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ABSTRACT

New second order accurate finite difference approximations for a class of nonlinear
pde’s of mixed type which includes the 2D Low Frequency Transonic Small Disturbance
equation {TSD) and the 2D Full Potential equation (FP) are presented.

For the TSD equaticn, the scheme is implemented via a time splitting algorithm; the
inclusion of flux limiters keeps the total variation non-increasing and eliminates spurious
oscillations near shocks. Global Linear Stability, Total Variation Diminishing and Entropy
Stability results are proven. Numerical results for the flow over a thin airfoil are presented.
Current techniques used to solve the TSD equation may easily be extended to second order
accuracy by this method.

For the FP equation, the new scheme requires no subsonic/supersonic switching and no
numerical flux biasing. Global Linear Stability for all values of the Mach number is proven.
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ON SOME NUMERICAL SCHEMES FOR TRANSONIC FLOW
PROBLEMS

by Marco Mosché Mostrel #

INTRODUCTION

Recently a number of new shock capturing finite difference approximations for solving scalar conservation law
nonlinear partial differential equations in several space dimensions have been constructed and applied to solve
numerically the equations of inviscid compressible flows of aerodynamics. Those partial differential equations
are, in the time-independent (steady) case, of mixed-type, i.e. their type changes from elliptic to hyperbolic as
the flow regime changes from subsonic to supersonic and vice-versa.

In this paper, we present some new shock capturing finite difference approximations for solving scalar conserva-
tion laws. Qur new schemes have the following properties:

(i) second order accuracy throughout the computational domain;

(ii) global linear stability in all elliptic and all hyperbolic regions;

(iil) sharp steady discrete shock solutions;

{(iv} total variation non-increasing property of the approximate solutions;

(v) entropy stability, at least in some cases, i.e. the approximate solutions satisfy a discrete enopy condi-
tion consistent with the differential entropy condition of the p.d.e.; this property ensures that the approxi-
mate solutions are admissible on physical grounds.

A model 2D conservation law equation is constructed and a finite difference approximation scheme is proposed
for this model equation. The above properties are proven for this scheme. This model can serve to represent and
solve numerically two commonly used equations for simulating inviscid, isentropic potential flow problems at
transonic speeds: the Transonic Small Disturbance (TSD) equation and the Full Potential (FP) equation.

The new schemes are studied first in their semi-discrete (method of lines) version. A new Alternate Direction
Implicit (ADI)-like time discretization is also presented for the particular application to the low-frequency,
unsteady, two-dimensional TSD equation; the results of the numerical implementation of this implicit scheme on
a variable computational mesh proved satisfactory.

In(23 {187,171, {137 and [ 1, a number of shock capturing finite difference approximations for solving the
TSD and the FP equations have been proposed. These schemes satisfy properties (iii) & (v), and with the inclu-
sion of flux limiters, property (iv) as well. Properties (i) & (ii) are usually satisfied in all elliptic regions; in
hyperbolic regions, only first order accuracy is attained and the linear stability of the method is typically limited
to values of the Mach number in [0,M,.] where M, is large enough to include the transonic regime. These
schemes have a four-point bandwith and are type-dependent, i.e. they use different formulas for the difference
approximations in the elliptic and the hyperbolic regions. They use central differencing in the elliptic regions

# This work was partially supported under grants ONR N00014-86-K-0691 and NASA NAG-270. Some of the analytical calculations
presented in this paper were obtained with the aid of Macsyma, a symbolic manipulation program developed at the M.LT. Laboratory for
Computer Science and supported by Symbolics, Inc. The author's current addresses are: Department of Mathematics and Computer Science,
California State University, Long Beach, CA 90840 and Department of Mathematics, University of California, Los Angeles, CA 90024, Send
electronic mail to marco@math.ucla.edu.
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and upwind differencing in the hyperbolic regions. The upwinding is designed to take into account the correct
region of influence and to keep the shock front sharper. For the TSD equation, since the flow is quasi-
unidirectional, the upwinding is performed in that direction ([3 I). For the FP equation, the upwinding can be
performed separately for the x-dependent term and the y-dependent term. This approach was labeled directional
flux biasing in [!3 ]. Recently this approach was refined by introducing the method of streamwise flux biasing
(see (1 1) in which the upwinding is performed in a direction close to that of the actual flow, Unfortunately,
the method hence obtained is only first order accurate (see [1! 1, Section 8, for a review of the schemes based on
this method).

Our new method does not use flux biasing but a special kind of upwinding uniformly in all regions. The result-
ing stencil, the same in all regions, is of 7-point bandwidth, with 4 points upwind and 2 points downwind.

The format of this paper is as follows,

In Section 1, we introduce our new second order accurate numerical schemes for a class of 2D conservation law
nonlinear p.d.e.’s which includes the TSD equation and the FP equation. We prove a convergence result 4 la
Lax-Wendroff.

In Section 2, we prove the linear stability of these schemes for the most commonly used numerical fluxes for the
TSD equation and the FP equation.

In Section 3, we present an extended version of these schemes which makes use of flux limiters to keep the total
variation non-increasing.

In Section 4, we prove a discrete entropy inequality satisfied by our finite difference approximation in the case
of the low-frequency, unsieady TSD equation and we show that this inequality is consistent with the differential
entropy inequality of the problem.

In Section 5, we describe a time-splitting algorithm for solving the unsteady TSD equation.

In Section 6, we present the numerical results obtained by implementing our finite difference method for the
TSD equation for the flow over a thin airfoil.

1. NEW SECOND ORDER ACCURATE SCHEMES FOR 2D SCALAR CONSERVATION LAWS

In this section, we introduce our model equation and our new schemes for two-dimensional, nonlinear, scalar
conservation law p.d.e.’s. and we present a convergence theorem & la Lax-Wendroff.

1.1. Model Equation
We consider the following 2D model scalar conservation law:

3, F (V) + V-F(Vd) = 0 (MODEL)
where F and F are smooth functions of their arguments and V= [9,.9, 1", to be solved for (x,y) € Q, where Q
a region of R2, and for ¢ >0 together with:

(i) some initial conditions: ®(x,y,0)=P¢(x.,y) for (x,y)e Q, where D is assumed to be such that
Do LYQ) N L=(Q) NBV(Q), and
(if) some boundary conditions on 00,
This moedel initial boundary value problem includes the following two problems for the isentropic flow over an

airfoil at transonic speeds (for the derivation of these two problems from the basic conservation equations of
fluid dynamics, see [!! ], Section 1).
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1.1.1. Example 1: Transonic Smalil Disturbance Equation

' 1-M
Choosing: Fo(V0) = 243,®, F(V®) = [f G, 0)-3,®] , f ()= LrLu? ~ Ku wherel K = ——=r

P4 LV o Of
and © to be the domain shown on Figure 1 yields the TSD equation;
2k 0,0, D + 0, f {3, D) — 9,0,P = © (TSD)

The boundary conditions are:
(i) the tangential velocity condition on the airfoil: 9, ®j3q = 3,4 +*M 2?3,k where Q, is the sli?

{(x,y}eﬂ ly=0,05x sl} and

(ii) some computational farfield boundary conditions on 0Q\€2,, typically a combination of Dirichlet and
Neuman boundary conditions.

Figure 1; Computational Domain for the TSD equation

S

1.1.2, Example 2: Full Potential Equation

Choosing: Fo(V®) = p(1¥@1), F(V@) = p(1Y0 1)V
L

_ r—l 2. 2 -1 . . : P

where plg) = {1 - ) MZ(g=-1) and Q to be the domain shown on Figure 2 yields the FP equation:

3,0(1V®1) + V[p(1V@1)V] = 0 (FP)
The boundary conditions are:
(i) the tangential velocity condition on the airfoil 2, (no boundary layer effects): d, @/8,,(1)! a0, = 5%{;-
where 002, = {(x,y}e Q| y=+dmax [O,H(x,r)]} and

(i) some computarional farfield boundary conditions on 0CAC},, typically a combination of Dirichlet and
Neuman boundary conditions.

1 K s the transonic similarity parameter; M, is the freestream Mach number and 8«1 is the airfoil thickness ratio.
Zy =+5*7M Brmaxf0,k(x,1)], 0<x <1, describes the shape of the airfoil in similarity variables.



Figure 2: Computationai Domain for the FP equation

1.2, Semi-Discrete Finite Difference Approximations

We now consider a semi-discrete, method of lines approximation to the model equation (MODEL). We subdi-
vide the region Q (assumed to be the rectangle [a,b]x[c 4] for simplicity) into cells of the form

Op = 4,¥)e QI Xjo12SX <Xjpp2 s e-125Y <Vew12 >

where a £+ * * <Xjoyp<Xpyqz< 0 S, 0S 0  Ppep<Venn< o0 Sd.
Let (x; ,y,) denote the center of the cell w; .

Set Ax; = Xju2— Xjo12 AV = Yesrz—Ya-12 and Ax = mj;lxﬂxf, Ay = maxAy;.
For each ¢ >0, define the step function ®*(x,y ) = @, (1), for (x,y) € @y.
The initial data is discretized via: @ (Q)=T*Do(x.y) for (x,y) € W

where the space averaging operator T2 is defined by:

1
T*(x,y, )= mi‘?%& Ydou =¥, () for (x,y)e oy
At grid point (x; ,¥,), we approximate: FO(VQ) ~ Fo(ffntb‘,-,,)

V}?(VCD) -~ E_ﬁ(ﬁ’_‘bﬁ ,j:. jk)
A method of lines, conservation law discretization of the initial-boundary value problem (MODEL) + initial con-
ditions is:
a,Fo(E),,ij) + f_'ﬁ(f_‘pjk s L_:.(Djk) =0

ODEL-
@, (0) = T*Py(x,y) {MODEL.-scheme)

In the above, L, are difference operators which approximate ¥ with second order accuracy (examples of such
difference operators follow), i.e., for any step function ‘¥4, we have:

|Eo¥, - V& 00| = 0 + 0ay?). forall .k
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and the numerical flux H is assumed to satisfy the following consistency condition:
@) =F@

For any step function ¥y, we define the following discrete operators:
SiWi =Winp » Si¥in =¥jpur
A} =FU - §31., AL =F0 - S11.
T = AL/ Alx; , DI = AL/ Ay,
0 = (§3-8%)/ (§3-8X)x; . DY =(S1-8%) / (S3-51)w ,
¥ =Di +8i(D§-D1), L1 =Di +51(D3-DL). .
In the case of a uniform mesh (Ax; =Ax, Ay, =Ay), the difference operators L} and L} take the simpler form:
I=Di (11%@ and L} =D (1:%&;).

L)

Theorem 1.1: Let ‘¥ be a smooth function defined on Q and let ¥, be the step function ¥4(x,y).

Then the above difference operators satisfy the following accuracy properties:
() LI = 0, F(x; ) + O(Ax?), LIW; = 9,'F(x;.3) + O (8%
(ify DYDY ¥, = 9,0, ¥(x; .31) + O (Ay?)

Proof: The proof of this theorem follows directly from the definition of LZ, D} and a Taylor series expansion.

Lemma 1.2: Let D denote either DY or D, S; denote either S or §% and L. denote either L or L}.
For any step functions ‘¥, and ¥, the following "product rule" identities hold:

(D) YaDs¥p + ¥ ) Ds¥) = DLL¥ ¥ p)

(i) (Se¥p)Do¥ ) + S¥ ) Do¥p) =D (¥ V')

(§ii) ¥ DD ¥’y ~ W uDD ¥y =D [¥pD W5~V ;D Py ]

(V) S SSFRIL i + (SSWRIL Wi = Dol(Si¥u) (S 3)] + (S S Fp)AD Wy — (§ SV 3)AD ¥y

Proof: The above identities can be verified by inspection,

1.2.1. Example 1: Transonic Small Disturbance Equation

A second order accurate method of lines finite difference approximation to the TSD equation i3 obtained by the
choice of;

Ly=[L%.DI , H@-.30 = (A(u,u) , —v.J" where Zy=[ug,vsl"
Theorem 1.3: Suppose that @y (¢) is determined by:

2kd,LEd, + LEA(LX D, L@, ) - DIDId, = 0

D (0) = T4®@(x y) (TSD-scheme)

where £ is a numerical flux satisfying the consistency condition: A{u,u)= f(u).
Suppose that ®, LI®,; and Did, converge boundedly a.e. as Ax ,Ay —0* to @, 9, D and 9, P respectively.
Then @ is a weak solution® of:

3 For a review of the theory of weak solutions, see appendix A in [11 ],



2%3,3,® + 3,1 3,0) - 3,0,0 = 0 |
D(x.y.0) = Bo(x.y) , (TSD)

Proof (@ la Lax-Wendroff [ 1): Let ¥ e C§ (2x[0,T]) be a test function. Set ¥, (. y=T*¥(x,y,.).
Since ¥ has compact support, we have:

gmjpo[(swﬁ).Si(a,¢,k+h(1,:¢,. Lid))] =0

For any Qj, in particular for Oy = 0,®y and Qj = A(LIDy LI D), we have:
%‘,(ij)(SiSiQ,-k)(AéDé‘ij) =0(Ax)

Since ¥ has comipact support, we have:
;(Ayk 1[0, DIV, - ¥, D ;] =0

Multiply (TSD-scheme) by SIST ¥ (¢ )Ax; Ay, sum over j .k and integrate over [0,00) w.r. t0 ¢.

Using integration by parts (w.r. to ¢), summation by parts (via the properties of Lemma 1.2) and the above
observations, we obtain:

T Ax; Ay, ( USESE D, (0). LE W, (0) + la’t [Zk (8752 @, )(L28, ¥, ) -
Jk

(Sis:h(L:cbjk,Licbjk))(L:SiSi‘y,k)—cbj,,nwis:Si\ij]) =0

Taking the limit as Ax,Ay — 0, using the consistency condition and Theorem 1.1, and applying Lebesgue Dom-
mnated Convergence Theorem, we obtain:

o

L[dm (2x @02, %(0) + ld: (23,3, % - £ (3,9) 3, ¥ - ©3,3,%] ) = 0
i.e. @ is a weak solution of (TSD).
12,2, Example 2: Full Potential Equation

A second order accurate method of lines finite difference approximation to the TSD equation is obtained by the
choice of:

Oy = L3Oy - 220, 2Oy -{£20O)] wmd #@-. 70 =p(17-D) 2

where, for any real number x, we set x% = %(xitx .

Theorem 1.4: Suppose that @ (¢) is determined by:

3 p(1 L @y 1) + L [p(IL 0 NI, 0] = 0

;. (0) = T Dy(x.y) (FP-scheme)

Suppose that @, L@y and L1dj converge boundedly a.e. as Ax ,Ay — 0" to @, 9,® and 3, P respectively,*

4 Le. E’itbj,, — ¥V boundedly a.c. as Ax ,Ay — 0"



Then © is a weak solution of:
{ %p(1Ve1) + V[p(1V0 V0] = 0
®(x.y 0)=Do(x .y)
Proof (a la Lax-Wendraff): We look only at the case d,®,d,® 2 0; the other cases are treated in a similar
fashion.

Let ¥e Cg (Qx0,T]) be a test function. Set W, (.)=T*¥(x,y,.) and pu =p( |Z ®y |).
Since ¥ has compact support, we have:

T (ax)D5 [ (53 (oL @) (s25252%,)] = 0

(503 [(s2 (oLt @) (s25257%,)] = 0

Maultiply (FP-scheme) by W, (t)Ax; Ay, sum over j & and integrate over [0.e<) w.r. to £.

Using integration by parts (w.r. 10 {), summation by parts (via the properties of Lemma 1.2) and the above
observations, we obtain:

YA Ay ( P (O)¥ . (0) + jd‘ [pjk ¥y +
j.k [i]

([s252 (o) ILzszsze,, ) + ([s252 (opLr@p)]ts2s29,)]) = o

Taking the limit as Ax,Ay — 0%, using the consistency condition and Theorem 1.1, and applying Lebesgne Dom-
inated Convergence Theorem, we obtain;

Udm (p(lV@ol)‘P(O)+‘!.dt [p(l%i)%ﬁ\p]) =0
i.e. @ is a weak solution of (FP).

2. LINEAR STABILITY ANALYSIS
In this section, we derive a necessary and sufficient condition for the finite difference method (MODEL-scheme)
of Section 1 to be linearly stable.

For the sake of simplicity, a uniform mesh of cell size Ax xAy is assumed. All the results of this section also
hold if a variable mesh is assumed.

2.1. Necessary and sufficient condition for linear stability

Lemma 2.1: Assume that the (consistent) numerical flax H in (MODEL-scheme) is differentiable. Apply the
method (MODEL-scheme) to: @ (t) = (jAx ,kAy)q +edp(t) , € small, where Z=[x,v]" is a constant
state. Setgq = I7I.

Then the linearized method of lines corresponding to (MODEL-scheme) is given by:

oF - d - rof = o = . .
“5‘_;?“(?)1“;4{;# + L_'[E(?,?)'Lﬂcbjk + Ti,,(q’ﬁ) ‘L+¢jk] = 0 (linearized-MODEL-scheme)

where - denotes the vector dot product and ® denotes the matrix-vector multiplication.
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Proof: The linearized finite difference method is obtained using the following equations:

f _(D i = q‘ + Ez:.q} ik
N Fy
Foll ®y) = Fo@+ sa—;@-L_qajk +O(?)
oF -
Zrldy) = ewg,ﬂ(q‘)-L_qa,-t +0@ED
o -
2 = A@ag)+ “‘[“‘a';—}‘jW Z)eL oy + azcm-m,-k] + O(ED)
Ly £ [ gzer a”_" © L] + 0@

a7-

Theorem 2.2: A necessary and .sufficient condition for the method (linearized-MODEL-scheme) to be stable is
that the operator é—it- satisfies the inequality; Re% <0, where ~ denotes the Fourier transform and -g? is given
by:

aF

A
= @ L=+ [BE(M) s

For our two generic examples, we prove below that the linearized methods corresponding to (TSD-scheme) and
(FP-scheme) satisfy the condition of Theorem 2.2. We need first the following lemma:

@=L =0 2.1

Lemma 2.3: The first order accurate difference operators D2 and the second order accurate difference operators
L% and L% defined in Section 1 satisfy the following equations:

. A 2
O D= (%2

G) Lz = %[xzshic(msz)]; [y = i—;[mo-’+iy(1+20")] |
2 2
) LL* = - -z—i) (4353 ; LY = _(i—‘;) (1430?)

where %x and -gy are the Fourier variables and where we set: s =sin%, 0'=sin-§—, c zcos-%t- and y= cos%—.

Proof: The proof of this lemma is purely algebraic and is left to the reader.

2.2. Example 1: Transonic Small Disturbance Equation
Lemma 2.4; Assume that A(u_,u,) is a differentiable numerical flux,

A necessary and sufficient condition for the method (TSD-scheme) to be linearly stable is that the operator «5{-

in:

2% Li%(bﬂ +Lx ga:‘—(u WLE 0y + aaTh(” W)Li0x | ~DIDIoy = 0 (linearized-TSD-scheme)
- +



-

satisfies the inequality: Re% <0

Proof; The result of ihis Lemina is an i;nme(iiaif: applicaiion of Theorem 2.2 since:
Dy o Mt uu) 0
"o _veor, BEagp- ™ o o= |
aq‘ ) 1 a?\‘ ] __ 0 0 » a?‘* * . 0 _1
Theorem 2.5: A sufficient condition for the method (TSD-scheme) to be linearly stable is:
oh ok
— () - >0 2.2
o () %, (e:) (2.2)
. R 4
Proof: Assume that (2.2) holds. By part (i) of Lemma 2.3, we have: RelZ =-RelL] = % = 0. By part (i) of
oo .o LX
Lemma 2.3, we have: DJD? = —i;‘i < 0. Moreover [LX] ' ﬁ thus, by parts (i) & (iii) of Lemma 2.3,
Y +
Pl — 2 A~ —
Re[LZ] o 1:3 7Ax 20, Substitution into (linearized-TSD-scheme) multiplied by [LZ] ' then implies
. 5
Rewg? <0, thus, by Lemma 2.4, the method (TSD-scheme) is linearly stable.

Remark: The sufficient condition (2.2) is satisfied for most commonly used differentiable numerical fluxes, in
particular differentiable monotone fluxes, In particular, one can use any of the following fluxes:

(Engquist-Osher)

u u

KE0 u_yu) = [If e + [If )T + £ @)

(Lax-Friedrichs-type)

R (u_u,) = -é—[f(u_) +oml+ —é-l'f(m,) -~ cu,] where a> £

(No-Switch-type)®
u+fiu') if Mo<1
A (u_u,) = X
u_f(u*) if Mo21
Uy

5 Por the TSD equation, this flux, introduced by the author in {1 ], has the advantage that no local switching is neaded.
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2.3. Example 2: Fuil Potential Eduation

For the FP example, we further introduce the following streamwise and normal finite difference operators® :

Li = ‘?Et (streamwise)
Lt = (D) -G | (normal)

Lemma 2.6: The streamwise and normal finite difference operators Li and L% satisfy the following equations:

e 1Els*  Inle* | .]Esc(1+2s%)  noyl+26?)
(H L3 = 2 [?2[ v Ay ]—H{ Ax . Ay ”
o ra Inls* 1Ela* | .|msc(1+2sH) Eon1+20%)
(i) Li = 2[?2{ ~ Ay ]+1 [ o Ay

-

Gi) I,-D_= LSLS +L7L* = LAL* + LILY

o\ Pefs £%2(1+35%) | 2Ensolds’c(sosign(Enlte YHe Y(1+25%26%)] | nloX(1+362)
) k- = '4[ @ Axdy Ty

&) LM = -4 25314352 2Ens ol4s2c?(s o sign[Enl+e Y W(1+25%209)] N £20%(1+30%)
i (Ax)? Ax Ay (Ay)?
(i) LL8 <0
i) L <0
he: e set =2 and =l.
where w £ p and T p

Proof: The proof of the above equalities is purely algebraic and can be found in [!! ],

Lemma 2.7; The following relations hold:
, M?
P@)=-p@ =L and L lo(@] = p@)1-Mq)]

where the Mach number M (g} is defined by: M (q) = ?(% and a{g) is the local speed of sound related to the
T-1

density p(g) by the isentropic relation: a’=

o

Proof: This is a simple consequence of the definition of the functions p(g) and M {(g).

Theorem 2.8: The method (FP-scheme) is linearly stable.

Proof: Assume’ 9,%,0,& 20 (thus % ,v 2 0). We have:

5 9,9,0,$20,then L] = %L; + -;—L; and [} = --;LL; + ﬂg-L?_L where # ,v 20. The other cases yield similar expressions.

7 The proof for the other cases is similar.
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- 7 9H L 4
AH@. .20 =02, ?{?) (@) o3 (_I,_('e? D) =p@q) ey

Setp=p(g) and M = M(g). Then, using Lemma 2.7, the linearized finite difference method corresponding to
(FP-scheme) can be rewritten as:

10

; .
p -Z-, L ---¢ & T L. [,.. -iqi 'f_@)ﬁ, + pli,d) jk] =0 (linearized-FP-scheme)

2
Using L [i i— - ] =L { (i -L ):I {-?li} = (L*)?, (linearized-FP-scheme) can be rewritten as:

(Lig; +q e - ML ]) o =

and equation (2.1) reduces to:

”

Ei% +q [(Ei)2 - M‘zf_-f:] =0 23)

By part (i) of Lemma 2.6, we have: ReL? 2 0. By part (iif) of Lemma 2.6, we have f_-f: < 0. Moreover
&

N L -
Lert= [:‘_E’ , thus by parts (i) & (vi) of Lemma 2.6, we have: Re[L5]™ >0, Substitution into (2.3) multi-

+

A

plied by [L£17! then implies Re—i— <90, hence, by Corollary 2.2, the method (FP-scheme) is linearly stable,

3. TOTAL VARIATION STABILITY
A desirable property for a numerical scheme is a bound on the total variation of its approximate solutions. This
ensures that overshoots and undershoots near shocks do not appear in the approximate solutions.

In this section, we propose a technique to render the method (MODEL-scheme) introduced in Section 1 total
variation stable by applying flux limiters to the nonlinear terms of the difference equations dimension by dimen-
sion, For the sake of simplicity, a uniform mesh is assumed. The generalization to a non-uniform mesh is
straightforward.

It turns out that the new method obtained using this technique specializes, in the one-dimensional case, to an
extension of the generalized MUSCL3 schemes which have been used to solve the well-known inviscid Burgers’
equation (see [12 1).

We observe that, when restricted to the 1D case, both the TSD equation and the FP equation have the form of
the inviscid Burgers' equation.

In the case of the TSD equation, the 1D restriction of (MODEL-limited-scheme) can easily be written as a gen-
eralized MUSCL scheme.

In the case of the FP equation, the 1D restriction of (MODEL-limited-scheme) can be written as an extension of
a generalized MUSCL scheme which we will introduce.

3.1. Total Variation Non-Increasing version of our Model Scheme
We extend the second order accurate method {MODEI.-scheme) introduced in Section 1 to:
3 F oL ®p)+L_-HLC @y ,Li®y) = 0 (MODEL-limited-scheme)

8 The notion of MUSCL (Monotone Upstream Centered Schemes for Conservation Laws) schemes is due to van Leer (see [1¥ B.
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where L_—ft are difference operators which approximate V¥ with second order ACCUracy.
We define some limited second order difference operators by:

LY =D} + m(S3(D¥-D}),DE-D%) and LY =D + m(SL(D3-DY),DL-D})
In the above, the minmod function m is defined by:

{s min(lu_l,lu, ) if sgn(u.) =sgn(uy) = s}
mu_u.) =

0 else = sgn{u_) -max[0,min(lu_I,usgn (u_)]

In the uniform mesh case, we have:
=Di ¥ —m(D AZ, DXAD and L %mcpmg DYA}

For the TSD case, we choose: Ly = [Li,DLT.
T

For the FP case, we choose: Ly( ) = [{L O = (L2O), (20 - (LX( 1.

3.2. One-dimensionai case/ Inviscid Burgers’ Equation
We now look at the one-dimensional inviscid Burgers’ equation:
ou +ad f{uy=0 (Burgers)
where f is a convex function.
Consider the following method of lines conservation form finite difference approximation to Burgers’ equation:
Ay tjyp + DI h(ujap, 502 =0 (Burgers-scheme)
where the numerical flux 4 is assumed 10 satisfy the consistency condition: A (u,u)=f (u).

We recall some definitions and a theorem due to Osher.

Definition 3.1: The numerical flux & is said to be monotone if h{(u_,u,) is a non-decreasing function of —u.
and of u._.

The method (Burgers-scheme) is said to be a monotone scheme if its numerical flux is monotone,

In particular, if 2 is C', a necessary and sufficient condition for the method (Burgers-scheme) to be monotone

ah <O<i_

o, T du_

is:

Definition 3.2: The numerical flux A(x_,u,) is said to be an E-flux (see [14 1) if the following condition holds:
sgn(u—u)[h(u_,u)—fw)l <0 ,forany uellu_,ul®
E-fluxes can be characterized as the fluxes for which: sgn(u,—u)[h@u_,u) — h%@_,u)] 20

min if u_<u,
fe_,u;

where A% (u_,uy) = max if u_> u, is the Godunov numerical flux ({° ]).

[, ,n

if a#0
Ial

9 [{a,b} denotes the closed interval [min{g,b),max(z,b)] and sgn(a) = 0 else
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The method (Burgers-scheme) is said to be an E-scheme if its numerical flux is an E-flux.

Definition 3.3: Define the total variation of the function u by: TV ()=, | Alu;_in | where Uiz = Ty,
J

The method (Burgers-scheme) is said to be total variation non-increasing!® if the total variation of its solutions
satisfies:

TV £ TVIu(®)] forall ¢ >0
In [7 1, Harten showed that a sufficient condition for the (2p+1)-point scheme

oy Uj_qp + DEh(uy_parns * 0 sMjaazs Bjayzs »uj-r-p-uz) =0
to be TVD is that the flux & satisfies an incremental form:

- -
D _h{ujparzs * " sljeyzsBjurzs * 0 sljapain) = —C D 1p+ Cly Dy [ERY;
+ O s Ce
Cj =C (uj—p+1/2, T T TN PR :uj+p—l."2} . . 3
where - for some nonnegative functions C* and C.
Cj-i =C7(ujpiz, * *° S ljea2sMjazs ’uj+p—3{2)

We now extend (Burgers-scheme) to a second order accurate TVD scheme.

Theorem 3.4 (Osher [12 ]): Consider the scheme:
: Ax Ax
Oclj1pp + DX R(u;qp + 5 i b = = i) =0 (MUSCL-scheme)
If h(u_,u,) is an E-flux (resp. a differentiable monotone flux), then the above scheme is TVD provided that the
following condition holds;

Gj-112 +l Afo;yp

* = near points where L #0).
2D +Hjm1r2 '

0< aui

= <1 (resp.12
Diu;p
3.3, Example 1: Transonic Small Disturbance Equation

We now propose a limited version of (TSD-scheme):
2%0,LZ®y + LW (LX Dy ,LiPr) — DIDI®D; = (TSD-limited-scheme)

The 1D restriction of the TSD equation:

y+1 wl-Ku

2k 0,0, D+ 3, f(3,®) =0 where f(u)=

can be rewritten as Burgers’ equation:
du +9.f(u)=0 where u=d,®
We note that: f”(u)=v+1>0 ie. f is a convex function.
The y-independent restriction of (TSD-limited-scheme) is given by:
2k0,LI®g + LIA(LIDy LiD,) = 0 3.2)

10 This concept was first introduced in [7 1. Traditionally the abbreviation TVD (total variation diminishing) is preferred to TVNL



.14 -

Theorem 3.5: If & is either a consistent E-flux or a consistent differentiable monotone flux, then the scheme
{3.2) is TVD, :

PT’OOf.’ Set Ujtn = Di‘bj and Gj.-UZ = m(Diuj_,m N Diuj_l,rz) 11. Equation (3.2) then takes the form:
1 Ax Ax
(1+5Af) [2k Ochjerz + DER (tjoyg + =5 Cj-12 s iz~ “*é”G'jmz)] =0

which is of the form (MUSCL-scheme).

It is immediate from the definition of ¢;_y; and the definition of the minmod function that the first condition of
Theorem 3.4 is always satisfied,

The second condition of Theorem 3.4 follows from!2 :

1 Oiuz-Cj-12 l 1 | m(Diuj—uz,Df-uj-:-uz) _ m(D’_‘uj_yz,Diuj,m) < 1 <1
2 Diujpn 2 Diujp Diujpm -2

due to the following property of the minmod function:
i’l%u e [0.1] if x %0, %ﬁ € 0,1] if y %0

Therefore (3.2) is TVD for any consistent numerical flux # which is either an E-flux or a differentiable mono-
tone flux. This class of numerical fluxes contains the most commonly used ones.
3.4. Example 2: Full Potential Equation

We now propose a limited version of (FP-scheme). |
a,p( If_(bjk D+L- [p( IZ:_tDj,, I)I__,:d)j,,] =0 : " (FP-limited-scheme)
where we set L, = [LZ ,Li]r.

The 1D restriction of the FP equation:

L
3,0(a) + 3, [p(a)a] = 0 where o() = [1-Lm2(>-n]™

can be rewritten as Burgers’ equation:

du +3,f)=0

1“(““)1_1 12
¥1l,.2
7 M-

where g=—p and f(w)=uqu), gu)=|1+

We note that, by Lemma 2.7, we have;
£y = q)[1-MHqw))]
thus f N (resp. f’ <0} in supersonic (resp. subsonic) regions and:

£y = LB 2 ) ly+ Mg @)} > 0

—U

i.e. f is a convex function.

11 the k—subscripts are dropped for the sake of clarity.
12 WLOG we can assume Du;_yp # 0.
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The 1D restriction of'(FP-iimited-scheme) is given by:

3p(ILZd, 1) + LE [p(ILZ®, NLI®;] =0 (3.3)

Theorem 3.6: The scheme (3.3) is TVD in the linear case.

Proof: Seti? gj_ip=DX®; and .y = -A'p(Agjym) . L8 gjan = A q(Aujyn), where A =1+ -;—A.i‘ and

where we formally define; A = ¥ (——%Ai‘)".

neZ, )
Set G =m(DIg;mn . Digjn) and h(g-,q.) =-plg-)q..
Equation (3.3) then!4 takes the form:
1.z x Ax Ax
“(1 *i"EA-) [a: iz + DX R(gjan + = G-z Q2 "‘2"Gj+1/2)] =0
ie.

B,uj.,l,z +DX h (Qj-lﬁ + EGJ'__LQ s Gjvirz — EO}HQ) =0 {extended-MUSCL-scheme)
2 2 ‘

Note that:
(i) h(g{u_),q{u.)) is consistent with f since h(g(u),q(u)) = -p{g®)) q(u) = u q(u) = f ().
(ii) A is an E-flux since for any q € I [g_,q.], we have:
sgn(g.—q-)-[plg-) — p(g)] 20 since p(g) <0
Thus sgn(g.—q-) [h{g-.q4) - h(g.q)] = —sgn{g+—q-)-{p(g-)g+ — p(@) 4]
< sgn[p(g){q:~q)] (g ~q+) S0 since p(g)20 and (¢.~¢){g—q) <0

(iif) % is a differentiable monotone flux since:

ok plgM*(q.) ok
—(g_,q)y = ————=4,20 and g =—pgI <0
3q 9299 . 1+ 32, 4+) = —Pg-) < C

For the linear case, let: @;(1) =7 jAx + &d;(t), £ small, where 7 is a constant state.
Set Vi = DX ¢j and Sipe = m(vaj—IIZ ,Divj'_yz) . Using;

g +evin

2 —
-p(@@) +¢ (n)A; @ Viam t O

dj-12

It

_ -t
Uj_yp = —A p(A Qjmlfz)
Cjip=Mm (EDi"’j-uz,f-Df-Vj-x.'z) =E&S5n

- Ax — Ax
i+ - Cjsin =7 +e(Vjupn ¥ Tsj:tllz) \

Ax Ax
h(‘Ijauz + 70' =112 s Gietiz ™ "'2"' j+1l2)

MG Ax Ax
=g (—.)‘q“ @, (Vi + = S Visn T Tsjﬂll) + O(e?)

13 the k—subscripts are dropped for the sake of clarity.
14 in the case 9, 2 0. The case 9, D < 0 can be treated in a similar fashion.
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where we set [(v_,v,) = F[v_—-M%g)v,], vields the linear version of scheme (3.3):

& Vi + DX 1 (v + %Sj—uz,vjq-uz - %SJH&) =0 (3.4)
Note that / is an E-flux since for any v € I{v_,v,] we have:

sgn(v.—v_)- [I (v_,vy) =1y ,v)] =gFsgn{v,-v_)- [[ (v_—v) - M7H) (v+—v)] <0

Oj—1/2

El;—uz
function, therefore the first condition of Theorem 3.4 is satisfied thus the scheme (3.4) is TVD, ie. the scheme
(3.3) is TVD in the linear case.!S

The inequality 0 < €1 is immediate from the definition of 5, and the definition of the minmod

For the nonlinear case, it is not possible to apply Theorem 3.4 and it appears difficult to obtain an incremental
form such as (3.1).

Numerical evidence supporting or contradicting total variation stability for the scheme (3.3) in the nonlinear case
will presented in a subsequent paper.

4, ENTROPY CONDITION FOR THE TSD SCHEME

In this section, we prove that the approximate sclutions of our new second order accurate, TYD, semi-discrete
finite difference method (TSD-limited-scheme) for the low-frequency unsteady TSD equation satisfy a discrete
entropy inequality which guarantees that they converge to the unique (physical) solution of (TSD).

We restrict ourselves to the case when an E-flux is used as a building block. For the sake of simplicity, a uni-
form mesh is assumed.

Part of the proof of the main theorem of this section relies on arguments similar to the ones found in [° ] and
(12 ] and makes use of Plancherel’s theorem.

4.1. Differential Entropy Inequality

Up to some rescaling of ¢ {2k = 1), the low-frequency, unsteady TSD equation (TSD) of Section 1 can be
rewritten as the following system:

at[(px , 01 + ax[f((bx) r (Dy] + ay {"(Dy ) _¢x]y =[0,0] (4.1)

This system is symmetrizable! by multiplying it by V@ = aiq_) [% I712]

| oo
=

The entropy function is: V(7)) = -?‘—u and the corresponding entropy fluxes are:

FO@) = _[uf’(u)du + %vz and FP(@) = —uv where 7= [u,v]’.

The resulting differential entropy inequality is:
V(¥ + V-[FOF0) , FOTD)] <0 42)

15 1 is also a differentiable monotone flux so we could also have used the second condition of Theorem 3.4. .

16 The reader is referred to (8 ], [* ] and {1 | for an interesting discussion on the derivation of additional systems of conservation laws,
additional symmetric hyperbolic systems of conservation laws and an entropy inequality from a given system of nonlinear conservation laws.
See also Appendix A in {1 1.
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It is well known that weak solutions of (4.1) are not unique and that the differential entropy inequality (4.2) is
satisfied (in the weak sense) only by the physical solution, i.e. the one which does not admit expansion shocks.!”

In the next paragraph, we show that {TSD-limited-scheme) satisfies a discrete entropy inequality which impiies
(4.2), thus the approximate solutions converge to the unique (physical) solution of the probiem.

4.2. Discrete Entropy Inequality
Consider the second order accurate TVD scheme for the TSD equation derived in Section 3:
LDy +LE h(L:®s ,Li®,) — DIDI Dy =0 (TSD-limited-scheme)
where £ is a Lipschitz continuous E-flux consistent with the convex function f,
Set ujipp =DI®p, vig_yp =Dy and S = m(D2uj_ypp ,Distj_inx)-
The scheme can be rewritten as:

Ax Ax |
a, Uik +D* h (uj_.lm +“‘"‘"“2"""‘Uj_m sUitiok —ch+1m) - [l-i-EAf] Dz_ Vik-t2 = 0 (43)

The following equations hold:

y 1
() wjr2k0i i1k = O; [Euj%-ilz,k]

.. Ax Ax
(D) #j-32.DZh (Ujp + = i1z » Bisng =3O et )

Hi-1nk Bi-trak

=01 [ wf'wdu - D3 fuyins £ )| +DE [ F)au

Ax Ax
+ D% {uj—uu Rtz + = G-tk » Birzk = Tojﬂlz,k)]

Ax Ax
- [Dfuuj-uu ] h (uj-llz,k + T°j—112; N SIST Y e -5 g j+1f2.k)
Hj12k

P Ax Ax
=D} j ufu)du + uj_1pnp {h (12 + = Oi-ink Bjwiag = 5O ez ) =T (uj—llz,k)}

Y512k
Ax Ax du
- j [h (ja1pp + =5 G-k s Bjsizk = chﬂlz’.k) - fu ):|‘Kx“

Bjarak
1 -1 1 -1
(i) —u; 2 [1'*'31-‘3] DYvjg12 = ~Wjc1ax DWikoin— 124 [[1""2‘135] *1] Divikan

D%igan

1 ~1
=.,,,_D£ [uj-lllk Vj,k-l:'Z] + [D.{uj_]_/g,k ] Vj,k+lf2— uj—ln’Z,k {[14""2'&] -1

1 -
=DIF Dy 1y Vip-12) + [vaj,sz] Viksr2 = Uio12k [[ 1"'35*3] —1}191‘»’1,::—1/2

1T Tn {19 ], Mock showed that (4.2) is equivalent to the (distribution) inequality: 8,5,® < 0.
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1 Ax 2 1 -1
= DIF Py_1nk » Vie1r) + D "'2"?;'2—1.;:4-1/2] + [vaj,huz] = Uj-12k [[ 1+‘§‘Af] —1} Divjpe

i Ax | T*
= DiF(z)(uj-ch ) Vig-12) + D3 l"l;"vjz-hhuzj + > I.Dfo-‘Dij - DIy

o
[1%:3:] —1anzcbjk

Thus multiplying the scheme (4.3) by 1.1, yields:
Vi + DIFMpy +DIF Ry - M ~ M =0
where:
v, =V{DIdy,.)
Fllne = FO(DZdy , SID1d,) + [
ijﬁ_“z = F(z)(Di(Djk N chbjk)
Histi2 g

Ax Ax du
= j [h(uj——llz,k +=5 Ci-uzk ,uj+1fz,k*—27‘0j+uz,k) ‘”f(u)}z
Bilrnk
-1 2
[m =Di(bjk [1+’%‘A_z] —'1} le‘bj - % [JDiDi(I)jk]

Ax Ax
= U1k h(uj—l.'z,k + 2502k s Hsu2g ™ """"O’j-c-uz,k) ~ f (j-12,0)
2 2

Lemma 4,1: The quantity [I] is < 0.

Oiwzx ik

Proof: We first note that, since 1 - e 10,1], we have:

z
2D+u,-_1,u

Ax Ax
sgn (uj+1/2.k —=0C j+.‘u’2..t) - (ujmh'l,k +_cj—1.'2,k) =sgn S Afuj g |1 -
2 2

Okt 0tk ] }
2Dk
= 3gn (Afuj-uz,k)
Therefore, for any iy , [I] can be written as:
= 1D3u i, | TA] + é [B]

where the quantities [A] and [B] have the following expressions:

Ax Ax
[A] = sgn [(uj+1i2,k - "2— JHL2k )= (uj—lfz,k + —2'0' Fli2k )]

Ax Ax "
[h (Hj-yz.k + ""5'0' 12k 2 Biglink 70' +L2E )-f (ujk )}

max(uj_im* ,ume)
= sgn (Afj-ix) _[ [f (@) - £ )] du
minly_12) 4 21.20)

Ujsio ke T Uik
2

Set Up =

(D) In the case of a rarefaction (i;.12x < #ja12x ), We have: Diu;ypy >0 and:

©Ax Ax
Yjmirzge S Uiz + = Cj-li2k S Uy S Ujng — =5 Cj+lizk S Uik 4.4)
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Choose @t = uy .~ Due to inequalities (4.4) and the assumption that # is an E-flux, we have: <0.
Since f is convex, we have:

fo iz ] ¥ Uzk “ieiizk
Wi Uik du dan 1
f(“jk)=f{——_1 3 = }=f U e | <18 j fu)— = — _[ f(u)du
;i ALk 1k 5 1k Aflj12k Alljizk %5 w12k
Mi+12k :
thus [B] = j [F (ua) - F )] du < 0.
-1k

(ii) In the case of a shock (uj+1,u < u,-_uz,g), we have: Diu;_ 1, <0 and:
Ax Ax
Wistor S Ujvipg — = Sk Sup S Ui +=5 Cj-uak L Uik 4.5)

where Oy = ~min(-D i1 » 1 D3jarg 1)
Due to inequalities (4.5) and the assumption that / is an E-flux, we have:
P Ax Ax
<0 if Gy e [uj+112,k - '2— FHlzk s Wi-12p "'2—0' j«-uz,k}-
The quantity {B] is given by:
Btk
B = [ [re-r@]d
“ir12k
Let i denote the sonic point (f () = 0). Assume that the shock is nonsonic, ie. 7 ¢ (i snimpe s i1 ] -

-1k
j W f () du
- Mk
het T = FACTRTYS B A CTRYYY. @
We then have:
¥j-uzk -2k
B = | [rw-rawlas | [Fe)-ra-w-n)fw]a
Y2k Yk

Set g(u)=f(u)—f (@)~ (u—Hx)f (). Since g'(u)=—(u—8z)f"(u) and since f is convex, g has
an absolute maximum at u = thus g(u) < g (i) =0, which yields [B] <0.

Forany u € [uj+ll2,k »uj—-llz.k] , we have: sgn f'(u) = sgn(f (ujmllz.k)'f (%‘4—1/2,&)] = sgn (ujk ~%).
Moreover:

. i1k
Wi — U U—tp ‘(u)du
kU - J’ X f(u) € [=1.+1]
Wimik Bk oy f ik = Wik f (#-120 ) = F (jur20)
2
thus @ € [Wieiop »Uj-2x] and 205 — s | — (joipp —8j41024) S O. -
. - Ax Ax .

The condition Gy € {uj+1,r2,k - TGijz‘k sMjciog + -—Gj_yg,k], Le.

2

18 by Jensen’s inequality
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B —up ) Ax Gk e AxGj_i2z
l= 3
Wik — Wik Uitk ™ Wjr1i2,k Ujsiop —UWivlnk
2 .

is satisfied if we change ;.. and Gj,in, to:
Ax Qi1 = mMax [2 E B — U | - (uj—llz,k - uj+1!2.k) miﬂ(uj-uu —Hj-12k [uj+[/2,k - uj—afz,k] )}

- . +
AX Gjyypp = max [2 E g — Uy |- (uj—uz,t - uj+1f2,k) » mlﬂ(uj—uz,t — Uik [uj+1.v’2,k - uj+3f2,k] )]
These changes are necessary only if ;. 1z < Wjang OF Wjuapp > Uiz -

The second order accuracy is not affected since:

Hi-1r2k ‘ i1k
2 1 2 Uik < Hisvink
j (u—up)du =0 and J. (u—up) du = E(uj—lfz.k — i) —
Bisli2k Witk

e (ORK
I (u—ujk)zf u)—f ujk)d

u—u;
- _ Ry jk
and Ujp —Up =
. f (uj-i.fz,k) ~f (uj+112.k)
Vit — s | g(uj—uz,z —uj+1.'2,k)
thus A max f”
Hi—vok ~ Uik U (ompe) = f (g ) g 4y
2 Witk — Ujrrizk
P l =0(! 1%)
thus 21, =g | = (joyop = tjanop) = Witk —Bivtizp b )
. +1 — .
In the case: f(u) = li—(uz — 2@iu ), we obtain:
2 2 —_
- Y 3(uj+1.'2,k Ui -1k uj-llz.k) — Wl - 1 Ujank —Uiszk Uik = Rivink
ujkz — and ujk—-ujkzm -
jp — U 6 2 Ui — U

1 Rirok —Uivnk
thus 208, —up | — (joynp — 84100 ) = (joaimy '"u;+112,k) = e — 1

luy, ~17 |

Assume now that the shock is somic , i.e. # € [Mjszp - %j-124] . We restrict 0, 12, and Gjupy to be 0 (at
the loss of second order accuracy).

If f (uj—122) # f (4j4124) , then choose &y as given by formula (4.5).

Else, choose i1y such that f (@) = max f.
RV YSLURPYY)

Lemma 4.2; Let W (¢) = TA¥(r) where ¥ is a nonnegative test function with compact support < Q.x [0,71.
Then we have: Z ] ¥, AxAy <0.

N
Proof: We can writel? -”
19 For a'={ay}, b=1by bei?, we define: (a, b)z—ZajkakAxAy, lal;=(aa), 4 -{am}_{2a,,e-‘ﬂ“ -MAYAxAy}

(4, b) g = Za‘,xb,xdx.ﬁy and ld| 2= (a,a) 2. Plancherel's theorem states that: la | 2= 14| 2and {a b) 2=(4 b) 2
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2
x X ‘-1 Ax X
zgn whrdy = T D_ijk[[1+%A_] -1] D32, —T[D_Dm,-k] }‘I’jkAxAy

.k

P - 1 -1 - ~ e 2
=Re(y¥Dz0 F[[1+-a7] 1] DID10),: - % | VAx+ED1Dr @1 ,
. R, -~ - Wy -~ "'1 -~ A -~ — PN, s - 2
=Re («j‘I’Df(D,«!‘I’[[l—}-%Aﬂ 1] BIB2®),, - % INExEBID B L,

- =l .o oa ) P 2
= YRe [Di[[1+—é—a\f] -1] D{D{—%"—ID’:D{! ]Iw,xqaml Ax Ay
I, K

[[1+-511—3§]'1-1]

“m 2] —A . 2
= Y AxRe — --§- 152817 | ¥,y ¢ | Axay
J.K .
e Rt |
(@] | re2amdlE
<0 since Re = -—-5 =_~_7I;SO
Az 1+ 3sin?=~———

2

Lemma 4.3: ae.lim [III] =0 .
Jim,

Proof: This is due to the Lipschitz continnity of h, the continuity of f and of the minmod function, and the
consistency condition;

. Ax Ax
a-f»‘.-dilf_il X {h (o1 + = ik Rk~ ier2e) = (%'-—1/2,]:)]
\ Ax Ax Ax
= a'e'alffo [h (Hj-uu + ch-—llz.k s Wjrirak = *“'2“*0 j+112,k) -f (uj-lfz,k - ‘""5'"0 i-Li2k )]
. Ax
+ ae. Aleg}o [f (12 _ch—!.fz,k) -f (ujallz,k)jl = 0

Theorem 4.4: Suppose that @, L1®;, and DI®; converge boundedly a.e. as Ax ,Ay —>0" to @, d,P and
d, ® respectively.

Further assume that f is convex and that & is a Lipschitz continnous E-flux consistent with f .
Then & is a weak solution of (TSD-limited-scheme) which satisfies the entropy inequality (4.2).

Proof: Using Theorem 1.3, we only have to prove that @ satisfies the disribution ineguality (4.2). By Lemma
4.1, we have:

O Vie + DIF Ry + DIFPp = [ + [ < I
Let ¥ be a nonnegative test function with compact support — Qx[0,T] and set ¥, (t) = TA¥().
Muitiplying (4.3) by u;_ 12, AxAy = DI®; AxAy, summing over j,k and using Lemma 4.2 yield:
SArAY Ty [ar je + DEF iy + DIFR 1:2] <0
I

Using the summation by parts formulas of Lemma 2.2, the fact that ¥ has compact support and integrating w.r.
to ¢ over [0,00) yields:
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- l. dt Y AxAy [[arlyjk}vjk + [DIWRIF R + [DLIYRIF jf%lu'z:[ <0
ik .

Taking the limit as Ax ,Ay — 0" and using Lemma 4.3 and Lebesgue’s Dominated Convergence Theorem yield:
- M dt dx dy [[a, ¥V (Vo) + (3, ¥IFOFTD) + [3, W]F@)(V@)] <0

Le. the difference approximations ®; satisfy the entropy condition (4.2) in the limit.

This theorem ensures that, if the difference approximations (TSD-limited-scheme) converge, then the Hmit solu-
tion is the unique (physical) solution of the problem.

5. TIME DISCRETIZATION OF THE TSD SCHEME

In this section, we present an implicit, forward Euler-type time discretization of the method (TSD-scheme) intro-
duced in Section 1 and of its TVD extension (TSD-limited-scheme) introduced in Section 4.

This time discretization uses time-splitting in a fashion similar to that of the Alternate Direction Implicit (ADI)

- method.

The ADI method has been used extensively for implementing first order accurate finite difference schemes for
the TSD equation (see e.g. {201, (151 and 8 )).

Others have used an Approximate Factorization (AF) method instead of the ADI method (see e.g. {! 1).
The impiementation of the fime-splitting algorithms presented here was done by the author.
Numerical results are the object of Section 6,

5.1. Time-Splitting Algorithm

The uniimited version of our time-splitting method can be written as:

o) — P R(L*DY ,LIDL) + h(L> Dy, , LXD; -
x-sweep: 2k Li——’-’f-ztmdfm oz BEZ0R L LIOR) 5 (E2 D . L3 D5) -DYDIDL =0 (5.1a)
- ﬁ-i-l_“(b;k 1
y-sweep: 2k LZ Ry ve DY DI (5 -d3)=0 (5.1b)

This method is linearly stable as proved in Theorem 5.1 below.

5.2, Linear Stability Analysis

Using the same notations as in Section 2, the amplification coefficient of the time-splitting algorithm (5.1) is
given by:

A: [ ak >~ x ah ' x
z = —|=——u.u)LI + _—(u,u)L+]
_ I—Z 1";‘3' 4k au_ au+

T 14z Iz

-~ where:

At jrp=1 2, 2
"=~ (LX)} DIDY
2= S (L2) DD

and the expressions for LE and D are given in Lemma 2.3.

1-2Rez + 1212 1+ 2Rez’ + |2712

Thus 1612 = . 5 - >
1+2Rez + iz 1-2Rez’ + I2°}
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We have Rez’ £ (). Moreover, if oh __oh
’ Ju_ du,

20 ,thenRez 20thus IG | £ 1.

This yields the following theorem:

Theorem 5.1: The method (5.1) is linearly stable unconditionally for any differentiable consistent numerical flux
h which satisfies the condition:

3 ok

Bu_ du, 20

5.3. Time-Splitting Algorithm with TVD Flux Limiters

The [imited version of our time-splitting method can be written as:

Dp-B . hEIOL L LIGH) +ALIDE ,LID;)

x-sweep: 2k LZ — x - DY DL®% =0 (5.20)
OrH_d :
y-sweep: 2% L2~ %— DY DL(@4" - @) =0 (5.2b)

6. RESULTS OF NUMERICAL EXPERIMENTS

In this section, we present the results of some of the numerical experiments we carried to compute steady state
approximate solutions to the TSD equation. .

The numerical experiments presented here were carried on a Sun 3/50 workstation with a 68020 cpu board using
a Motorola 68881 floating point processor to compile the Fortran 77 codes.

The semi-discrete, continuous in time approximations used are described in Section 1 for the unlimited version
and in Section 4 for the limited version.

The time-discretized algorithm for both versions is described in Section 5.
The flow over a circular-arc airfoil of thickness ratio 6% were simulated by our time splitting algorithm,

Iterations were carried in double precision until the maxnorm of two successive time steps fell below a chosen
tolerance factor (typically 10~ or 107%) or until it was reduced by two orders of magnitnde or so, thus approxi-
mating steady state. The time step was adjusted at the end of each iteration to satisfy a preset CFL condition.
Each iteration of the unlimited algorithm incurs an average cost of 20 seconds of c¢pu time (including overhead
of all types). This figure becomes 25 seconds when the limiters are inserted. This should be compared to an
average cost of 15 seconds per iteration for the first order algorithm,

Various meshes were tested. The results presented here used the default mesh in NASA’s XTRAN2L code
(plotted in Graph 0) which is smooth enough to prevent grid-induced oscillations. This computational grid
extends 20 chord lengths upstream and downstream of the airfoil and 25 chord lengths in the direction transver-
sal to the airfoil and has 80 points in the streamwise direction, 60 grid points in the normal direction and 50 grid
points spread along the airfoil chord.
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Graph 0: XTRAN2L default grid
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The graphs of the following pages are for a Mach number in {0.707,0.908,0.961 } (Graphs 1, 2, 3 respec-
tively): '
Graphs 1a & 2a are for the first order Engquist-Osher (E.-O.) scheme. _
Graphs 1b, 2b & 3b are for the unlimited method (5.1) with the E.-O. flux used as building block.
Graph 3¢ is for the limited method (5.2) with the E.-O. flux used as building block. ‘
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Graph la; M. = (.707; First order Engquist-Osher flux
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Graph 1b: M_ = 0.707; Second order flux withcut limiters
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Graph 2a: M., = 0.908; First order Engquist-Osher flux
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Graph 2b: M_ = 0.908; Second order flux without limiters
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Graph 3b: M. = 0.961; Second order ﬁuk without limiters
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Graph 3c: M_ = 0.961; Second order flux with limiters
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