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by
Thomas Quint

Abstract

In this paper, we present an algorithm which finds & core point for the two-
sided matching model of Demange-Gale (1985). The algorithm is similar to that of

Crawford-Knoer (1981), but runs faster.

1. Introduction .

A two sided matching market (TSMM) is a, game in which there are 1;w0 types
of agents, and the essential coalitions are singletons and doubletons containing
one agent of each type. Over the years, they have become an important part of
economic theory. One reason for this is that they have been deemed worthy models
of economic markets with indivisible goods. As far back as 1962, Gale and Shapley |
modeled marriage as a matching market. A decade later, Shapley and Shubik (1972)
adopted a similar model for their housiﬁg market. And still later, Crawford and
Knoer (1981) defined labor markets in these terms.

In all these instances, the relevant solution concept is that of the core. Simply
put, the core is the set of economic allocations where no -coa.lition of agents can
improve their lot on their own. Herein lies another reason for the study of these
games; the fact that their cores have many “nice” properties. For instance, their
cores are always nonempty (Ka.nekb 1982, Quinzii 1984). Indeed;, much of the
literature (Gale & Shapley, Shapley & Shubik, Cra-mv\fford & Knoer, Kelso & Crawford
1982) relates relatively simple algorithms which calculate core points.

This paper too is about an algorithm to find a core point.

The model is that of Demange and Gale (1985). It is “general”, in that it is not

assumed (as in Shapley-Shubik) that “utility is identified with money”. Thus, when
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a pair (¢ 7) form a coalition, instead of dividing up a total utility, they split a total
" amount of money. The valuation that an agent has for money is not constant—

instead, it can dep
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nd on who the agent is, who he is matched with, or how much
money he already has.

Even in this more general setting, much is known about the core. First, we
repeat that it is nonempty. Also, the projection of the core onto the space ;)f
welfares of players on one side of the market is a sublattice. This implieé the
existance of a “seller optimum” u and a “buyer optimum” u’. These points are
significant not only in that they represent the “extremal” outcomes of the economy,
but also because Demange and Gale have shown that in a certain sense they are
“nonmanipulable”. However, it is not true that the allocations uf and QL are
feasible under every core assignment. Thus, if we wish to calculate u¥, say, it is a )
nontrivial problem to find a core assignment i under which 1 is feasible.

The logic of the paper is as follows. First, we rei)resent the core as the set of
solutions to a system of mathematical equations M. We then define a relaxation R
of this system which is easy to solve. Under mild assumptions, we define a procedure
which moves from solution to solution of R, eventually stopping at one for M

The algorithm turns out to be very similar to Crawford and Knoer's (1981),
but we argue that ours is faster. We prove that if u* is the assignment output by
the algorithm, then (#*,uf) is in the core. This simplifies the problem of finding
u¥. Finally, for the Shapley-Shubik market, which is a special case of this model,
we prove that the “mild assumptions” above are met if the “associated assignment
linear program” (Section 4) is nondegenerate. |

The paper is organized as follbws. Section 2 describes the model and gives
background results. In section 3, we describe Crawford and Knoer’s algorithm, and
comment on a major drawback. Finally, in section 4, we describe our algorithm,

prove some properties concerning its convergence, and compare it to Crawford and
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Knoer’s.
2. The Model!

The Demange-Gale setup is a model of a market for large, indivisible goods.
Each of the a.geni:s only considers owning zero or one such object, and different
agents may value the same object differently.

To facilitate trading among the agents, there is a second, completely divisible
good called money. Money can only be exchanged between agents who trade with
each other. This is an important assumption because, if free transferral of money
among all agents is allowed, the core is in general empty.

Now let us describe the model in terms of a labor market, where the “large in-
divisible goods” are jobs. The market contains n employers (firms) and n employees
(workers).?. Let I and J denote these sets. Each employer has one job opening, and,
likewise, employees only consider taking one job or remaining unemployed. The :th
employer places a value of u;;j(—z) on the prospect of hiring the jth employee at a
salary of z, where u;; : R — R is a Stﬂétly increasing, onto function. Similarly,
vij(z) is the utility to employee j if he takes the ith job at salary z. Finally, the
reservation utility r; is the utility to ¢ of not hiring anyone, while s j 15 3’s valuation
of the prospect of remaining unemployed. We assume r; and s ; are finite.

Next, consider a coalition S consisting of an employer i and an employee 7. If

i hires j, the set of feasible payofls for .S can be given by:

W(S) = {(uij(~2), vi;j(z)), zeR},

! For a thorough description of the model and its structure, the reader is advised
to see Demange-Gale (1985).

2 The model here extends without loss of generality to the case where there
are m employers and n employees, m # n, because we can add “dummy” em-
ployers [i.e., those whose jobs would never interest any employee—mathematically
vij(—fij(ri)) < s; V4] or “dummy” employees [those who would never be hired] to
the model.



where f;; and gi; are the inverse functions of u;; and v;; respectively.® On the other
.hand, if ¢ does not hire j, (u;,v;) = (ry, s;) is attained. Hence, the possibilities for

S can be given by the characteristic function
V(S) = {(uir vj) : fij(ws) + 9:5(v;) = 0 or (ui,v)) = (ri,85)}. (2.1)

At this point, it is useful to make some definitions and notations. First, if ¢
and j do indeed form a coalition, we say that they are matched. An assi nment,
denoted by p, is a sequence of matched pairs {(i; 1), ..., (¢m jm)} in which no agent
appears more than once. If (i j)eu, we write j = u(i) or i = p=(5).

The core is defined as the set of economic allocations under which it is impossi-
ble for any coalition on its own to improve the lot of each of its constituents. Since

the essential coalitions of this game are those consisting of a single employer and

worker, we can write that the core is the set of assignments 4, emplovers’ utilities

(#1400 Up), and emplovees’ utilities (v, .ey Up ) satisfying:

fii(us) + gi5(v;) = 0 for j = u(3) (2:2)

u; = r; for ¢ unmatched by i (2.3)

v; = 8; for j unmatched by y (2.4)

u; > r; for all zef (2.5)

v; 2 8; for all jeJ (2.6)
(3,95) £ (usj(=2), v35(2)) Ve, j # (i) (27)

® The representation of W(S) is easier to see once we interpret fi;(u;) as the
amount of money needed to be paid to i in order to raise his welfare to ui, given
that he must be matched with j. Similarly, gij(v;) is the amount of money needed
to be paid to j in order to raise his welfare to v;, given that he must be matched
to ¢. These interpetations also will help in understanding the stability constraints
(2.7") for the core.



Note that constraints (2.3)-(2.4) entertain the possibility that i or j be un-
matched by y, ie., [unlike in Shapley-Shubik (¥972)], a x in the core need not
contain » pairs. For this reason, we introduce the following notation: u(i) = §
means ¢ is unmatched under p, while 4~!(j) = 0 indicates the same is true for ;.

At any rate, constraints (2.2)-(2.4) represent what the coalitions [(; ()],
[(} where i is unmatched], and [(j) where j is unmatched] can achieve for them-
selves. Inequalities (2.5) and (2.6) depict individual rationality. In general, we
refer to constraints (2.2)-(2.6) as the feasibility constraints because they describe

limitations on the welfare of an agent due to the coalition he is in.

In relation (2.7), the symbol “#£” is defined by
(a,0) £ (c,d) <= a>corb>dor(a,b) = (c,d).

Thus, (2.7) means that if i and j are not matched, it is impossible for them
to improve both their positions by forming a coalition. Hence we call (2.7) the

stability constraints. Note that they can be rewritten as
Fij(uwi) + 9ij(v;) 2 0 for j # p(s). (2.7')

At this point, one should note an important instance of this game. Suppose
uij(z) = aij + €, vij(z) = bij+z, ri =0, and s; = 0 for all  and j, where a;; > 0

and bi; > 0 are constants. Constraints (2.2)-(2.7') become

Ui F+ Vuliy = Ciuli)
ui +v; 2 Cij
ui,v; > 0 Vi, j
where ¢;; = a;; +b;; Vi, j. This is preciselj the core for Shapley and Shubik’s (1972)

izousing market with “assignment matrix” C = {c;;}.
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It is useful to know which properties of the Shapley-Shubik market extend to
the general Gale-Demange setting. First, '

.
Theorem 2.1: The core is nonempty.

e on e

Proof: Kaneko (1982), Quinzii (1984), or Quint (1987).

Next, we represent the core as a region in the space of employers’ utility levels.
Define a core assignment as any assignment g under which there exist (u,v) with

(B, u,v) in the core. Then, for any core assignment i, the vector u is in the core if

u; = r; for i unmatched by u (2.3)

u; > r; for all tef (2.5)
Upwl(j)j[—f“—l(j)j(u“-l(j))] 2 8 for a.llj matched by H (2.6')
fij(ui) + gii(s;) = 0 for all j unmatched by p (2.7")

fij(us) + gij(v,u—1(j)j{—f“-:1(j)j(u,,_1(j))]) 2 0 for all j matched by u  (2.7")

Since the functions f,- j» 9ij, and v;; are all incréasing, the relations (2.3)-(2.7")
all depict “i-increasing, pu~!(j)-decreasing” sets.. Hence, the set of u’s satisfying
these constraints is a sublattice.* Denote this set by U,.

" Another set that we wish to consider is U = uco,; w'sUyu. This represents the
set of possible employers’ utility vectors if r_estricte_d to outcomes in the core. As’
will be shortly demonstrated, the abave union can in general be “nontrivial”, i.e.,
two or ‘more core assignments exist with all U,-"s proper subsets of /. Hence, given
uel, it is a nontrivial problem to find a core assignment ﬁnder which u is feasible.

Evex‘lt though the union of sublattices is in general not a sublattice, we have:

Theorem 2.2: U is a sublattice. -

Proof: Demange and Gale (1985).

* See Veinott, Section 2.4, “Finite Meet Representation of Sublattices”.
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Let u¥ and u” be the greatest (“employer optimal”) and least (“worker op-
timal”) points, respectively, of U. [These points exist because U is a cornpact

sublattice.’] Demange and Qale proved the following facts concerning these points:

1) Suppose a subset I' of employers is allowed to falsify the values {firi(z)}irer:
and {ry}yer, say to {f;jlj(-'r)}ilej‘! and {fy}vp. Then, if (7,4,8) is in the core bf

this “manipulated” market, then uy gy (~%4) < ulf for some ¢'el’.

2) Suﬁpose the rules of the game are as follows: Any subset J' of workers
are allowed to falsify the values {9ij1(2)}jres and {37} er. However, given this
manipulated market, the employer optimal payoff is enforced. Then ul (ie., v )8

. g . . ~ H o f t
is a strong equilibrium, i.e., Vu-1( i (Fp-1()) < vji for some j'eJ'.

Thus, in these senses, the points y¥ and u’ are significant in that they are

nonmanipulable.

At this point, it is useful to present an example in order to demonstrate some

of these results.

j: ’ j=2 ri
o | e0? x=1 -1
h ® 1R A
(x+1)/2 )
§=2 o3 w42 1
[] i -d 4]

In each cell, the top function is u;j{z) and the bottom function is v; j{z). Again,
the r;’s and s;’s are the reservation utilities for the employers and employees.
Consider the mat-ching #t = {(1 1)(2 2)}. We want to investigate whether or

not u! is a core assignment. To this end, let @; be the salary paid by employer

5 Veinott, Section 1.2, “Partially Ordered Sets”

® Using the same logic as above, we could define the sets V. and V| again both
of which are sublattices. Its easy to see (Roth 1984) u¥ and »l always occur
simultaneously, i.e., (u,v”, u) satisfies (2.2)-(2.7) iff (u¥, 4) satisfies (2.3)-(2.7").
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i = 1 (to employee § = 1), and define a; similarly. Then u = (1 — a1, —a2) and

v.= (1,2 + az). In order for (u,v) to be feasible, we need u; > r; and v; > s; for

—4<a; <2 (2.8)
—2<ay < -1 (2.9)

To consider the stability constraints, we first need to calculate the inverse
functions f;; and g;;:

j=1 i=

{=1 %—1 K:: +
% x- Ky

=2 2%=1 . '

- w=3 X=2

In light of the fact that 2+ g < 1, fr2(u1) + g12(v2) > 0 can be written as
(1-e)P+2+a;2>0 (2.10)

Furthermore, f1(u2) + g21(v1) > 0 is equivalent to
B 4 W 2&2 -4 2 0. (2.11)

The set of “core a’s”, which is the set of solutions to (2.8)-(2.11), is shown in

Figure 1. Each of these corresponds to a point in “employer-space” —thus this set

(Figure 2) is contained in U.

mzl

-1 0




a2

1)/

Figure 6

However, the region depicted in Figure 2 is just Uy, It is not U. This is
because, unlike in the Shapley-Shubik case, there is in general more than one core
assignment. To wit, in this example, u? = {(1 2),(2 1)} is another one. Indeed,
applying the same procedure with u? yields

' e
:u 12 u

(-1,1)

. Figwe7

Running through the other six possible assignments, we find that none of them
are core assignments. Thus, U is the union of the areas in Figure 2 and Figure 3.
Finally, note that u¥ = (1,2) is feasible under u! but not p?, but that u? = (~1,1)

is attainable under both core assignments.

3. Crawford and Knoer’s Algorithm

In this section, we describe Crawford and Knoer’s algorithm for finding a point

in the core. Given the notation of Section 2, the algorithm is:
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1) Choose a “small enough” A > 0. Set t = 0. Set a;;(0) = gij(8j) Vi, J.

2) Employer i ma.kes an offer to his favorite worker j, keeping in mind
the present salary structure [o;(£), ..., @in(t)]. Employers may break ties however
they like.

3) Each worker j who has one or more (unrejected) offer tentatively

accepts his favorite and rejects all others. If no one rejects an offer, STOP.

4) Offers not rejected previously remain in effect. If worker j has rejected
an offer from firm ¢ in period ¢, (¢ + 1) = ay;(2) + A. If not, a;;(t+ 1) = a;;().

5) Set ¢t = ¢+ 1 and return to 2).

A few comments are in order here. First, it should be noted that this proce-
dure is an analogue for the well-known Gale-Shapley algorithm (which solves the
problem in the case where the utility functions u;;(z) and v;;(z) are replaced by
ordinal preferences).” For inétance, in the Gale-Shapley algorithm, each employer
begins by making the most selfish offer possible—he proposes to his favorite worker.
Likewise, in Crawford and Knoer, the employers initially consider paying erhployees '
just enough to bring them to their reservation utilities (subsistence wages?!), and
then, given this advantageous salary structure, they choose their favorite workers.

As both algorithms progress, prospects for the employers grow dimmer, while
for the workers, they grow brighter. In the Gale-Shapley algorithm, this follows
from the fact that in every round, employers either don’t make a new offer, or make
one to a worker one notch lower in the firm’s preference ordering. In the Cx:awford-
Knoer procedure‘, it is evident frpm the observation that the “permissible salary
offers” a;; always either stay constant or go up by A. |

Finally, there is the relationship between the output of these algorithms and

employer-optimality. Assuming that an employer is never indifferent in choosing

7 See Gale and Shapley (1962).
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between two workers (and vice versa), the Gale-Shapley algorithm terminates at an
employer-optimal core element. (The core is a [sub]lattice in the Gale-Shapley setup
also.} To see the analogous result with Crawford-Knoer, consider the “discretized”
market, where firms are only allowed to offer salaries of the form g; i(85)+ kA, where
k is an integer. Then, if no firm or worker is ever indifferent between potential
partners at any permitted salary, Crawford and Knoer’s algorithm terminates at
the firm-optimal utilities (for the discretized game).

In all three of these respects, our algorithm, described in the next section, is
similar to those of Gale & Shapley and Crawford & Knoer.

However, there is one aspect of the Crawford-Knoer procedure which we aim
to improve. This concerns the “price adjustment factor” A. Crawford and Knoer's
idea for finding a core point is to set A small enough so that the discretized game
closely approximates the real, “continﬁous” game. As an example, Crawford has
suggested that a A less than 1 is necessary for the algorithm to work for general
~ Shapley-Shubik games Where';zll ci;'s are integers.®
However, the smaller A is, the longer the élgorithm takes to run, especially if

core salaries are high. For example, consider the following example

j= ; j=2 I""
i 6500+K % 0
B 400+x %
122 600+x X 0
- 401+ X
s 0
] 0

Using Crawford-Knoer with A = 1, we initialize at a;,(0) = —400, co; (0) =
—401, a12(0) = 21(0) = 0. Two thousand iterations later, the algorithm encis, with
@11(2000) = 600, ar21(2000) = 599, a15(2000) = 0, &22(2000) = 0, p = {(1 2)(2 1)},
w = (0,1), and y = (1000,0). Clearly we would like an algorithm whose running

% Personal correspondence with Crawford, 1987.
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time is not dependent on what the final salaries are. Put another way, since each
of the 2000 iterations involve both employers making an offer to worker 1,we would
like an algorithm which would roll all of these steps up into one. This is the main

thrust of the next section. -

4. Our Algorithm '

To describe our a.lgozﬁthm, we will use a mathematical approach. As we pro-
ceed, economic interpretations will be supplied.

So suppose we're given a market defined by {u;;(z),vi;(z),rs, s i}7j=1- Given
an assignment u, define the variables {p;;} by:

=L i u(d)=g;
Pij {0 otherwise.

Using this notation, the core elements [i.e., (4,3, ) satisfying (2.2)-(2.7)] become
(4, 2, p) solving
fij(ui) + gij(v;) = 0 if psj =1 ' (4.1)

wi=riif pi;=0Vj (4.2)
vi=s;Epyy=0Yi (4.3)
ui > 1 for all iel (4.4)
vj 2 s; for all jeJ (4.5)
Jij(ui) + gij{v;) > O for all 4, j (‘4.6)
n _ .
> pij S 1for all iel (4.7)
J=1
ip,-,- < 1 for all jeJ . (4.8)
i=1 -

pij=00rlVaj

12



Statement of Algorithm and Proof of Convergence

Our algorithm again initializes with ea,c.h employer deciding which employee to
offer subsistance wages to.
Definition: Given a game defined by {ui;(z),vij(z),r:, s 717 =1, the U-solution
is the vector (u,v, p) given by:
" = {maxj uii(—gij(s;)) = ai, ifa; > Tis
T otherwise.

i = { 1, if je argmax above, k € argmax for k < j, and a; > r;;
Y 0 otherwise.

v;=8;Vi,j]

The interpretation here is that, for each employer 7, p; j = 1 means that he decides
to make an initial offer to worker j.

Lemma 1: The U-solution satisfles constraints (4.1)-(4.7).

At this point, we are able to describe the idea of the algorithm. We start with
the U-solution. The iterated step is a pivoting procedure which preserves (4.1)-
(4.7), and which, if repeated enough times, eventually leads to a vector (u, v, p)
which satisfies (4.8) as well. |
With this in mind, we now present the entire algorithm formally:
1) Set (u,v, p) equal to the U-solution. Set N = 1.
2) Set K(j) = {i : p;;j = 1} for all j. If |K(j)| < 1 for all j, ST‘OPmthe
vector lim,, (%, 2, p) is in the core. -
3) Let J* = {j : |[K(§)| > 2}. For each j*eJ*, do the following:
A) For each ieK(j*), calculate

a; = Ijggawij(*gu‘(vj))

A(Z) _ [ argmax above, if a; > ry;
J i) otherwise.

13



If Jargmax| > 2, just choose ] arbitrarily. Set al = max(a;, 7). .

B) Set

i(j*) = argmax above.

If |2(;*)| > 1, arbitrarily séleqt iei(j*) and change v;(z) to vi+{z) +2"NVw [w an
inﬂnitesimal}. Let N = N + 1, and return to 3B)—now [1(;)| should be equal to 1.
4) ‘Pivot’ on 7, where J is a maximizer of Av; = wj — v; over J*:
A) vy changes to vyz3(-f 137550
B) p;7 changes from 1 to 0 for all eK(7) with i # (7).
C) pij¢y changes from 0 to 1 for all 1K (7) with i # 3(5).°
.D) u; changes to a} for all ieK (7).

Return to 2).

Again, Step 1 is the initialization step, where the offers describe& by the U-

solution are made (see above). |
| Step 2 gives the condition for the algoritl;m to end, namely that inequality
(4.8) is satisfied.

Steps 3 and 4 describe how to move from one prospective solution to another.
Consider any employee j* with two or more offers. K (7*) is the set of employers
who are currently making offers to j*. The firms in K(j*) now have a “bidding
war’—each attempts to win j*’s services for itself by raising j*’s tentative salary.
How much of a raise is employer i willing ‘to give? The answer depends upon his
next best_alternative. Suppose : is barred from dealing with j*. Then a; represents
his highest attainable utility through fdrming a coalition with another employee j,

provided he must “match all offers” to j. Since he also has the option of not making

® Of course, if 7(i) = 0, this step is ignored for i.
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an offer at all (which pays off r;), a; becomes a?. Thus, 7 is willing to increase j*'s
wage as long as u; > a¥. In other words, he is willing to pay a salary of — f;;s(a?)

1 LE
order to “keep” 7%,

To j*, the best of these offers naturally maximizes v;j (—fij(a?)), yielding
wjs. However, the bidding war for j* does not necessarily end at this point—in
general, if continues on into the next iteration. This is because only one bidding
war is resolved per iteration—and that is the one for 7, the employee in .J* for whom
w; — vj is maximum. Worker j agrees to reject all offers other than the best one
[from #(7)]. In return, 7 raises 7's salary offer, from — Fiop3 ur) to — f?(})}'(a,:)- As
for the rejected employers, i.e., all those in K (7) other than 1(7), they now pursue
their next best alternative. The process repeats.

Before proceeding further, the reader should note tha£ the algorithm contains
a “degeneracy” procedure to handle cases where ties occur in the selection of ()
[see the end of step 3B)]. In a nutshell, the w’s serve to Iexicographically order
the vi;(z)’s among the employers iel. This prevents. the algorithm from cycling in
certain cases, and thus enables the procedure to work on a larger set of problem
instances. In particular, see Theorem 4.3.

Next, let us adopt the following convention. For any of the quantities defined
in the algorithm, affix a superscript “t” to refer to the quantity in the tth iteration.

t

} means u; during the tth iteration, a!* means i’s next best alternative

Hence, u :

during the tth iteration, etc.

Lemma 2: Let (u,v%,p") solve constraints (4.1)-(4.7). Let (u'*!,p**1, pi+)

result from applying one iteration of the algorithm to (u!, v?, p'). Then vt < pi+?,

Lemma 2 formally states what we found to be true in the Gale-Shapley and
Crawford-Knoer cases, namely, that as the algorithm progresses, the welfares of the

employees increase (and those of the firms decrease).
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Proof: We begin with a claim, which simply states that for any employer, his

next best alternative is worse than his current state.

Claim: uf 2 a7,
Proof: Suppose not. Then af = ma,x[r,-,u,-;(i)(—g,-j(,-)(v;.(i)))] > uf. Now

r; > u} is impossible because (u!,v?, p') satisfies (4.4), so it must be that
w5 (= 930 (V) > wi o
iz (W) + 955 (¥%) < 0.
But this contradicts (4.6) for (uf,v', p).
- Now Lemma 2 is easily proven. For j # Ft, v;-"“l = vj- from the definition of
the algorithm. Since v;;(z) and fi;(z) are increasing,

2 U Y ST . - e == — foe {1 ENY = L
7 = Vi fieiein) 2 g~ fugi(u) = ok

Lemma 3: Suppose (u*,v’, p') satisfies (4.1)-(4.7). Let (u?*?, pt+?, p'*1) result

from apﬁlying one iteration of the algorithm to (ut,v*,p'). Then (ut*?,pt+1 p'th)
satisfles (4.1)-(4.7) as well.

" Proof: From the definition of the algorithm, it is clear that constraints (4.2)-
(4.5) and (4.7) must hold for (u**?, p**!, p?*1). To show (4.1) and (4.6) are satisfied
as well, consider the following cases:

Case1: i=1i(7), j =7 [so plf* =1]. |
Then, fi;(ui*') + gij(vi?) = 0 from the definitions of u;(;;) and v presented in
-Step 4 of the algorithm.

Cage2: i=i(5), j#7 71 = 0]. In this case,

fi.‘i(u::""l) + g;,'(v;ﬂ) > fij(il:_}cuik(“gik(vi))) + g,-j(v;-) .
> fij(uii(=9:5(v3))) + 9i5(v}) = 0.
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Case 3: zeK(j_t)) but 7 # {(?), i=7 it =0

Fui™) + 05 (05) = fislal) + gi5( max vij(~fiy(af")))

ifang g

> fii (@) + gij(vij(~fi;(a))) = 0

Case &: ieK (') but i # #(7°), § = 7(i) [pt}* = 1],

f,-j(uf'*'l) + g;j(v}+1) = fi}(i)(a;t) + 953‘(:‘)(”;(,-))

=f i}(i)(“s;(i)(—gﬁ(s)(”f-))) + 9u3(s)(”§(i)) = 0.
Case 5: ieK(7) but i £1(7), j #3(), 5 # T [t = 0],

Fii(ui™) + gi; (05 = Fij(alt) + gi;(v%)
= fij(maxui(-gie(vi))) + gi;(v)
k#j

> fii(uis(~gi;(v9)) + gi(v5) = 0.

Case6: i g K(7), 5 =7 [ptf =0].

Fis(ui™h) + gi;(05Y) 2 fij(ul) + gij(v?) 2 0, |
where the first inequality holds by Lemma, 2.

Case7: i ¢ K(7), j # 7.

=y, ot = v}, and pif! = pi;- So, since (4.1) and (4.6) hold at

. t
In this case u; i i

the tth iteration, they also hold at the ¢ + 1th.

Summarizing, we initialize the algorithm with the U-solution, and pivot and
pivot, always preserving (4.1)~(4.7). But how do we know that eventually (4.8)
will be solved? The idea is hinted at by Lemma 2. Since v! is increasing it ¢, u® is
decreasing. If enough iterations are made, the u;’s will eventually start to dip below
the corresponding r;’s. Then the employers will not be making offers (see step 3A
of the algorithm) and thus the chances that |K(j)| < 1 for all j will inexorably

increase,
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Theorem 4.1: Suppose 3§ > 0 such that, for all ¢, there is a finite T > t where

&
BieK(7') with ~ A =uf = uTH 2ol — 02T > 5 (4.9)

Then the algorithm terminates in a finite number of steps at an element in the core.

Proof: Suppose not. Then, suppose ¢ is a time at which there have been
T = 1+ (1/8) * 30, [max; ui(—gij(s;)) — r]* steps satisfying (4.9). We have
>ica (u] —uf) > 6r. Since u? = max;u;j(—gi;j(s;)) Vi, it must be that for some i,

uj < ri. But this is a contradiction of Lemma 3.

In practice, the condition presented in Theorem 4.1 is quite mild. In fact, it is
weaker than the “no ties” assumption usually made!®—“no ties” can be interpreted |
as condition (4.9) holding on every iteration. For the case of the Shapley-Shubik
market, we shall see (Theorem 4.3) that the condition of Theorem 4.1 is satisfied

whenever the associated assignment linear program is nondegenerate.
Employer-optimality of Output

Theorem 4.2: Suppose the algorithm converges, say, to (u*,v*,p*). Then

H
u GUpn- .

Suppose we ran the algorithm on the example presented at the end of section
2. Then Theorem 4.2 implies that the output will lie within the shaded region of

Figure 2 and not the shaded region of Figure 3.

Proof: We begin with a lemma:
Lemma: Let (u',v’,p*) be the vector generated at the tth iteration of the

algorithm, t arbitrary. Let (4,4, i) be any element in.the core. Then, for any j,

either 3; > v} or A71(j)eK*(j). - (4.10)

10 See for instance, Gale-Shapley (1962) or Crawford-Knoer (1981).
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Proof: It is easy to see that this pro;ierty holds for £ == 0, because 'v? = g; for

all . So assume it true for iteration ¢, and attempt to prove it for iteration ¢t + 1.
Case 1: j # ?
Then vt""l = v}, and K*(j) € K**(5). So (4.10) holds by inductive hypotheszs

Cage 2: j = _]
Proposition: Suppose (4.10) holds for some t. Then, for all i,
either af* > 4; or p'(3) = (i)

[Here the notation u'(i) = j means pi=1]
Proof: Suppose not. Then it must be that ai:* < @7 and 4(2) = 7 # ut(3) for

some i. Since (4,5, i) satisfies (4.1),
Fi5(@) + g35(03) = 0 == f5(af") + g55(5; )<= af* < uz3(~g55(%5))-

By definition of a}?, a}* > U (—g; J(vt)) so we have 95 < '03 But this contradicts
(4.10), because j # p‘(g) means 1 € Ki(7). ‘

With the Proposition in hand, we can now prove the Lemma for Case 2 above.

Again, assume the contrapositive, i.e.,
87 < v and 271(7) ¢ KHH(5). |
Erom the definition of the pivoting procedure, K*+1(7) = {Z(7)}. ‘Since u?‘l = 'a:it,
Fip(aF) + iz (e5™) = 0.

This implies

Fip5af) + giy3(97) < 0,
which further implies a¥ * < iy, because (4,8, i) is in the core. But also, K*+1(7) =
AHF} = 471(F) # T = (1) # 7 = u*(3), so the Proposition is contradicted. |
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Corollary: Let (u',v',p’) be the vector generated at the tth iteration of the

algoﬁtbm, t arbitrary. Let (ﬁﬁ, 8, i) be any element in the core. Then, for any 1,
either a}* > 4; or p'(i) = A(s).

Proof: Follows directly from the Lemma and the Proposition.

At this point, we are ready to prove the Theorem. Let (uF, oL, uH# ) be the
employer-optimal point of the core, and let (g,*,g*,‘ p*) be the output of the algo-
rithm. We need to show that («”,v%, u*) is in the core.

Define the sets

L= {i:uf >u},
7= {5 uBG) = j, iely)

= {j:u*(@) =j, ieIi} because of the Corollary,
L={i:uf =u} =1

Jp = J¢.

Then, by the corollary to Lemma 1 in Demange-Gale (1985), we have

L __ o= .
vj’ = v; for all jeJa.

To show that (uf,vL, u*) is feasible, we consider two cases:
1) dely, jeJu, j = p*(3):
Since p*(i) = ,uH () in this case, the fact that uf ,v}f is feasible under p# means
that it is also feasible under p*.
2) iely, jeJs:
Since {u?, vl }ier, jerr = {¥", 2" }iers,jes, in this case, the fact that {u*, V*}iel, gy
is feasible under yx* means that {92 }iery, jes, is feasible under pu*.
Last, the stability of a tripie (%, 2, 1) does not depend on y; hence (uf, v, uHYy's

stability implies that (uH v, u*) is stable as well.
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Theorem 4,2 expresses the sense in which the algorithm’s output is “employer-
optimal” (see p. 11). Vector (u*,2*) is not in general employer-optimal; however;
in a sense; assignment u* is. At any rate, having run the algorithm and found p*,
the problem of finding uf is reduced to a “simple” non-linear program. All we need
.do is maximize an increasing function of u, say Yoy g, over the set of constraints

(2.3)-(2.7") [p. 6], with u set equal to ;:;*. 1
Compariéon to Crawford & Knoer

It is also interesting to compare our algorithm to that of Crawford and Knoer.
The nia.jor difference lies in the price adjustment ‘mechanism. As stated in the
last section, in Crawford and Knoer’s algorithm, salaries always rise by a constant
A. In our algorithm, the amount of increase is flexible—it depends on what the
employers’ next best alternatives are. This enables our algorithm to run much faster
than Crawford-Knoer in cases where core salaries for fhe employees are relatively
high. For‘ Ainstance, consider the example presented at the end of the previous
section. Both algorithms begin with both firms offering worker 1 a salary of zero.
With A = 1, the Crawford-Knoer algorithm takes 2000 steps to reach a solution
in the core with worker 1’s wage equal to 1000. On the other hand, our algorithm
looks at the U-solution and notices that the next best alternative for both firms is.
to get zero (instead of 1000 and 1001 respectively). Hence, the first (and only) step
of the algorithm raises @; by 1000 and results in the same ending core point.

Also, the fact that we don’t have to first calculate a ‘fA” places our algorithm
at a comparative advantage.

However, in general, the Crawford-Knoer algorithm will result in a core point

closer to uf than will our algorithm. This is because their algorithm is taking

11 Without knowledge of u*, the constraint set is a system of inequalities contain-
ing complementarity constraints. This is the sense in which the NLP of finding uf
is simplified.
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smaller “steps” in the space of utilities than is ours. Thus, there is more of a

tendency to “overshoot” % (or uf) using our algorithm (see Figure 4).

Crawford~Knoar Our aigortthm

algorithm path

algorithm path

U-soiutien U-solution

Figure 8

Convergence in the Shapley-Shubik Case

Another issue which Crawford and Knoer consider is the relationship between
algorithm convergence and core no::;:iegeneracy. They remark that “We conjecture
that...the salary adjustment. proéess may fail to convergé to the core of the corre-
sponding continuous market even when that core is nondegenerate”. The next and
last theorem addresses this question for our algorithm in the case of the Shapley-

Shubik market (p. 5).

Definition: Suppose C isann x n matrix. Then the assignment linear program
associated with C is given by '

max ) Y ci;pij (P)

=1 j=1

s.t. i?ij _<_ 1

j=1
n
Zpij <1
i=1
pi; =20 Vi, g
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Definition: Suppose C is an n x n matrix. Then C is nondegenerate if the

assignment linear program (P) associated with C has a unique solution.

Theorem 4.3: Let C' be the assignment matrix for a ShapIey—Shubik_market. If
1) ¢i; is rational for all ¢, §, and
2) C is nondegenerate,

the algorithm terminates at a core point in a finite number of steps.

Proof: Suppose ¢ij = eij/d;ij, where e;; and d;; are nonnegative integers with
dij > 0 for every ¢ and j. For the Shapley-Shubik case, the quantities uf will be
sums and differences of the original ¢;;’s for every i and ¢. Thus, if it is nonzero'?,
—Au; will not be less than 1/ H:’, jdij for each ¢ on each iteration. Hence, we need
to show that there can’t be more than a finite number of consecutive pivots with
—Au; = 0 Vi. That way, we will be able to prove Theorem 4.3 by invoking Theorem
41 with § =1/ Hi’j d,-,-._

To do this, we need some definitions.

Definition: The reduced matrix C*® is the matrix defined by

tR __ e — b
c‘l'j —'C‘IJ 'UJ'.

Since v} is increasing in ¢ (i.e., increasing over time), C*® represents the matrix
of remaining bargainable surplus for the firms at iteration . With this interpreta-
tion, it is'easy to see u’(i)eargmax; cff? and af = max;u ;) ctf. Thus, if ieK (7'),
—Au; = cff,(i) — af. Thus, in order for ~Au; to be equal to zero, the two maximal
elements in row ¢ of C*® must be equal.

Also, we remark that C is nondegenerate iff C*® is nondegenerate for every t.

12 For now on, when we speak of terms such as —Au;, C*, etc, we mean’
limy, o —Au;, lim, .o C*R etc.
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Definition: A matrix C has the D-condition if 3 a set of rows I = {21y ey ie}
with [I] > 1, a set of columns J = {j15++Jm}, and a mapping ¢ : J* —s J such
that:

1) For every iel, the two maximal elements of row i are in columns of J
2) For every iel, the two maximal elements of row i are equal
3) For any iy,15el®,
A) o(iy)eargmax;c;, ;
B)o(ir)gJ
C) o(ir) # (i)
Remark: Sup;_)ose in every row of C, the two ma;cimal elements are equal. Then

C has the D-condition with { = J = {1,...,n}.

Example: _ _
2 201 20
12 4 4 0 0 3
3 6 6 4 1 2
= 5 5 1 2 3 4
31 2 4 4 3
172085

Here C has the D-condition with [ = {1,2,3,4}, J = {1,2,3}, o(8) = 4, and
a(6) = 5.

Lemma 1: If an n X n matrix has the D-condition, it is degenerate.

Proof: See Appendix.

The upshot of this Lemma (and a previous remark) is that, for any nondegen-

erate assignment matrix C, C*® cannot have the D-condition for any t.

Proposition: Let n = 3. Suppose we run the algorithm and, starting at time t,
obtain an infinite number of consecutive pivots with —Au; = 0 Vi. Then ('R has

the D-condition.

Proof: Clearly |J*| = 1, so, without loss of generality, let }’t = 1. Also, w.lo.g.,
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: — ) -
suppose ¢ = 1,2eK(j ). Thus, either cif = 2 [> ciE] or cif = B [> il

Similarly, either cif = ci® [> ct®] or f = iR > iR,

Case 1: The two maximal elements of row 3 are unequal.
Case 1A: 3¢K(7) as well.
Then ;(}4) =3 and —Aug >> 0, so we have violated the Proposition’s hypothesis.
Case 1B: 3 € K(7).
The first pivot puts u**+1(1) % ut*+1(2), and the second pivot (if in fact the algorithm
hasn’t terminated) yields —Aus >> 0 because 3K (}?Hl).
Case 2: The maximal two elements of row 3 are equal.

In this case, C* has the D-condition (with [ = J = {1,2,3}).

Lemma 2: Suppose we run the algorithm and, starting at time t, obtain an
infinite number of consecutive pivots with —Awu; = 0 Vi. Then C*® has the D-

condition.
Note that proving this Lemma will be tantamount to proving Theorem 4.3.

Proof: By induction on n. The last Proposition shows that the Lemma is true
for n = 3, so suppose its true for n — 1. |

So assume for the purpose of contradiction that C*® does not have the D-
condition. Thus, 31 such that the two maximal elements in row 7 of C'*® are unequal
(see the last Remark). Let j = #t(2). Clearly pT(i) # 7 forall r > t,3 # 1, because,
. otherwise, a pivot would ensue on column j, vielding —Au; >> 0. However, the
degeneracy procedure ensures that furthermore, ; ¢ arg max; cfﬁ-2 forall T > t,i #1.
In other words, j cannot even be a nest best alternative [Again, otherwise a pivot
would eventually occur on column 3] Hence, if we remove players 1 a,nci 7 from the

game, the algorithm will run exactly as before, i.e., there will be an infinite number

of consecutive pivots with —Au; = 0 Vi. So, by the inductive hypothesis:,
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Claim 1; The matrix C'%, [By C*E. we mean the matrix C*R without the iih

row and the jth column.] has the D-condition.
Next, since pt(7) %3 Vi # 1 (see above), we have
Claim 2: cg_z < max; iR Vi #1.
Finally, since p'(7) = j, we have

; . atR iR LT
Claim 3: i 2 °; Vi # 3.

But Claims 1,2, and 3 together imply that C*® has the D-condition, with the

‘_13-., except also a(z) = 7. This concludes the proof of Theorem

same I,J,0 as C £

4.3.

Theorem 4.3 raises some other issues to which we now turn our attention.

Coniecture: Nondegeneracy does not necessarily imply convergence in the gen-

eral Demange-Gale case.

By nondegeneracy here, we mean that the set U (section 2) is n-dimensional.!3
At any rate, the pertinent concept in determining algorithm convergence is that of
D-c_ondition. As we have just seen, the D-condition implies nondegeneracy in the
7Shap_1ey—Shubik case. However, we 'do not believe that (the appropriate analogue
of) the D-condition implies degeneracy in the general Demange-Gale case.

The concept of D-condition also plays a vital role in terms of the rate of the
algorithm’s. convergence. Consider the two Shaplej"-Shubik markets below. The
matrix C; has the D-condition, and the algorithm does not converge. Comparing

C: and Ca, we could say that C, “almost” has the D-condition. Interestingly

13 This corresponds to the definition of nondegeneracy given in the Shapley-
Shubik case (p. 23) becduse of Theorem 4.3 in Quint (1988).
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enough, for small ¢, the algorithm “almost” doesn’t converge—in fact, it takes on

the order of 2/¢ iterations to run.

Thus, we are forced to conclude that

Remark: The aigorithm is not polynomial in the amqunt of input data.
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APPENDIX
Definition: A matrix C has the D-condition if 3 a set of rows | = {21, ey te}
with |f] > 1, a set of columns J = {31, Jm}, 2nd a mapping ¢ : J* — J with:
1) For every iel, the two maximal elements of row i are in columns of J
2) For every iel, the two maximal elements of row i are equal
3) For any t1,4pelC,
A) o(i1)eargmax;ci, ;
B) oiy) ¢ J |
C) o(i1) # o(iz) .
Lemma: If an n x n matrix has the D-condition, it is degenerate.

Proof: We begin with a Proposition:

Proposition: Suppose an n x n matrix C 'has the following properties (n > 2):
1) In each row, the top two elements are equal.
2) For each column j*, j*eargmax; c;; for some i,
Then C is degenerate, and, for every maximal matching p*, u*(i)e arg max jcij Vi
Proof: By induction on n. If n = 2, both rows of C necessarily have two
identical elements, so the Proposition trivially holds. So suppose its true for n — 1-
dimensional matrices.
Case 1: 3 column j with only one i, say i, satisfying jearg max; c;;.
In this case, remove row : and column 7 from the game. The hypotheses now hold
for the (n —1) x (n — 1) matrix C_3;- Let p"‘_l.;} and ,u"_',z?}. be two maximal matchings

for C_+=. Then define

_‘J.
W) = u) for i #7,
ur(@) =7,
W(i) = W) for § 47,
g2 = 5.
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Then p*! and p*? satisfy the Proposition.

Case 2: All columns j* satisfy |[K(5*)| = |{¢ : j*e a.rgmax,l- cijH = 2.
Case 2A: 3 row ¢ with at least 3 equal maximal elements.
In this case, let je arg max; ¢; ;- Then in a manner similar to Case 1, we can eliminate
row 7 and column 7 and use the inductive hypothesis.
Case 2B: A such a row.

Then the matrix, after relabeling columns, has the form:

where cell (7, 7) containing an “z” means Jearg max; ¢;;. But then, p*! : u*1(3) =4

and p*?: 4*2(7) =i+ 1 (mod n) both satisfy the requirements of the Proposition.
©

Suppose now that C has the D-condition with [ , J y0. Denote by J: the set of
columns {jeJ : je arg max; ci; for some tef } Clearly C has the D-condition with
I, j , o also.

Now we can prove the Lemma. Let % be any matching. We need to show that
3 two ma,tc.hing-s £** and p*? with

n

n n n i n
D_Ciuni) 2 D Ciaty 9 Cipeagyy 2 D_cing), and Y Cimigy = 3 Cipergy)-

i=1 i=1 i=1 i=1 i=1 i=1
To do this, define
p*1(3) = u**(i) = o(3) for ef®,
™ (3) = w*(3) = (5 for éef : i(3) & {J U [U;4.0(0)]}.
This leaves p*1(i) and u*%(i) undefined for iel with ﬁ(z)e{f U U, seo(D)]}.-
Denote this set by 1.
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This also leaves x*! ~1(;) and u*? ~1(j) undefined for jng. So, |I| = Ile
Now consider the definition of the D-condition. Because of condition 3), neces-
| > |J] (if C is square). So, since |[f| > 1 = || 2 2, we have that |I] and
|/| = 2. Thus, |I| = |f [ > 2. Also, it is easy to see that the submatrix of C' formed
by the rows of I and the columns of J: satisfies the conditions for the Proposition.
Denote this submatrix by C.

Let p' and p? be maximal matchings of C. Now finish the definition of y*!
and u*? by setting

p* (i) = p'(3) and p*2(i) = () for iel.

Since p*' (1) = u*?(2), ciper(iy = Ciyrags) for i ¢ I. But also Ciuri(i) = Cipv2(i)
for iel, because of the second conclusion of the Proposition. Hence, ) cipe1¢sy =
2 Cipra(i)-

As far as [ is concerned, we have

1) For iele, Cipri(i) 2 Cig(s) and Ciyuea(y) > Cin(i), because (i) is an argmax
of c;; over j.

2) Foriel buti & I, cipmryy = Cig=2(i) = Cin(s) because p*1 (i) = p*%(3) = i(3).

3) For éef, remember that the second part of the conclusion to the Proposition
implies that

pl(i)earg max c;; and p(i)earg max Cijr
jed jed

But since [ C I, this implies
p'(i)earg max cij and p(i)earg max ¢
jeJ jedJ

Tl_ms;, Cipvi(i) > Ciji(i) and Cip*2(5) > ciii(!;)“
But then 1), 2), and 3) together imply 3 c;ue1s) = 2 Cingy and Y cqper(ny =
2 Ciagi)- This concludes the proof of the Lemima.
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