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Abstract A new type of methods for the numerical approximation of hyperbolic
conservation laws with discontinuous solution is introduced. The methods are based on
standard finite difference schemes. The difference solution is processed with a nonlinear
conservation form filter at every time level to eliminate spurious oscillations near shocks.
It is proved that the filter can control the total variation of the solution and also produce
sharp discrete shocks. The method is simpler and faster than many other high resolution
schemes for shock calculations. Numerical examples in one and two space dimensjons are
presented.



1. Introduction.

A major difficulty in the numerical approximation of nonlinear hyperbolic conservation laws
is the presence of discontinuities in the solution. Traditional schemes generate spurious
oscillations in the numerical solution near these discontinuities. Standard methods based
on centered differencing together with artificial viscosity have often during the last few
years been replaced by the 80 called high resolution schemes.

The high resolution schemes are based on concepts like upwinding, loca! Riemann
solvers, field by field decomposition and flux limiting, see eg. [1],[3],[12],[13]. These schemes
are designed for shock capturing and produce sharp numerical discontinuities without
oscillations. The algorithms are however not so computationally efficient. For higher
order numerical accuracy they are quite complicated.

It is our purpose to present a class of methods which retain most of the positive
features of traditional schemes, but at the same time treats shocks and contacts similarly
to the modern high resolution schemes. The methods are based on standard schemes the
solutions of which are then processed with a nonlinear conservation law filter at every
timestep. The filler contains field by field decomposition and limiters in order to have
good shock capturing properties. It is only activated at a few grid points and therefore the
overall algorithm has an order of accuracy and computational efficiency which are close to
the traditional methods.

The flter step is essentially independent from the step with the basic difference scheme.
It is therefore easy to implement in existing codes. See the numerical! examples in ecction
6.

Our problem is a system of nonlinear hyperbolic conservation laws in e.g. two space
dimensions

u; +f(u), + g(u), =0,

u(z,y,0) = uo(z,y), a1y

with appropriate boundary conditions. The numerical examples 3 and 4 in section 6 are
of this form.
The method will first be described for the simpler one dimensional case

v +f(u), =0,

u(z,0) = up(z),

(1.2)

when u and f are either scalars or vectors.
We are interested in numerical approximations of weak solutions to (1.2) and assume



that a consistent basic difference scheme on conservation form is already given.

n+1 n
G( J—f’ '!lJ-_'.'_l geavay uj+r),

ug = up(z),
n=012,..., J=...,~10,1,...,
z; = jArz, tn = nlt, Al = Mz,

(1.3)

We want to couple this scheme {in short form «™*+! = ="G(u")) with a filter or projection in
the following way
) vu-{-l - G(u"),
un+1 = P(vn+1,un).
Let us here discuss some natural conditions for P.
1) Consistency: If the solution is smooth the filter should not change the approxi-
mation v™+! too much. In particular we want the total method (1.4) to be consistent,

(1.4)

|luntt — || = O(Atg) for smooth yn+1

The norm can e.g. be the /;-norm and smoothness may mean bounded higher divided
differences. It is here possible to require that a higher order of accuracy of the basic
scheme is not changed by the filter, see section 2.4.

2) Conservation form: For convergence to the correct weak solutjon it is necessary
for the total scheme (1.4) to be on conservation form, which means

D ela)uft — ot x< 0 (1.5)

for ¢ in a suitable class of test functions.

3) TVD: The filter should enforce some criterion that guarantees that there are no
spurious oscillations near discontinuities. The usual criterion for a scalar conservation law
is the following (TVD) inequality

TV (") < TV(u®)
TV(") = 3 [y - o} (1.6)

For systems of equations (1.6) is applied in the characteristic fields. See section 2 for
details and a discussion of other criteria.

4)Minimal change: The filter step should enforce 3) without violating 1) or 2) with
few numerical operations. This means that

ant st
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for as few j-values as poesible and that the filter should be neutral if v**?! already satisfies
the criterion 3). The filter step should thus be a projection

P(P(v"'“,u"),u") — P(v“*‘,ﬁ”).

The methods we will present will not all satisfy 3) or 4) fully because we are also
interested in simplicity of the algorithms. It may be possible to derive even simpler filiers
for particular difference schemes. We have here concentrated on the genera! case where
the filter is not based on special properties of the difference algorithm.

The fundamental steps in the filter are first to find the extrema of v"+!, If these
extrema increases the variation of v*+! over that of u” then v"*! is corrected field by
field in a conservative way such that (1.6} is satisfied. This means that the filter is only
activated at very few mesh points and all correciions are local. For details see section 2.

The standard artificial viscosity method can be regarded as a filter for the elimination
of high frequences. It is quite different from the methods which are described here. All
mesh values are affected and it is not based on field by field decomposition or limiters. In
[4], a filter with a switch is introduced in order to reduce numerical oscillations at shocks.
This filter affects all mesh values but the main changes are close o steep gradinents. Filters
are also introduced to postprocess results from spectral method approximation of shock
problems [2].

The filter algorithms are presented in section 2. In section 3 we prove some properties
of the algorithms in section 2. Section 4 deals with the field by field decomposition for
golving systems of equations and in section 5 we give a result on the existence of sharp shock
profiles. The numerical results in section 6 contain, among other things, tue computed
solution of the Euler equations for flow in a chani:2l towards a forward facing step, and
the steady fiow around an airfoil.

2. Filter algorithms for scalar equations.

In the first part of this section filter algorithms of increasing capability and complexity
are presented and discussed. In the second part, suggestions are given for generalizations
of these types of methods. It is outside the scope of this paper to further investigate these
suggestions.

2.1 Description of some filters.

Let us assume that we are given v"*+! = (1f*! of*1 ... 3*)T | the result from
taking one step with the difference scheme (1.3). The simplest filter, which is not TVD
but still of practical use, works according to the following principles:

1) Scan through the function values v}*!,j =1,.., N and correct the v}*! values that
are local maxima or local minima.



2) Correction is made by decreasing maxima and by increasing minima.

3) When a correction is added to a point v7*!, the same correction must be subtracted
from a neighbouring point, otherwise conservation is lost and one may obtain the
wrong shock speed. The corrected neighbour is chosen as the one with the greatest
distance to v+, '

4) No value may be corrected so that it passes its neighbours. This means that we do
not want to overcompensate so that new extrema are created.

The principles are illustrated by an example which exhibits the typical behaviour of the

Lax-Wendroff scheme when applied to a moving shock solution of the inviscid Burgers

equation. In fig. 1.1 4™ is this solution at time leve! n, given as a step function (fig. 1.1a).

One timestep with the Lax-Wendroff difference scheme is taken giving v**+! in fig. 1.1b.

An overshoot is introduced. The filter produces the result u®+! in fig. 1.1c. It follows the

four principles above:

1) v3*! is discovered as a maximum ( (Asupt) A Vi) <0).
2) o7+ will be decreased.

Jo
8) vt} or v must be increased the same amount as vit! is decreased. The filter

c};ooses v;;'j_‘l because the distance to the j; + 1 neighbour is larger than the distance
to the jo — 1 peighbour (At > [a_vRt).
4) v3*! must not be decreased further than to the level of v+, otherwise vptt will
pass the neighbour v;;’f_ll , a cagse which we do not allow.
The symbols A, and A_ denote the forward and backward difference respectively, A, u; =
#(u;41 — u;).These principles can be formulated in the algorithm 2.1 below. The vector u
is to be understood as an array in a computer pmgram, that initially contains the function

to be filtered v™*! and after completion of the algorithm holds the filtered solution uhtl,

Algorithm 2.1
for j:=2to N-1do
if (Ayu;)(A_u;) <0 then
if ]A‘.,,u,-l > |A_uy| then
by 1= Ay uy)
o~ == |A_uy|
Jeorri=j5+1
else
04 1= |A_uy]
6 1= | Ay u |
Jeorri=j-—1



endif
b 1= Min(6_,6,/2)
8 = sign(A 4 uy)
Uy i= Uj + 8
Useorr = Ujeorr — 80
endif
endfor

This filter have proved to work very well in the computations we have made. Numerical
results will be presented in section 6, and section 4 the algorithm will be generahzed to
systems of equations.

-There are however some properties of algorithm 2.1 that are not entirely satisfactory:

1) It cannot discover extrema consisting of more than one point (fig. 1.2).

2) It does not give a method which is TVD. The total variation may increase, TV (u"*1) >
TV{u"™) (fig. 1.3). This means that the method allows oscillations around the shocks
and indeed in numerical experiments there are oscillations present in the solution.
These have however in most cases been observed to be of very small amplitude, cf.
fig. 6.1.

3) It flatiens extrema that are not the result of overshooting and thus gives a low order
of accuracy locally around smooth extrema, a property shared with all TVD-schemes
[6).

Algorithm 2.1 can be modified, such that these difficulties are overcome.

We continue by modifying algorithm 2.1 to obtain a TVD-enforcing filter. As can be
seen in fig. 1.3, v}*' should sometimes decrcase further. The question is how much. A
stop condition is required. We have chosen to accept an extremum at % if the condition

min(u}_;,u},u} ) < o} if u}*! is a minimum

u+l
J

(C1)

< max(uf,_y,uf,, 4 4,) if «}t! is 3 maximum

bolds for all extrema u! “'“ of u®+1, This condition is not sufficient to guarantee TVD. An
additional constraint excluding the possibility that an extremum at z; is followed by one
at 7,1 is necessary in the following theorem.

Theorem 2.1. If u"*! have no consecutive extrema, and if (C1) holds at all extrema of
u"*?! then

Tv(un-i-l) S TV(u”)
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Proof: TV(u**') = 3. |ufl) — o} =T, |u uptl —up"!| where {¥}*'}, is an enu-

meration of the extrema in u™*!. By (C1) we have:
L - s D, -l A€l ~Ling 41}

If the distance between two extrema contains at least one point, it follows that Togr 2
Jv+1 =12 jy + 12 3. Thus the sequence {j/} is non- decreasing and

= - n
Z Iu v+l u-” I ZI Jy.,.; J +;"1 + u’:«-&-;”‘ u L+l -3

-1
+up 3w, — U < Z Uy~ w4+
. P
J:-l
Z W, — [+ = ZW!”H -y =TV(J").
I=;] i

Remark 2.1 The condition of no consecutive extrema in the theorem is necessary. Con-
sider the mesh function

The condition (C1) is valid but TV (u") = 4, TV (u"+!) =6,
We can modify algorithm 2.1:
a) Continue the decrease of maxima and increase of minima until (C1) holds.
b) If an extremum is accepted at jo, check whether there is one at Jo ~ 1. H that is the
case, take a special step to remove this, by theorem 2.1, forbidden situation.
We arrive at algorithm 2.2. The output of this algorithm will satisfy the conditions needed
in theorem 2.1, provided there are no plateaus as extremas. The notation is the same as
in algorithm 2.1. The vector u is an array which initially contains the unfiltered function
v"*! and returns the filtered function u™+! as output. Notice that this algorithm requires
that we have saved the solution 4™ from the previous time level.

Algorithm 2.2
Ji=2
while j < N do



if (A4u;){A-u;) <0 and not admissible(j, u,u") then
correct u; in the same way as in algorithm 2.1

elseif (A, u,;){A_u;) <0 and (Ajuj—1)(A_u,;-;) <0 then
comment:This removes a gig-zag situation
6 1= min(|B_wicy, 1A+ u-11/2,1A4 4]
8 1= sgn{A uy)
Uj—y = Uy + 96
Uy 1= u; — 8b

Ji=3-1
else
comment:if u,; does not need any correction go on to 5 +1
Ji=J3+1
endif
. endwhile

The algorithm uses a function admissible which checks the condition (C1).
admissible(f, ut!, u™) returns true if

; n n .n . n+1 n n ,.n
min(ul_;, v}, u}y,) <P <maz(u}_,,u}, u},),

otherwise the value false is returned.

In the fiiter used for the numerical experiments in section 6 we introduced one further
improvement in this algorithm. From the proof of theorem 2.1, we infer that the case when
there is a minimum at § ~ 1 and a maximum at j can be allowed if the following hold

min(v}, u}y,) < vi*! < max(u},u},,) and
min(uy_q, v, u}) < u_','f,l < max(u}_g, u}_;,u})

or (C2)
min(u}_;,u}, u}y,) < u}t! < max(u}_,,u},u},,) and

min(u}_,, u}_,;) < u;?fl‘ < max({u}_,,u}_,).

We can add a function admissible2(j, j—1, u™, u"+!) checking this condition. admissible?
returns true if the condition (C2) holds. Otherwise the result is false. Introduce this
function together with the test (A4 u;)(A_u,) <0 and (A4u;;)(A-u;—;) <O into the
elseif test in algorithm 2.2. The new condition becomes

(Byuy}(A-u;) <0 and (Aypu;—y)(A_uj—y) <0 and

not admissible2(j,j — 1,u™,u)
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This modification improve the quality of the filtered function in the sense that the accuracy
is improved. We conclude this from numerical experiments.

We now modify the algorithm 2.2 to take into account the fact that some maxima
or minima can contain more than one value. The modifications needed consist entierly
of bookeeping to keep track of various plateaus with pointers in the computer program,
and introduce no new ideas. We define a plateau of length r to be a set of indices,
{#,+1,...,{+ r} such that

Uimy F U= Upy = - = Uiy # Ugrgl,

see fig. 1.2, A piateau is treated as a unit by the filter. When searching for extrema, the

—_ ——

condition
(Asu;)(A_v;) <0

is replaced by
(A+us)(b-w) <0,

where j and | satisfy:
Y FYy=y_1=.=Uy=..= U; # Ujqy

in the algorithm 2.2. The condition (C1) is replaced by

n4}

ml'n('u?_l ’ ‘u;', ...,u;!_i_l) < 'u-j < m;(u?_l,..., u;-'+l).

Finally, all the points in the extremum, w, ..., u; are decreased by the same amount. An
example is given in fig. 1.4.
With these modifications the correction part in Algorithm 2.1 and 2.2 becomes:

Algorithm 2.8 (first part)
newind{u, 2,1, 7)
while ; < N do _
if (A4uy)(A-w) <O and not admissible(l, j,u, u) then
if |Asu;] > |A-1y| then
by 1= A4 uy]
oo == |A_y|
jeorr:=j3+41
leorr:=j+1
else
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by 1= |A_uy]
6- = |84 vy
comment: A backward correction must not destroy
the corrected solution to the left of j, therefore we make
the backward step in the sense of plateaus.
newind(u, j — 1,lcorr, jcorr)
endif
wyi=3—-141
wh 1= jeorr —lcorr + 1
8= Min{6_,wq8, /(w; + ua))
8 := sign{A uy)
for i:=1to j do
U = Uy + 80 .
endfor
for i := lcorr to jcorr do
u = Uy — 86wy fwy
endfor
newind(u, 3,1, 7)
elseif (A, u;)(A_u;) <0 and{Aiuy_y)(A—uy.y) <0 then

The rest of algorithm 2.2 can be rewritten to handle plateaus in the same manner as
indicated above to obtain the first part of algorithm 2.3. Note that we need to weight the
corrections depending on the number of points in the plateaus corrected. Here the weights
w; and wq are chosen such that the sum Ef:x u is not changed, i.e. u is conserved, and
the plateaus are not passing each other. The algorithm uses some subroutines, described
below.

newind(u,ind, [, j) - The vector u and the index ind are given as input. The indices
1,7 such that

UWe) FUFT W1 = = Upd = -+ = Uy # Y54

are returned as output.
admsissible(l, j, u,u") - checks whether

min(u?—lju?, san ’u?-bl) < u:' < me(u?_l,...,u;-‘+l)

All plateaus are kept track of by using ! as the lefimost point in the plateau and j as the
rightmost.
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Thus a plateau is treated as one point with the weight adjusted for conservation. It
is however somethimes necessary to release a point and regard it as separate from the
- neighbouring plateau. Filtering of piecewise constants would otherwise not be local and
the local conservation property (1.5) would be violated. Since another point is added to
another plateau in the same filter step, the total number of points belonging to plateaus
is constant.

We now have a filter that forces TVD upon the solution, u, regardless of the difference
scheme. We now discuss some possibilities to increase the accuracy at smooth extrema.
Instead of decreasing u}+! to the same level za a neighbouring point, the value ult! is
lowered only so that it fulfils (C1). This means a replacement of the statement

6 := min(6; /2,6..)
in the algorithms 2.1-2.3 by
& := min(d; /2,6_,max{d,,d;))

where d; = u,, — nwz(u}‘_,,...,u;.‘“) and d; = min(up |, ..., ur,s) — Uy, , i jo belongs to
a plateau between u* and u} (if there is a one point extremum, then [ = j = Jo).
The result is another filter algorithm. We do not give a detailed description, since most of
it is s'milar to the previous ones,
Algorithm 2.4
j:=2
while j < N do
dy = uy — maz(u_,, ..., u},)
dy i= min(ul_y, ..., uf,,) - u,)
if (A+us)(A—w) <0 and (d; >0 or d; >0) then
correct v, in the same way as in algoritbm 2.1 ,taking
into account plateaus as described above, but with
6 == min(b; /2,6, mazx(d,,d3))
elseif (A4 u,)(A—y) <0 and(A v, )(A_u,) <0 then
Remove the zig-zagging as in algorithm 2.2 with plateaus taken
into account v is the left index of the plateau that has
[ —1 as right index).
elge
comment:if u; does not need any correction go on to j + 1
newind(u, 5 + 1,1, 7)
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endif ‘
endwhile

The step that handles a consecutive maximum-minimum is not changed. This algorithm
is optimal in the sense that it makes the smallest possible correction, still being TVD.
2.2 Generalisations

The filters that were presented in the section 2.1 were either designed to produce
TVD-solutions or they were simplifications of the TVD-filters.

TVD-methods have a significant drawbacks. Enforcing a strict total variation bound

DoludH -t <Y 6y, -l
J )

makes it impossible for the method to be of higher order accuracy at emooth extrema 6].

We will suggest three possible ways of avoiding this deficiency for filter fype methods.

1} It is possible not to trigger the filter at smooth extrema. The condition *if
(A+u5)(A~u;) < 0” in the filter algorithm can e.g. be augmented by testing if there
is an inflection point. A natural test is to see if AL A_uy changes sign close to the ex-
tremum. The second difference does not change sign near a typical smooth extremum.
The generic spurious oscillation however contains inflection points,

2) Another possibility is to correct e.g. a new maxiwum only if it is higher than the
extrapolated solution from the left and the right. Furthermore the correction should not
modify the solution to a value lower than the extrapolated one. The algorithm 2.1 is in
fact such a method based on constant extrapolation. Higher order standard one sided or
ENO extrapolations (7] are pozsible.

3) We can use other criteria than TVD for the filter design. The method can be
constructed to produce non oscillatory solutions, cf. the ENO scheme [7]. The search for
new extrema will still be the first step in such an algorithm. The field by field decomposition
will also be the same. The goal of the correction will then be to ensure that no new extrema
occurs. '

The suggestions above are all for less restrictive filter or similarly for projections onto
larger classes of solutions. In one respect it would be desirable with a more strict filter.

There is no guarantee that the filtered solution satisfies an entropy condition. As it
is with the filters in section 2.1 the entropy has to be taken care of by the basic difference
scheme. It would be possible to check for an entropy inequality in the same way a8 we now
check for extrema. Hf the entropy inequality is not satisfied the solution can be modified
until the inequality is valid.
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Since the solution is divided into eigenvectors at extrema it is possible to include
artificial compression in the filter for the field containing contacts £3].

Finally if the filter will be used inside an implicit algorithm the correction should
depend continously on the previous step.

3. Analysis of properties.

The first question to ask is whether we can keep on changing the function like we
do in the filters, without affecting the convergence to the right solution. One result that
indicates how much we are allowed to change v™*+! is the following theorem.

Theorem 3.1. Assume that
ot _.n n n n n n n
Uj = Uy — ’\(F(uj+k+l:uj+ka “'uj—m) - F(“J‘+kr Ussk—1, ---uj—m--l))

is a finite difference scheme consistent with ( 1.2), that F is a Lipschits continuous function
of its arguments and that the correction c; added by a filter, is on the form

r
no__ n n+1
k=—~s

r
n —_ .
E aJ""""vk _WD’

k=—2

nt+l _ . n4l n
U =0y 4oy,

with r,s bounded independently of Az. If u* — u in L} with u in L x L' as Az —
0, At=AAz, then u is a weak solution to (1.2).

Proaof: The proof is an extension of the convergence proof in [8] to include filter corrections.
Let p(z,t) be a testfunction in C°(R x R, ). Multiply the relation
u;;‘+1 = U} — MA4 [ y/3) + ¢} by ¢} = p(z;,1,) and sum over n and j,

N J N J
2 2 (GG - A ) = Y 2 4.
A=0y=— g n=0j=—J

Here NAt = max{t : o(z,t) # 0} and JAz = max{|z| : oz, t) # 0}. These numbers are
finite, since ¢ has compact support, but N and J — oo as Az , &t — 0. Multiply by
Az and sum by parts. The left hand side becomes a riemann sum which converges o the
integral '
ff et + oz f(u)dz dt (3.1)
Rx R,
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and the right hand side becomes

N J
8z} ). & (32)
n=0y=-J

It remains to prove that this quantity goes to zero as Az, At — 0. Let positive constants
be denoted by C in the sequel. We can prove this in the following way:

N J
1az37 3" ¢rep|

n=0 :'=—J

--.IA:!:Z Z Z: afupF Arvily

n=0 3»—1 k=-s

= 5-"’[2 Z E PN . Wi

n=0l==L k=~s

N L r
=Y 3 Bept 3 kapy, 2L Sl),

n=0|=-L k=3
N L
<a2CY 3 lago)
n=0 eI

N L
SAPCY . D7 PR =l |+ ey - o] + (U] — o).
n=0l=-1

Since F is Lipschitz continuous we have

L L
oIt == 3 NF( ks ks ) = FaP tPngs ot )|

==L ==L
L k+1 L+k
SAG Y0 Y - SAGIk+m+2) Y, -l
{==Li=—m I=«L-m-!{
Thus,
N J N L+k
az3_ X SFI<APGY 3 -
n=0jy=-J A==l —ma]
LG | wz+Az,t) - u(z,) [lprxrs -
By a well known theorem for u in L' x L! the upper bound vanishes as Az — 0 . 8

This theorem states that if we do not allow any correction to spread out over an
increasing number of meshpoints as Az ~+ 0, then we still have convergence to the correct
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weak solution, if we have convergence. It is evident that the filter described in algorithm
2.1 section fulfills the conditions in theorem 3.1.

Another question which arises is : Is the TVD-filter a finite algorithm 7 Will it
terminate in a finite number of steps on each timelevel ? To answer this question, one can
argue like in the next theorem.

Let us first introduce some notation. H v is a function on a mesh for a one dimensional
problem, we let M be the number of values in v if we connt occurrences of more than one
consecutive equal value as one. For the function {v;} = {1.1 2.3 3.4 34 34 25 1.1}, M
is 5. We let the pair (7, M) represent the state of the filter algorithm at a given moment.
The index j is the location where the filter is workins and M is as defined above. The
operators T, p = 1,2,3,4, describe the action of the filter on v when one step of a filter
algorithm is executed.

Theorem 3.2, Assume that a filter is applied o a point j and that one of the following
modifications of v is made:
1. the solution at two neighboring points is given equal value and M := M ~— 1,

Tl(j’M) = (j:M_ 1)1

or
2. the end point of one plateau is released and a new point is included in another plateau,

T‘:l(J:M) = (j:M]r

or
3. one step backward is taken , j := j — 1, and a new point is included in a plateau,
M:=M-1,
Ta(J':M) =(-1,M- 1),
or
4. no solution values are changed and a step forward is taken, j := j+1,

T4(J,m = (J+ 13M)-

Then the total number of fiter corrections in the filter algorithm is bounded from
above.

Proof: We shall prove that if

L
T =[] 7,1, N) = (a,b) with < N, b>1, k;=1,2,3 or 4,

=1
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then L must be a finite number. This means that the filter cannot take an infinite number
of steps, since the state where M = 1 or j = N will be reached in a finite number of stepa.

Let n;,n3,n3 and ny be the number of times Ty, T3, T3 and T occurs in T, respectively.
It follows from the assumption that

a=ng -~ n,,

bs N—na.

Since a < N,b > 1 we have
ﬂaS N"'ls

ng<2N-1

We need upper bounds on n} and nj, the number of operators Ty or T3 in T between two
operators T3 and Tj. It follows from the definition of 7; that

nf<M-1<N-1.

The number of points in a plateau from which 7} releases points gives the upper bound

ng < N-1
Therefore, .
n S nj(ns+n) S(N-1)(BN-2),
ng < nj(na + ny) < (N -1)(3N -2),
and
L=n; +n3+n3+ny <6N2,
Remark 1.

In practice the number of filter iterations is always much smaller than the upper bound
derived in the proof.
Remark 2.

It follows trivially from the description of algorithm 2.1 that it is finite, but the Snal
result may not be a TVD solution.

The conditions in the theorem are satisfied by the filter algorithm 2.3. The statement
inside the while loop in algorithm 2.3 consists of three different branches corresponding to
the three different alternatives in the if-statement. In the first branch the filier operator
is T}, in the second branch T3 and in the third branch Ty. If a modification ¢f the values
at the edges of a plateau is included as indicated after the description of the algorithm
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then this operation is represented by 73. Observe that all four alternatives need not be
incorporated in a filter in order for the theorem to be applicable.

During the practical implementation of algorithm 2.3 it happened to us several times
that programming errors caused thé algorithm to become infinite. The question of finite-
ness is thus extremely important, since very small changes in the algorithm can make it
infinite. 8.2 Algorithm 2.1 on conservation form

The simple filter algorithm 2.1 can be written as a-correction to the numerical flux
of the underlying difference scheme. Let v{*) be the resulting solution vector, when k - 2
loops in the for-loop of a.lgonthm 2.1 have been performed. With notations as in (1.4) we
have

‘ @ = g ) et Al Al P (3.1)
Define :
A+U§»’)
ry = A v(.")
-2
d
an 1, r< -2
_)-r/2, =2<r<-~l,
=114, r=4
0, r>-1

Then one step with algorithm 2.1 can be written:
(”'H) ") = ¢(ry )A_v(’) + s'(l/r,)A+v(’},

,(H;*) = v(’) = ¢(1/r)) A4 v, (3.2)

5‘_’:;” = vg?l + ¢(rj)A_ v(’),

and after completion of the filter iterations

"?H = ”n“ - S'("')A— 9+ S'“/"J)A+vm - §(1/r1+l)A+v§'n )+ S'("J'-I)A—v.sixl)
= = Ay (s(ry-)A- o5 + ¢(1/r) A0
= 4 = Mg 8,) + Je(rym) A7) 4 3 $5(1/r)A ).

where F is the numerical flux function of the scheme G in (2.1). The numerical flux, F,,
of the filter scheme becomes

1 -1}, 1 '
Fp = F+ 3s(rs-1)8- 050 + S6(1/r)a o,

where r;_;, vgf_ ';”, and vj.'{ ) are well defined functions of 4", The flux simplifies to

1
_F;, = F+4 :\-g{r,-_l)A_v;‘*‘x‘ + Ag(l/rj)A+v?+l
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if the filter is not triggered, i.e. A ;A _1u; >0, fori=35—-2,7—-1,5+1.
4.Systems of equations.
Let us consicer the system

n, +f(n), =0, uz,1?)

m

R™, f:R™ - R" (4.1)

The generalisation to systems is done by a field by field decomposition in the same manner

as in {3]. Let m be the number of equations. Expand A, u, in a basis of vectors ef +1/2

m
Asu; = Z“?ﬂ/sefﬂ/a- (4.2)
k=1

The vectors e;? +1/2 aTe eigenvectors of a matrix A(u;,u;4) represtening some kind of
average between the matrices A(un;) and A(uj;i1), where A(n) = P,. Alu;,n;4:) is
here taken to be the Roe matrix {10]. We then apply the filter, componentwise, to the
coefficients a’: +1/2- The condition for extrema (A4u;)(A-uy) < 0 in the scalar filter
algorithms is replaced by

(A4 (ur)i)(A—(u);) <O, forany k=1,...,m.

It is important to observe that we only have to compute the eigenvectors when a correction
is needed. This is not the case for upwin<! schemes, where the expensive computation of
cigenvectors is required at every meshpoint.

The algorithms in section 2 are generalized to systems by replacing every occurrence
of Ayu; by afﬂ /3 The statement u; := u,; + 86 has to be reformulated as

£l+u5:== £L+u5-s&
A_uj:= A_uy+ 86,

in the scalar algorithms. It is then easy to see how to do the generalization to systems.

Wken the new values of A, u; have been computed, we update the original solution.
Here he want to stress one important point. For conservation it is necessary to add the
same correction to A, u, as is subtracted from A_u;. We must realize that a correciion
in a characteristic field is a vector, for example if the first field is corrected by the amount
§, then

m m
k k 1
Asu; = (05413 +8)e)y s+ E°§+1/z°j+1/2 = Z G§+x/n"j+1/2 +6e5.4/;
k=32 k=1
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and the correction is in reality bel, /- I we iry to subtract 6 from the first characteristic
field in A_u; the correction will be —de}_,/; and conservation will be violated. One
special correction must thus be added and subracted in the same coordinate system for all
values involved in this correction. _

Algorithm 2.1 generalized to systems in the way describe above becomes
Algorithm 4.1

for j:=2t0o N-1do
if extremum(j, u) then
Determine the eigenvectors of the Roe matrix and the decomposition (4.2)
for k:=1to mdo
if °§—1/2“§+1/2 <0 then
¥lo5s1sal < o}/ then
6 1= |a§_1/9'
b 1= ,a§+1/2|
Jeorr:=j5-—1
else
by =l pal
b- = Ia’;—l/:"
jeorr:=j+41
endif
6 1= min(6-,6, /2)
8= sgn(of_, 1,)
A+ Uy 1= A+‘uj + 856:-_“/2

A_uj:=A_u; —sbef,,,

3
A--ujcorr = A_'choﬂ- + 366:.“/2

endif

endfor

for ¢ := min(j, jeorr} to maa(j, jcorr) + 1 do
U=ty + Ay

endfor

endif
endfor

A.’.u"mr = A+’u_,'¢o"- - 866*._‘_1/2

In the algorithm u is an array with m x N entries and the assignment statements (e.g.
% = U—; + A4, ;) means component by component assignment of the value of the
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right hand side to the variable on the left hand side. The algorithm uses the function
extremum(j, v) which returns the value true if any component of u has an extremum at 7
and false otherwise. This check is made in the physical variables. The numerical results
with this filter are reported in section 6.

The TVD property is not true for the original variables in the case of systems. The
limiting in algorithm 4.1 is therefore done in the locally characteristic variables. The
advantage of the strict TVD algorithm over the simpler algorithm 2.1 is not at all clear
when applied to system. The great advantage of using a filter is the comparatively low
cost and the simplicity of the implementation. Both these properties are diminished in the
generalization of the TVD filter to systems.

For equations in more than one space dimension the filter is applied to each dimension
separately. The basic difference step is decoupled from the ﬁlter'step and therefore the
difference method does not need to be based on dimensional splitting. See section 6 for
numerical examples of two dimensional problems.

5. Sharp shock profiles.

" In thiz section we will investigate the behavior of the filter at an isolated shock when a
scalar conservation law is approximated by a basic 3-point difference scheme, We will show
that the method generates very sharp discrete shocks without oscillations. As an example
the condition on the difference algorithm is interpreted for a Lax- Wendroff scheme.

The basic 3-point scheme is assumed to be consistent and on conservation form

v}'“ = uf — MF(ufy,u7) = F(u}, v ,))

Flu,u) = f(u)

We will consider an appraximation of a piecewise constant scalar shock solution to (1.2)

(5.1)

_Jur, z<st+13,
u= up, T>St+ I,

f(ur) 2 f(ur), up > ug,
o= (f(uz) - f(ur))/(uz - ug).
The case f(ur) < f(ug) is equivalent.

Definition: A difference approximation to the above problem has a p- point discrete shock
solution if there exists a solution of the form

(5.2)

‘U;:‘U.L, j<jﬂ:
up S 4, Sur, r<01,...,p-1,

=UR, J2M+p



for all n. Let us introduce the notation
u=u}, v;=ofth
Fig = Flui, ),
Fi = Flui, w) = f(w),
where ¢ and j may include L,R.
Theorem 4.1. The difference scheme (5.1) with the TVD-filter (algorithm 2.3) has a

I-point shock solution if
Fr > Fu,ur), u€(ug,u)

(5.3)
Fp > F(up,u), u€(up,ur)
and if the stepsises satisfy a CFL-condition
A max [f(w)<1 (5.4)

salulup

Proof: Assume that at the time level n the solution satisfies
u; =uL, Jj<0,
vpSuo Sy,
i =1ug, J>0.
Consider first the case up = uz. The effect of (5.1) and (5.3) is then
vy=ur, J<0,
to =ur — A(Frp — FL) 2 uz,
vy = ug — A Fr — Frr) < up,
vy =ugp, j>1
Correcting the local maximum at vy implies
th = ugr,
U = v —~ MFpg — FL).
The notation ¥y is used for intermediate steps in the filter algorithm. Substituting for v,

and using (5.2) gives
51 = Un — z\(FR - FL) 2 Uup.

Since A satisfies the CFL-condition (5.4) we have

ugp <V <ug.
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The filter step is executed and uf*! = §y, u?+! = 9§, satisfy the original assumption.
The case 1y = up is identical after an sndex shift. We thus need to analyze the final
situation
. up < Uy < Ur.
From (5.1) and (5.3) we have
vy =ur, j<-1,
v_i > U,
) < UR,
vi=ugr, j>1
Consider first vy > ug — (v—; — u,). The value at j = —1 will then be corrected as a

plateau with v until
17...1 = U = ur

if after conservative correction §; < uz. The latter is true from total conservation and
(5.4)
Uy +lo+0y=voy +tg+v =up +up+ug — A Fg - Fr) <3u..
For vy < ug — (v—y = u), v_; will be corrected directly resulting in
6—1 =1L,
To = vo + (v-1 — up) <uy,
to = uo — MFro — For) — MFor — FL) = vo — M Fpro — F).
From (5.2) and (5.3) we get ©p > ug > ug. '
The final extremum is v, which will be corrected to ug changing 7y to
u3+1 =1Up — A(FRQ -— FL) - A(FR - FRQ) = tUg — A(FR - FL).

Thus,

1

Uy 2 Uy > UR.
|

The condition (5.3) guarantees an oscillatory behaviour at the left and right edges of
the shock and a smoothing of the solution by the filter. In ordar to illustrate the result
of this section we choose the same formulation of the Lax-Wendroff scheme as in [3] and
Ji = f(u;). Then the numerical flux function is

1.
Fisi= E[fs' + fira - ‘XV?+1/2(111'+1 - 1)), (5.5)
Uit1/a = Aiv1fa = Migg1 = Mfirr — i)/ (ti41 — w).
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The sufficient condition in theorem 5.1 at the left edge for the scheme defined by (5.5) is

Fu-Flu,u) = 31215 = fo = fi+ Mfi = Ju)*/ (s - )]

1 (5.6)
= U = M = Afi = f2)/(wi — ur)] > 0.

It follows from (5.6) that if f(ur) > f(w;) and (5.4) are satisfied for y € (ur,uz) then
the conditions for the state to the left of the shock is valid. The condition at the right
edge for the scheme (5.5) is derived analogously.
The difference corresponding to (5.3) for Harten’s TVD acheme [3] at a discrete shock
is | 1 1
Fp—F(uy,uL) = gi2fe = Ju =[5+ 5 Qui(yj — wr))
. (5.7)
= ox(w — w)(AaL; — Quj),

where Q5 is *the coefficient of numerical viscosity” [3], and j is the point in the shock.
In {3] Qr; is chosen such that Qp; > |NdL;| when |Ad@z;| < 1. By (5.7) and the fact that
ur 2 u; we have that Fi < Fi;. There is no oscillation at the left edge which is one
purpcse of the construction in (3] and no filtering is necessary.

6.Numerical results. ‘

The results of the numerical experiments with the filter and various difference schemes
are presented. The conservation laws in our examples are the scalar inviscid Burgers’ equa-
tion, the one dimensional Euler equations in a shock tube problem, the two dimensional
Euler equations in a forward facing step problem and the two dimensional steady Euler
equations in the computation of flow around an airfoil.

The first testproblem is the inviscid Burgers’ equation

U + (ﬂ2/2)3 = 0:

1 z<0
"(I’o)={0 a:>0:

This problem has been solved up to time = 1.5 with a CFL-number = 0.8. In the results in
table 6.1 the computed numbers ure presented, because the difference between the results
from different methods can be seen only in the second and higher decimal places.

For comparison, computations made with a 2:nd order TVD-scheme (Harten [3]) are
displayed. The filters 2.1 and 2.4 have been used together with the Lax-Wendroff scheme
in [8]. This form of the Lax- Wendroff scheme is not the same as (5.5) in the end of section
5 and (5.3) is not satisfied, but the shock is still fairly sharp. The resulis with and without
filtering are illustrated in fig. 6.1.



Lax-Wendroff+ flter 2.1

2nd order TVD-scheme |[8]

Lax-Weadroff+ filter 2.4

Jooy ] Uy

81 1.000000004420621 0.9999900009990000 1.000000000000000

82 1.000000004420621 0.9990009099968279 1.000000600000000

83 0.5099093001 366822 G.U900UVD0006T0T32Z 1.000000000000000

84 0.9990003061366822 0.9009900042705017 1.000000000000000

85 1.000037711135951 0.9999989269000302 1.000000000000000

86 1.015281066512058 0.9998005242194506 1.000000000000000

87 1.015281066912056 0.0670480441867344 1.000000000000000

88 0.2678304741883363 0.3183558845640151 0.2882263480002554

89 1.2106949518856330E-04  3.1261926819048620E-03 1.2365100074462795E-04
90 2.7131497104461932E-16  1.0601687694116266E-056 4.0132206279062878E-16
91 0.0000000000000000E+00 3.1432670419155462E-08 0.0000000000000000E+00

table 6.1. A propagating shock at t=1.56. Burgers’ equation.

The TVD-filter enforces TVD independently of difference scheme and CFL-number.
It is possible to use large CFL-numbers and unstable schemes like u}*' = u} — Do f(u})
together with this filter, but the quality of the solution is of course affected negatively by
large CFL-numbers.

In order to test the ability of algorithm 4.1 for systems of equations to remove oscil-
lations, we use the Euler equations and as initial data a function which consists of two
constant states. This is a shock tube problem that has been used by many others as a test
problem (e.g.[3],]11]). The equatious are

P pu 0
pu|l + ]| ptp | =)0
e /, ule+p)/, 0

where p = (7 — 1)(e — 1 pu®) and v = 1.4. The initial data are

[ [0.445
0.311
\ 8.928

( 05
0 z>0.
\ 1.4275

<0,

u(z,0) = {

.

The solution consists of a shock followed by a contact discontinuity travelling to the right
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and a rarefaction wave going left. The solution at ¢ = 2 is shown in fig. 6.2. There we
used a CFL-number of 0.7.

This problem could be run quite easily, but in problems containing very strong shocks
there is a possibility that the difference scheme produces an overshooting point which
outside the region where ¢ > 0. In order to correct such an overshoot it is necessary
to replace the decomposition into characteristic fields with an approximate one, which we
have done in the two dimensional computations below.

We measured the CPU-time used to run this problem on a microVAX, with the fol-
lowing resalt

Method CPU-seconds
Roe’s  method 11

ULT1 15
Lax-Wendroff+Filter 7
Lax-Wendroff 4

Roe’s method is a first order upwind scheme, desc ibed in (10] and ULT'1 ia second
order TVD-scheme by Harten|3].

Let us also present some results from 2D-computations with the filter. The generaliza-
tion to 2D is made by dimension splitting of the filter. That is, one time step is composed
of the steps

3) Use a difference scheme to advance the solution to the next time level, not necessarily

by dimension splitting,

b) Apply the filter 4.1 in the x-direction,

c) Apply the filter 4.1 in the y-direction, - —_— -
We have here used the test problem *Mach-3 windtunnel with a step” [13]. A gamma-law
gas is fed in from the left into a channel of length 3 and width 1. The initial speed of the
gas is Mach 3. At the lower side 0.6 from the right side of the channel, there is a step of
height 0.2. The compressible Euler equations are solved for this problem, with v = 1.4.
The solution is computed at ¢ = 4, with a CFL-number of s 0.8. The step and the upper
and lower walls of the channel are reflecting boundaries, with a Mach 3 uniform inflow
on the left, and continuation boundary conditions on the right. In fig. 6.3 we show the
solution computed with the dimension by dimension split Lax-Wendroff as the difference
scheme. In fig. 6.4 we used a 4:th order centered difierence scheme in space and 4:th order
Runge-Kutta in time. The latter scheme gave initially an expansion shock emanating from
the corner. In order to avoid this, we added a emall amount of 4:th order dissipation to
the scheme. The results presented in fig. 6.4 are computed with this dissipation added.
Both these methods were unstable without the filter.



Finally in order to illusirate the point that the filter can easily be implemented in an
existing code, we have inserted it into a program that computes flow around an airfoil.
The program was originally written by A.Rizzi and L.E.Eriksson([9] and uses 2nd order
centered difference approximation of the spatial derivatives with 2nd and 4th order artificial
viscosity added. The 2nd order dissipation term is introduced in order to damp oscillations
at shocks. We removed the 2nd order viscosity and inserted the filter. The time stepping is
done with a Runge-Kutta type method. The grid used is of O-type and has 120x33 points.
The freestream Mach number is 0.85 and the angle of attack 1°. From this computation
we present density contours and ¢, plots. Figs. 6.5a-6.6a show the density contours and
¢p along the upper surface of the airfoil computed by the original program. The 2nd
order artificial viscosity term is removed and the filter is introduced together with the 4th
order viscoait}" giving the result in figs. 6.5b-6.6b. This problem has weak shocks and the
artificial viscosity method also computes a sufficiently good solution. The point we wanted
to make here is the simplicity of introducing the filter into existing computer codes.
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Figure Captions
fig. 2.1 The Lax-Wendroff is applied to a step function, and the filter corrects the error
made.
fig. 2.2 Plateau maximum.
fig. 2.3 Algorithm 2.1 fails to be TVD.
fig. 2.4 An inadmissible maximum is treated as a unit.
fig. 6.1 Shock solution for Burgers equation with the Lax-Wendroff acheme.
a) without filter.
b) with the filter in algorithm 2.4.
fig. 6.2 Solution of a one dimensional shock tube problem with the Lax-Wendroff
scheme.
a) the density without filter.
b) the density with the filter in algorithm 2.1.
fig. 6.3 Solution ;af the forward facing step problenj_‘iit_h the Lax-Wendroffscheme and
the 2D filter. _
a) the density with 120x40 points.
b) the density with 240x80 points.
fig. 6.4 Solution of the forward facing step problem with the 4th ordercentered differ-
ence scheme and the 2D filter.
a) the density with 120x40 points.
b) the density with 240x80 points.
fig. 6.5 cp-plot of the Euler solution on the upper side of the :airfoil.
a) with 2nd order artificial viscosity according to [9].
b) the 2nd order artificial viscosity is replaced by the 2D filter.
fiz. 6.6 Density contours for the same problem as in fig. 6.5.
a) with 2nd order artificial viscosity according to [9).
b) the 2nd order artificial viscosity is replaced by the 2D flter.
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fig. 6.2a
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fig. 6.5 b
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