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A new multigrid approach to convection problems*

Wim A. Mulder
Department of Mathematics
405 Hilgard Avenue
University of California at Los Angeles
Los Angeles, CA 90024-1555

A new multigrid method for convection problems is presented. It is designed to overcome
the problem of alignment, the fiow being aligned with the grid. The technique employs
semi-coarsening in several directions simultaneously, and gives rise to multiple coarser
grids with the same total number of points per grid-level, but with different sizes in each
co-ordinate direction. The amount of work per multigrid cycle is still O(N).

As an example, the method is applied to the nonlinear upwind-differenced Euler equa-
tions of gas dynamics in two dimensions. Convergence rates are estimated. by two-level
Fourier analysis for the linearised equations. Numerical experiments on the nonlinear
equations confirm these estimates.

1. Introduction

The Euler equations of gas dynamics can be discretised in space by central or upwind differenc-
ing. The former requires artificial viscosity to avoid oscillatory solutions, the latter automatically
introduces sufficient viscosity to avoid oscillations and allows for an excellent representation of
shocks (see [17] and references therein). Although upwind schemes appear to be superior'to central
schemes in their representation of shocks and robustness, their cost is 4 to 8 times that of central
schemes. For steady flows, this will not be a serious drawback if solutions can be obtained in only
a few iterations. '

Near the end of 1982, the author and van Leer investigated the efficiency of various relaxation
schemes for the upwind differenced Euler equations {21]. A similar study was carried out indepen-
dently by Chakravarthy [3]. In both papers, a significant acceleration with respect to conventional
methods such as ADI and Approximate Factorisation was found. However, the convergence factors
of these schemes are still only 1 — O(h?).

The success of the relaxation methods inspired a multigrid approach. Convergence rates inde-
pendent of grid-size were found in early 1983 for a transonic test problem with a shock [9]. Both
first-order- and second-order-accurate solutions were computed. For the latter, the defect correc-
tion technique was used. The method was successfully applied to a demanding problem with strong
shocks: the flow of interstellar gas in a spiral galaxy [10]. -

Jameson [7] introduced a multigrid method for a central-difference discretisation of the Euler
equations around the same time. A method for the upwind differenced equations, in a number of
respects similar to the one in [9], was proposed independently by Jespersen [8].

Several authors have applied and extended the method proposed by Jespersen [8] and Mulder
[9]. A nonlinear version has been explored by Hemker and Spekreijse [6]. Three-dimensional
computations have been carried out by Anderson [1]. Extensions to the Navier-Stokes equations
can be found in [18] and [19].

* This work has been supported in part by the Center for Large Scale Scientific Computing ( CLaSSiC)
Project at Stanford under ONR grant N00014-82-K-0335, and in part by the NSF grant DMS85-03294 and
the ONR grant NOO0O14-86-K-0691 at UCLA.



Despite these successes, the method sometimes fails. The problem is exposed in [13], where the
convergence factors for various relaxation schemes and multigrid are estimated by two-level Fourier
analysis. Convergence is lost in the case of strong alignment, the flow being aligned with the grid,
which is a well-known problem already for elliptic equations with strong anisotropy [2,4].

This paper describes a new method that does not suffer from bad convergence rates if alignment
occurs. It employs semi-coarsening in d co-ordinate directions simultaneously where d is the
number of space dimensions. Here we will mainly concentrate on the two-dimensional case. The
generalisation to three dimensions is obvious.

Section 2 describes the method in a general way, without reference to a particular partial differ-
ential equation. Complexity estimates are included. The method is applied to the nonlinear Euler
equations of gas dynamics in sections 3 and 4. Convergence rates are estimated by two-level Fourier
analysis on the linearised equations with constant coefficients and periodic boundary conditions in
section 3. Numerical experiments on the nonlinear equations, using upwind differencing, are car-
ried out in section 4 for a subsonic, transonic, and supersonic problem. The main conclusions are
summarised in section 5.

2. Method
£2.1. Motivation

The multigrid technique is an efficient numerical method for solving elliptic partial differential
equations. Its convergence rate is independent of the number of grid points. In combination
with successive grid refinement, or nesting, it can provide solutions with an iteration error smaller
than the discretisation error in one to three multigrid cycles [2,4]. Non-elliptic problems can also
be handled, if sufficient numerical ellipticity is present. This means that, on the scale of the grid
spacing, there is a reasonable amount of coupling between neighboring points or cells. This coupling
is then exploited to remove oscillatory components of the error by a suitable smoother. Here the
error is defined as the difference between the correct numerical solution and the current guess.
The multigrid method fails if this coupling becomes too small in one of the co-ordinate direc-
tions. We exclude the possibility of total decoupling at some point, which means that the solution
is undetermined at that point. In a multi-dimensional problem, the coupling can become locally
one-dimensional. This is a common situation in anisotropic problems, such as the elliptic problem
tizz + €ty = 0 for € — 0, or the problem of computing a steady solution to the hyperbolic convec-
tion equation 4 + aug + buy = 0 for b — 0, a # 0. In these two examples, the differential operator
becomes one-dimensional, namely, u,, = 0 for the elliptic example, and au, = 0 for the hyperbolic
problem. Thus the solution will be independent of y, unless some structure in the y-direction is
imposed by the boundary conditions. A proper discretisation will reflect this by being independent
from neighboring values in the y-direction. Suppose now that the error has an arbitrary structure
in the g-direction and is highly oscillatory in the y-direction. Restriction to a coarser grid will
involve some sort of averaging in both co-ordinate directions. The oscillatory y-component will
cause cancellation, and as a result, this error will not show up on the coarser grid and can not be
removed by the multigrid method. It also can not be removed by smoothing on the finest grid, as
would normally be done, because there is no coupling in the y-component. This component actually
must remain unaffected if the discrete operator reflects the character of the differential equation.
The only way to remove the error is by some relaxation scheme acting along the z-direction. If
the z-component of the error is smooth, this will be an inefficient process. For a relaxation scheme
that uses only local data, the communication of boundary data to the interior will take O(N %) it~

erations, where N 7 is the number of points in the z-direction. Thus, grid-independent, convergence
rates are lost.

The problem of decoupling in one of the co-ordinate directions is well-known. It is called
strong alignment by Brandt [2]. A commonly used remedy is based on brute force: choose a
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relaxation scheme that is exact or almost exact in the case of alignment. Candidates are global
relaxation schemes such as those based on line relaxation or ILU. For purely hyperbolic problems,
lexicographical Gauss-Seidel is a global scheme as well. It becomes a direct solver if the ordering
follows the flow.

The initial success of the multigrid method for the Euler equations of gas dynamics proposed in
(9], and its failure in certain cases |13}, can be explained in the above terms, The Euler equations are
hyperbolic for supersonic flow and elliptic for subsonic. In [9], the relaxation scheme is Symmetric
Gauss-Seidel, which is a poor smoother but a fairly good single-grid solver, although its asymptotic
convergence rate is still 1 — O(h?). The multigrid method accelerates the scheme considerably.
However, Symmetric Gauss-Seidel can not handle alignment for subsonic flows, and therefore the
multigrid method breaks down in that cage. In practical applications such as transonic flow around
an airfoil, using an O-grid, alignment only occurs in small regions and the flow is close to supersonic,
so the method works fine. In subsonic channel flow, on the other hand, alignment is likely to occur
and convergence will be slow. ,

In two space dimensions, the problem of alignment can be overcome by using line relaxation.
Damped alternating-direction Line-Jacobi relaxation provides an uniformly good asymptotic con-
vergence rate of %— per cycle [12]. However, in three dimensions, plane-relaxation would be necessary,
which is not attractive. Also, line-relaxation is generally restricted to simple domains, whereas a
multigrid scheme with a relaxation scheme that uses only local data, can in principle be used on
domains of arbitrary shape.

Another way to solve the problem of alignment is by using semi-coarsening, that is, one com-
bines points or cells in the direction of the strongest coupling [2,4]. Any oscillatory component of
the error in the direction of weak (or no) coupling will then be brought to the coarser grid. This ap-
proach has not been pursued to its full potential. The method presented here uses semi-coarsening
in such a way that global solvers are no longer required (except on the coarsest grid).

Semi-coarsening can be implemented in several ways. The simplest approach involves coarsen-
ing in alternating directions. For a finest grid of, say, 8 x 8 points, the coarser grid can be 4 x 8
points, and the next coarser grid 4 X 4 points, et cetera. This method still fails in the case of
alignment, If the flow follows the z-direction, then the restriction to 4 x 8 points will not cause any
problems, but the subsequent restriction to the 4 x 4 grid will still cause oscillatory errors in the
y-direction to cancel, whereas smoothing in the y-direction can not be achieved in the absence of
coupling. Thus, this approach is fruitless.

A second approach is based on semi-coarsening in two direction simultaneously, From one .
finest grid of 8 X 8 points, two coarser grids, one of 4 x 8 and one of 8 x 4 points, are obtained.
On the next level, 4 grids are created, et cetera. In this way, the total number of grids is doubled
after each restriction, and the total number of points in all grids on each level remains constant.
The amount of work for a V-cycle is O(N log, N), as is the storage requirement. This method
may be attractive for two-dimensional problems, certainly if tailored for a computer with vector
capabilities or parallel processors. However, in three dimensions, the number of points increases on
progressively coarser grids. For example, starting from a 8 X 8 X 8 grid, one would go to three grids
of sizes 4 X 8 X 8, 8 X 4 x 8, and 8 x 8 X 4, respectively, thus increasing the number of points by
3/2. Proceeding to still coarser grids will result in excessive storage and operations requirements,
The method is clearly useless in three dimensions.



2.2. An O{N) method

The complexity can be reduced to O(N) by choosing the sequence of grids shown in Fig. 1. Starting
from 8 x 8, semi-coarsening produces a 4 X 8 and a 8 X 4 grid, just as in the previous approach.
On the next level, however, the 4 x 4 grid combines information from both finer grids. This
method requires a modification of the standard multigrid algorithm to account for the redundancy
when similar information from different giids is combined. Before discussing this, we will present
complexity estimates for the method.

Let the finest grid have Ny = 2M points in the z-direction and Ny = 2M2 points in the y-
direction, resulting in a total of N = Ny N, points. The level number L corresponding to this grid
is defined by L = log,(N1N3) = My + M,. The set of grids corresponding to the finest grid consists
of grids with size 2™* x 2™2  where 0 < m; < Mj and 0 < mg < M,. For each integer pair (my, m;)
there is one grid, and the total number of grids is obviously (M + 1)(M; +1). Each grid {m;, ms)
is linked to at most 4 grids (m; + 1,m; % 1), two finer (+1) and two coarser (—1). Less than 4
links occur if m; &1 or my 4= 1 lies outside the domain of m; and mg, respectively.

The set of grids can be thought of as a lattice spanned by the integer pairs (my1, mg), with
0 < my £ M and 0 < mp < M;. Figure 1 illustrates the case M; = M = 3. For a given level
number [, with 0 < ! < L, the associated grids {m1,m3) are defined by my + my = I. The total
number of points on all grids is

M, M,
Do D 2mem = yN(1-27 M1 - M-l < ypy, (2.1)
m1=0 ma=0

For large M; and M3, we need 4N points, i.e., four times the amount of storage required for the
finest grid. The amount of work involved in a V-cycle is of the same order. Thus, we have an O(N)
cost per multigrid cycle, as in the usual multigrid approach.

A general multigrid cycle involves v multigrid iteration with respect to a given grid. A V.cycle
is obtained for ¥ = 1, a W-cycle for ¥ = 2. The cost of a cycle is approximately proportional to
the number of points on each grid multiplied by the number of times that grid is visited. For a
problem in d space dimensions, the finest grid has N = N1 Ny ... Ny points. The cost of a multigrid
cycle is roughly proportional to

M, My
Z .. Z 2m1+m9+...m47M1+...+M¢--m1—...—md_ (2.2)

my=0 mg=0
For a V-cycle (y = 1), we obtain
d
29N [J(1 - 27M-1) < 29w,
=1
which is the same as the total number of points on all grids. For a W-cycle (4 = 2), the result is
d
20N T (1 + My).
=1

As M; = log; N;, the O(N) complexity is lost.
If a V-cycle does not solve the coarse-grid problem sufficiently well, an F.cycle can be used.
This type of cycle is defined recursively as a v = 2 multigrid cycle, in which the first multigrid
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iteration is an F-cycle and the second a V-cycle. The cost of an F-cycle can be estimated by

M,y M,
Z ...EZml*"'+md(1+Ml+...—i—Md—mlw..._md)
m1=0 mg=0 (2.3)

= 2¢N {(1 +d)— _d‘ WM+—;’“11-] [flu - 2"'"'-‘“1)] < (14 d)2°N.

i=1 =1

We conclude that the proposed multigrid method has an O(N) cost per multigrid cycle if a V- or
F-cycle is used.

2.8. Restriction and prolongation

The restriction and prolongation operator for the method described above can be chosen in the
same way as for a normal multigrid method that employs semi-coarsening. Only if data from
more grids are to be transferred to one grid, a modification has to be made. This modification is
the crucial part of the present method. The description here is based on the Full Approximation
Storage (FAS) scheme [2] for the nonlinear system of equations £(u) = f. The reader is assumed
to be familiar with the details of the FAS scheme. The algorithm for linear equations follows from
the nonlinear case in a straightforward way and will not be discussed here.

We start with the restriction operators. As mentioned in section 2.2, a grid is uniquely defined
by (my,m;). The current solution on that grid is denoted by u(mi'""), and the corresponding
residual by r(m1:m3) = flmima) _ Lmama) (y{mi,ma)) Let the restriction operator be denoted by R
for the residual and by R for the solution. The initial solution on a coarser grid (my, m3) on level
[ = my + mg is found as the restriction of one or two solutions on level { + 1, depending on the
number of links to finer grids (cf. Fig. 1). Thus, the restriction operators R and R correspond to
semi-coarsening in the z-direction (R, and R.), or semi-coarsening in the y-direction (Ry and R,),
or a combination of both. The last is necessary if the coarser grid is linked to two finer grids. In
that case, we give equal weights to the appropriately restricted data from each grid. An algorithmic
description of the operations involved in restriction from level [ + 1 to { is:

for all {(my,mg) with my +me =1, 0< m; < My, 0< ms < M do
if there are links to (m; + 1, m;) and {my, ms + 1) then
ulmama) .— %.[j’zzu(m1+1.mn) + _éyu(ml.mz+1)]
rlmuma) i LR p(mitlma) o Ryr(mumatl)] _ p(mi,ma) (g (m1,ma))
else if there is only one link to (my + 1,m;) then
ulmima) }‘ému(ml+1,mn)
rlmumz) . R,,r(”“"'l'mﬂ) - ,,(ml.ma)(u(mi,m))
else if there is only one link to (m1,my + 1) then
ulmuma) . _&yu(ml.m2+1)
rlmama) . g p(mima+1) _ r{mi,ma) (y(m1,ma)y
end if .
end do (2.4)

The resulting coarse-grid problem becomes

Llmuma)(glmima)y = plmima) o o(ma,ma)

5



Here the solution %(™2:™3) can be determined approximately by a multigrid cycle with respect to
the grid (m;, mz), or by a single-grid solver if this grid is chosen to be the coarsest.

The basic difference with the standard multigrid approach is the occurrence of two links to finer
grids. We have chosen equal weighting of data from the two grids. If ulmi+lma) and ylmimati)
have been obtained directly by restriction from the finest grid (M, M;), then

u(Mi+1,Mz) _ Rﬂu(MnMn)’ p(MLMa+1) Rzu{Mth),

. = s ow (2.5)
y(Mi+1,My+1) _ LHR.R, + R, Rx]u(Ml.Mz).

A similar expression is obtained for the restriction of the residual. For common choices of the
restriction operator, such as nine-point restriction and volume-weighted restriction, we have Ry =
fi!,f?y = fiyfs’,, implying that (2.5) results in the same expression as when ézv is applied directly.
The same is true for all coarser grids, that is, (2.4) produces the same result when going from the
finest grid (Mj, M3) to any arbitrary coarser grid (my, m;), as one obtains by selecting an arbitrary
path between these two grids and applying only R, or R,,.. In practice, the solution will be modified
on each grid before it is restricted to still coarser grids, and this equivalence disappears,

The prolongation operator brings correction from one or more coarser grids to the current grid.
We choose the following approach:

for all (my,ms) withm; + me =1, 0< my < My, 0< my < M, do
u(ml:mQ) = syp (u(mlamﬂ)’ f(mhmﬂ), ﬂ{mllmﬂ)(-))

if there is a link to {my — 1,m3) then
ulmuma) o g (mama) P, lulmi—1ma) _ j'gzu{mhmz)]
end if

if there is a link to (my,mg — 1) then
Culmima) i y(mama) o pfy(mame—1) _ R ulmuma))
end if
end do (2.6)

Here we have included v, parallel smoothing steps with some relaxation scheme §. Next the
one or more coarse-grid corrections are added to the solution on the current grid (m1, mg). The
fundamental difference with standard multigrid is that the corrections are always computed with
respect to the restriction of the most recent solution rather than the one at the begin of the multigrid
cycle. Choosing the z-direction first in (2.6) results in an asymmetry of the algorithm with respect
- %o the co-ordinate directions. In the actual code described in section 4, this asymmetry is reduced
by alternating the order of prolongation in z and y each time (2.6) is carried out.

The restriction operator (2.4) uses equal weights when more than one finer grid exists. The
prolongation operator (2.6) can also be expressed in terms of weights:

ulmuma) . [pyu(m.ma—ll] +(I- pyfgy) [pzu(mrl,m)]
) ) (27
+ (I - PHR!I)(I - P::Rm) [syp (u(ml'm): f(mllma), ﬁ(mhma)())]

This shows that the weight for the first term on the right-hand side is I, for the second (I - P, R,),
and for the third (I—- P R,)(I~ P, R,). Because PR, and P, R, approach I for the low frequencies,
the low-frequency component of the new solution is mainly determined by Pyu(”‘"""“l). This
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preference with respect to one co-ordinate direction can be reduced by the alternating approach
mentioned above. Thus, the next prolongation would result in an expression similar to (2.7), but
with z and y interchanged.

In addition to the above parallel smoothing, one can perform vy pre- and v; post-smoothing
steps, just as in the standard multigrid method. This completes the description of the new method.

Before we continue with the discussion of a specific applieation of the method, we like to point
out that the choice of weights in (2.4) and (2.7) is convenient and simple, but not necessarily optimal.
If these restriction and (alternating) prolongation operators are used, no bias with respect to co-
ordinate directions is introduced. Given the nature of the differential operator, which was assumed
to be strongly biased with respect to one of the co-ordinate directions, it appears that a similar bias
in the restriction and prolongation operators could give better results than the approach chosen
here. These weights might possibly be based on norms of the residual on various grids, and on the
associated convergence rates. The weights in (2.7) involve restriction and prolongation operators.
One could include the differential operator if it is sufficiently simple. In addition, restriction to
certain grids may skipped if their is only very weak coupling in the direction of coarsening, This
is a viable option if the flow has a dominant direction throughout the computational domain and
should save a substantial amount of work. Such variants remain to be explored.

Finally, we remark that the present method is not able to handle alignment at 45° with respect
to the grid-lines. The discretisation use in the following sections does not recognise this as a special
case and introduces sufficient numerical ellipticity to avoid the problem. Hackbusch [RfZ] describes
a parallel multigrid method which can handle alignment at 45° for certain simple problems. The
price paid is a (sequential) complexity of O(N log V).

3. Two-level Fourier analysis for the Euler equations of gas dynamics

The method sketched above is applied to the Euler equations of gas dynamics that describe the
flow of an ideal compressible gas in the limit for vanishing viscosity. In conservation form, these

are: P 3f 3
w g _

The vector of states w and the fluxes f and g are

P gu pv
_ | pu - | tp | puv
w= pv |° f= puv » 9= pi4p |- (3.18)
pE puH pvH

Here p is the density of the gas, and u and v are the z- and y-component of the velocity, respectively.
The energy E, total enthalpy H, pressure p, and sound speed ¢ are related by
1 p

E= e

(r=1)p

This system of 4 equations is discretised by upwind differencing, yielding solutions of first-order
accuracy,

The convergence of the multigrid method can be estimated by linearising the equations (3.1),
assuming the coefficients of the linearisation to be constant, and imposing periodic boundary con-
ditions. This allows the use of Fourier symbols for the various operators. Then, only two levels
are considered, a fine and a coarse, and it is assumed that the problem on the coarse grid is solved
exactly. This procedure is followed in [13] for the standard multigrid method. For the present
method, we choose a finest grid of size Ny x N3, where Ny = 2M1 and N; = 2M2 with both M; and

+iur+v?), H=E+ g, =1L (3.2)
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M larger than 0. It is assumed that the two coarser grids of size (N1/2) x N3 and Ny x (Nz/2),
respectively, are solved exactly.

Here we only sketch the various steps in the two-level analysis. The present case is a straight-
forward generalisation of the work in [13]. The reader is referred to that paper for details.

A linearised form of {3.1) is given by the discrete operator

L= -’-}-[A‘*(l -7+ A (T - 1))+ £—[B+(1 - T, 1)+ B (T, - 1)} (3.3)
z ¥

Here h, and hy, denote constant grid-spacings in the z- and y-direction, respectively. The shift
operator T is defined by Tyvg, k, = vi, 41,4, for a quantity v on the Ny x N grid, and Tyvg, by =
Uk, ka+1. The matrices A* and BT correspond to the positive and negative parts of

u 0 ¢ O v 0 0 O

0 u 00 0o v ¢ o0
A"cOuO’B_Och (3.4)

0 0 ¢ u 0 0 0 w

These matrices are obtained from df /dw and dg/dw after a similarity transform. The construction
of these positive and negative parts is described in [13]. In Fourier space, the symbol L is a function
of the frequencies

8, =2xly /Ny, (h=-iNy+1,..., W),
by =2xly/Ny, (la=-iNz+1,...,10,).

The singularities of L are listed in [13].

The restriction operator is based on volume-weighted averaging of the residuals and the solu-
tion, implying that R; = R, = (1 + T3) and Ry = Ry = }(1+ T},). Prolongation is piecewise
constant interpolation. In Fourier space the prolongation operators are the complex transposes of
the restriction operators. These operators are the same as in [9,13], but are now applied to 2 cells
at the time, rather than 4. The operator fiz introduces a coupling between , and 4, + x, and
f?,, between 8y, and 9, + x. It is therefore convenient to consider the 4 frequency pairs (6,,8,),
(82 +7,6y), (2,0, +7), and (8;+7,8, + x) simultaneously. With 4 equations, this requires 16 X 16
complex matrices in Fourier space. We omit the expressions for the symbols of the restriction and
prolongation operators here, and merely outline the construction of the two-grid operators.

Let the linearised problem be given by L(M1.Ma)y (M1 M) _ f (Ml'M’), the right-hand side not
to be confused with the flux in (3.1b). In terms of the error (M1 M2) — (M1 Ma) _ (ML Mz) ity
is defined as the difference between the converged solution TwM1:M2) and the present guess, the
relaxation operator is given by v(M.Ms) .— g(Mi.Ma), (M1, M) The coarse-grid correction operators
for the - and y-direction are

(3.5)

K:n =] - Pz (L(ﬁ,ﬁ_]"’l\"&))‘l Rza
; (33)
K,=1I-P,(LMM-0) g,

Here we have dropped the superscript (M, Mz). The dagger indicates the pseudo-inverse. The
two-grid operator corresponding to (2.4) and (2.6) is given by

M, = 8" [K, + (I - PR, K, + (I - P,R)(I - P,R,)(S" - n)]s". (3.4)

The expression for M; is obtained by interchanging = and y in (3.4). The corresponding two-grid
convergence factors are

ho=p(LELEY), A =0 (Lig,L1). (3.5)
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Here p(-) denotes the spectral radius, which is computed from the Fourier symbols of the two-grid
operators. A similarity transform based on the operator L is included to account for its singularities.
See [13] for details. For the Euler equations A, and X, are functions of u/e, v/¢, Ny, Na, hy/hz, 0,
and 8,. Note that u, v, ¢, h;, and h, are assumed to be constant. The maximum over the discrete
set of frequencies is denoted by

Az(ufc,v/e,hy/hqs, N1, N3) = max Az, (3.7)
1,42

and a similar expression is obtained for “Xu- The asymptotic convergence rate for two cycles is
max p(LR, K, LY) < max(X,) max(}X,) = (max X,)? : (3.8)

Here the maximum is taken over all admissible values of the 5 parameters. Because of symmetry,
max A, = max Ay.

The computation of Xz(u/c,v/c, hy/hz, N1, N2) has has been carried out numerically. Figure
2 is the result of substantial number-crunching. It shows X, as a functions of u and v (¢ = 1), for
hy = h. Each point represents the maximum over the finite set of frequencies that occur for a
64 x 64 grid. The smoother is damped Point-Jacobi, which is given by

R =1~ iNTIL, N=L(4t-4")+ (Bt - B7). (3.9)

This combination of the relaxation matrix N and damping by a factor %— completely removes the

highest frequencies of L (at T, = Ty = —1). For a one-dimensional problem, this amount of
damping yields an exact solver in combination with multigrid [11], and therefore seems to be a
good choice for the present method. It should be noted that the relaxation matrix N > 0. Zero
eigenvalues only occur for « = v = 0. In that case, we use the pseudo-inverse in the linear analysis.

The worst convergence rate observed in Fig. 2 is %, and we conjecture that this is also the
worst value of X, for all choices of u /e, v/e, hy/hg, Ny > 2, and N; > 2, This statement is based
on extensive computations.

Table 1 shows some results for three smoothers, the damped Point-Jacobi mentioned above,
damped Red-Black, where the damping is carried out in the same way as in (3.9), and damped
Symmetric Gauss-Seidel, with two sweeps in opposite directions. For the last, a nonstandard way of
damping is employed [13:(6.13)]. Although Table 1 does not give the maximum over all parameters,
it suggests that damped Point-Jacobi is the best choice if only one pre- or post-smoothing step is
performed. If only parallel smoothing is performed, one might consider Red-Black or Symmetric
Gauss-Seidel. It should be noted that Red-Black smoothing is more costly than Point-Jacobi, and
that SGS is even more expensive in terms of cpu-time. Increasing the number of smoothing steps
from 1 to 2 improves the overall convergence factor, but, as seen can be seen from Table 1, the
worst convergence rate is hardly affected.

4. Numerical experiments on the nonlinear Euler equations
4.1. Implementation in the nonlinear case

The linear two-level analysis provides an estimate of the convergence rate under ideal circumstances.
If the method is applied to the nonlinear equations, convergence may be slower due to boundaries,
large variations of solution values with respect to grid spacing, and nonlinear phenomena such as
sonic lines, slip lines, and shocks, which may result in local singularities (cf.[11]). Another type of
singularity is created by non-smooth boundaries or grids. Ideally, the steady state Euler equations
represent a pure boundary-value problem, with a solution that is identical to the one obtained
from a time-accurate integration of the unsteady equations from arbitrary initial data, as time
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max(A,)
0.500
0.5600
0.707
0.707

0.498
0.5635
0.638
0.587

0.499
0.469
0.574
0.563

scheme v+ 1

PJ

[y

RB

SGS

CONOOWMIOORN
R =O QIR =00 NMOO.‘S

Table 1. Two-level convergence factors max( ;) for the dam-
ped versions of Point-Jacobi, Red-Black, and Symmetric Gauss-
Seidel relaxation. The results are obtained for ixed Ny = Ny =
64 and hy = h;, and the maximum is taken over the values
u/e= —~2+ny/8, v/e = —2 + ny /8, where both ny and ng are
integers between 0 and 32.

goes to infinity. Such an ideal situation is the exception rather than the rule, a fact one should be
aware of when applying the method presented here, or any other implicit or Newton-like integration
that is not time-accurate and violates conservation in time. A steady state may not exist at all
in some cases, or, what is more likely, multiple stationary solutions exist. A simple example ig a
shock in a straight channel, with supersonic inflow and subsonic outflow as boundary conditions:
the position of the shock is undetermined, if this problem is considered as a pure boundary-value
problem. Another example is the occurrence of regions in the flow where the velocity vanishes: for
zero velocity and constant pressure, any density distribution will be steady. Stationary vortices are
another problem. If multiple solutions exist, a steady-state solver may pick one that is unphysical,
in the sense that it can not be reached from any initial data, or that is unstable in time against
small perturbations. :

If the boundary-value has multiple solutions, and a certain steady-state solver finds a stationary
solution, then the solution may depend on the solver, that is, certain solvers may be unable to reach
particular solutions. The solution will also depend on the discretisation scheme. In the case of zero
velocity and constant pressure, for instance, a large amount of isotropic numerical viscosity will
cause the solution the have constant density, which is not required by the differential equation. In
general, it appears that Euler solvers provide acceptable results only because of numerical viscosity,
where acceptable means that the results resemble the solution of the Navier-Stokes equations for
small viscosity and thermal conductivity.

Bearing the above in mind, it is only reasonable to require fast convergence if the steady state
is well-defined. If convergence down to machine zero is desired, then the discrete equations should
be sufficiently smooth around the steady state, otherwise the iterative process may end up in a limit
cycle. For practical purposes, convergence to machine zero is a waste of time, but on the other hand
a limit cycle may prevent convergence to a solution within the accuracy of the discrete scheme,
and it is therefore recommended to use smooth discretisations. The initial guess of the steady
state is also important for fast convergence. It is usually obtained by successive grid refinement
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[2,4]. A solution is computed on a coarse grid, and interpolated to a finer to obtain a good initial
guess. In this way one needs a fixed number of iterations per grid to obtain a steady state in O(N)
operations. Computing the first solution on the coarsest grid may be a problem in itself. One can
use time-stepping if necessary. Sometimes, the solution may change drastically when one goes to
a finer grid. In that case, some type of continuation technique can be used. The initial guess can
be obtained from a solution on the same finest grid, computed for a slightly different shape of the
boundary, or slightly different boundary conditions.

We now turn to the details of the present scheme. The system of 4 conservation laws (3.1)
is discretised by upwind differencing, using either van Leer’s Flux-Vector Splitting (FVS) [20] or
Osher’s scheme in the natural ordering [6,14,15]. Both are sufficiently smooth for our purpose.
A disadvantage of van Leer’s scheme is its failure to recognize slip-lines and contacts. These are
smeared out by the scheme. The reason is that van Leer’s FVS does not have the proper eigenvalues.
This may also cause problems at boundaries.

The vector of state quantities w is represented by cell-averages w;; on a grid consisting of
arbitrary quadrilaterals, the four corners of which are denoted by (i — 3,5~ 1), (i + H3 -3,
(i + %,jvi- %), and (7 — %,j+ -;-), and the corresponding sides by (7,5 — %), (f+ %-,j), (4,5 + %),
(¢ - %, 7). This configuration is sketched in Fig. 3. The discrete residual is

= ~1 . A -1 - .
rig = = Sy T (T g Ty gwijo) = o4y 5T F(Top g 005, Ty g i) )
-1 . P -1 . 4. )
- 3":.?'+’ %i:.,j'i' %' f(T‘irj"' ";"w‘h’ ? I}tj"' %w"1+1) 3"" %15 T‘l'— %,J'f(Ti— %ij"g’ 1}“ %:jw‘“ 1,; ) ¥

Here f{w;, w,) provides an approximate solution to the Riemann problem, through one of the two
upwind schemes mentioned above. The first rotation matrix is given by

1 0 0 0
0 cosg; . 1 sing,. 1 0
. ] W L% -
Ti.J“% 0 —sin qb‘-'j_; cos ‘lbi,;’—; gl (4.20)
0 4] 1
h
where Yirl gL~ ¥ L 1 Tiplj—L—Zi 1.1
COS¢-- 1 = 2 2 Fi 2, Sm¢- ] == — Fis 2 2 2’
Wy si! -7 WTa s‘: -7 (4 26)

8441 =\/(“.‘+%,j—§ - T %,j——%)z + (viy 1i-1~ yi—-%,j—-})z)'
Here the outward normal is (cos b; 4 1 sing, ;. 1 }T. The rotation matrices for the other sides follow
in a similar way.

Given this discretisation, the next problem is to find a proper generalisation of the damped
Point-Jacobi smoother (3.9). The standard procedure for nonlinear equations is to apply Newton’s
method to solve w; ; from (4.1), keeping neighboring states fixed. Since only smoothing is required,
one Newton iteration is usually sufficient [4]. The damping is applied afterwards.

With van Leer’s Flux Vector-Splitting, this is a feasible approach. In that case, the flux
f(wy, w,) is split as follows:

| . )
o w) = )+ (), Ll 5o L) oo (4.3)

The actual expressions for f* and f~ can be found in [20]. If Newton’s method is used as part of
the smoother, then we need —37;;/0w; ;. The first term on the right-hand side of (4.1) contributes

+ Y
9 1 lf(T‘-’j__;.w,',j,T- LWy 1) = -1 9 (w)T-- 1 ﬁ):fn-’- LW 5. (4.4)

Bw,-,_.,- Wiz -z Li-%  dip tWi—3?
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Because positivity is preserved under a similarity transform, and the sum of positive matrices is
positive, we conclude that for van Leer’s Flux-Vector Splitting,

Nij= -——'J >0 (4.5)

~ 1 31‘,',,'
£y = K"{ - ma (4'6)

where 1/At is chosen proportional to the norm of the residual (see Eq.(7.2b) in [13]). If only one
Newton step is performed, the solution is updated according to

wij = wij+ N s (4.7)

With Osher’s scheme in the natural ordering, this positivity is lost. Only if w; is close enough to
wy, we have 8 f(w;, w,}/8w; > 0. In general, the matrix N;; = —9r; ;/8w; ; may have eigenvalues
that are negative, or even complex. This may lead to disastrous results. It is quite surprising
that the authors of [6] obtained fairly good results with this approach. A particular source of
trouble is a hard wall. In [6], the flux at a vertical wall at the right side of a cell is computed by
fB =(0,pB,0,0) where the pressure at the boundary is determined from characteristic variables:

— 1 _
¢p=c+ Z—z—u, pB=r(cp/c)"™ V), pp = ppch/x. (4.8)

The same result is obtained if a mirror zone with reflected states is introduced at the other side
of the wall (same states, but the normal velocity gets a minus sign), and the Riemann problem
at the wall is solved by Osher’s scheme in the natural ordering — but only if the normal velocity
is subsonic. If one takes the Jacobian of the wall flux, and if the wall is not perpendicular to
the other sides of the cell, than the contribution to the relaxation matrix may be negative, even
if no strong gradients are present. In the numerical experiments described further on, our code
started to produce nonsense if one cell had non-parallel walls on both side and the flow was close
to supersonic.

To avoid this problem, we choose for an inconsistent linearisation. Instead of the proper
Jacobian, we use

T %A"'(‘T’i,i)Te,j_%: B3 =T, ;1055 (4.9)

for the first side of the quadrilateral, and similar expressions for the other sides. Here AT is
determined from A = 3 f(w)/3w by selecting the positive eigenvalues:

max(u — ¢, 0) 0 0 0
- 0 max(u, 0) 0 0
+ 1 H .
AT=Q 0 0 max(u,0) 0 o (4.10a)
0 0 0 max(u + ¢, 0)
where
1 0 1 1
| u—e O u u-te
e=| *,° | . (4.108)

v
H-uc v {u’+v?) H+uc

In this way, N; ; > 0, and the modification (4.6) avoids zero eigenvalues.
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The boundary conditions at a hard wall are implemented by means of a mirror cell with
reflected states, and using the approximate Riemann solver in the same way as in the interior.
In computing A%, the dependence of the mirror states on the interior states is ignored. At open
boundaries, we determine states on the exterior side of the boundary by selecting one-dimensional
characteristic variables either from free-stream values or from the interior, according to the sign of
their corresponding eigenvalues. Then the approximate Riemann solver it used to determine the
flux across the boundary, in the same way as in the interior. The dependence of the exterior values
on the interior ones is ignored when the Jacobians are computed.

It is not a priori clear if damping should be used at the boundaries or not. In assembling the
relaxation matrix N, one may include the damping right away, that is, one assembles %N rather
than N. At boundaries, one might suppress the damping by including the full contribution from
the side of the quadrilateral that coincides with the boundary, rather than half of it. Analysis for
the one-dimensional scalar equation u; + auz == 0 shows that for Point-Jacobi it is better to include
damping at open boundaries. Thus, an open boundary (inflow or cutflow) is treated in the same
way as the interior. The numerical experiments described in the next section indicate that it is
slightly better to use the damping at hard walls as well. In brief, the construction of N at the
boundaries is identical to its construction in the interior of the computational domain.

4{.2. Ezrperiments

As a test problem we consider flow trough a channel with a circular arc at the bottom, with a
subsonic, transonic, and supersonic steady solution. The grid is shown in Fig. 4a. It is practically
equidistant in the y-direction, and also in the z-direction across the bump. Constant stretching has
been applied in the horizontal direction away from the bump. The finest grid use in the computation
is actually 128 x 64, but that is too fine to be displayed without Moiré patterns. The dimensions
of the grid are 5 by 2, with the circular arc between 1.5 and 2.5, having a thickness of 4.2% of the
chord [16].

The multigrid solver uses a coarsest grid of 4 x 2 cells. The equations on the coarsest grid are
solved by 4 sweeps of (undamped) Symmetric Gauss-Seidel. The multigrid technique is implemented
as a Full Approximation Storage scheme [2], and the initial guess is obtained by successive grid-
refinement. An F-cycle is used to solve the equations on each grid. For problems with shocks,
it is recommended to have post-smoothing. The reason is that the coarse-grid corrections can be
large around the shock, if the shock is in the wrong position. These large corrections introduce
large high-frequency errors that have to be removed immediately by post-smoothing, otherwise the
entire multigrid process will go astray. On the basis of Table 1 we choose 1 post-smoothing step
with damped Point-Jacobi.

On the finest grid, one smoothing step is sufficient in smooth regions of the flow, but not near
shocks, where the coarse-grid correction may introduce O(1) high-frequency errors. Therefore, one
additional local relaxation step with (undamped) Symmetric Gauss-Seidel at 4 X 4 cells around
the largest residual is performed at the end of each cycle (cf.[11]). This requires hardly any extra
work, and improves the overall convergence rate substantially in some cases. Because an F-cycle
is used, smoothing is applied more than once on the coarser grids. In the experiments done here,
local relaxation does not appear to be necessary on the coarser grids, although in general it may
be.

Local relaxation is also helpful after grid refinement. In that case we use third-order interpola-
tion (see [11]). At shocks, and also near non-smooth parts of the boundary, large local errors may
occur, that are easily removed by local relaxation. Again we use only one Symmetric Gauss-Seidel
sweep on 4 X 4 cells.

The results shown in Figs. 4b-d have been obtained with an F-cycle. The finest grid has
128 x 64 cells, the coarsest grid 4 x 2. Convergence rates for the cases shown in Fig. 4 vary
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between 0.3 and 0.4, well below the worst value predicted by the two-level analysis. These results
are obtained both for van Leer’s Flux-Vector Splitting and Osher’s scheme in the natural ordering.
For the first, a consistent linearisation (4.4) is used for the relaxation matrix N (4.6), except near
boundaries where the dependence of th exterior quantities on the interior states is ignored. For
Osher’s scheme;, the inconsistent linearisation (4.9} is adopted.

According to [4, Eq.(5.2.9}}, one or two cycles should be sufficient to obtain a solution with an
iteration error of the same size as the discretisation error. In the presence of shocks and non-smooth
boundaries, more iterations may be required to prevent large local iteration and discretisation errors
from contaminating the rest of the solution. In the experiments, we stopped iterating if the Lo,
norm of the actual residual dropped below 1/10 of the L; norm of the residual at the begin of
the iterations. This generally took about 6 multigrid cycles and produces results with an iteration
error well below the discretisation error.

It should be noted that the solutions obtained in this way have only first-order accuracy.
Higher-order accuracy is desirable for practical applications, This will be considered elsewhere.

5. Conclusions

A new multigrid method for problems with alignment has been presented. Its complexity is O(N)
if a V- or F-cycle is used. The method has a fair amount of parallelism, due to the use of several
coarser grids on the same level of coarseness, and the optional use of smoothing parallel to the
computation of the coarse-grid correction. This parallelisme has not been explored in this paper.

Because the method combines data of more grids into one, the standard restriction and prolon-
gation operators had to be modified. The choice of restriction and prolongation operator presented
here is convenient, but it may be possible to obtain better convergence rates with other choices.

The application to the Euler equations of compressible gas dynamics shows that the method has
uniformly good convergence rates, both in the linear two-level analysis and in the nonlinear subsonie,
transonic, and supersonic experiments. With damped Point-Jacobi used for post-smoothing, the
two-level analysis predicts a worst convergence factor of %—,, whereas the numerical experiments
provide values between 0.3 and 0.4. : l

Epilogue. The present work has been inspired by ideas on parallel multigrid. The numerical com-
putations for the two-level analysis were carried out on the 4 processor Alliant at the Department of
Computer Science at Stanford University, and on the 32 processor Ncube at UCLA. The nonlinear
experiments were performed on a SUN 3/110 workstation at UCLA. Figure 1 has been typeset in
TgX, Fig. 2 is drawn by the NCAR-graphics package, Fig. 3 has been composed in PostScript,
and Figs. 4a-d have been produced with the package NUTOIS, written by Tom Smedsaas from the
Department of Scientific Computing at Uppsala University.
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Fig. 1. Arrangement of finest (8 x 8) and coarser grids, that leads to an O(N)
multigrid method for problems with alignment. The level numbers are given on
the right. The arrows indicate how the grids are linked by restriction (downward)
and prolongation (upward).

Fig. 2. Two-level convergence rate A; as a function of u and v {fc=1) fora
64 x 64 grid with h, = hy, using damped Point-Jacobi smoothing with vi+vy = 1,
vy = 0. The worst convergence factor is }, for v=0 and |v| = c.
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Fig. 3. Quadrilateral cell (1, ) of the computational domain showing the num-
bering of sides and vertices.

Fig. 4a. 64 x 32 grid used in the computations. The bump at the bottom at the
channel has a thickness of 0.042. Inflow is from the left, outflow to the right, The
results shown in the following figures are obtained on a 128 x 64 grid.
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Fig. 4b. Iso-Mach lines for mach 0.5 inflow. Contours are 0.01 apart (first-order

Osher scheme). The asymmetry gives an indication of the low accuracy of the
first-order scheme.

Fig. 4c. Iso-Mach lines for mach 0.85 inflow. Contours are 0.025 apart (first-order

Osher scheme),
=

JF

Fig. 4d. Iso-Mach lines for mach 1.4 inflow. Contours are 0.025 apart (first-order
Osher scheme). :

)
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