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Abstract

A new methodology utilizing the spectral analysis of local differential operators is
proposed to design and analyze mode-dependent finite-difference schemes for linear homo-
geneous ordinary and partial differential equations. We interpret the finite-difference
method as a procedure for approximating exactly a local differential operator over a finite-
dimensional space of test functions called the coincident space and show that the coin-
cident space is basically determined by the nullspace of the local differential operator.
Since local operators are linear and approximately with constant coefficients, we introduce
a transform domain approach to perform the spectral analysis. For the case of boundary-
value ODEs, a mode-dependent finite-difference scheme can be systematically obtained.
For boundary-value PDEs, mode-dependent S-point, rotated 5-point and 9-point stencil
discretizations for the Laplace, Helmholtz and convection-diffusion equations are
developed. The effectiveness of the resulting schemes is shown analytically, as well as by
considering several numerical examples.
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1. Introduction

In oﬁer to derive a finite-difference approximation for the derivative of a smooth function, a
common procedure is to use a Taylor series to expand 'Lhc function locally and to select the
coefficients such that the order of the discretization error is as high as possible. This procedure is
based on the asshmption that smooth functions can be well approximated by polynomials locally,
and in faﬁt it can be shown that the resulting finite-difference approximation is exact for low order
polynomials. However, when the function is exponentially increasing (decreasing) or highly oscilla-
tory, the polynomial representation becomes poor and better finite-difference schemes can be
derived by requiring that the derivative of exponential or trigonometric functions should be approx-
imated exactly. In this paper, polynomials, exponerntial and trigonometric functions are all viewed
as modes, and finite-difference schemes obtained by an exact approximation of the derivative of a
certain number of modes are called mode-dependent finite-difference schemes. These modes are the

coincident modes and the space spanned by them is the coincident space.

Historically, the idea of selecting exponential functions as coincident modes was first sug-
gested by Allen and Southwell [1] for discretizing the convection-diffusion equation. An important
feature of this problem is that there are large first-order terms in the governing second-order PDE.
Due to these large first-order terms, there exists a boundary layer which cannot be well approxi-
mated by polynomials. The use of trigonometric functions as coincident modes was first discussed
by Gautschi [19] for the numerical integration of ODEs which have periodic or oscillatory solutions
whose periods can be estimated in advance. In addition, high order finite-difference schemes for the

Laplace equation were derived by choosiﬁg some particular polynomials as coincident modes [32].

Although the concept of a mode-dependent finite-difference discretization procedure has been
known for years and mentioned repeatedly in the literature (see for examples the references appear-
ing in Section 6), few theoretical results about this method have been obtained until now. Impor-
tant problems, such as whether the mode-dependent finite-difference discretization procedure can

always be efﬁcieﬁﬂy applied and how to design such a scheme, remain open. This paper provides



a methodology utilizing the spectral amalysis of local differential operators to answer these ques-
tons. To avoid umnecessary distractions, we will concentrate on 1D and 2b homogeneous
boundary-value problems. However, the general methodology described here also applies to initial
valee problems as well as nonhomogeneous equations. We will demonstrate this point by referring

10 some related work.

Since a differential operator is well approximated locally by a linear constant-coefficient
operator, the spectral analysis of this local operator becomes relatively easy and a transform domain
analysis can be conveniently applied. In the transform domain, the differential and difference
operators are algebraic expressions in terms of the complei frequencies s and z. We interpret the
mode-dependent finite-difference discretization procedure as a way to specify how these two
expressions match each other at a certain number of frequencies in the transform domain. This
transform domain viewpoint helps us to gain a better understanding of existing mode-dependent

finite-difference schemes and serves as a basis for designing new schemes.

We apply the same methodology to both ODEs and PDES, ‘and develop several mode-
dependent finite-difference schemes. The main. results include an (R +1)-point mode-dependent cen-
tral difference scheme for an R th-order boundary-value ODE, and S-point, rotated S-point, 9-point
stencil discretizations for the 2D Laplace, Helmholtz and convection-diffusion equations. The
mode-dependent finite-difference schemes for the Laplace equation are the same as the conven-
tional ones. However, we present a new derivation. The mode-dependent 5-point and 9-point stencil
discretizations of the Heﬁnholtz and convection-diffusion equations are new and have an accuracy

proportional to O (A2) and O (h 6) respectively.,

This paper is organized as follows. In Section 2, we describe the mode-dependent finite-
difference approximation concept in both the space and transform domains. In Section 3, we study
the discretization of boundary-value ODEs. The problem of determining the coincident space for
homogeneous ODEs is discussed and a mode-dependent finite-difference scheme is presented. This

scheme is shown to be exact for constant-coefficient ODEs and has a high degree of accuracy for



ODEs with smoothly varying coefficients. The extension to the problem of discretizing nonhomo-
geneous ODEs is briefly addressed. In Section 4, we generalize the methodology from one to two
dimensions. In particular, we use the Laplace, Helmholtz and convection-diffusion equations as
examples to demonstrate the mode-dependent finite-difference discretization procedure for PDEé.
Numerical examples are presented in Section 5. Section 6 discusses several previous related contri-
butions. The main purpose of this section is to organize the literature concerning the mode-
dependent finite-difference approximation so that more examples will be accessible to interested

readers. Some generaiizan'ons and concluding remarks are given in Section 7.



2. Mode-dependent finite-difference discretization

Consider the class of functions of the form

xz xn* SpX
ui{x) = Copn F CoiX + Con——+ ¢+ ) — ] e .

where each term x7 ™" 0 < P S ny, is called a mode of order p at the frequency s,. We are
interested in approximating a linear R th-order constant-coefficient differential operator operating on

u(x),
R
LD)=Y aD",
r=0

where D = %—;, by a (ry—r {+1)-point finite-difference operator

ra
LiE)= ¥ bE",

r=r,

where E is the shift operator defined on a uniform grid G, with spacing h, ie. for nh,
(n+r)h € G,, E"u(nh) = u((n+rd)r). L, corresponds to a forward, backward or central
difference operator depending on whether 7y = 0, 7, = 0 or =1 = r,, respectively. We use

Ps)y={ux): u@x)=e* }n'_‘, o xF ) .10
k=0

to represent the space spanned by polynomials of degree at most n multiplied by the factor ¢°*. A
mode-dependent finite-difference discretization ‘scheme is obtained by selecting the coefficients b,
of L; such that

[LyE)Y-LMD)lux)=0 for u(x)e C and x e G, (2.2)
where C', called the coincident space of the operator L, is the direct sum of subspaces of the form

(2.1), i.e.

K
C=® P _(3.). 2.3
A mode in the coincident space C is called a coincident mode, and its frequency is called a coin-

cident frequency.



The mode-dependent finite-difference scheme can be conveniently formulated in the
transform domain. L(s) is obtained by replacing D with s through the use of the Laplace

transform in the § -domain,

R
L(s)= 3 a.s" ,
r=( '

while L;(z) is obtained by replacing E with z through the use of the Z-transform in the z-

domain,
ra rz
LyGz)= 3 b2" =3 be™ .
r=ry r=ry

where the last equality is due to the fact that since E is related to D via E = ¢*P [11], we have
z = e, Then, we can express the difference A between L and L, in terms of a single variable s
in the transform domain

Als) = Lg(e™) - L(s) ,
and the characterization (2.2)-(2.3) of the mode-dependent finite-difference scheme can be

equivalently stated in the transform domain as

APXs)=0, O<ps<nm, 1Sk<K, (2.4)
where A®)(s,) = d”A(s
. ds®

=gy LG Q@ (x) be an arbitrary polynomial. Then, the characterization

(2.4) s in fact a direct consequence of the equalities

d SXY _ i _a__ X _ & i Sxy _ i X
LixQ ke ]—L(ax)[Q(as)e 1=Q (5L (5 )e 1=Q(=L(6)e™T,

and

- & _a_ SXY — i X7 _a_ shy , 5%
Li(E)Q (x)e™] —Ld(E)[Q(aS Je ] "’Q(as HLa(E)e™] = Q(as)[Ld(e Je™] .
It is usually easier to determine the coefficients b, of the mode-dependent finite-difference discreti-

zation scheme by applying (2.4) rather than (2.2) and (2.3).

Example 1: To illustrate the mode-dependent discretization procedure described above, the coin-
cident modes and coefficients of several 3-point central difference schemes for the first-order

derivative D are listed in Table 1.



Table 1: The approximation of the first-order derivative D ( L(s) =5 ) by a central mode-dependent finite-

difference scheme.

modes 1, e % sin(wx ), e® cos(mx) I,Ie‘”‘, ™ (c#0)
b %" [Gsin(oh )—ncos(@h ) +o (1-Gh)e* -1
"' | 2sin(@h)lcos(@h)—cosh(ah)] 2k [cosh(ch }-1]
b ®cos(w# )sinh(oh y—osin(®h Y)cosh(ch) Ghcosh{ch )—sinh{ch)
0 sin(wh Y[cos(@h }—cosh(ch )] 7 [cosh(oh }—1]
b ¢ [asin(wh H+mcos(wh )]—-o —(14+ch Ye 0" +1
! 2sin(®h Y cos(wh y—cosh{ch )] 2h {cosh(ch )—1]
modes 1, e%F ) %% ( Gy # Gy ) 1, x, x*
. 1 0y(1-e""y—0,(1-¢"?) -1
~t | 2 sinh[(c,—0ph J+sinh(c, 4 )-sinh(ct ) 2h
b G,sinh(oyh )~ sinh(cz4) 0
0 sinh[(G,—0 1)k J+sinh(c, i }-sinh(c.h )
b |1 Gy(1—¢ " )—0,(1—e ) 1
' | 2 sinh[(cz-01)k 1+sinh(c 4 )-sinh(c,h) 2h




3. Discretization of boundary-value ODEs
3.1 Homogeneous ODEs

Consider an R th-order homogeneous two-point boundary value problem on [0,1]. For con-
venience, we consider the case R=2m. The case R=2m+1 gives rise to a similar analysis. The

equation is written as

2m
Lu=0, where L = 3 a.(x)D" and a,,(x)=1, 3.1
r={

with given boundary conditions. We discretize (3.1) on a uniform grid with spacing 4 by a
(2m+1)-point central difference scheme,
m
L, U=0, where L;= Y b (nh)E", (3.2)
r=m
and U is the estimate of u on grid points. Suppose that ¢ is an arbitrary function in the nullspace
Ny, of operator L, and that Ny, is contained in the coincident space C of L,. Then, since

_ L$=0 and {L;-L1¢=0,
we obtain

L;o=0. (3.3)
Since the discretization for an arbitrary function in the nullspace N;, is exact, we conclude that

equation (3.1) is exactly discretized by (3.2).

The nullspace N, is easy to find if the coefficients @, (x) of L are constant. Even if these
coefficients are not constant but smoothly-varying, L still can be well approximated by a constant-
coefficient operator in a local region. This simplification is always assumed for finite-difference
schemes since the finite-difference method is a local approximation method. For convenience, we
drop the spatial dependency of coefficients @, (x) and b, (x), and use the notation a, = a, (x,) and
b, = b,(x) inside operators L and L, for the rest of this paper. If @, (x) and b, (x) are spatially

varying, the discussion is understood to be a local analysis in the neighborhood of x,.

2m
The spectral analysis of a linear constant-coefficient operator L = ¥ a,.D” can be easily
r=D



performed in the transform domain. We choose the coincident frequencies to be roots of the

characteristic equation,

LE)=s + a0, ™'+ - +a;5+ag=0.
In generat, L (s) can be factored as

K K
LE)=TI (s -5 )", where ¥ nm, =2m ,
k=1 k=l

and sy is known as a natural frequency of L of order n,. As a consequence, the operator L has

the 2m -dimensional nullspace

Ny = él P _1(5¢) -

A (2m+1)-point finite difference scheme can be uniquely determined by a (2m+1)-
dimensional coincident space C. However, since a homogeneous finite-difference equation such as
(3.2) can be scaled arbitrarily, a 2m -dimensional coincident space C is sufficient to specify L; in
(3.2). So, letting

C=NL,

we have an exact discretization scheme for (3.1). For this choice, L; can be determined easily as

X
Liz)=Az" [[(z-2,)*, where z = P . (3.4)
k=l
where A is a scaling factor and the multiplication factor z™™ is due to the fact that we want L;(z)

to be a central difference scheme. This can be verified by substituting L (s) and L; (e**) back into

2.4).
Hence, after inverse transformation, we obtain the following mode-dependent finite-difference
scheme for (3.1) in the space domain

K
L,U=0, where L,E)=AE™TJ](E- & e, (3.5)
k=1

and s, is a namral frequency of L of order n,. The scaling factor A does not affect the solution
of the system of equations (3.5). However, in order to imalyze the discretization error A(s)

approprately, it is important to choose A such that Ld(e‘“") and L(s) are consistent over fine



grids. This consideration requires that the scaling factor A of (3.5) should be proportional to

;—%ﬂ—,ésh goes to zero.

Exampie 2: (1D Laplace equation) For L (D) = D?, we know that N ={ 1, x }. The coincident
modes have the same frequency s, = 0. According to (3.5), we have

LiE)=AEY(E~-1¥=A(E-2+E"), (3.6)
If we choose C = N + | x2 }, the constant A" can be uniquely determined. Solving Lx*= dez,

where x € G, we find that A = Zli' Then, (3.6) reduces to the standard 3-point central

difference scheme,

Example 3: (1D convection-diffusion equation) The differential operator is L (D) = D? — a b,

where @y # 0. In this case, Ny = { 1, ¢ }ands, =0, a ;. Therefore, by (3.5), we have
LiEY=AE ' (E-1)(E-e¢"")=A[E - (+e"M) + g1, G.7)

a;

In particular, if C =Ny, + { x }, we find that A = —
he""=1)

. Then, (3.7) is identical to the

scheme considered by Allen and Southwell [1].

For comparison, consider the conventional finite-difference scheme for 3.1,

2m
Lg,U=0, where Ly (E)=3 ah " D]sp(E), (3.8)
r=0

where h™ D 41 (E) denotes the (2m-+1)-point central difference operator for the rth-order
derivative D7 which is obtained by selecting C = P, (0) as coincident space, and by mquiriné,
c;onsistency over fine grids. Then, by comparing (3.5) and (3.8), we see that the mode-dependent
scheme (3.5) is obtained by discretizing term by term the product form of the differential operator
L (D), whereas the conventional scheme (3.8) is found by discretizing term by term the summation

form of L (D).

According to the above discussion, the approximation of the differential operator L (D) in

(3.1) by L4(E) given by (3.5) does not give rise to any discretization error when the coefficients
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a, are constant. This fact is also supported by numerical results.

Of course, the mode-dependent scheme (3.5) gives rise to a discretization error when the
coefficients a, are spatially varying. This discretization error depends on the smoothness of the
ODE coefficients and the grid size 4. However, the exact form of this dependency is still unknown,
and we have yet to develop a general procedure for estimating the size of the error in this case. In
Section 5, we use a 1D convection-diffusion equation as a test proi;lem and find that the error of
Lhe-moc.le-dependem scheme is proportional to O (g £%) while that of the conventional scheme is
proportional o O (h 2), where € is the first order derivative of the coefficient function. The mode-
dependent scheme is always better than the conventional central-difference scheme in this test prob-
lem and the improvement in accuracy offored by the mode-dependent scheme becomes larger as

the coefficient of the convection-diffusion equation becomes smoother.
3.2 Extensions to nonhomogeneous ODEs

Suppose that (3.1) includes a driving function f (%), so that

Lu-f=0. 3.9
By performing a Taylor series expansion of f (x) in the vicinity of a discretization point Xg, We
can assume that f is approximated locally by a polynomial of low degree, i.e.
F@EY=co+tc x +epx+ oo
A general discretization scheme for (3.9), which has been proposed in the context of the OCI and
HODIE methods [4][71{31], is

LdU*-Idf=LdU—IdLu=O, (3.10)

where [, is an averaging operator.

The set of functions whose images throngh L are polynomials of degree less or equal to /

defines the space

I
Poy={ux):Lu=3% px" }.
r=0

Note that since the coefficienis p, above can all be selected equal to zero, Ny is also included in
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Pp ;. The space Py ; will be used here to approximate the solution space of equation (3.9), Sup-
pose that Y is an arbitrary function of the space P, g Ideally, we want

Liyw-=I;Ly=0, (3.11)
in order to guarantee that the discretization (3.10) of the nonhomogeneous equation (3.9) is exact in

the approximated solution space P; 1

In particular, if /; is chosen to be the identity operator /, (3.11) becomes
(Ly=L)Yy=0, (3.12)
Therefore, the coincident space C of the finite-difference operator L, for the nonhomogeneous
equation (3.9) has to be
C = P Ll
The major disadvantage of this choice is that the dimension of C is larger than that of Ny . Hence,
a finite-difference method with more than (2m+1)-points will be necessary and more compatations

will be required.

The purpose of introducing I; is to reduce the dimension of the coincident space. For a
(2m+1)-point finite-difference scheme, we can decompose the discretization scheme (3.10) into
two steps. First, by choosing C = P, ,0 We can uniquely determine L;. Then, by using an arbitrary
function  of the space Py ; © Py g as a test function for (3.11), we can solve for the coefficients
of 7;. This procedure is illustrated by the following example.

Example 4: (1D Poisson cquation) In this case, we have L(D)= D2, Np={(1,x}, and

PL=(1zx, x% x3, -, X2 }. By choosing C = Py, o, we know from example 2 that

Ld(E)=-;‘—2(E-2+E“).

Assuming that I;(E) = d_y!i'“'I + dg + dy E with respect to the same grid G, and solving (3.11)

with L; given above and y = x°, x4, we obtain
1 =1 . 5§ 1
[JE)= =——E" + = + —F .
«®)=1 s " 12”7

Then, for this case, the discretization (3.10) corresponds to the classical Stormer-Numerov

/
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approximation, and it is exact for any function in the space Py 5. More generally, we call Py, 1 the
generalized coincident space Ce( Ly, I; ) for the approximation (3.10) of (3.9). Note that the
dimension of C, for the above example is 5, and that there are 5 independent parameters in

(Lg , I3 ) since (3.11) can be scaled by an arbitrary constant.

The above approach is different from the HODIE method. For an R th-order nonhomogene-
ous ODE, the HODIE method uses polynomials of degree less or equal to n, ie. P,(0) with
n > R, as the generalized coincident space Cg for equation (3.10). It does not exploit any special
structure of the differential operator L. In contrast, our mode-dependent method uses the approxi-
mated solution space Py ,_p as the generalized coincident space C, . Hence, a spectral analysis of
the operator L is necessary. In particular, when L = D®, Pp .—g is the same as P,(0). Then,

there is no difference between the HODIE and mode-dependent methods.

The determination of the averaging operator 7, for the HODIE method has been discussed in
detail [71[31]. For example, the operator I; may be defined on an guxiliary grid different from the
discretization grid G,,. A similar appx:oach can also be used to design /; for the mode-dependent
method. Note that the selection of the averaging operator [; has no effect on functions in the
nullspace Ny . Therefore, the coincident space C of Ly has o contain Ny so that the discretiza-

tion error for functions in N, can be eliminated by choosing an appropriate Ly.

In this paper, we focus primarily on the determination of the coincident space C and of the
finite-difference operator L;. In the next section, we will therefore restrict our attention to homo-
geneous boundary-value PDEs and we will attempt to extend the methodology developed in this

section to the discretization of this specific class of PDE problems.
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4. Discretization of boundary-value PDEs

Consider a general two-dimensional boundary-value PDE on the square [0,1]?

L(D..D,)u =0, where L(D,D,)=Ya,,DID;, @D
T
,
with D] = -é-—-;-- and D; = %3-;-, and with appropriate boundary conditions. We discretize (4.1)
x y

with the finite-difference scheme

Ld(Ex,E ) U = 0 » Where L(E ,E )“"' Zbr'sErEs N (4 2)

and where E, and E, are respectively the shift operators in the x- and ¥ -directions on the grid
th,hy' Relying on a natural generalization of the 1D case, we have the following associations
between the 2D space domain operators and transform domain variables

D, e—>5s, , Dye>s, , E >z , Ey, ¢z,

, . . D, D
where sy = O+ ®, and s, =0y+i®y. They are related via E, = ¢ * E = PP

Zy = eh’s" and z, = eh’s’. To simplify the following discussion, we will only consider the case

he=hy, =h.

Substituting e™*

" inside (4.1), we obtain the characteristic equation

Ear,.r Sx8y = @.3)
‘I'here are two complex variables in (4.3), but since we have only one (complex) equation, there are
infinitely many solutions to this equation and therefore infinitely many modes in N, 1. It is not pos-
sible to approximate all modes in Nj exactly. Thus, we have to select a finite-dimensional sub-
space Dy < Nj , called the dominant-mode space, as the coincident space C for L;. The determi-
nation of D; depends on a rough estimation of the local behavior of the solution. This information
is usually provided by the structure of the PDE operator and the corresponding boundary condi-
tions. In this section, we restrict our attention to the case where the dominant modes are either
oscillating or exponentially growing (decaying). In other words, coincident frequencies are selected

among the sets
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{ (52a8y) 1 (82y) = (0:,0,) ) or { (528y) 1 (5u8y)) = (00,0 y) ) . 4.4
We do not consider complex coincident frequencies, since they generally lead to discretization

schemes with complex coefficients which complicate the solution procedure, However, even under
(4.4), the mode-dependent concept still does not lead to a unique discretization scheme. By taking
i;:to account the symmetrical property of the spectra of the differential and difference operators and
the solubility of the resulting finite-difference schemes, we can further constrain ourselves within a
much smaller design space. In the following, the 5-point, rotated S5-point and 9-point stencil
discretizations for the Laplace, Helmholtz and convection-diffusion equations will be used as exam-

ples to demonstrate the mode-dependent discretization concept.
4.1 Laplace equation

For the Laplace equation, we have L(D, Dy) = sz + Dyz. Since only one frequency
(5x.8y) = (0,0) satisfies the characteristic equation and belongs to the sets (4.4) of interest, (0,0) is
selected as the unique coincident frequency. In this case, the mode-dependent scheme is the same

as the conventional scheme.

The following 5-point, rotated 5-point and 9-point stencil discretization schemes have been

derived by several approaches [11][25][32],

1 - -

Ld,+(E,,Ey)=-}-;-2—(E, +E'+E, +ET-4), (4.5)
1 - ol pelpe

LaxEsEy) = = (BB + 'E, + E,EV+EJ'E] - 4), 4.6)

Lyg= éf [ 4B HET HE,+ESY) + (B B, +E; B, +B, B +EVE) - 201 . @7

It is well known that they have respectively an accuracy of O (%), O (1% and O (%) when used

to discretize the Laplace equation [25].

Here, we present another derivation of these schemes by matching L (s, Sy) and Ly(z;,2,) at
the coincident frequency (0,0) in the transform domain, As before, we consider the expansion of

A= Ld - L around (0,0),
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Als, 3y) = ACDQ,0) + ALNQ0)s, + ACDD0)s, + -2?- [ AR9Q,0)52

+ A4D(0,0025, 5, + ACDQ,0)52 1+ T AP9(0,0) ,1 .
p+q23 P
Pq20

sisf, “8)

wherea

P Als, WSy) |

AP90,0) = 0.0) *
apsxaqsy | (55, 2=(0,0)
which is a function of the grid size #. Hence, (4.8) is in fact a power series of 2. Our derivation

attempts to make the order of the residual terms in (4.8) as high as possible.
The discretization schemes (4.5) and (4.6) can be derived by requiring respectively that

A®90,0) = A400,0) = A0 ©,0) = AD(0,0) = A9D(0,0) =0 ,

and

A®0,0) = A00,0) = A%D(0,0) = ATD0,0) = AZD(0,0) = AC20,0) = 0 .
Note the similarity between the the above requirements and (2.4). The above choice of constraint
AP9)(0,0) = 0 has taken into account the specific structure of operators Ly 4, Ly x and L. For
example, in the case of L, ,, the symmetry properties of L, x imply that Aa’o)({),()) = A®2,0),

so that among the six constraints which are used to specify L, «(E;.E,), only five are independent.

By setting the coefficients of low order terms in (4.8) equal to zero, it is possible to obtain
various high-order finite-difference discretization schemes. For example, to obtain the 9-point
scheme (4.7), we need only to impose the requirement that this scheme should have an accuracy of
O 6) for modes satisfying the characteristic equation sz + sy2 = 0. Then, substituting the identity
sz + sJ,2 =0 inside (4.8) and setting coefficients up to order n3 equal to zero, we obtain nine

independent constraints which specify (4.7) uniquely.
4.2 Helmholtz equation

For the Helmholtz equation, we have

LD,.D,)=D2+D}+A?.

If s, and 5, are purely imaginary, the characteristic equation becomes
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o? + ol =127, 4.9)
which is a circle in the ®,-0, plane, centered at the origin and with radius |Al. There are

infinitely many natural frequencies and, hence, there are many different ways to select coincident
frequencies. In this section, we design mode-dependent 5-point, rotated 5-point and 9-point stencil
discretization schemes based on the following two considerations, First, if there is no further infor-
mation about the dominant modes, a reasonable strategy is to distribute coincident frequencies uni-
formly along the contour (4.9). Second, we want to preserve the symmetry properties of L so that

the resulting discretization scheme is in a simple form and can easily be implemented.

Let us select

(0,0, )= (IMleos(Erim) , MisinEnetn),  0<n <3,
as coincident frequencies as shown in Figure 1(a). With this choice, the discretization along the x-

and y -directions can be treated independentiy. The resulting scheme is

AL 1 _ eos(~kl
M+ B+ WE — 2008(—=h) + By ) ]

Two parameters A and X remain undetermined in the above expression. The parameter ¥ is

Ly(E Ey) = A [ E;' - 2c08(

selected such that the discretization error A(s, »Sy) at natural frequencies is proportional to O (h 2),

and the parameter A is used to normalize the above scheme so that L; is consistent with L. A
simple choice of K and A for the Helmholtz equation is x =1 and A = ;1-5- Hence, this gives a

symmetrical 5-point stencil discretization operator

LasBeBy) = = [ B + By + B + B, — dcos-0h) 1. @.10)

Rotating the above four coincident frequencies in the transform domain and the above 5-point sten-

cil in the space domain by an angle -}1-1:, we obtain another mode-dependent S-point stencil discret-

i
ization. In this scheme, the coincident frequencies become

(@, @ )=( mcos(-g-‘n), IMlsin(Zm),  0sns<3.

as shown in Figure 1(b), and the. resulting 5-point stencil operator is
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LysdEy Ey) = -5;1:5- [ E'ESY + EJUE, + BB + E,E, — 4cos(IMMk) ] . @1

Notice that this rotated S-point stencil can be viewed as corresponding to a discretization scheme
on a grid with spacing V24. By appropriately combining (4.10), (4.11) and adding a constant term,

we obtain the 9-point stencil discretization operator,

Y Vs Yx Yo
Ly (B, E,) + Ly (Ex Ey) — .
VtHYe R YotV ARy Vot

Lyo(Ey,Ey) = 4.12)

Then, if

Y = de(e ,e K )= —[cos(«l‘lxlh)n--2cos(|x|h)3

o= Ly (61 ™81 = -h—-[2cos(!llh)+2 4cos(-|-j-ﬁ.—|-h)]

we are able to match L;(z;,z,) and L (s, Sy ) at 8 frequencies

| (o)x,(oy)=('llicos(%1c), Alsin(Zm),  0sns7.
as shown in Figure 1(c). Thus, (4.12) is the desired mode-dependent 9-point stencil discretization

operator.

When |A! goes to zero, the Helmholtz equation reduces to the Laplace eguation and
schemes (4.10)~(4.12) converge to (4.5)-(4.7). So, schemes (4.10)-(4.12) can be viewed as a natural
generalization of (4.5)-(4.7) and apply to both A=0 and 7\.:&0 The error estimate of the above
schemes for the test functions e, where §y and s, satisfy the characteristic equation
sz + Sy2 + A% = 0, can obtained straightforwardly. Since

A(DI,D},)GJ"IH’), - Ld(eD h,eD,h) 5 48, Y =Ld(es‘h, 5, }x) s, x+8,y
we only have to replace E, and E, with e’ < and ¢™* inside Ly(E, E,) and use a Taylor series

expansion to simplify the resulting algebraic equation. By using this approach, we find that

B s
Ly (e ey = ?14- - Tls's" 57) h2+ (S 15 + -u—oxzsfsf YRY+ 0, @13
Loske™" %"y = Zs2s2h% - L2204 + 0 1Sy . @.14)

3 30
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Aa,

Since ¥, = L,,H,(e" A 1A 1) and ¥ = L, (e 2 € 2 ), we also have

= Lla4z_ 1 56,4 _la42_ 1 .62 6
7+_24u 4307”.’ +0H%, v '12“ 120}\.}1 + 0% . (4.15)

Combining (4.13)-(4.15), we have ¥, + ¥, = O (%) and

s 7, 2, s, s h
1L o™ ") = By e ™ ") + ALy e ™ €7 - Yo v = 0 (1Y . @.16)
We know that both Ly, . and Ly x have an accuracy of O (%) from (4.13) and (4.14), and that L, o
has an accuracy of O (hs) from (4.16). Note also that since the coefficients in front of 42 in equa-
tions (4.13) and (4.14) are functions of A, 5, and sy' for a fixed value of A, the above discretization

schemes are less accurate when |A| is large.

Unlike in the ODE case, the mode-dependent schemes for PDEs cannot catch all modes in
the null space of L, so that there exist discretization errors even for constant-coefficient PDEs.
Rigorously speaking, the above error estimate applies only to constant-coefficient PDEs. If the
coefficients of the PDE of interest are spzitially varying, the error associated to mode-dependent
schemes is still unknown. But, we suspect that when the coefficients are smoothly varying, the error

is approximately the same as for constant coefficients.

Conventional finite-difference schemes for the Helmholtz equation are derived by discretizing
the Laplacian with operators (4.5)-(4.7) and then combining them with the remaining term Au,
The resulting schemes have all an accuracy of O (& 2). Therefore, the conventional 9-point discreti-
zation scheme is much worse than the mode-dependent 9-point scheme. Although ﬁc conventional
and mode-dependent 5-point schemes have the same order of accuracy, the mode-dependent
schemes (4.10) and (4.11) are more accurate than conventional schemes along the contour (4.9). To
show this, the discretization errors for mode-dependent and conventional 5-point discretization

schemes are plotted in Figure 2 for the case where A = 10 and 4 = 0.1.

On the other hand, we can also consider the discretization of the operator

L(D..D,)=D2+D}- A%,

Considering only the real frequencies (5, Jy) = (G, ,0y), we have the characteristic equation,
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cZ+col=A%.
Thus, for the present case, we examine the G,—0, plane, instead of the ®,—w, plane. By using an

approach similar to the ome described above, we get the following S-point and 9-point stencil

discretization schemes

1Al

7 1 -1 -1
Ly J(E; ,E),) = Iz— [ES+E, + E)r + Ey - 4COSh(T.2:h) 1,

Ly (Ex Ey) = 2_;115 [E'E;  + EJ'E, + E,E; + E,E, — 4cosh(IAIR) ],

. Y & Y+ = Vo Vo
Lao(EL E,) = Ly (Ex.Ey) + Lo By Ey) — ;
By T ey, T ey Y T
where
= -’-;1-2- [ cosh(VZIAIA) + 1 = 2cosh(IMIR) T, 7, = -;11-2- [2cosh(|?\.!h)+2—4cosh(%~l-h)].

These schemes have an accuracy of O hd», 0 (1) and 0 (4% respectively.
4.3 Convection-diffusion equation

For the convection-diffusion equation, the differential operator takes the form
L(D,,D,) =D} +D} 20D, - 28D, .
In particular, if we consider only real frequencies (8¢ 85y) = (C,,Oy), the corresponding characteris-
tic equation is
6f + 6} - 200, —2Bo, =0, (4.17)
which is a circle in the G, -G, plane centered at ( ¢, B ) with radius d = Vo242,
The conventional approach for discretizing the above equation relies on a central difference

scheme to approximate the first and second order derivatives separately, This gives

Ly (B Ey) = % [ (W+oR)ES + (1-0h)E, — 4 + (1+BR)ES™ + (1-BA)E, 1, (4.18)
which corresponds to selecting a single coincident frequency at the origin. Allen and Southwell
combined two 1D mode-dependent schemes along the x- and y -directions [1] ( aiso see example 3

iti Section 3 ). This leads to
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1 2 _ 2 -
LgasEz.E, )=-;l"[ - wa_ T (e*™*E 112 F, Nﬁ,?:_-l— (PR E ~1-e P 4E)]. (4.19)

which corresponds to selecting (0,0), (20.,0), (0,2B), (2a2B) as coincident frequencies.

Motivated by the discussion in the previous section, we select the coincident frequencies

(0y,0,)=( a+dcos(%m+%n) , B+dsin(-g-n+%=1t) ), 0sn<3,

uniformly along the contour (4.17) and obtain the folowing stencil

Ly (E..E) = % [eE !+ e E, + ePET T+ oPhg 4cosh(7d_5h y1. {4.20)
The multiplication of E, by the factor e ™ in the x-direction of the space domain corresponds to
a shift in the s, -coordinate in the transform domain, where 5, becomes s, — ¢, and a similar argu-
ment applies also to the y-direction. Therefore, the above scheme in fact shifts the center (0.,B) of
the circle (4.17) back to the origin and treats it as the Helmholtz equation with radius d. The coin-
cident frequencies of these three schemes are plotted in Figure 3. Although all schemes have an
accaracy of O (h 2), schemes (4.19) and (4.20) are always diagonally dominant whiié the conven-
tional scheme (4.18) loses this property for large cell Reynolds numbers o2 and B/ . This is one

major disadvantage associated with the cbnventional central difference scheme,

Following a similar procedure, we can also design mode-dependent rotated 5-point and 9-

point stencil discretization schemes for the convection-diffusion equation. This gives

Ly (E;.Ey) = 2[112 [ e(mﬂ?hE;lE;l + .‘3("""3}"'E’,,;'IJ'.‘,'y

+eCHPhE ESl 4 o g B _ 4coshdn) ], 4.21)

Tx Y+ Yx T+
Ly o(E E,) = Ly (B, E)) + Ly E, .E,) - : 4.22
d P\ x shey YHYs d A\x vhey Y, d,x( X ey Yt ( )

with

o= -hl—z [ cosh(v2dh) + 1 - 2cosh(dh) ], Y, = 315 [ 2cosh(dh) + 2 — 4cosh(7di-h) 1.
These schemes have an accuracy of O(hz) and O (h% respectively. Note that the constant
d= \[;+[32 in the convection-diffusion equation plays a similar role as the constant !A | in the

Helmholtz equation. Therefore, as before, when ol or IB| becomes larger, the discretization



. schemes (4.20)-(4.22) become less accurate for a fixed /.

21



22

3, Numericai Examples
We use the 1D and 2D convection-diffusion equations as test problems to demonstrate the
efficiency of the mode-dependent finite-difference method.

(1) 1D test problem

Consider the 1D convection-diffusion equation on [0,1]

g
- - ' h — 1 L R .
——dx a(x) = where a(x)=10+ex Ot (5.1)

with given #(0) and z(1). Our goal is to study the effect of the linear perturbation term

€ x on the accuracy of the mode dependent discretization scheme described in Section 3.

Note that when € =0, the coefficient a(x) is constant, and according to our analysis we

expect that in this case the mode-dependent discretization will be exact. The term ] Ofe "

is added so that (5.1) has the following analytic solution

exp(10x+0.5e x%)-1
exp(10+0.58) — 1

The boundary conditions u(0) = 1 and u(1) = 10 are selected. We compare the conven-

w(x)=u) +[u() - u0) ] , where exp(x) = e* .

tional and mode-dependent central difference schemes, i.e.

h ah
(=231 = 20, + (14 2)Up-1 =0, (5.22)

h " h
XY—=)U 41 — 2008(5=)U,, + eX(2m)U, 1 =0, (52b)

where # = % 1<n <N-1, Uy=u(0) and Uy = u(1).

First, we study the effect of the grid size # when the parameter £ = 1, Figure 4 shows that
the errors of both schemes are proportional to O (#%). Furthermore, for this choice of € and
independently of the value of %, the error of the mode-dependent scheme is approximately 100
times smaller than for the conventional scheme. Next, we stﬁdy the impact on the error of varia-

tions of the coefficient function a(x). The first derivative of the coefficient function a(x) is
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approximately measured by the parameter €, so that € can be used as a measure of the local varia-

tions of a(x). Errors versus € for a fixed grid size A = -% are plotted in Figure 5. From this

figure, we see that the conventional scheme is insensitive to changes in £ while the error of the
mode-dependent scheme is prop;)rtional to O (g ). Note that over the range of values of € that we
consider, the error of the mode-dependent scheme is considerably smaller than for the conventional
scheme. However, by extrapolating the two error curves in Figure 5, it is clear that a;.; € becomes
very large, i.e. as me.cocfﬁcient function @ (x) deviates drastically from its nominal value a = 10,
it will become preferable to use the conventional scheme. This suggests, as one would expect, that
the mode-dependent discretization scheme should be employed only as long as we have a very

approximate knowledge of the modes appearing in the solution.
(2) 2D test problems

We consider two 2D convection-diffusion equations on [0,1]% with Dirichlet boundary

conditions associated with the given exact solutions, namely,

8 3° ou gy du
Example 1: 8x2 + — 6y2 —( 8+e,x+———- ) (&ke,ym ) -a-; =0, (5.3)
with exact solutions
De,=2,=0, u@xy)=(02+6e=)(001+2%), (5.4a)

(2) &« =& =0.002, u(x,y)=102+6 exp@x+107c2] [0.01 + 2 exp(6y+107%yD)], (5.4b)
and
u w2604 | qu ou

E le 2: + — (84 -6— =0,
ampee Ix? ayl ( (14ex)o+e )% ax 6 ay 0 5:5)

with exact solutions

3re=0, u@xy)=10exp[ox +0,v1], (5.6a)

®e=001, u@Ey)=Q1+10%)10explox +0,7 1], (5.6b)

and where o, = 4+Scos(m) angd ¢, = 3+Ssm(—-) We use the finite-difference schemes
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(4.18)-(4.22) discussed in Section 4.3 to discretize (5.3) and (5.5) 'with gridsize h =

L] k]

L
8

-h|v—~

L and L. The resulting systems of equations are solved by the SOR method for test

cases (1) and (3) and by a local relaxation method described in [8], [26] and [27] for test

cases (2) and (4). We plot the errors versus the grid size in Figures 6-9.

For test case (1), the solution contains four modes 1, e®*, ¢® and ¢¥*% In this case, since
the Allen-Southwell scheme catches all these modes, it should be an exact method. Thus, the error
plotted in Figure 6 represents the numerical rounding error instead of the discretization error. The
other 5-point stencil discretizations give an error proportional to O (h?) for fine grids. The 9-point

stencil scheme is considerably more accurate than the other 5-point stencil schemes. It comes close

to the exact method when the grid size is -5-1-2-

Test case (2) can be viewed as obtained from test case (1) by introducing linear perturbation
terms €,x and g,y with & =g, =0.002 in the coefficient functions. We consider the effect of
small variations of the coefficient functioris. The AHen-Soﬁﬂlweu scheme is not exact any longer,
but still has a high accuracy. The 9-point discretization scheme has almost the same performance
as the Allen-Southwell scheme. However, if we compare Figures 6 and 7, we see that the
coefficient variations due to €; and e, make the error of the 9-point scheme 10 times as large as
for the unperturbed case depicted in Figure 6. The accﬁracy of the other 5-point stencil schemes

remains approximately the same.

For test case (3), the solution contains a single mode. All 5-point stencil discretization
schemes have an accuracy of O (h?%). The 9-point stencil discretization has an accuracy close to
O (h®) for coarse grid sizes. Figure 8 shows also that although all 5-point stencil discretization
schemes have a similar accuracy, the rotated 5-point operator L, x(Ex .Ey) given by (4.21) is slightly
more accurate than the Allen-Southwell scheme. As was noted earlier, this difference can be attri-

buted to a different choice of coincident frequencies satisfying the characteristic equation (4.17)
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Test case (4} is obtained by adding a perturbation term to test case (3). It appears that all 5-
point stencil discretization schemes have a very similar accuracy in these two test cases. However,

for the high-order 9-point stencil discretization, the perturbation makes the discretization error

larger as the grid becomes finer. When 4 = -3—15-, the discretization error for the perturbed case C)

is approximately 10 times larger than for the unperturbed case (3).
From test cases (2) and (4), we may conclude that the mode-dependent discretization schemes
still have a high accuracy for PDEs with nearly constant coefficients, but the 9-point stencil discret-

ization is more sensitive to small variations of the coefficient functions than the S-point stencil

discretization schemes,



26

6. Related previous work

Although its propérties were not aiways well understood, the mode-dependent finite-
difference method has been discovered and rediscovered several times by a number of researchers

and has been applied to the discretization of several types of ODEs and PDEs.

As was mentioned earlier, when the cell Reynolds number is large, the conventional central
difference discretization of the convection-diffusion equation has convergence difficnities. Hence,
the need for a mode-dependent scheme arises naturally when discretizing this equation, and more
generally, when considering singular perturbation problems. Allen and Southwell [1] presented the
first discretization of thié type. A more detailed invcétigation of this scheme was performed by
Dennis [12]. Since then, there have been a number of rediscoveries and elaborations such as [3] [9]
[18] [28] [29] [35] [36].[39] [40]. Applications of Allen-Southwell’s scheme to 2-D or 3-D fluid
flow problems can be found in [2] [13]-[17] [37] [38] [41]. Tﬁe methc;dology described in this
paper can also be applied to the discretization of initial value ODEs. A mode-dependent finite-
difference scheme for initial-value ODEs was first studied by Gautschi [19]. Some generalizations

of Gautschi’s work can be found in [5] [30] [34] [42] [43].

As shown in Sections 3 and 4, the transform domain approach is a convenient tool to derive
mode-dependent discretization schemes on a uniform grid. However, the mode-dependent concept
is so general that it also applies 10 nonuniform grids. Some researchers have used the mode-

dependent idea to design finite-element methods, see e.g. [6] [10] [211-[24] [33].

Interestingly, the mode-dependent scheme has been introduced under a number of different
names such as the locally exact technique [3], the weighted-mean scheme [18], the smart upwind
method [20], the optimal finite analytic method [32] and the upstream-weighted difference scheme
[35].
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7. Conclusions and Extensions

In this paper, we have used the spectral structure of differential operators to obtain more
accurate finite-difference schemes. The transform domain point of view was shown to be simple
and useful. For.the case of homogeneous ODEs, we proposed a universal mode-depender;t finite-
difference scheme which is exact for constant-coefficient equations, and has a very high accuracy
for equations with smoothly varying coefficients. For homogeneous PDEs, we considered mode-
dependent 5-point, rotated S-point and 9-point stencil discretizations of the Laplace, Helmholtz and
convection-diffusion equations. The mode-dependent schemes for the Helmholtz and convection-
diffusion equations tumn out to be natural extensions of the schemes derived for the Laplace equa-
tion. We expect that the mode-dependent schemes that we have obtained will be quite useful for
problems whose solution contains exponentially increasing or decreasing, or oscillatory components,
provided that some very approximaie information about these modes is available a priori, This
infozmaﬁon is usually revealed by the coefficients of the ordinary or partial differential equations of

interest.

There exist similarities and differences between the mode-dependent finite-difference method
and spectral methods. Both discretization techniques are based on a spectral analysis of the
differential and difference operators and try to maich their spectral properties. However, the spec-
tral method analyzes spectra by using Fourier basis functions, i.e. functions with frequencies along
the imaginary axis. In this approach, a large number of basis functions is usuaily required to syn-
thesize a given function. Hence, in order to get a high degree of accuracy, more grid points are
necessary and the resulting scheme is a global one. The mode-dependent finite-difference method
enlarges the set of basis functions so that the spectral analysis can be performed in the entire
transform domain, Since fewer basis functions are required to synthesize a function due to this
enlargement, the resulting scheme is local. This local namre of the mode-dependent finite-
difference method makes it easy to analyze and insensitive to boundary conditions. In contrast,

spectral methods are relatively more complicated dnd sensitive to different types of boundary con-
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ditions.

We basically focused on the discretization of a differential operator in the interior region and
assumed the simﬁlest Dirichlet boundary conditions throughout this paper. Since the finite-
difference method is local, the discretization scheme for grid points in the interior region will not
be affected by the specific nature of the boundary conditions. However, grid points aldng the
boundary need some special treatment. Although the general mode-dependent concept should still
apply in this case, some details need to be examined in later work. In addition, as mentioned
above, it would be of interest to find a general procedure for estimating the error of mode-
dependent finite-difference schemes when they are applied to varying-coefficient differcntiai- equa-
tions. Finally, it would also be interesting to study the application of the mode-dependent concept

to the discretization of time-dependent partial differential equations.
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Figure Captions

Fgure 1: Coincident frequencies of the mode-dependent (a) S-point (b) rotated 5-
point and (c) 9-point stencils discretizations of the Helmholtz equation.

Figare 2: Plot of !A(w,,®,)] as a function of ¢ along the contour
(@,,m,) = (I Alcos(c ), A Isin{c 7)), for (a) conventional and (b) mode-dependent 5-
point stencil discretizations of the Helmholtz equation.

Figure 3: Coincident frequencies of the (a) central difference, (b) Allen-Southwell,
and (¢) uniformly-distributed mode-dependent 5-point stencil discretizations of the
convection-diffusion equation.

Figure 4: /..-norm of the error versus the grid size & for (5.1) withe=1: (a) cen-
tral difference scheme and (b) mode-dependent scheme.,

Figure 5: [.-norm of the error versus the parameter ¢ for (5.1) with & = Tlé-: (a)

central difference scheme and (b) mode-dependent scheme.

Figure 6: I.-norm of the error versus the grid size & for (5.4a) : (a) Lic, 0) Laas,
(€) Ly (d) Ly, and (e) Lo given by (4.18)-(4.22).

Figure 7: I.-norm of the error versus the grid size # for (5.4b) : (a) Lyic, ) Ly s,
(©) Ly 4 (d) Ly« and (e) Ly g given by (4.18)-(4.22).

Figure 8: I..-norm of the error versus the grid size 4 for (5.6a) : (a) Lgc, (B) Ly s,
(€) Lyy, (d) Lyx and (e) Ly g given by (4.18)-(4.22).

Figure 9: I_-norm of the error versus the grid size 4 for (5.6b) : (a) Lycr (0) Lyys,
(€) Ly, (d) Ly« and (e) L, given by (4.18)-(4.22).
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Figure 1: C01n01dent frequencies of the mode-dependent (a) 5-point (b) rotated 5-
point and (¢) 9-pomt stencils discretizations of the Helmholtz equation,
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Figure 2: Plot of IA(w,,®,) as a function of ¢ along the contour
(@0,,0,) = (1Al cos(c ), | Al sin(c ), for (a) conventional and (b} mode-dependent 5-
point stencil discretizations of the Helmholtz equation.
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Figure 3: Coincident frequencies of the (a) central difference, (b) Allén-Southwell,
and (c) uniformly-distributed mode-dependent 5-point stencil discretizations of the
convection-diffusion equation.
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Figure 4: !_-norm of the error versus the grid size & for (5.1) with e =1 : (a) cen-
tral difference scheme and (b) mode-dependent scheme.
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Figure 5: [ -norm of the error versus the parameter ¢ for (5.1) with 4 = 1_16 (a)

central difference scheme and (b) mode-dependent scheme.
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Figure 6: l.-norm of the error versus the grid size & for (5.4a) : (a) Ly, (b) L, ASs . '
(€) Ly (d) Ly and (e) Lyg given by (4.18)-(4.22).
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Figure 7: /_.-norm of the error versus the grid size h for (5.4b) : (a) Ly, (b) L, AS»
(€) Ly s (d) Ly and (e) L, g given by (4.18)-(4.22).
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Figure 8: /.-nom of the error versus the grid size & for (5.6a) : (a) Lig, () Ly 45, |
(€ La s, (d) Ly« and (e) L, o given by (4.18)-(4.22).
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Figure 9: /..-norm of the error versus the grid size 4 for (5.6b) : (a) Lges (B) Ly as,
(€) Lg 4, (d) Ly and (&) L, s given by (4.18)-(4.22). '



