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ABSTRACT

This note has the sole purpose of highlighting the fundamental
inconsistency that arises when Fick’s law is invoked to describe
the diffusion of constituents in a region of mixed phase.

The purpose of this note is to draw attention to a disturbing inconsis-
tency in some theoretical arguments that have been used to determine
the evolution of regions of mixed solid and liquid phase. The inconsis-
tency, elaborated in precision by the mathematics that follows, results
from a very simple physical idea. The distribution of solid in a mixed
phase region in complete equilibrium is arbitrary, that is, each point
X in space can equally well be occupied by solid or by liquid. Thus,
although pressure, p, and temperature, T, are uniform in the equilib-
rium state, the mass fraction of solid phase, ¢(x), is an arbitrary {and
possibly discontinuous) function of position.



When a two-phase region is modelled by a mixture, ¢(x) is allowed to
take any value from 0 to 1. Any attempt to introduce a physical process
that evens out ¢(x), making it uniform across the system, strikes at the
very heart of the thermodynamic basis of phase equilibrium. Thus, to
be viable, a system of equations that purports to describe a mixed phase
state must not predict that ¢ becomes uniform when an isolated system
is allowed to come to equilibrium. Thus, in particular, the mass flux of
solid may not include a Fickian type of diffusion term, proportional to
V.

This demand, couched above in terms that apply to the freezing of a
pure substance, has equal force for mixed phase regions of alloys. Fixing

attention on a single binary alloy, there is a simple relation
£ =¢€% +(1-¢)¢", (1)

between ¢ and the mass fraction, £, of the light constituent of the alloy;
here £° and £V are the mass fractions of the light constituent in solid
and liquid phases, respectively. Since ¢ can take any value between 0
and 1, £ can, in a system in thermodynamic equilibrium, take any value
between €5 and EL , the solidus and liquidus concentrations of ¢ [see
equ. (11) below]. Thus, while p, T, &5, £ are uniform in the final
state, ¢, £, p, S all vary with x; here p is density and § specific entropy.
Thus the system of equations that govern the mixed phase region out of
equilibrium, must not predict that ¢ becomes uniform when an isolated
system is allowed to equilibrate. The mass flux of the light component
may not include a Fickian type diffusion term proportional to V¢.

In more detail, the specific internal energy, U, of a binary alloy in
mixed phase is a function of S, £¢5, ¢L, ¢, and the specific volume, V

U=U(V,8,6%,¢,9). (2)
Differentiating (2) we have

dU = —pdV + TdS + ¢uSd¢> + (1 — ¢)ubde® +ydg,  (3)

where
_ _BU aUu 5 s _ oU
P="5v 35> “F T 3¢5
U auv
(1-¢u' =z, ¢¥=—. (4)




Here, u°, u* and ¢ are chemical potentials.

Consider a static binary alloy contained within a fixed boundary that
is impermeable to mass and heat flux. Then the total volume, total
internal energy, F, and total masses M, M5 of the two constituents are
constant where

prd‘”'w = E, fp&d% = My, fpd% =M, + M,  (5)

p = 1/V. This system will attain thermodynamic equilibrium only when
the total entropy,

N = /deaa:,

attains its maximum. In that state, 6 = 0 for all variations §S(x),
8V (x), 6¢°(x), 6¢¥(x), 6¢(x) consistent with the constraints (5). From
Fuler’s rule for isoperimetric problems we require

6 [pS — Tq Y(pU — fiopé — pop)] =0,

for independent variations of 63, 8§V, 6¢5, 6¢%, 6¢, where To, fio, o
are constant Lagrangian multipliers. We obtain

pE =pl =fio, = (€5 - ¢L), (6)
T="Ty, ®— fioé= po, (7)

where
d=U+pV -TS, (8)

is the specific Gibbs’ potential. According to (3)

d® = Vdp — SdT + ¢pp®de® + (1 — ¢)ulde? + yds, (9)
where
_ 0% 0% s_ 0%
- %1 S = gf’ QSP» — BES,
gl = 22 _o¢
(1 45)” - 855” ")[)"" a¢a (10)

and it follows from (6) and (7) that in equilibrium, p is constant across
the system with value po, say. By employing the Gibbs’ function, &, the
constant po can be eliminated in favour of py for (6) and (9) apparently



give three equations for determining €5, £€¥ and ¢ as functions of po, T

and figp. These constants can themselves be determined (if necessary) in
terms of F, M, and M, by substitution in (5).
We say apparently since, by eliminating jig, the solution gives £5 an

¢% which depend on p, T and ¢:
€5 =¢E(p,T,9), &' =E"(p,T,9) (11)

But it is known to an excellent approximation that ES and é L. the so-
called “solidus” and “liquidus” phase curves are independent of ¢. For
this to be true it is necessary that the total Gibbs’ potential & for the
~ two phases is linear in ¢:

® = ¢2°(p,T,¢%) + (1 - ¢)2%(p, T, 7). (12)
By (10), V and S obey similar “lever rules” and the chemical potentials,

s_ 9885 . 2%l

are all independent of ¢. Then, in the static equilibrium state of maxi-
mum R, p and T are uniform leading to spatially uniform mass fractions
&5 (=§S) and EL(=€L) also. But with the choice (12), ¢ is unrestricted
by equilibrium considerations and so is free to take arbitrary values in
the range [0,1]. Physically this reflects the thermodynamic indifference
of a mixed phase as to whether the solid or liquid state is formed. It
means that spatial non-uniformity in ¢ is possible with a concomitant
non- unxformlty for the fields £, § and V also. In short, once we demand
that &S and % are independent of ¢, we are forced to assume the lever
rule {12) and we are forced to admit that in a phase mixture there is
an infinity of possible maximum entropy states corresponding to the ar-
bitrariness of ¢. Most importantly we are forced to reject any theory
for the mixed phase region that prefers one of these maximum entropy
states over the others, e.g. that requires the system to equilibrate to a
state of uniform ¢ (or £). The last of these conclusions has implications
in respect of Fick’s law for £&. If ® is not additive as in (12), then we
should expect that £ and ¢ will evolve to uniform states, but then the
solidus and liquidus will depend upon ¢, an effect which is generally
rejected as negligible.

To return to Fick’s law and the evaluation of ¢, the conservation of
mass of constituents 1 and 2 lead to continuity equations of the form

D¢ . Dp

= o V., 2Py (pv), 4,15
Ppr = VL 5 (pv) (14,15)

p ¥ = 8% - 3L, (13)




where D/Dt is the motional derivative based on the barycentric (mass
centre) velocity, v, and i represents the mass flux of constituent 1 relative
to that motion. Equation (15) is the usual continuity equation, and we
focus on (14). This is supplemented by a constitutive law for i, the
simplest form of which is a linear combination of gradients:

i=—k,Vp—kyVT — ksgVe® — kb VEL — k4V 9, (16)

where the k-coefficients are functions of the state variables. When (12)
holds, k4 must vanish in all states of thermodynamic equilibrium, since
otherwise ¢ would become uniform in an isolated system, and we have
seen that ¢ can be an arbitrary function of x (where 0 < ¢ < 1).

Most theories of evolving regions of mixed phase assume local phase
equilibrium, and take for the Gibbs’ energy

®(p,T,€) = 3(p, T, E5(p, T, ¢), E" (p, 1, 6), 6), (17)
where, by (8) and (9),
d® = Vdp — SdT + jide. (18)
Here, by (2)
€=¢E(p, T,4) + (1 - )€"(p, T, 9), (19)

and the tildes on V and § signify, as in (17), that €5 and % have
replaced ¢° and ¢% in (10); and (10),. [Loper and Roberts [1] called
this “the fast melting approximation” so recognizing that it should be
acceptable whenever the time taken by the system to reach local phase
equilibrium is short compared with the time scales over which the system
evolves.] In this approximation (16) reduces to

i=k,Vp—krVT -k VE. (20)
Whether the full theory or this reduced local equilibrium form of the

theory is adopted, it remains true that, when & is determined by the
lever rule (12)

® = [¢5 — €¥]77 [(¢ - €5)05(p, T, £5) + (€5 - )85 (p, T, €1)], (21)

where £5 = Es(p, T), ¢& = EL(p, T), then ainy function €(x) should be
possible in the final state of uniform T and p to which an isolated system




equilibrates, the only restrictions being that & everywhere lies between
és and éL and that pf(x) integrates to give the total mass of the light
constituent. The presence of the last term in (20) would, however, cause
¢ to become uniform. It follows that

ke = 0. (22)

In other words, once we demand that ES and E L are independent of ¢
(the generally accepted view), we are forced to assume (12), compelled
to admit an infinity of possible maximum entropy states corresponding
to this arbitrariness of ¢ and £, and we are therefore driven to reject
the “normal” diffusive coefficient 1‘55, of Fick’s law when postulating a
constitutive law (20).

The inconsistency on which we have focussed in this note is an ever-
present danger in applications of the so-called “entropy method” for
determining the structure of an evolving region of mixed phases. See,
for example, Alexiades et. al. (2, eqs. (3.6), (5.1)], Alexiades et. al. |3,
eqs. (2.20),(2.22)], Solomon et. al. [4, egs. (2), (4)], Wilson et. al. [5,
eq. (17)] and Wilson et. al. [6, egs. (1), (3)]. It is possible for a “weak
solution” formulation to be so enfeebled that it becomes totally impotent
as far as representing physical reality.

The inconsistency is not present in the papers of Loper and Roberts
(1], [7], Hills, Loper and Roberts [8] and Hills and Roberts [9] — [11].
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