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ABSTRACT

Singular perturbation technigues are used to study solutions of
certain boundary value problems defined on annular domains with
outer radius normalized to one and inner radius €, in the limit
¢ + 0. Asymptotic expansions are constructed to describe the behavior
of solutions at singular peints such as bifurcation apd limit points.
First, a detailed analysis is carried out for a generalization of
the classical eigenvalue problem for an elastic membrane. Second,
the behavior of axisymmetric solutions at a limit point for a class
of nonlinear equations is investigated. The results are applied to a

model problem arising in chemical reactor theory. The asymptotic

analysis predicts a surprisingly large sensitivity of singular points

to the e-domain perturbation considered here.
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SINGULAR PERTURBATIONS OF SINGULAR POINTS WITH APPLICATION

TO TUBULAR CHEMICAL REACTORS

by Charles G. Lange and Hubertus J. Weinitschke

1. Introduction

Let u(x,)) be the solution of a boundary value problem (BVP), wherex is a
point in a plane bounded domain D C IRZ, depending on a real parameter A .
Of particular interest are certain critical values of A where a solution
branch becomes singular, such as limit or turning points AL or bifurcation
points AB' Let D be modified by piercing a small circular hole of radius €
centered at X, that is, the domain DE is obtained by subtracting from D a
ball {5 GD’LE - §o| <g}. This process will affect the singular points
XL(E), AB(E). We are interested in asymptotic expressions for AL(E) - AL

and AB(E) - AB for small €.

This problem is not only of intrinsic mathematical interest, also for
b c R%, n > 2, but there are applications in a number of different areas.
One is the buckling of plates and shells with a small hole. Both snapping

(limit points) and buckling (bifurcation points) are known to occur in such

structures, where it is usually simpler to calculate critical points for

the structure without hole. Therefore, it is of interest to assess analytically,
for small £, the effect of the singular domain variation on the critical

load., Another area of potential application is chemical reactor problems,

in particular tubular reactors with both external and internal cooling.



In these applications, the domain D in question is usually two-

dimensional.

We shall not address the problem in any generality in this paper. Rather,
we shall show for specific classes of problems how singular perturbation
techniques can be applied to yield asymptotic expressions for AL(E) and
%B(E). We restrict ourselves to circular domains with a. centrally located
hole, that is, an annular domain, where €:=a/b is small (a = inner radius, b=
outer radius). In that case, rotationally symmetric soclutions are of parti-
cular interest in the limit point case, but we may also have symmetry breaking
bifurcation points, where nonsymmetric solutions branch from a symmetric
solution at AB. When primary bifurcation from a trivial solution occurs,
the bifurcation points are simply the eigenvalues of the linearized
problem. Hence we shall étudy (1) the dependence of eigenvalues on € for
linear problems and (2) the variation of limit peints with € for nonlinear
problems. In both cases we shall confine attention to certain ordinary diffe-

rential equations of second order.

The linear eigenvalue problem with an € -domain perturbation has previously
been considered by Ozawa [1], who derived an asymptotic expression for the
eigenvalues of the Laplacian for bounded two- and three-dimensional domains
DE s when € tends to zero. Assuming Dirichlet boundary conditions at the

outer boundary and at the hole ]5 - 50[ = £, he showed that for simple

eigenvalues the relation

NOE 73 - ZW(logE)_.ltpj(Eo)z + 0((loge) %), e~0 (1.1)



holds for a plane domain,where Aj is the corresponding eigenvalue of the
unperturbed domain D and wj is the normalized eigenfunction of the Laplacian
associated with Aj' For the circular domain, we obtain the above result by
singular perturbation methods, which also gives us coefficients of higher order
terms in an asymptot;c expansion of kB(s). The above estimate holds for the
radially symmetric eigenfunction. We show that for nonsymmetric eigenfunc-

tions of the Laplacian for the circular domain
A (E) - A = 27€ ¢, (x )7 + 0(e*loge), £+0. (1.2)
k| 3 j-o

The method of Ozawa is quite different from ours, it is valid for general
domains D, whereas our calculations are for circular domaine only. In prin-
ciple, the singular perturbation method should also be applicable to general
domains, but we have not attempted to carry out such an analysis. On the
other hand, we get the detailed behavior of the sclution in the boundary

layer near ]5 - 50] = £ by our method, in contrast to the method of Ozawa.

We are not aware of any previous treatment of the 1imit point problem.
Considering a nonlinear problem of the form Au + Af(u) = 0, and assuming
Dirichlet boundary conditions at both the inner and outer boundary of DE,
we obtain the same type of asymptotic relation for simple (quadratic) limit
points as given in (1.1), provided the solutions for D and De are axially
symmetric. For the special case f = eu, which occurs in the modeling of
thermal ignition problems, the first two terms of the asymptotic expansion

for AL(E) - AL are worked out in detail. The results show that piercing a

small hole can have a remarkably large influence on the location of the

perturbed limit point.



The problems to be analyzed in this paper bear some resemblance to the
following model problem in the asymptotic theory of incompressible flow at
low Reynolds numbers, originally introduced by Kaplun and Lagerstrom in

1957. Let ylr;e) be defined by [2]

2
4y ,n-ldy, Y dy - 0, y=0atr=eg, vyv=1latrz= o {1.3)

The first two terms represent the Laplacian of an axisymmetric function in
n dimensions, say the temperature, r being the radial variable (yy' may be
considered as a heat loss}. In the absence of the hole the equilibrium
temperature is y = 1 everywhere. For n = 2, the introduction of a cylindri-
cal cooling rod of radius e constitutes a perturbation, which wé expect to
be small if e<<l, except near the surface of the rod, as v = 0 at r = ¢.
Hence, the convergence of y{r;e) as ¢ tends to zero is nonuniform and we
have a singular perturbation problem of the layer-type, where the boundary
layer occurs at r = e. An asymptotic soclution of (1.3) was given in [2],
it is described in more detail in [3], where it is also shown that the BVP
(1.3) has a unique solution.

In contrast to this situation, we here treat two cases where the solu-
tion is not unique. In Section 2, we consider primary bifurcation from the
trivial solution of a nonlinear BVP, that is, we consider the perturbation
of the eigenvalues of the linearized problem. In Section 2.1, we begin
with a simple example: a circular membrane, which admits an analytic
sclution showing explicitly the effect of a small hole on the eigenvalues

for both axisymmetric and nonsymmetric eigenfuncﬁions. The singular per-



turbation treatment of a more general case is contained in subsections
2.2 and 2.3, in analogy to axisymmetric and nonsymmetric eigenfunctions,
respectively. . Numerical calculations confirm the range of validity of
the asymptotic solutions. In Section 3, the limit point problem is
treated for a general class of nonlinear BVPs. The formulation of the
problem is given in Section 3.1, asymptotic expansions of the solu-
tion are constructed at and near the limit point in Sectiqn 3.?.

The results of Section 3 are applied in Section 4 to the example of a
tubular chemical reactor invelving exothermic reaction. The asymptotic
expansion is worked out in more detail for this particular case and the

results are compared with accurate numerical solutions that confirm the

validity of our perturbation solutions.



2. Singular Perturbation of Bifurcation Points

Consider a nonlinear BVP on the unit disk, which admits axisymmetric
solutions in some range of a real parameter ). At certain critical values
of X, new branches of axisymmetric and/or nonsymmetric sclutions may
bifurcate from a 'primary’' solution branch. A typical situation is

Lu + N(r,u3;d) = 0 0£r<1l, 0€B6<2T

u=20 on r =1 (2.1)
where L 1is a second order elliptic differential operator and N is a
nonlinear operator, r being the radial variable. Examples where such BVPs
occur are fluid flow problems, elastic plates and shells, chemical reactor
problems, etc. We are interested in the effect of a small circular hole of

radius ¢ on the behavior of the solutions of (2.1). Some problems of this

type have been treated in [2] - [5], using singular perturbation techniques,

For axisymmetric solutions u = U(r) of (2.1) one has U'(0) = 0. This
situation is now perturbed by the deletion of a small disk of radius €,

centered at the origin. Imposing the condition u{g ) = 0, a condition which

cannot be satisfied in the limit case E£= 0, the solution will exhibit

boundary layer behavior near x =¢ i1in much the same way as in the Lagerstrom

model problem (1.3); hence we have a singulg: perturbation problem.

Asymptotic solutions corresponding to régular points {(A,u) on a

solution branch u = u(r;A) of (2.1), with N(r,0,A)$0 were constructed in

[4] and [5] for some elastic membrane and shell problems. Here we are



interested in the solution behavior at singular points (Ao,uo) such as

bifurcation and limit points, In this section we consider the situation
where N{r,0,2)=0 in (2.1), so that u 2 0 is the primary solution branch.
It is known that bifurcation points are given by the eigenvalues kn of
the linearized problem of (2.1). In order to exhibit the asymptotic
behavior of the eigenvalues xn(ey and the eigenfunctions un(r:e) of
the perturbed problem for small e, we first consider a simple example:
the change in the characteristic frequencies of a circular drum due to
a small hole at the center.

2.1 The Circular Membrane with a Small Hole

The BVP for the determination of the characteristic frequencies of

an annular membrane fixed at the inner and ocuter edge is given by

1

Au + Alu = 0, with uw = 0 on the circles r £ and r = 1. The radially

symmetric eigenfunctions must satisfy

2
2
du,1du,,% o ufe) = u(l) = 0 (2.2)
2 r dr
dr
They are given by un(r;s) = Jo(ln(s)r) + cnYo(xn(e)r), where the
standard notation for the Bessel functions Jk and Yk has been used.
The eigenvalues i (e}, n=1,2,... are determined from the boundary
conditions in (2.2), yielding the transcendental equation
Jo(le)Yo(A) - JO(A)YO(AE) =0 {2.3)

-

¥or e > 0, all zeros of (2.3) are real and simple, asymptotic formulas
for large £ are known [6]. Here we obtain asymptotic expressions for small
positive e. Let Ap be the nth ejgenvalue for the circular membrane, given

— 3 — 3 3 ' 4
by J,(x,) = 0, that is, ) = 3o'n [6]. setting A = A, + 2 in (2.3},

assuming )\’ << Apr and expanding (2.3) for small g, we obtain



1 3 ' 2 I, Loty 2on
(L -Ze G+ 2 ) + Y 0 + XY (A ) + PALIRER S P WO RN
2 ] 1 ) .2 2 1 ;o202
- = {{zngxn A )e + v 1L - E(kn + X)) e o+ oL+ E(An + A ) e - L)
o[- J (A + ‘“—(A ) J () +...1=0 (2.4)
where Yo =Y - &n2 and y is the Euler constant 0.577216. Collecting
the leading terms we find
Y (A) - AT, (A + 2A’ ) ( sy ) + A ne)a, ()= (2.5)
o' *n’ 7 1'%n 2 g len a y ) T 1V hpt T :
In order to balance the term Yo{xn), we must have A'nne'='0{l),
which yields
Ai _a YO(An) 1 6
2 3, (6,) en(1/¢) )

The next term is obtained by carrying the expansion (2.4} one step
further, replacing Ap * A' by Xn P S Inspection of the terms
following the leading terms (2.5) shows that 2 an’e =:a, = 0(1}, and
a straightforward calculation yields m2= uZ,n as given below. At this

point it is apparent that the general form of the expansion for An(a) should

be
0o
j
?\n(£)~7\n+éo&j’n 5(&) as £-0+ (2.7)
where
1
S(:E ) = XSV} (2.8)
mY, () 'rY (A,) 2, Y (A)

=0 B — 2 I A WA+ )Y, A ) + -5 (2.9
Ln " T3,G) 2,07 ] 2 (% ) I 31 % 7h

Note that the terms 0(52) in (2.4) are transcendentally small compared to

5>(E ) and therefore do not contribute to the expansion (2.7). Further

coefficients ‘Xk n k>2 can be determined by substituting (2.7) into (2.3)
3

and expanding as indicated above.



Substituting the a into the expansions for JO(A) and YO(A), we also

k,n
get the coefficient ¢, = -JO(A}/YO(A) in the eigenfunctions
u,lrje) = Jotkn(e)r) + cplel¥ (A (e)r). To the order computed in (2.9),
we find
7 V i 2 .3 | -

cple) = -2.6(” + Tlan a4 1,87 () + 0(d7(e))  as =0+ (2.10)
Expanding Jo(ln(s)r) and Yo(xn(s)r) in the same way as Jg(ip(e)) and
Yo(xn(s)), respectively, and using (2.11), we obtainrfhe following

approximation for the eigenfunction un(r;e)

un(r:e}=Jo(Anr)+5(E)[~u1’nrJ,(Anr)+%yo(xnr}]+5(E)z[_uz,nsz(Anr}
r_ P e -
> Gi)n (ln Jg(lnr) r Jo(Anr)}l'z('yo‘*gn)\n)!(o(}\nr}_ Eul,nrYl(lnr)}+0(63)
(2.11)
Clearly, we have
lim u (xie) = J (A r)

e+
r fixed

for each 0<r<1l. In fact, on any fixed interval rogrsl, r,> o, un(r;g)
converges uniformly to the unperturbed solution Jo()hr), ﬁhere J0(0)=1. The ex-
pression in (2.11) can be viewed as an outer exfansion for un(r; £). An'inner
approximation valid for r near £ can be obtained directly by appropriately
rearranging terms in (2.11), that is, the outer expansion here contains the
inner expansion. Setting s=r/g and carrying out a limit process for e-»0, with

s fixed, (2.11) yields the leading order immer approximation

u (r; €) = -%%—%-E— +0((1n 1/6)7%), as g -» O+ (2.12)

For the lowest eigenvalue ‘%1 = 2.404826 we find
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= 1,542890, &, .= 1,190264

% 2,1

y1
(2.13)

e, (€) = g (& ey + 1.965402 0¢)2 + o¢ 8 ()] £ =0

At first sight, it may seem surprising that piercing a small hole and fixing
the membrane at the edge of the hole should change the lowest frequency of the
drum 'only' by an amount of order 1/1n(1/€) ; for the lowest characteristic
mode of vibration is maximal at r=0 for the circular membrane, while th_at mode
for the annular membrane has the circle r=¢ as a ncdal curve. However, due
to the boundary layer character of un(r; £ ), the modes of vibration of -the
pierced drum deviate sharply from those of the circular drum only in a small
area adjacent to the hole. Thus the energy balance, which essentially determines
the frequencies, is but slightly perturbed. Quantitively, the eigenvalues are
remarkably sensitive to the € -perturbation because of the relatively slow
convergence of 8(6) to zero as £ tend to zero, e.g., for §£=0.01 we have
7\1(8) - )\1 = 0.5912, which is a 25% increase in }\l {more numerical results

are given at the end of this section).

Next we consider the nonsymmetric eigenfunctions

v (r, 8) = y(x) (4 cos nf + B_sin né ), n=1, 2,

where y(r) is a solution of the BVP

)y = 0, y(g) =y(1) =0 (2.14)

The eigenfunctions are given b = i
g g y yn,m Jn( ?\r)+cm,nYn(}\r), where the eigenvalues

A= Am n(.‘L) are determined by the zeros of the equation
]

I (Ae) Y (A) - I (M) Y (Ag) =0 (2.15)

The nonsymmetric eigenvalues )\m n for the circular membrane are given by
bl
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. : ,
Jn( )\m’n)=0, m=1,2,...As in the symmetric case, setting A= An m-i- Adin (2.15)

b]

and using the expansions for Jn and Yn yields a first correction to ;\m 0 for
’

small € . For n=1, the leading term of Y (eA) is -4/(€ )\m 1+8N)'ﬂ’,

while Jn(>\£‘) begins with the term (Am 1+ X) £ /2. Thus we obtain the
3

dominant balance

4\
€My 1

%?‘ LEY (A, D

m,

I3 (Ay.p) = 0

and therefore
Ll LAp 1) 2

L. A mll

The 1lng -terms of Yl()\ﬁ) appear in the next correction, which is of order

edlne. Hence the asymptotic expansion for >\ l( £) is of the form
_ ) 2 4 . &
A 1(E) -7\m31+ K oag E %y e R £% +... as £50  (2.16)
where
: Y (A, ()
Wy 2 1 'm,l 142
[ = - = _ = =
1,m,1 5 A1 TE % m1 = 3,1 Fm, 1 (2.17)
]

The constant oy n==-Jn()\m,n(€))/Yn( ?\m’n(E)) in the eigenfunction yn’m(r) isg

L

obtained in the same way as before. For n=1 we find

)\i 1 £2 +3A*  ghae +o(eY) as &0 (2.18)

Cm,1 6 'm,1

m,l

ool:g

it can be seen from the series expansions for Jn and Yn that for n21l the asymp-

totic expansion (2.,16) generalizes to

R WIEE g X 22106 40?2y, 50 (2.19)

m,n l,m,n 2,m,n

We conclude from (2.16) and (2.19) that the effect of the g -perturbation on
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the eigenvalues is much less significant than in the symmetric case. This
result is a consequence of Jn(}m’&?=0 for r=0, nz 1, which is also responsible
for a weaker boundary layer effect. The radial part yn,m(r) of the nonsymmetric
eigenfunctions simply has a corner layer near r=§£€ .

Summarizing the results for the annular membrane, we have the asymptotic
formula (2.7) for simple eigeﬁvalues, in agreement with the estimate (1.1) of
Ozawa, but we have the considerably sharper asymptotic estimate (2.19), n21,

for double eigenvalues.

2.2 Perturbation of Eigenvalues for a more General Case
In this section we first consider a class of eigenvalue problems general-

izing the symmetric eigenfunction problem (2.2) defined by

Lus=u' +Sa@ u' + XMo@ u=o, E<x<l
(2.20)

u(g) =0, Bu(l) = 0, Bu:= Pou + Plu'
assuming a(0)=1, a(x) and g(x) being analytic functions for Ixigl. We
construct an approximate asymptotic solution to»(2.20),‘using the previocusly
established fesults‘for the special case (2.2) as a guide. In the absence of the

g-perurbation, we have the eigenvalue problem
LéU =0, O<x<1l, u'(0) = 0, BU(1) = O (2.21)

The basic assumption is that this problem has a discrete set of eigenvalues )k
with associated eigenfunctions Uk(x), k=1, 2,..., with the normalization
Uk(0)=l‘ Denote the eigenvalues and eigenfunctions of the perturbed problem
(2.20) by kk(E:) and u#(x; £), respectively. For small § we expect the

deviations )\k(£}~ Ak and uk(x;s)—Uk(x)‘to be small, except for x near E&. It
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is convenient to approximate uk(x;g) by an outer expansion which satisfies the
boundary condition at x=1 and matches with an inner expansion valid near x=¢ .

We assume that the outer expansion takes the form

w(xse) ~ U0 + & M (Edh, LG, A @~ A + 2 Sn(ﬁ)“n,;o £0  (2.22)

§,, and 4y, :
with 0<x <1 fixed, where the asymptotic sequeﬁbeqhare to be determined. In

what fo%lows, the line of argument is very similar to that in the analysis of

(1.3) (see [3], pp. 90-93), except that we have the additional expansion for the
eigenvalue %kfﬁ). Substituting (2.22) into (2.20) and requiring that the equations
for the hn,k(x) have forcing term?, as in {3], we obtain in succession é;=/ﬁj}

~
92=/u2=‘p§, etc. Dropping the subscripts k for simplicity, the equations to be

satisfied by hl(x) and hz(x) are

L,hy = -2 o, AU, Bh‘l(l) =0, (2.23)

_ 2 : -
L b, -2 o<2 AU - (o LU+ 2«,\hl), th(l) =0, (2.24)

Using a(0)=1, the general solution of Lsh=0 can be written in the form

hix) = clU(x) + c2V(x), Vix) = {Inx)W{x) + Z(x),

U, W and Z being analytic functions for |xi€l. For = Ak we can take U=Uk,

then the solution of (2.23) can be written as

hl(x) = clU(x) + c2V(x)'— le(x), U(x)=Uk(x), czBV(l)-dlﬁﬁ(l) = 0(2 25)

where H{x) is a particular (regular) solution of LSH=2 AU. Once Cy is determined,

the coefficient o in (2.22) is determined by

1,k

X co = o B

1,k" %1 T %2 BE(D ’ (2.26)

Similarly we find the solution h, of (2.24)

2
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2
O(
h (x) = ¢ U(x) + c V(x) - (o& + — ?\ YH(x) - & G(x) (2.27)
where G{x) is a particular solution of LSG=27\h1. The coefficient dz X is

obtained from the boundary conditions for h2,

_ ~ 1 .2 1
* =%y = - *1 *mED

2,1{ 2 ) 3 [c BV(l) O(lBG(l)] (2.28)

Next an inner expansion is constructed, in order to satisfy the boundary
condition at x=£ . Introducing the inner (stretched) variable s=x/€ , the
differential equation for u(x) = u(s) is

4

Z 1 L 2 52 - 2 _du

T+ca(gs) T+e A(E)Q9(es) u=0 ui= o (2.29)
Assuming an inner expan51on for uk(x €£) in the form

u, (x5 £) 2;'- vy (£) gn,k(s) as £-0 (2.30)

one finds for the leading term, again omitting subscripts k,

gl+§81=0’ gl(l)=0

and therefore
gl(s) d ins .

The constant d1 and l’l(E) must be determined by matching the inner with the

outer solution. Obviously the term Fl(E)dl(lnx - 1ng) should match the terms

Uk(x) and. fﬁFZW(x)lnx of the outer solution for x—*(0. Hence we have -}idllne

=Uk(0)=l and ¥ d = }&c W(0). Together with (2.26) we obtain the results
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1 -1
vl(5)=-ﬁ—£=5(s), 4, = 1, h:vfé"(E),- ¢,= W(0)

o = (I(0)BH(L) [ B 2(1) + P +2'(1))]

where S(E) and d, are the same as in (2.8) and (2.13), respectively.

1
It is clear from (2.29) that the forcing term in the differential equation
for g,(s) will be of the order €V /V, (or g2v/ vV, 1f a(x)=a(-x)), hence
the constant terms in the Taylor expansions of U, W, and Z in ﬁl(x) give rise
to a term C/Lbl for which there is no corresponding term in the inner expansion.
The situation is exactly as in problem (1.3), that is, we must imnsert a term
g*(s) 8(5)2 in the inner expansion , with g*=d*lns. Then cszd*(lnx - 1lng)
serves to match the - term C/.tl of the outer expansion, Thus the inner expansion

should be sought in the form
¥ n - ’
uk(x;8)~ (1n s) 2 cin J(E) as g0 (2.32)
n=l .

where dn are constants, dl=1' In effect, the inner expansion satisfies (2.29)

*
with € set equal to zero. From d =d2=C we find

d, =c, + g—gg—g - oH(0) (2.33)

with a(l given by (2.31). The constant ci is determined by a normalization of

the eigenfunction uk(x; €), it can be set to zero.

The matching procedure can evidently be continued. The term cAT.J(O)lnx
in (2.27) should match the term dzlnx in (2.32), and 53d3(-1n£) should match

/t}2h2(0)= 82h2(0). Thus we get, with c_=0,

3

(2.31)
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l

= L - Z(0) _
- d3= d; oy ~ (%2
The first equation, together with (2.32) and c1=0 yields the final

formula for the coefficient 0(2 Kk
»

. 1,2 1 BV(1) , z(0)
%% s F ol wor W

-« B(0)) - *,BG(1)] (2.35)

At this point the first three terms of the outer and inner expansions

(2.22) and (2.32) have been completely determined. It is obvious how

to continue the process. We find that a three term asymptotic approximation
is appropriate - unless £ is extremely small - because of the slow con-
vergence of S(EE) to zero as £ tends to zero. This observation is con-

* firmed by the numerical results in Table 1.

As an example we retrieve the solution given in Section 2.1 from
our general formulas. If a(x) = ?(x) = 1, ﬂ0=1 and P1=0, we have U(x)
=Jo(hkx) and V(k):YO{Akx). It can bekerified by direct substitution

into (2.23) and (2.24) that the functions H and G are, with A= Ak ’

H&) = x1,(Ax),  6() = Txt (A=) + l[szO()\x) - % %3, O]

From the expansion of Y we find W(0)=2/T and

3]

Z(x) == (nd + 5 I (Ax) + 0(x%) x= 0

4

Substituting these expressions into (2.26) and (2.28), the values for le
and <X2 given in (2.9) are obtained. Furthermore, we find d2=1nAA + £ = Xl’

c,=T¥ /2 and d = 51+ Y (A3, ).
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2.3 Perturbation of eigenvalues corresponding to the nonsymmetric case

A class of eigenvalue problems generalizing the case of nonsymmetric

modes of vibration of an annular membrane is given by

L u:= u"+~l—a(x) u’ w-l—-b(x) u + ?\2 ¢ (x) b=0 e<xcl
a < 2 [
X (2.36)

o - - I PR P
u(E) = 0 = Bu(l), a(X)_H-;é a,x, b(x)-bg-&-ﬂ%bj.x s ?(x)—-?o-kdgqjx ,

where Bu is the same boundary operator‘ as defined in (2.20). From the results
of Section 2.1 we expect the form of the asymptotic solution to depend on the
value of bB{0). We consider here only the case b{(0)=1, which corresponds to
n=1 in (2.12). The modifications to be made for n#l, b(0)40 will be evident

from the procedure given in what follows. Without the & -perturbation we have

the eigenvalue problem

LaU = 0, 0<x<1, U'(0) = BU(1) = O (2.37)

The outer expansion for the solution to problem (2.36) is formally the
same as (2.22), resulting in equations for hl and h2 given by (2.23)

and (2.2 ), respectively.
-The general solution of Lah = 0 ig of the form
h(x) = ¢ U(K) + e,V(x), UG)=xZ(x), V(x)=Axz(x)lnx + -imx) (2.38)

as the roots of the indicial equation are +1 and -1, The functions Z(x) and

W(x) are analytic for jx]£1, A is a constant. For A= Ak’ U is the eigen-
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function Uk(x). With these definitions of U and V, (2.25) and (2.26) remain valid,

provided H(x) is a particular solution of LaH=ZRIL

The inner expansion is again taken in the general form (2.30), yielding the

following equations for gl(S) and gz(s)

' 1 - l _ _ .
g8, t58 - ;? g, =0 g (1) =0 (2.39)
! 2, .2 .
e 1. 1 —a1 1+ b1 if aj + bl £ 0, ysz'Vl
Byt 582”787 (2.40)
2758728 ] , ) )
—ays8) +(by= NQ )gy if a] +b] =0 V=&Y

1

The solution of (2.39) is
g(S)=d(s-£)
1 1 s

Although both cases of (2.%40) can be analyzed by the present method, we shall re-
strict the discussion to the somewhat simpler case al#bl*O (example: a and b even

functions of x). The solution for g, is then given by

3 l - = 2 = - e
g,(s) = d,(s ~ T) +dA;slns +d,A,s°, 24:= N9 -a,-b,,  10A,:=b,-a,~ g
{2.41)
To this point we have for »p g 2gz, in terms of the wvariable x,
x E X X3
naE-Y+ v {,E-Y v an Lanx-1me) + 48,07} @u2)

which must be matched with the outer sclution xZ + ﬁ&hl(x) + higher order terms.

=Z(0). The next term,

From the first term in (2.42) it follows that p&==& and dl

- vldl&;/x, can be matched only by the O0(1/x) term in hy, which is /u1c2W(O)/x.



- 19 -

Hence, /&= 52 and d1=-c2W(0), so that ¢y is determined, which in turn yields Xl

via (2.27). To sum up, we have

- S o= g3 = d = c? -

(2.43)

o = - £0) AL = . 2(0) BV(1)
2 w(0)’ 1 W(0) BH(1)

As the term —dlAlx.gzlnsa in (2.42) has no counterpart in the outer solution, we

*
must inserr a {(switchback) term (s3lne)g (s} in the inner expansion, where

* % *
g =d gl/dl, with d =d,A,. Writing this term in the form

(€3ln8) g*(s) = dlAl(x EzlﬁE ~i—~ 541n £)

shows that the outer solution should also contain a term ( Ealnii)/x, implying

that Mo Sz= 241118, in agreement with the special case of section 2.1. The term

dlAl'glenx in (2.42) should match with the term /ulczAxlnx in the outer solution.
Since Cy and d1 have already been determined by (2.43), ¢y and dl-should satisfy

the equation dlAl=c2A, that is,

- 24 = W(0)( ?\290 - a, = by) (2.44)

Similarly, all other terms in the inner and ocuter expansions can be matched. The

truth of (2.44) can be verified from the series expansions of W(x) and Z(x).

The above réasoning indicates how to proceed to obtain higher order terms. For

the perturbed eigenvalues (in the case al=bl=0) we find
= 2 4 4 )
Mele) = M+ oy E5+ o, €7 Ine  +0(e™) as £ 0

with lxl’k given in (2.43) and
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__z(® BV , _1 2 -
Ay = = w0y BE(D A1 =72 %1,6(Mk §o ~ 22 = BY) (2.45)

»

The inner and outer expansions of the perturbed eigenfunctions are of the form

. %
Egl,k(s) + 53111& gk(S) + {-‘,3 gy k(s) + ... inner

u G, £) = (2.46)

2 4 * 4
Uk(x) + £ hl,k(x) + £ 1ng hk(x) + £ h2,k(x) +...outer
It is a simple exercise to apply the above results to the membrane problem (2.12),

and to derive the formulas (2.16) from (2.43) and (2.45).

The asymptotic sclutions of problem (2.2) are now compared with analytical solu=-
tions for the case of the annular membrane, where the eigenvalues }M}(EJ were com=-
puted numerically by solving equation (2.3). In Table 1, we compare numerical results
with approximate values of hnjﬁﬁ), n=l, 2, for both two and three terms on the right

hand side of formula (2.7). The accuracy clearly increases with decreasing values

of E&,
numericalI 2 - term 3 - term . numerical. 2 - term i 3 - term
solution jasymptotic asymptotic solution |asymptotic (asymptotic
€ for ){E) approximation japproximation for;ﬁgﬁ) approximat. japproximat,
0.1 -3.3139 3.0749 3.2994 6.8576 6.1996 65.6699
D.05 3.0644 2.9198 3.0525 6.4254 6.0424 6.3202
0.01 2.8009 2.7399 2.7960 6.0109 5.8598 5.9774
0.005 2.7419 2.6960 2,7384 ‘ 5.9265 5.8154 5.9042
0.001 2.6548 2.6282 2.6531 5.8090 5.7466 5.7988
0.0001 2.5871 2.5723 2.5864 [ 5.7236 5.6900 5.7193

Table 1,Comparison of numerical and asymptotic approximations to the two
lowest eigenvalues Rl(&) and AZ(E) of problem (2.2)
The two term asymptotic solutions for the eigenfunctions ul(x;&;) and uz{x; &)
are compared with accurate numerical solutions in figures 1 and 2, both for £=0.01.
In view of the relatively large value of the expansion parameter §(0.01)=0.2171, the

agreement for &=0.01 is remarkably good.A three term asymptotic solution is in-

distinguishable from the numerical solution within plotting accuracy,
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3. Singular perturbations of limit points

The results of the préceding section amply demonstrate the sensitivity of
bifurcation points to small changes in the domain for an important class of
BVP's. Our purpose in this section is to carry out a parallel study of the
sensitivity of limit points for certain related nonlinear model problems
involving the Laplacian and cylindrically symmetric solutions. We begin by de-

scribing the . basic equations and the conditions which define a limit point.

3.1 The basic equations

The class of problems that we wish to consider can be viewed as origina-

ting from the two-dimensional BVP in the unit disk

AU + X f(r,U}) =0, O0<r<l ,0<8 <2m
(3.1)

=0 on r=1,

with T being the radial variable, A a parameter and f a smooth nonlinear
function of r and U, Cylindrically symmetric solutions U(r,\) of (3.1) satis-

fy what we shall refer to as

Ul
UM+ — +AE(r,0) =0, O<r<l,

BVP (1) (3.2)
U'(O ) =0 =1U(1,)) ,

where primes denote differentiation with respect to r,

Associated with BVP(I) is the linear ‘'variational" equation
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1
V" +-¥— +AfU(U,x)v = - £(U,\) , 0<r<l1, (3.3)
for

V(r,\) = g-‘{ (1), (3.4)

obtained by differentiating BVP(I) with respect to A. It is well-known (e.g.
see [7,8)that a necessary condition for a solution branch of BVP(I) to have

a simple (quadratic) limit point at , say, A = lo is that the homogeneous ver-
sion of the variational equation has a nontrivial solution satisfying the

boundary condition in (3.5). We assume that this is the case. When X = i,

Uol{r)=U{r,ro) is a solution of BVP(I} and Vo(r) is a nontrivial (smodth)

solution of
v L]
- " o .
v, = vo + T AofUO(r’Uo)vo

0, 0 <r<l
o

Var(Il) (3.5)

VO'(O) =0 = Vo(l)

[]
—
.

Without loss of generality we may assume that VO(O)

Later we shall make use of the fact that the homogeneous differential equa-
tion

$ve=o (3.6)

has a second, linearly independent, solution

W@ eV (o | —%—, (3.7)

rvo2 (r)

which, in view of the smoothness of Vo(r), satisfies the asymptotic relation

Wo(r) = 1lnr + 0(1) as ©* > 0%, (3.8)
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The modified problem consists of deieting a small circular hole of radius
¢ from the center of the unit disk and extending the Dirichlet condition to
the boundary curve r = €. Let u(r,X je) denote the cylindrically symmetric
solution of this modified problem. Then, u satisfies

1
u" + %— +Af{r,u) = 0, e <r=<1,

. BVP(II) - - (3.9)
ue,r 3e) = 0 = u(l,r;e)

We want to study the behavior of the solution branches u(r,i;e} as € >~ 0.

Let U(r,)) denote a solution branch of BVP(I) with limit point at A = A _,

U= Uo. The results of Section 2 suggest that under suitable conditions BVP(II)

will have a nearby solution branch u(r,X;e) satisfying

lim uf{r,A3e) = U{r,r\) , (3.10)
e+0
t fixed

for each 0 < r < 1, Of course we don't expect the convergence in (3.10) to be
uniform mear r = O. Moreover, for sufficiently small € > 0, we expect this

solution branch u(r,A;&) to have a family of limit points

A=A (e) 5 u (r3e) = ulr,r (£);€) (3.11)

satisfying

lim A (e} =X, lim u (r3e) = U (r) , (3.12)
ero ©° ° e © °
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for each r, 0 < r < 1.

It is apparent that the existence of this family of limit points requires

the existence of a family of nontrivial solutions vo(r;e) of the homogeneous

-

variational problem

vl

l|+_2+ -
v, . Ao(e)fu(r,uo)vo 0, e<r <1,

Var{Il) (3.13)

vo(a;e) =0 = vo(l;e) .
Consistent with the limits in (3.12) we expect the function vo(r;e) to satisfy

1im vo(r;a) = Vo(r) » (3.14)
>0
r fixed

for each r, 0 < r < 1. We now undertake the task of constructing asymptotic

expansions for Agled, ug, and (necessarily) Vg

3.2 Construction of the expansions

In constructing asymptotic approximations to the perturbed family of limit
pointsho(e) we essentially follow the formalism described in Section 2 for bi-
furcation points. The present problem is slightly more complicated because we
must solve both parts of the extended system formed by BVP(II) and Var(II) si-
multaneously. Understanding the interplay between these two BVP's is crucial
to obtaining the correct form of the inner and outer expansions for uo(r;e)
and vo(r;e). To make this interplay more transparent we shall first consider

simple approximations to A , u_and v_. Later we describe general expansions.
o’ o o
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Based on the limits in (3.12) and (3.14) we attempt simple outer approxi-

mations for u, and v, in the form

uo(r,e) ~ Uo(r) + ¢() a(r) ,
(3.15)
v (r;e) ~V_ (r) + (e v(r) ,

for £ + O with 0 < r < 1 fixed. An analogous expression for-lo(e) is given by

xo(e) ~»KO + x (e} A as € +~ 0 . {(3.16)
Here ¢,y and y are unknown o(l) order functions; u and v are unknown functions
of r, and A is an unknown constant,
We don't expect the outer approximations in (3.15) to remain valid near
r = €. As in the bifurcation problem a suitable inner coordinate is

s =1rfe , (3.17)

which transforms the differential equation in (3.9) to

d'uo i duo 2
+ - = 4+ g A (e)f(e.5,u ) =0, g8 > 1. (3.19)
o o
ds s ds

Moreover, u_ must satisfy the boundary condition

u =0 for s =1, (3.20)



- 26 -

For sufficiently smooth f the derivative terms dominate in (3.19). We de-

duce that the inner expansion for v has the form
uo(r;a) =8§€&)(1n s )| UO(O) + 9(1) ] (3.21)
as £ - O with 8 > 1 fixed. The order function §(e) is defined as before
§(e) = 1/1n({l/e). (3.22)
The constant UO(O) in (3.21) follows from a straightforward leading-order

matching with the outer expansion in (3.13). By a similar argument based on

the form of (3.13) we find that the inner expansion for v, satisfies
v (r3e) = 8(e)(n s)[ 1 +o() 1, (3.23)

as £ + 0 with s > 1 fixed. In deriving (3.23) we have made use of the fact

that VO(O) = |,

Equations for the correction terms 4 and v in the outer approximations are

obtained by substituting (3.15) and (3.16) into (3.9) and (3.13) and carrying

out the standard limit process. We obtain

~ o pqae XAE) 74
f.u-— [51:_1;1(1)1 FYO) ]:\f(r,ﬂo) ’
(3.24)
u(l) = 0

and
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Yo o1ie XE) 73 '
£ v [ iig ) ] Kfu(r,Uo)Vo(r)

h=2
—~

¢ -
) 1 Kofuu(r,Uo)u(r)Vo(r) R (3.25)

=
~
e

- [ lim
g+

=

v(l) =0,

where ¥ is defined in (3.5).

First we focus on (3.24). Since f(r,Uo) # 0, we can rule out the possibili-

ty that x >> ¢ as € > 0. Suppose x = 0(¢), say

lim XXy (3.26)
>0 $ ()

Then (3.24) becomes

Lia=-3 £(,0) ,
) ° (3.27)
u(l) =0

It proves convenient to express a particular solution of (3.27) in terms of

the solution of the related initial-value problem

£z

z ()

f(r,U ), r>0,
° (3.28)

z'(0) =0 .

It is not difficult to show that for smooth Uo and £ (3.28) has a smooth

solution z(r).

We can write the solution of (3.27) as



- 28 -

W (r)

u(r) = e,V (x) + A z(1) w T

-z(r) 1, (3.29)
where ° is an arbitrary comstant. To gain further information we must carry

out a matching with the inner expamnsion. For small r, the outer approximation

{3.15) satisfies

W (r,e) = [U_(0)+a(1) ]+ b(e )[ié(’(i) (lax) + 0] ,  (3.30)

as £ -~ 0 with € < r << 1, Matching of this expression with the inner approxi-

mation (3.21) to 0(8) occurs if and only if

(e} ~ 8(e) as e -+ 0, (3.31)
and
- Wo(l)
A= U (o) . : (3.32)
z(1)

(If z(1) = 0, we are dealing with a higher order limit point.)

An interesting feature of this partial result is that it provides a first
correction to the value of the limit point Ao(e) without any input from the
variational problem (3.25). However, in order to determine the constant c,

in (3.29) we would have to solve (3.25) for v.

There is a second, more subtle way in which the companion variational pro-
blem influences the form of the expansion for u . We have yet to consider the

possibility that



- 29 -

1in -3§%§; PR (3.33)
“e+0
In this.event (3.24) becomes
Yau=0, u{l) =0, (3.34)
which has the solution
u(r) =4, vV (x) , (3.35)

with di an arbitrary constant. The outer approximation (3.15) then becomes
u (r;e) ~ U (r) +¢(e) d, V (1), (3.36)

as € + 0 with 0 < r < 1 fixed, Since Vo(r) is smooth for small r this expres-—

sion is consistent with the inner approximation (3.21) so long as

§{e) << () << 1 as e+ 0. (3.37)

Without recourse to the variational problem we cannot say anything further

about ¢ .

“Since v, satisfies a homogeneous BVP we may assume that v in (3.15) is not

simply a multiple of v, Thus, we assume that

y{e) ~ ¢(c) as e+ 0, . (3.38)



- 30 -

with the consequence that (3.25) becomes

Ly = -2 d £ (50 VE, @) =0. (3.39)

At this point our argument proceeds as before for u. The inhomogeneous term
in (3.39) forces v to have lnr behavior for small r. But with §<<y(e) << 1
as £+ 0, we can't match the resulting outer expansion for v in (3.15) with
the inner expansion (3.23). Thus we conclude that the limit (3.33), and con-
sequently (3.37), is not possible. The only viable choice is (3.31) and (3.32).

It then becomes apparent that we must take
yle) ~ 8(g) as e>0 , : (3.40)
so that (3.25) becomes

Ly == UV -a £,(50) v,

. (3.41)
v(l) = 0 .

Upon substituting (3.29) and (3.32) into (3.41}, solviﬁg and matching the
resulting expression for v, to 0(8) with the inner expansion (3.23) we obtain
the value of the constant cy- We defer this calculgtion to the next section for
a special case. Thus, in principle at least, we have completed our determination

of the leading-order corrections to the family of limit points.
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Motivated by these preliminary results we assume that full expansions for

the familiy of limit points have the form

A (8) A+ kzl Ak§k(a) as € + 0 ; (3.42)

with inner expansions for u and v, given by

u {r:e) ~ (1lns) z a Gk(a),
o k
k=1
- (3.43)
v (r;e) ~ {(lnrs) Z b 6k(5),
s} k
. k=1
as e+ O with 8 = r/e > | fixed; and with outer expansions for u and v, given
by
..m k
u (r;€) ~U (r) + | u ()8 (€),
o o k=1 k
(3.44)

. v k
v (r;38) ~V (1) + ] v ()8 (),
k=1
as £+ 0 with 0 < r < 1 fixed. The unknowns in (3.42) - (3.44) are the constants

lk’ a and bk and the functions uk(r) and vk(r) for k = 1,2,....

A few remarks are in order regarding the form of these expansions. An induc-
tion argument based on our preceding analysis can be employed to verify that no

/

intermediate terms, e.g. 0(63 2), have been missed. On the other hand, our ex-
pansions fail to account for O(e) effects because such terms are transcenden~
tally small compared to 0(§) terms. As a consequence, the effect of the nonline-

arity mever appears in the inner expansions. The constants a and bk are deter-

mined by a straightforward matching. It can be shown that the outer expansions
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contain the immer expansions.

In order to determine equations for the unknowns Kk’ u and Vv, one simply
substitutes (3.42) and (3.44) into the system of differential equations (3.9)
and (3.13), and equates coefficients -of powers of § to zero. Assuming the

implied smoothness of f holds we find

iul ")‘lf(r’uo)’
G(8) (3.45)
'f'vl - )\lvofu(r’uo) - )\oulvofuu(r’so) i

[}

1 2
My R0 S g, (T - 3 AgE, (0
0(8%) (3.46)
&&VZ = —)&Vofu(r,Uo) B Al[Vlfu(r’Uo) + ulvofuu(r’uo)]

- 1 2
-Ao (UZVO + ulvl)fuu(r’uo) “'ﬁulvofuuu(r’Uo)] ’

K iuk = gk(r’)\l".‘,)k,ul"."uk-l)’
o(s ™) (3.47)

Ewk = hk(r,ll,...,kk,ul,...,uk,vl,...,vk_l),

where g, and are functions of the indicated arguments. The appropriate
k

outer boundary conditions are
uk(l) = vk(l) = 0, k= 1,2,... . (3.48)

This system of problems must be solved in sequence. As our preliminary re-
sults indicate, in order to determine Ak’ k=1,2,..., one must first determine
Uy and Vi1* Then, solution of the equation for uk,subject to (3.48) and sub-

sequent matching with the inner expansion in (3.43) yields lk' The function uy
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will still inveolve an arbitrary constant Sy in the form

uk(r) = ckvo(r) + ... . (3.49)

To ascertain ¢, one must solve the companion problem for v Analogous arbi-
trary constants in v, may be set to zero since-vo(r;s) equals Vo(r) to lea-

ding order and v, satisfies a homogeneous BVP (3.13).

The preceding analysis provides a means of comstructing approximatioms to
the limit point itself. Constructing approximations to u(r,Aje) for other va-
lues of A is also a relatively easy task. Provided 0 < X < lo with A not too
near to Ao the deviation u{r,x;e) - U(r,A), with U the solution of the unper-
turbed BVP(I) in (3.2), will be 0(8) except near r = €. Due to the quadratic

nature of the limit point the deviation will be larger when A is near AO.

To analyze the solution near the limit point it proves convenient to set
A= J\O+ a8 ‘ (3.50)

and to carry out an asymptotic analysis for a = 0(1) as ¢ +~ 0. The appropriate

outer expansion for u has the form

[++]

w9 -~ U @ + T w0 e, (3.51)

o k
k=1

as € + 0 with 0 < r < | fixed. The inner expansion also proceeds in powers of

V8. The unknown wk's in (3.51) are found by solving (3.9) in the obvious manner.

The variational problem plays no role in this calculation. One easily finds,

for example, that

wl(r) = blvo(r) . (3.52)
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with the constant by equal to * a certain multiple of VlAI—a . The odd powers

of V8 disappear in (3.51) as o ~+ A] making this expression consistent with the

limit point expansion.

This completes our discussion of the perturbed limit point problem for gen-
eral nonlinear functions f. In order to better clarify the mechanics and to
give some indication of the range of validity of our perturbation procedure

we discuss at length a special case in the next section.

4. Application to tubular chemical reactors

Limit peints play a prominent role in the study of reactors involving a
selfheating chemical whose reaction velocity follows the Arrhenius Law and
which dissipates energy by conduction only. When the éxothermicity of the re-
actant mixture, measured by a parameter A, reaches a limit point A, a thermal

explosion can occur.

We address the following problem. Suppose that a reacting material is con-
fined to an "infinite" circular cylinder of radius normalized to onme and that
the temperature on the boundary is maintained at a constant value, say To.
Such a situation would fix the value of Ao. Now suppose one were to place a
"cooling"” rod of radius ¢ along the axis of the reactor and to maintain the
temperature at the constant value To on this inner cylinder as well. Clearly
the presence of such a small rod will have an effect on the limit point. The

problem is to estimate this effect. We shall show that it is quite dramatic.

For simplicity we restrict our attention to the limiting situation of infi-
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nite activation energy. The resulting problem is usually called the Frank-
Kamenetzkii approximation. The reader may refer to [ 9 ] for a full
derivation of the basic equations. In nondimensional form they are given for

the case of an infinite circular cylinder geometry by

AU + 2el = 0 in 0<r<l, 06 < 2
(4.1)

where U is proportional to the deviation of the temperature from TO. This BVP

is of the form of (3.1) with

f{r,U) = e

Cylindrically symmetric solutions U(r,») satisfy

]
U"+%-+AEU=O, D<r<l,
BVP(I) ' (4.2)
U'(0,A) =0 = U(1,A)
As is well-known BVP(I) has the simple exact solution
UGN = 1 [t 12 (4.3)
r +y~1

where

2 (1A =A72) (4.4)

]

¥
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For O < A < 2 these expressions describe two. solutions. Clearly

A=A =2, U2 =U()=1In (— 242 (4.5)

. rT+ 1

defines a limit point. For this case the homogeneous variational problem

{3.5) becomes

Vl
. _ 8
. 't,v IV"‘*“—O + SO ¢ =0” O(r(l,
o o r (r2+ 1)2 o
Var{I) ' (4.6)
' = =
VO(O) 0 Vo(l).
A smooth solution of Var(I) normalized to one at r = 0 is given by
1l - r2
V() =——7 , . (4.7)
o 2
1 -

with a second, linearly independent solution having lnr behavior given by

2 1 -r2 | '
Wo(r) = 5 + 5 Inr, 0<r <1, (4.8)
1+ l+r

Introducing the "cooling" rod of radius e into the tubular reactor leads

to the following perturbed problem for u(r,Aje)

u' u

u"+--1;-+)\e=0, g < r <1,
BVP(II) { (4.9)

ul(e,3€) = 0 = u(l,r;e).
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We seek apﬁroximations to the family of limit points defined by ko(e) and
uo(r;e) which reduces to (4.5) as € > 0. The associated homogeneous varia-

tional problem in (3.13) for vo(r;e) takes the form

v! u

2 4+ a(e)e v =0, e <r <1,
r Q G
Var (1I) _ (4.10)

VO(E;E) =0 = vo(l;e)

v o4+
o

Construction of the expansions for AO(E), u and vy is carried out as de-

scribed in the preceding section. We set

A, (®) ~z+>\la+x252+... as € > 0, (4.11)

with outer expansions

22 )2 + ul(r)G + uz(r)ﬁ2 + ...,
r +1

2 (4.12)
l - r 2

v (r;e) ~ + v, ()8 + v, ()8 + ...,
o] R 2 1 2

1+~

uo(r;s) ~ In(

and inner expansions

uo(r;s}

!

Slns) [1n4 + a15 + ...1

(4.13)
vo(r;e)

?

6(lns)[1+b16+...].

The coefficients of the leading-order terms in (4.13) follow from matching

with the outer expansions,

From (3.45) we obtain the governing equation for u](r)
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ful=-xe°=--—-L-—» (4.14)

which has the solution (using (4.7) and (4.8))

2 A 2
_ l -r 1l 1-r
ul(r) = ¢y + 5

1 + r2 1+ r

Inr , (4.15)
with c, an arbitrary constant. Matching the Inr terms to leading order in the

inner and outer expansions for uo(r;E) yields

A, = 21n4,

Thus we have an explicit value-for the leading-order correction to the limit

point.

To this point the constant < in (4.15) 1is still arbitrary. To determine

it we must solve for v,. The governing problem for v

i i is cobtained from (3.45)

as

U0 Uo
ivl = - )vaoe - Aoulvoe s
(4.17)
r?-1 1-r” 1-r”
=8 -—Emmwg-[ln4 + c; 3 + {(1n4) 2(1nr) 1,
{(r™+1) 1+r l4r
v, (1) = 0,

This problem can be solved either analytically or numerically. We briefly

describe a numerical approach that facilitates matching. Set
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vl(r) = dlwo(r) + clzl(r) + zz(r) + zB(r)lnr, (4.18)

where dL is an arbitrary constant and the zj(r) are arbitrary functions.
(Since ¢y is unknownrwe must separate it out.) ?he point is that the "split-
ting" in (4.18) allows the zj(r) to be smooth functionson O < r < 1. We
simply substitute (4.18) into (4.17) and set the coefficients of the Inr
terms and the nen lnr terms to zero in the obvious manner. To ensure smooth—
ness we impose the appropriate initial conditions on the zj at r = 0. This

algorithm leads to the following IVP's:

2 2
fZB = -81né4 % s r>0
: {(r~ + 1)
i zé rz-l
ﬁ22= -2 -;“ + 8(1n&) (—2'—';)—3 s r>0 {(4.19)
r +
2 2
= _glr - D~
&Zzl = -§ 3 7 r>0
(xr“ + 1)
with
zj(O) = 25(0) =0, ji=1,2,3. (4.20)

e e . s . 2
The initial conditions in (4.20) ensure that the zj are 0(r”) as r + 0.
Thus, matching the Inr terms to leading order in the inner and outer epxan-

sions for v yields
d, =1 (4.21)

and, satisfaction of the boundary condition at r = | in (4.17) provides the
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value of 4

S S,
c, = z, (D 1+ z,(A)) (4.22)
We find,-in fact, that
c, = 2 . (4.23)

It is a straightforward matter to calculate further terms in the limit-point
expansions. For example, comsideration of the problem for u, in the outer expan-—

sion yields the next coefficient in (4.11) to be

AZ = 2.9609 (numerical) (4.24)

Summarizing our results to this point for the limit-point expansions, we have

established that

21in4 2.9609 1

A (g) =2+ + O ———— (4.25)
° Inl/e " (1n1/e)? (1n 1/€)°
as £ + 0; with the inner expansion for ug given by
w(r;e) = (n o) [ 2 4 — 2 — ho(——) ], (4.26)
Inl/e (In1l/€) (Inl/e)

as €+ 0 with & =r/e>1 fixed; and with the outer expansion for u given by
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2
2 2 1 1-r% 1

u (ri€) =1n¢ )<+ [2+ (In&)lnr ] +0(———), (4.27)

o 241 Inl/e |, 2 (1n1/e)2

as € * O with 0 < r £ | fixed. We have written these expressions in terms

of 1n 1/e to emphasize the fundamental role of this expansion parameter.

The approximation to'lo(s) provided by (4.25) represents the centerpiece
of this section. The slow convergence to zero of 1/ln(l/e) as ¢ + O implies
that even for very thin cooling rods we can expect significant increases in
the safe operating range of A beyond the unperturbed value of Ao = 2, For
example, for € = .0001 our formula predicts an increase in lo of more than

fifteen percent.

In order to measure the region of validity of our formulas we have carried
out extensive nuperical computations. Efficient continuation methods which al-
low for the calculation of limit points are now quite standard [10,11]. In Table 2
we compare the predictions of both two and three terms of formula (4.25) with
numerical calculations of Ao(e) for several values of ¢ . In each instance
three terms of formula (4.25) provide a better approximation than do just two

terms. Even for e = .1 the accuracy is impressive (1/1n 10 = 0.4343).
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accurate 2 Term 3 Term
€ numerical asymptotic asymptotic
solution for lo(a) approximation approximation
.1 3.8915 3,2041 3.7626
.04 3.2003 2.8613 3.1471
.0l 2.7610 2.6020 2.7416
. 001 2.4693 2.4013 2.4634
.0001 2.3384 2.3010 2.3359

Table 2. Comparison of numerical and asymptotic approximations (using formula

(4.25)) to the limit point AO(E) for the perturbed BVP(II) in {(4.9).

A more detailed picture of the effect of introducing a small cooling rod is

provided in the bifurcation diagram in Fig. 3 , where

1
ull, = (72 [ W(x,ne)dn!
£

2 (4.28)

The € = O curve was obtained directly from the exact solution in (4.3) - (4.4);

and the curves for £ > O were generated numerically. Qualitatively these curves
are very similar, but the location of the limit point (physically the value of A
at which a thermal explosion can occur) is very sensitive to the size of the

cooling rod.
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The inner and outefrapproximations to uo(r;e) provided by (4.26) and (4.57),
respectively, are also quite accurate. For example, in Fig. 4 we compare the
exact (numerical) solution with both the two-~term inner and the two—term outer
approximations for € = .04, The approximations are both very good in their as-
sumed regions of validity. As £ is decreased the accuracy improves, in agree-

ment with the order of magnitude error estimates in (4.26) and (4.27).

It is also possible to combine the inner and outer approximations into uni-
formly valid representations. Adding one term of (4.26) to ome term of (4.27)
and subtracting out the common (overlapping) part leads to the one term com-—

posite approximation

2 2 Inr
——r2+ . Y° + (In4) Tmi/e + o(l/inl/e) ,

u(r;e) = 1n{(
as €0 uniformly on € < r < 1, The same process, except taking two terms from

both (4.26) and (4.27), yields the two term composite approximation

2
2 2 l - r 1
u{r;e) = In{———)" + (2 + (In4)(Inr))
1__2_1_1 1+ r2 Inl/c
+ ___.3_]_._1'_1_1?_2 + 0(1/11’22 ife)y ,
(Inl/g)

as € +~0 uniformly on € < r < 1.

In Fig. 5 and 6 we compare both the one term and the two term composite
approximations with the exact (numerical) solutioms of uo(r;e) for e = .04 and
.001, respectiéely. The improvement in the accuracy of the two term approxima-
tion over the one term approximation is readily apparent, as is the improvement

in each approximation for smaller values of ¢. On the other hand, the two term
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composite approximation is not as accurate as either the corresponding inmer
or outer approximations in their regions of validity (compare Fig. 4 and

5 ). This situation is common in problems where the boundary layer terms do
not decay exponentialiy.

We recognize that the example treated in this section has restricted
applicability to chemical reactors in which rapid exothermic reactions take
place. However, it should be étressed that recognition of circumstances
causing instability and theoretical results on how to prevent it are
generally important aspects of reactor design; they could save expensive
experimentation.
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Figure 1

Comparison of two term asymptotic solution (solid curve) with
accurate numerical solution (closed circles) for ul(r;E ),

£ =0.01l and with leading term ocuter seclution Jo(;\lr) (open

circles)
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Figure 2

Comparison of two term asymptotic solution (solid curve)
with accurate numerical solution (closed circles) for
uz(r;s ), €=0,01 and with leading term outer solution

J( 7\21:) (open circles).
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Figure 3
Bifurcation diagram |ull, vs. A for BVP (11},
equation (4.9), for & =0, .1, .01, and .00
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Figure 4

Comparison of two term inner and outer expansions of

u (r; g) with accurate numerical solution for E=0.04
0 ,

at the limit point )O(E )]
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Figure 5
Comparison of one and two term composite approximations

of u(r;€e ) with accurate numerical solution for E =0.04

at the limit point ?\O(E)
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Figure 6

Comparison of one and two term composite expansions

of u(r;€ ) with accurate numerical solution for £ =0.001

at the limit point ?\O(E)

-
o

e=, 001

N N I I

I

NUMER1CAL
2 TERM

COMPOSITE

! TERM
COMPOSITE

L L L T L L B L

l|l]|

Pt b e e e by !tt v b b b byt

0 .2 4 B .8 1.




