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Abstract

A two-color Fourier analytical approach is proposed to analyze the multigrid
method which employs the red/black Gauss-Seidel smoothing iteration for solving the
Poisson equation. In this approach, Fourier components in the high frequency region
are folded into the low frequency region so that the coupling between the low and high
Fourier components is transformed into a coupling between components of red and
black computational waves in the low frequency region. We show that the two-color
two-grid method asymptotically reduces to a one-color two-grid method whose physi-
cal mechanism is more transparent than for its original two-color form. The two-color
Fourier analysis is also used to design variants of the standard multigird algorithm.
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1 Introduction

It is well known that the multigrid method which employs the red/black Gauss-
Seidel smoothing iteration provides a very effective way of solving elliptic PDEs
[3][9]. The red/black relaxation scheme is also attractive for parallel computation
[1](2][7]. However, the mechanism of this method is not as tr‘ansparent as for methods
which use other types of smoothers such as the damped Jacobi iteration [6][9].
Through the red/black Gauss-Seidel iteration, low and high frequency components of
the solution are coupled together, so that some high frequency components are in fact
primarily computed by the coarse-grid correction procedure. Therefore, it is more
difficult to give a physical explanation of this phenomenon. A two-grid analysis of
this method for a model problem consisting of the Poisson equation on the unit square
with Dirichlet boundary conditions has been performed by Stiiben and Trottenberg [9].
The objective of this paper is to use a variant of Fourier analysis called the two-color

Fourier analysis to provide more insight into the mechanism of this method.

The red/black relaxation operator and the restriction and interpolation operators
are linear periodic operators. A straightforward Fourier analysis does not apply since
they are spatially dependent. Nevertheless, the periodic property can be exploited to

_reformulate the conventional Fourier analysis as a two-color Fourier analysis [7].
From this new viewpoint, components in the high frcquenéy region are folded into the
low frequency region so that there exist two, i.e. red and black, computational waves
in the low frequency region. The coupling between the low and high conventional
Fourier components is therefore transformed into a coupling between red and black
computational waves with the same frequency in the low frequency region. With this
new Fourier tool, the spectral representation of every operator in the two-grid analysis
can be easily derived and interpreted. Then, wc'show that the two-color two-grid
method asymptotically reduces to a one-color two-grid method which is easier to

analyze than in its original two-color form. Although our analysis is different from
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that of Stiiben and Trottenberg [9], ip turns out, without surprise, that they are

mathematically equivalent and lead to the same results.

The two-color Fourier analysis not only serves as an analytical tool but is also a
useful design tool. This is particularly evident for the 1D problem, for which the two-
color two-grid Fouriér analysis can be used to design a fast direct method. For the 2D
problem, some variants are also derived to improve the pérformance of the standard

multigrid method with red/black Gauss-Seidel smoothing.

This paper is organized as follows. The 1D problem is studied in Section 2. The
_analysis and design of the 2D two-grid method is présented in Section 3. Concluding

remarks are given in Section 4.
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2. Analysis and design of 1D multigrid algorithm

Consider a (h.2h) two-grid method for solving the discretized 1D Poisson equa-
tion on Q={0,1] with boundary values «(0) and u (1), i.e.

"}:12-(“5—1“2”5+un+1)=fn ! n=12 -+ ,N~1, (21)

where u, is the estimate of u(nh), i is the grid spacing, and N m-}lz— is even. The

difference between the exact solution &, and the estimate u, is the error e, = u, — &,.
For a two-grid method, the error equation can be written as
enew = MPed
where e = (ey, - - - ,en;)" and M,;** is the two-grid iteration operator [9],
Mhzh = Sh"z Kh?.h Sh"l ,
where §, is the smoothing operator ( smoother ) for the £-grid Q,, v; and v, are the
numbers of presmoothing and postsmoothing iterations, and K* is the coarse-grid
correction operator ( coarse-grid corrector )
K2 =1y — 5Ll |
and where Iy, 1%, Loy, 1,2, L, are the identity, interpolation, coarse-grid Laplacian,

restriction, and fine-grid Laplacian operators respectively.
- 2.1 Two-color Fourier analysis

The analysis of M,** is often performed in the frequency domain so that we con-
sider the coefficients é&,, 1<k <N -1, of the Fourier expansion
N-1 _
e, = k{‘,l é.sintkmnh) . 2.2)
The decomposition (2.2) is particularly convenient for understanding multigrid methods
which employ the damped Jacobi smoothing iteration [9]. However, when we use the 4
red/black Gauss-Seidel smoothing iteration, the Fourier components &, and éy_, are

coupled together. In this paper, a modified Fourier analysis is introduced to analyze

this type of smoother. As usual, we call grid points with even and odd indices the red
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and black points. Errors at red and black points form red and black sequences, which

can be expanded in Fourier series as

N
EL |
2

e, = Y, Fsin(kmnh) , n even, (2.3a)
k=1 ' ‘
N
2 N

én = Y. bysin(knh) , R odd . | (2.3b)
k=t

It is straightforward to see that the Fourier components of the red and black sequences

are related to the Fourier components of the complete sequence e, via

Fi 1 (! -1 &k N ~o
~ = — < & —— —_ 7
[bk] > L 1 t | 12k < ) 1 and 51; =

The decomposition (2.3), called the two-color Fourier analysis, is particularly con-

wl=

venient for operators operating on grid points on a periodical basis.

For example, consider a Jacobi relaxation operation operating at the red points

only,

new

old n even, €,

1
e = —2»{ e + efd = ¢4 n odd.

In the spectral domain, the matrix representation of this iteration describing its action

on (£ . b ), lsks%—l, is given by

. 0 cosd
She®= o 1 | 8 =knh .

For k = %, ',,‘,(-%) is a mapping from 6y onto itself and equals to 1. Similarly, a

2

Jacobi relaxation operation operating at the black points only gives

1 0 T T
Spp(®) = Lose o] 0<6<Z, and $h6(5)=0 (2.4)
Hence, the spectral representation of the red/black Gauss-Seidel iteration can be easily

obtained as

0 cosb

S‘h.rlb(e) = gh'b(e) .§h',(3) = [

o T
0 cosze] 0<8<—, and S",,,,,,(—-Z-)*-:O .



2.2 A two-color multigrid direct solver

Now, let us study the coarse-grid corrector K;2* by using the basis ( £, , §; ). -

Let the restriction operator 7,2 and the interpolation operator /%, be

IR

1 1
47274
where ¢ is an arbitrary constant. Since points of the coarse grid coincide exactly with

12 1 and 4 : lc,1,c1f, (2.5)
red points of the fine grid for the 1D case, /;%(8), which is a mapping from (7.5,)" to

#., and I, (0), a mapping from #, to (f,.b;)", assume the following simple forms,

1
Py 1 cosB Py
PO=15.5=1 md BE= [MOSQ}.

In the red/black spectral domain, the 2k-grid, the h-grid discretized Laplacian opera-

tors and the identity matrix are represented respectively by

Ao 2cos28=1)  p . _ 2 |7} cosB N LAY
Lzh(e)“Th)g—“, L;.(e)—“,;“z" [cose -1 ]' 1,(8) = {0 11

Hence, we obtain

RH©) = [,(8) - [ @)L 3 OO, (8) = [_ZC?;OSe ?] . (2.6)
Equation (2.6) shows that all réd computational waves are eliminated by the
coarse-grid corrector K,2%. Suppose that we are able to eliminate the effect of all black
computational waves by some smoothing operation. Then, one coarse-grid correction
followed by such a smoothing operation is sufficient for solving the two-grid problem
exactly. From (2.4), we know that a simple Jacobi iteration at the black points, i.e.

Sy s, serves this purpose. Consequently, by choosing

MAZh = Sh,b Khzh ' with K};Zh = Ih - IghLi—}}Ihz‘th i ' (2'7)

M2(0) are 2 x 2 zero matrices for all 0<B<%. Besides, M,,z"(-g—) is also zero. Thus, the

two-grid method (2.7) is exact.



2.3 Modification and generalization

Although the above analysis is indcpendent of the value ¢, the choice ¢ = 0 saves
computational work and, therefore, is preferable in practice. It is possible to reduce
the computational work of (2.7) further by using S, , or S ;, as presmoother. Dépcnd—
ing on whether we use S, or S ;, the residues at the red or black poiﬁts are zero, and

in this case the restriction operator 2* in (2.5) can be replaced either by

1 1 1
[Z,O“Z]zh or [01_2'10]}?"
In particular, if we use S,; as presmoother and let ¢ =0, a modified two-color two-

grid direct solver can be described as follows: .

(1) Perform a Jacobi iteration at black points.

(2) Calculate residues at the red points and multiply them by —%—

(3) Solve the system of residue equations on the 24-grid and add the coarse-grid
solution back to the original values at the red points.

(4) Perform a Jacobi iteration at black points.

This algorithm corresponds to the following two-grid operator

' a1
Mhzth,,_b (1;,,,- —Lzhl'i hor )Sh,b ) (2.8)

where L, , is the restriction of the discretized Laplacian operator to the red points of
" the h-grid, and I, is the identity operator for the red points. For 0 <8 < -;3, the spec-

tral representation of L, , and /,, is given by

R 5 |-1 cos@ R 10

Lh,r(9)=? lo 0 ] . £, ©= [0 0] i
Note that the calculation of the residue takes the same amount of work as the smooth-
ing operation at every grid point. We compute the residues at all grid points in (2.7)
while we perform the smoothing operation at one half of the grid points and compute
the residue at the other half of the grid points in (2.8). The saving comes from the

fact that a 3-point averaging operation is needed by (2.7) and that only a multiplication

of % is rcquired by (2.8). The saving in the restriction and interpolation procedures
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will be generalized to the 2D case in Section 3.2.

A two-color L-grid direct solver ( L >2 ) can be defined by using the above

two-color two-grid method recursively, i.e.

| 1
M= Sup Clyy = XanLny ) Sup (2.92)
with "
X;,=M,,2".h=—21—,~,2SISL—-1, and X,,:L;‘,h:%—. (2.9b)

It can be proved by induction that (2.9) is a direct method for the system of equations
(2.1).

There exists no analog of equation (2.6) for the 2D problem so that there is no
2D direct solver corresponding to the one describcd above. However, a relation simi-
lar to (2.6) holds ih the low frequency region which means that the 2D coarse-grid

corrector can reduce errors of low frequency components effectively.
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3. Analysis and design of 2D multigrid algorithm

Consider the solution of the 5-point discretized Poisson equation,

1 .
“];'5’ { u,,x_l_,,) + u,,xﬂﬁy + u,,ﬂ,,’_; + Up, p,+1 — 4 u,,n," )=f"'xr"y , 15 My .My <SN-1,(3.1)
“where u, , is given for n,, =0orN, and N = L is even, by a (h,2h) two-grid
oMy Ry A

methéd with the red/black Gauss-Seidel. smoother. Similar to the 1D case, we can
interpret the physical mechanism of this algorithm as the evolution of two computa-
tional waves. Since the same algorithm has been analyzed by Stiiben and Trottenberg
[9], our discussion emphasizes the physical interpretation associated to the two-color

Fourier analysis, rather than the specific mathematical result derived.
3.1 2D two-color Fourier analysis

The errors e, , associated to (3.1) can be expanded as

My

€, p, = ‘ . chsin(k,rtnxh)_sin(kyﬂnyh) .
k=1 k,=1
We divide grid points with indices n = (n,,n,) into red and black points, depending on
whether n,+n, is even or odd. Then, errors at red and black points define red and

black sequences, which can be expanded as

Cnymy = kZK Fi g sink mn, h)sin(k, way k) n.+n, even,
ek, ’

Eneny = k% by y sin(k nn h)sin(kynnyh) . metn, odd,
€8y

where K, =K and K, =K u{(-‘g—,%)],andwhcre

K ={ (k) €l?: kthy SN=1, kky 21 of k=N —k, , 1gcxs-g—'—1 },
For k e K, we denote (N—k,.N-k,) by k’. It is straightforward to check that #y, by,

éy, €y are related via

Fk _1 11 ék — a __N
[Bk]'z[l _1] [éx" kek and b,=¢, k—(;.

r |z
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The original and the folded two-color Fourier domains are depicted in -Figure 1. Note

that K, and K, differs only by a single élement (%,g) and, therefore, at the frequency

(-gv,-g-) we have only a scalar 6 N N- As before, we define 6 = (6,.8,) = (k,mh kyTh)
2°2

and © denotes tﬁe set of & whose corresponding k belongs to XK.
For the moment we consider the two-grid iteration matrix with one red/black
Gauss-Seidel iteration
M=Ky, (ot S, nKP), KP =1, -1 L1PL, , (3.2)
where L, and L., are the 5-point discretizations of the Laplacian on the & and 2k
. grids, and 12 andll k. are the full-weighting restriction and linear interpolation opera-

tors, given by

0 U WS W
16 8 16
2 . 1 1 1
J 5 2 5 , (3.3a)
l 1 1 1
16 8 16 la
and
DU U
4 ) .
A 1 1
. 154 > 1 > { (3.3b)
1 1 1
4 2 4 n

The problem is to determine the spectral radius p(M 2" of the two-grid iteration matrix.
Each of the 4 x 4 frequency domain matrices appearing below corresponds to a
mapping from a vector space formed by the vector
(rk »=Tg sbk v_bﬁ )T ’
onto itself, where

N [Wkk) i k2K
kK =

k = (ks oky) 1Sk, < 5 (ke N k) if ky <k, -

We also use the abbreviations
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080, +cosh, 5 cosB, +cosB,
B 2

= ’

2
(i) Smoothing

, B=cosd.cos0, , P =cosB.cosh, .

For 6, ,0, < —;5, the frequency domain matrix cormresponding to the red/black

Gauss-Seidel iteration is

3 . rolfos] fos]
Shen®@=5® S, @ = 17 ol |0 71= 1o 2| (3.4

where 0 is the 2 x 2 zero matrix, / is the 2 x 2 identity matrix, and

el

When 6, or 9, is equal to -g—, Sp s 1S a2 x 2 matrix

0 «a |
Sh.ri6(8) = 0 o2l
which is a mapping from (,6,)7 to (Fy.by)7. Finally, for 8, =9, = -’25 Sprip =0,
which is a mapping from &, to itself.

Note that when the first partial step of the red/black Gauss-Seidel iteration, i.e.

the Jacobi iteration at red points, is performed, the original values of the red points are
_discarded and, hence, the computational process that follows is only determined by the
initial values of the black points. This observation is the basis for reducing the two-

color analysis to a one-color analysis.

(2) Coarse-grid correction

Let us first consider the case 0, , 8, < % _The frequency domain matrices for

operators I, Ly and L3} in (3.2) can be written as

~ 190 ~ 4 - J ~1 h2 2
W=y ;| LO=-5; 5| [a@=75.8=204p-1. (3

In (3.4) and (3.5), there is no coupling between vectors (F.by)" and (Pe.b:). The

coupling between them comes from the full-weighting restricion and linear
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interpolation opcrations, which are more complicated than. in the 1D case since thé
coarse-grid points do not coincide any longer Qith the red points of the 4 -grid.

The decomposition, shown in- Figure 2 and commonly used in the muitirate signal
processing context [4], is very useful for understanding the physical mechanism of
interpolation and .restriction operators, and for deriving their frequency domain

matrices. Conceptually, we decompose the restriction procedure into two steps.

Step 1: lowpass filtering ( or averaging ) at every point of Q,, where the weight-

ing coefficients are specified by stencil (3.3a).
Step 2: down-sampling ( or injecting ) values from Q, 10 Q.
The interpolation operator /%, is also decomposed into two steps.

Step 1: up-sampling values from Q,, to ,, by which we assign 0 to points

which belong to Q,~),

Step 2: lowpass filtering at every point of Q,, where the weighting coefﬁcicnts

are specified by stencil (3.3b).

It is relatively easy to find a frequency domain matrix representation for each of the
above steps. Combining them together, we obtain

48 0 2a 0

-~ 110 1B 0 2 1
IP@=1 100, o 4B 0 =-4-[1+|3 1+ 20 24, (3.6a)

0 26 0 I+B]

and
1+ 0 20 O -1 1+8
. 0 I+ 0 2] ¢ |1 1 |[1+B
B®=12 o0 up 0 |*3|0|=7|2a| (3.60)
0 26 0 I+ 0 26,

Thus, in the frequency domain, the down-sampling operation adds the high frequency
component —#; to the low frequency component #;. This phenomenon is known as

aliasing [4]. On the other hand, the up-sampling operation duplicates the low fre-
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quency component £y in the high frequcpcy region in the form of —F, which is cailcd
imaging [4]. The lowpass filters cascaded with the down-sampling ‘ar‘ld the up-
sampling operators are basicaily used to reduce ihe aliasing and imaging effects. For
example, when 0, and 6, are close t0 0, = 1, =1, & =0, and B =-1. Hence, the
aliasing and imaging effects occurring between (Fy,0 F and (Fg,bp)" are substantially
eliminated by the associated lowpass filters.

The product /4, (8)/,2*(8) can be expressed as

) Fu Fu 1+ (H+RAH)

A ~2h 1 -

12k (B)Ik (e)=—8- [FZI FZZ}' where Fll_ [(1+B)(1+B) (1+B)2 ' (3'7)
r 20(148)  28(1+f) 402 dody

Fro=Fy= 200148) 281+ |° Fo= 400 42 |

Therefore, from (3.5) and (3.7), we obtain the coarse-grid corrector,

- Kn Ko
where
1 1
Ku*‘-f—'z‘g(Fazf—Fu)' K22=I-§'§(F211—F22)1
-1 -1,
Kung(an“Fiz)- K21=E(FHI-F21)-

-which holds for 6, , 0, < % For the remaining cases, we can show that ﬁ,?"(e) is
either the 2 x 2 identity matrix or 1, depending on whether only one of 6,, 8, is -g— or
both 6, and 8, are -72£

(3) Two-grid iteration

Combining results in the previous discussion, we find that in the frequency

domain M2 = K2 S, 5 is represented as

0 K J+KpJ?

Az}l -
M@= 1 Ky K% |”

i’
0, ,0, < 5 (3.83)
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. 0 « ' -
MA@ = { 0 & ] , : 0, or 8, ==, (3.8b)
M =0, | 0, =0,=". (3.8¢)
Therefore, the spectral radius of M2%(@) is
2 T
p(Kzlf"i"Kzzf ) Bx . 9), < "2-
oM 2(®)) = {02 8, or 0, = 15'_ . (3.9)
T
0 Gx = By = —2-

-

and finally the spectral radius of the two-grid iteration matrix is

oMy = max pMTFHO) .
0,.8,<%

2
The two-to-one color reduction is mathematically clear from equations (3.8) and (3.9).
Note that the two-grid iteration process M,2(8) is the combination of two processes

M) = KyJ+KpJ? . Mp(@) =Ky +Knl®,
which describe the evolution from (by.~b i)T to (rk.—rE)T and (bk,—b,-‘)T respectively.
Since the m-fold repetition of M* gives
[(M20) " o =Mp® M3 @), (MO ) ln=M%H®),

_the convergence of the two-grid method depends entirely on the process M »(8).

The above derivation can be easily generalized to the case with more than one
red/black Gauss-Seidel smoothing operation. Suppose that v, and v, such smoothing
operations are used respectively for the presmoother and postsmoother, then

PIM(v1vD) = p(Si 2Ktk sm) = PS4 »
where the last equality comes from the fact p(AB) = p(BA), and

»

pK 2 TP 4K ] %) 8, . 8, < -’22
P, V1, v2,0)) = {0 6, or 6, =

0 - 0, =6, =




-14 -

where v = v, + vy,
Let us examine the matrix

My, =K 4K 0%,
which represents a one-color two-grid iteration process and can be expressed as

M,, =JK J¥ T,

where

BT/ C: 5 VI O L)) )

P R > 528
Keq =] 451 Fo (/1) = B (1+@((x2—1) 1 - {1+ )(az_l)
28 28

is the equivalent one-color coarse-grid corrector. Since p(J/K,,J v-ly = p(K.qJ Y, we see
that J2 can be viewed as the equivalent one-color smoother S,,, which corresponds to

two Jacobi relaxation steps for the black component by.

Although our analysis is different from that of Stilben and Trottenberg [9], it
turns out, without surprise, that they are mathematically equivalent and lead to the

same results. In [9], Stiiben and Trottenberg reduced their analysis to the determina-

tion of the largest value among all the spectral radii of matrices J Mg

kL
eq? 0< 9,,9), < -E,

~_and a closed form of this quantity has been derived ( pp. 104-108 ). Since the same

result holds here, we summarize it as follows

-i— v=1
2k =
pl M (v=vitvy) ] ..,..1...(_..2....)\'+1 .
2v v+l B

In the above expression, the maximum of p[M2(0)] occurs at 0 = ("g' 0) or (O.g-) when

-1 ()] | cos~ [(—— ) 22
v and at ( cos [(V+I) 1, cos {(v+1 }*]) when v 22
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3.2 Rearrangement of the smoothing order

Suppose that we rearrange the smoothing order from {red — black } to
{ black — red } for the two-grid iteration discussed before. In the frcqucnéy domain,

the black/red Gauss-Seidel iteration matrix becomes

J: 0 T a? 0] ﬂ: L

§h,b/r(9) = J O exrey < -2_; o 0 * ex or ey = "'"2- ’ 0! ex=8ym_2"' .
This indicates that the computational process that follows is determined by the initial
values of the red points only. Several facts can be obtained by modifying the deriva-
tion in the previous section slightly. The two-grid method with black/red Gauss-Seidel
relaxation consists of two processes

M8 : (re—rg) — (re—ri)l » My(8): (rir)’ = GO F

Asymptotically, its rate of convergence is determined by that of the process M;(8). In

mathematical terms, ‘we have

”

PK 124K 11T 6, .0, < %
pl R/(0) Spyr(®) 1= {o® 8, or8, = -7-;-
T
0 %m%:;

“Since Fy, = F1;, we obtain the equality
pK 1o ™K ) = pR I K ™)
which implies that the spectral radii of the two-grid methods with either the red/black

or black/red Gauss-Seidel relaxation are the same.

Motivated by the 1D algorithm (2.8), we consider an improved multigrid method
whose two-grid iteration operator M,*# is of the form
M =Syp K2 S, K =1y, — Ly lLyy, |
where /,, is the identity operator at red points, L ; is the restriction of the 5-point

discretized Laplacian operator to the black points of Q,, and /#* and I3, are the
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black-to-coarse restriction and coarse-to-red interpolation operators defined by,

1 12k : ro
A i 0 3
12 -;— 0 -}3- L oand il 0 10 (3.10)

Comparing (3.3) and (3.10), we see that the simplified restriction opérator 1 and
interpolation operator 75, are in fact obtained respectively by setting the coefficients of
the red points of the full weighting operator ;2" and of the black points of the linear
interpolation operator /5, equal to 0. This change is motivated by the observation that
Sho K Spp = Shp Kitk Shr »

since the residues at the red points are zero before the restriction operation and the
values at the black points are not used after the interpolation. The corresponding com-
putational algorithm is stated below.

(1) Perform a Jacobi iteration at the red points.

(2) Calculate residues at the black points and average them with the coefficients
specified by 7% to obtain residue values at the coarse-grid points.

(3) Solve the system of residue equations on the 2k-grid, and interpolate the
coarse-grid solution to the red points according to /%,, which is then added back
to the original values at the red points.

(4) Perform a Jacobi iteration at the black points.

One important feature of the improved method is that it splits one complete iteration
Sy, Spp into two separate operations and uses S,, and S,, as presmoother and
postsmoother respectively. It is this particular arrangement that makes possible the
reduction of computational work associated to the use of the sim;ﬁliﬁcd restriction and
interpolation operators (3.10). The improved method h-as the same convergence rate as
the conventional method using either red/black or black/red Gauss-Seidel relaxation,

since

P(Shs K Sp,) =pSnp K2 Sy )=p&Z Sppn )= PR Sprin ) -
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The generalization of the improved method to v 2 2 is straightforward. The key is
to position S, , just before the residue restriction step and S, just after the solution

interpolation step. For example, when v = 2, the imiproved two-grid methods can be
E

2% : 2% 2
Supir Kni Snpir s Sup Kiil Snr Sups» OF Snpis Swp Kii Shp -
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4. Conclusions

A two-color Fourier analysis has been proposed to analyze the multigrid method
with red/black Gauss-Seidel smoothing for the model Poisson problem. By this
analysis, we can clearly explain the coqpling phenomenon existiﬁg between the low
and high wavenumber components of the solutioh, give an more intuitive derivation of
the two-grid analysis, and derive soﬁc variants of this algorithm. The same analytical
approach can also be conveniently applied to the MGR-CH ( Multigrid Reduction with
checkered Gauss-Seidel relaxations ) method [5]{8].
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Figuré Captions

Figure 1: (a) Conventional and (b) folded two-color Fourier domains.

‘Figure 2: Decomposition of the (a) restriction and (b) interpolation operators.
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Figure 1: (a) Conventional and (b) folded two-color Fourier domains.
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Figure 2: Decomposition of the (a) restriction and (b) interpolation operators.




