve model problems, more sophisticated problems are starting to be solved by parallel
multigrid methods. For example, Tylavsky [47] has implemented the FLO52 code on an
Intel iPSC hypercube. FLO52 is a well known and highly used code for fluid dynamics that
was developed by Jameson [27]. The heart of the code contains a fairly sophisticated mul-
tigrid solver. Other ¢odes are sure to appear.
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