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1. Introduction

This work is directed towards the study of systems whose hamiltonians are nearly inte-
grable. More precisely, the hamiltonian will depend on a parameter ¢ in such a way that
the system is non-integrable for ¢ 3 0 but integrable for ¢ = 0. We shall study the case
of small e. The motion of a system that has an integrable hamiltonian is characterized
by degrees of freedom, here labelled by an integer i, to which correspond frequencies w;.
The presence of a coupling between modes, which we shall assume is non-integrable, leads
to the appearance of harmonics, . m;w; (the m; are integers), and to the exchange
of energy between the modes. The goal of our work is to formulate the Fokker-Planck
equation which describes these non-integrable processes, and to elucidate the relationship
between the irreversibility intrinsic to that equation and the reversibility of the Liouville
equation from which it is developed.

This paper will focus on a bath of interacting oscillators. Our reason for selecting this
system is that its behavior parallels that of a sea of interacting waves. Such a sea is
encountered in a number of physical situations, such as sound waves and surface gravity
waves of finite amplitude.

Generally speaking, progress in the quantum theory of the spectral evolution of a sea
of interacting waves [Landau and Rumer (1937), Landau and Khalatnikov (1949), Peierls
(1929, 1955)] has preceded corresponding advances in the classical theory [Litvak (1960),
Hasselmann (1960, 1962), Benney and Saffman (1966), Newell and Aucoin (1971)].

One of the earliest predictions (Landau and Rumer, 1937) was the decay rate, B, at
which the number of phonons, n(w), at frequency w in a sound wave relaxes back to the
thermal population due to the (non-integrable) interactions of the wave with the modes
of higher frequency. In second order quantum perturbation theory, applied to an isotropic
dielectric material, their approach yields

n(w, t) = n(w, 0)e~ B¢, | (1.1)

where

B = 7|w|G U/ pr2. (1.2)

Here U is the integrated energy density of the modes of frequency greater than w, v is the
sound speed, p is density, and
| G=1+2% O (1.3)
' N vdp '

is the Griineisen constant, a nonlinear coefficient that measures the coupling between
different modes of the system. Result (1.2) applies to a medium for which d*w/dk? > 0,
where w(k) is the dispersion law for the frequency as a function of the wavenumber, k, for
small amplitude oscillations. For fluid dielectrics at low temperatures, Landau and Rumer

expressed their result (1.2) in terms of the thermal equilibrium energy density:

7!'2 kBT 3
Us = 35ksT ( = ) . (1.4)

Here T is the temperature, kg is Boltzmann’s constant, and % is Planck’s constant divided
by 2. '



According to the tenets of the old quantum theory, changes in a quantum number such
as n(w) are, to within the scale factor %, equal to changes in the correponding adiabatic
invariant I{w) of the classical system having the same hamiltonian. Thus, the existence of a
quantum kinetic equation for n(w) implies the existence of a corresponding kinetic equation
for the action I(w) of the classical sound field. This formal connection was exploited by
Hasselmann (1966), and by Westervelt (1976) who particularly emphasized that, because
the decay rate B can be expressed in the form (1.2), which is independent of Planck’s
constant, it must also follow from purely classical reasoning. [Although the form (1.4) of U
cannot be deduced from classical theory, Ug can be determined by classical thermodynamic
measurements.] Thus, the experimental verification of (1.2) through measurements of the
attenuation of propagating sound waves in He* [Roach et al (1972), Abraham et al ( 1969)]
provides strong evidence for the physical relevance of kinetic equations for interacting
classical waves.

In addition to Landau-Rumer processes, data has been gathered and analysed from
other situations [Phillips (1977), Forristall (1981), Russell (1972)], to which the classical
theory of interacting waves may be applied. These include the statistically steady, off-
equilibrium power spectrum of surface gravity waves [Hasselmann (1960, 1962, 1966, 1967)
Larraza (1987), Larraza and Putterman (1987)] and the Alfvén waves present in the solar
wind [Larraza (1987), Zakharov (1984)]. We shall refer to such off-equilibrium steady
states as “wave turbulence”. Classical wave kinetic theory has also provided a classical
interpretation of the two-fluid theory of superfluid flow (Putterman and Roberts, 1983a,
b), as well as a basis for second sound phenomena in classical wave turbulence (Larraza and
Putterman (1986); 1/f noise has also been interpreted in terms of the highly anharmonic
limit of wave turbulence (Larraza et al, 1986).

A common limitation of all experiments and kinetic theories discussed so far is that they
describe measurements and calculations of the expected power spectrum of the interacting
modes; the quantum theories describe (n(w)) and the classical theories describe (I{w)).
Off-equilibrium information about higher moments, such as (I(w) I{w')}, is not devoid of
interest but it is completely lacking. Such information could, however, be extracted from
the distribution function, P(I; 8; ¢), of the system. [Here I and @ are abbreviations for the
set of all V action and angle coordinates,I; and 6;.]

Using the method of multiple timescales, we shall derive the Fokker-Planck equation
governing the time evolution of P(I;; ¢). There are some very significant differences
between our approach to the Fokker-Planck equation and that of previous authors, such as
Prigogine and Henin (1960) and Prigogine (1962). First, the method of multiple timescales
avoids the necessity of summing an infinite sequence of diagrams. Second, it readily allows
a more general Fokker-Planck equation to be derived, one in which the dependence of the
distribution function P(I; @; t) on @ need not be discarded, as happens in the random wave
approximation. This angle dependence is needed for calculating a number of averages of
physical interest, such as the renormalization of mode frequencies (or of the speed of sound)
created in one mode by the presence of excitations in the other modes of the system. It
is also needed if equations of motion are required for the evolution of the average of the
conjugate coordinates g; and p;, related to I; and 6; by canonical transformation.

In §2 we introduce a model hamiltonian for the system of interacting oscillators in the
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form
H = -HO '+- EH]_, ’ (1'5)

where

N ‘ ,
> wil, (1.6)

Hy =
i=1
N
H, = 8 Z cijk(IinIk)% cos B; cos @; cos g, (1.7)
i, k=1 :

€ is a small (positive) parameter used to scale the size of the perturbation, and the Cijk
are coupling coefficients. From the kinetic equations

dl; oH db; OH

—— T bty =

& = T @ = L (1.8)

we see that I; is a “slow” variable, i.e. I; is of order ¢ < 1. If, instead of 8;, we employ
¢i = 0; — w;t, (1.9)

we see from (1.8) that this variable is also slow. We therefore frequently find it convenient
in what follows to work with P(I; §; t) rather than P(I; 8; t). In §2 we shall derive a theory
governing P(I; ¢; t) valid to order €*,

In §3 we shall discuss the transition from this theory, which is valid for a finite number, N,
of degrees of freedom and which is therefore reversible in time, to a continuous (N — 00)
system described by the irreversible Fokker-Planck equation. The irreversibility arises
formally because OP / 8t is given in terms of an integral over w that involves (™! — 1) /4w
and, by the method of stationary phase, the effect of this term in the integrand is, in the
limit ¢ — o0, identical to that of the transformation

Wt _ :
ol s + mc—)) (1.10)

W

where 6(w) is the Dirac delta function, and P(1/w) signifies that, after the division by w,
the principal part of the resulting integral is taken. The restrictions that P must obey
before the replacement (1.10) is legitimate are discussed in §3. The key requirement is
that there should be many modes within a bandwidth, B(w), of modes that determines

the rate of change of P, or

ﬁ < Blw) <€ w, (1.11)

where o{w) is the density of states. The requirement B(w) < w has been added to (1.11)
since this restriction is required in order that ¢ be small enough for the perturbation
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expansion to be valid; the requirement 1/0(w) <« B(w) actually places a lower bound
on ¢, though not a very demanding one in most situations. Provided (1.11) is obeyed, the
Fokker-Planck equation is valid over timescales for which Bt = O(1), provided that P is
also smooth over a frequency range of width at least O(1/t) about the w of interest.
Random waves in a uniform continuous medium can be treated as readily as oscillators.
It is necessary only to insist that the underlying translational invariance of such a material
is reflected in the coupling constants ¢; jk- Letting 4, §, k now label the wavenumber vectors
ki, k;, k¢ (or i, j, k for short) of propagating modes, we find that translational invariance
requires
Cijk X Bitjt, (1.12)

where the Kronecker-delta, 6,,, is here defined to be zero unless m = 0, when it is zero.
Using the expression for ¢ijk appropriate for interacting sound waves, we derive in §8 the
Fokker-Planck equation determining 8P / Ot for this system. On taking the first moment
of that equation with respect to one particular action I, that is forming

d oP
L41,) = fprﬁ-dIdﬂ, (1.13)

we obtain the basic kinetic equation for interacting waves:

d G2 T ,
p (L) = W Z /f&(spwp + 8jw; + skwi) 6(s,P + 555 + spk) x
5p8i 8k N
sp (Sp(Li)(Ik) + si{Ted L) + si{INT)) wpw; wi d%5 d3F, (1.14)

where the constants s,, s ; and si take the values +1 in the summations.
In order to realize the irreversibility implied by (1.10) and to arrive at (1.14), we have
had to make use of the closure relation

(I Ix) = (L) {Ix).

In §5 we show that the Fokker-Planck equation, though not requiring such a factorization,
will maintain it over times long compared with the time required for the system to attain
equilibrium (assuming, of course, that the factorization is true at the jnitial instant). In
fact, deviations from such a factorization, as measured by the appropriate cumulant, build
up from zero at a rate which is smaller, by afactor of N1, than that over which equilibrium
is attained.

The connection between (1.14) and (1.2) is established by setting
(1)) = A() 6w —wo) + (Fw), (1.15)

and solving for A(t) for a given fixed noise distribution I (w), which defines the energy
density

U = %]w(f(w})d(w)dw,
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where V is the volume of the system.

The kinetic equation (1.14) includes not only direct collisions, which remove energy from
channel w and are responsible for result (1.2), but also restituting collisions that restore
energy to channel w and allow the possibility of a steady state energy distribution. The
isotropic wave turbulent steady state can be obtained by rewriting (1.14) in the form of a
local cascade of energy (see Appendix A)

oB(w) | W) _
ot + ow 0,

(1.16)

where

Ble) = (W) o)

is the energy per unit volume per unit frequency interval. The solution of {1.16) for which
the energy flux Q{w) is a constant (Qo, say), this being the rate per unit volume at which

external sources deliver energy to the long wavelength components of the wave spectrum, is
[Zakharov (1965, 1984), Zakharov and Sagdeev (1970), Kraichnan (1968), Sagdeev (1979)]

- : ‘
(I(w)) = Kpc (ﬁ%ﬂ?) Wt (1.17)

where K is a numerical factor of order unity and where, for the case of non-dispersive
sound waves, we have taken

[ ]

Vw?
} J(w) = -2';;?—3—
The global equilibrium solution (@ = 0) of (1.14) is
kgT
(I(w)e = —-%— (1.18)

The correlations for all moments of a particular action I, for either the wave-turbulent
or equilibrium states, can be obtained to order ¢* from the reduced one-mode distribution

function,
PY(I,; t) ff (I; 8; ¢)d, 146, (1.19)

which is studied in §5. The notation d,I means the product of dI; over all modes ¢ with the

exception of I,. We show that, in steady state conditions, the O{¢®) contribution, P{I,),
to PY(L,) is

pYL) = -(}1-;7(3“[?/(1”). (1.20)

Comparison of (1.17) and (1.18) with the distribution (1.20) suggests that the wave turbu-
lent state may be characterized by a frequency-dependent effective temperature, T, such

that _
oo 5 Qo -
kBT = K,oc (m) w .

7
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Depending on the precise form of Cijk, other stationary distributions are possible [see
§5 and Appendix A]. Here we have quoted the physically relevant case of turbulence of
non-dispersive acoustic waves.

In §6, the reduced Fokker-Planck equation governing the generalization,

PY(I,; Bp; t) = // P(I; 8; t) d,1d,8,

of the reduced one-mode distribution (1.19) that includes not only the action of mode p but
also its angle. This allows us to study, at the O(€?) level, the renormalization of oscillator
frequencies. This corresponds, in the case of waves studied in §8, to a renormalization in
the speed of sound, which comes about because any particular sound wave must propagate
across a medium whose compressibility is changed by the presence of a random sea of other
acoustic waves. ,

In §4, general properties of the Fokker-Planck equation are studied, an “H-theorem” is
proved, and the approach of a closed system to the microcanonical ensemble is exhibited.

Although the time development of all correlations is implicit in the Fokker-Planck equa-
tion, an alternative view of the response of a particular oscillator can be obtained from its
Langevin equation. In §7, we discuss the criteria under which the equation of motion for
the particular p-oscillator takes the form

;i;p + Bpép + Qfm‘l’p = F;, (1-22)

where B, is a friction coefficient and 1y is the renormalized frequency. Both B, and
lp — wp are due to the interaction of the particular oscillator with the remaining oscillators
of the “bath”, and are O(e?); Fp(t) is the random force to which the particular oscillator
is subjected through the other oscillators of the bath;

1
2L\ *
= [ =2 g
dp (LUP) COSs P

is the coordinate of oscillator p- In §7, we derive the spectral distribution of the ran-
dom force, ie. (F)(w) F(W')}B, where Fp(w) is the Fourier transform of Fy(t) and the
superscript indicates that the average should be carried out over the probability
distribution for the oscillators of the bath alone. We show that, when the bath probability
distribution is independent of the angles, (Fy(t1) F)(#3))2 is even in ¢; — 5. When the dis-
tribution of actions is an equilibrium (£) thermal distribution, we deduce the fluctuation
dissipation relation

(Fp(w) F;,(w'))g = 2kgT B, g é(w + w'). (1.23)

A similar relation with T replaced by T applies to the wave-turbulent steady state.
On multiplying (1.22) by dp, We obtain a Langevin equation for the action,

L + B,I, - 4, = G, (1.24)
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where the restituting collisions are contained in
Ay = (4p F; [ wp)®. (1.25)

Properties of G, are derived in §7.

As indicated by the Langevin equation (1.22), the linear frequency, w,, of an oscillator
acquires a renormalization, {}; — w,, through the nonlinear couplings. For a sound wave,
the w-renormalization implies a renormalization in the speed of sound, v. This effect is
calculated in §8, for the case of interacting sound waves governed by the dispersion law

w? = o2k 4+ kY (1.26)

where « is the disp.ersion constant. The renormalized sound velocity, v, is found to be

| 2 G2U ey
o= vk = log (3.88...kT>’ (1.27)

where k, = v/[y]'/? and kr is an average of the spectral distribution of sound wave energy.
The renormalization is independent of the sign of v, but the attenuation coefficient (1.2)
applies only when v > 0. ’



2. Multiple Timescale Expansion of the Liouville Equation
for a Bath of Discrete Oscillators

We consider a set of V oscillators, the hamiltonian of the i** oscillator being (p?+wiq¢?),
where (g;,p;) are its generalized coordinate and momentum, and wj; is its frequency. In
the absence of interaction between the oscillators, the hamiltonian of the system would be

N
1 2 2.2
Hy = §Z(Pi +wig) (2.1)

=1

Such a system would not thermalize: each oscillator would retain the energy it initially
possessed. We therefore add a weak interaction between oscillators, and consider the
hamiltonian

H=H0+EH1, (22)
where
Hy=) dijrgigjgx- (2.3)
1,5,k

The sum is over all ¢, §, k and the constants d;;; are real and symmetric in their indices:
dijk = dsix = dit;. (2.4)

For simplicity, we exclude terms invoving repeated suffices, i.e. we assume that diig = 0
(not summed). The cubic interaction is perhaps the simplest that allows genuine ther-
malization. Had we assumed instead a quadratic interaction with only two ¢’s in the sum
(2.3), we could have rediagonalized H into a form like (2.1) with slightly modified ¢; .
Such a system would be as incapable of thermalization as (2.1). We shall not consider
here the effect of canonical transformation, which allows the eH; to be removed from (2.2)
at the expense of introducing an e H, term, a process of postponing the non-integrability
that can be repeated indefinitely. Suffice it to say here that canonical transformation
does not affect the central issue: by the addition of ¢H 1, with H; given by (2.3), we have
transformed the integrable hamiltonian (2.1) into the non-integrable hamiltonian (2.2).
As motivated in §1, we introduce action-angle coordinates, by setting

oI\ ¥
g; = (—-—'—) cos 6;, pi = —(2w; ;) ¥sin 6, (2.5)

or more succinctly as

g = th pi = Z 18;Wigr, (2.6a)
8

L4

where

1
I \? . .
= (“’) e, (2.6b)

Qw;
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and the sum over s; involves only s; = 4+1. We now have

N

Hy =S wl, (2.7)
et
i=1

Hi= Y eIl e, (2.8)
IJK

In (2.6) and (2.8) we have introduced some abbreviations. Capital letters such as K denote
composite labels (k, sx), and —K will mean (k,—sx). A sum over K, as in (2.8), is in reality
a double sum over k and both values of sg. Also appearing in (2.8) are

[

Cijk = dijp(8wiwjwr)” 2, Lije = LI,

Oror = 8i0; +8;0; + 510 = —6_1 _7_k.

Here c;i, like dijk, obeys (2.4) and vanishes if 1 = j, etc.
A single system governed by (2.2) follows a trajectory in phase space, i.e. the 2N-
dimensional I6-space of actions and angles, in obedience to Hamilton’s equations:

dI; oH dd; OH
_..-.1- = — e— --.-m-.i. = —— 2. -].
dt 98;’ dt 8I; (29, 2.10)
For given initial actions and angles, say
L0) =L,  8:(0) = b, (2.11)

(2.9) and (2.10) determine the I8-trajectory for all t.
The partial differential equation associated with (2.9) and (2.10) is Liouville’s equation,

i = LP, (2.12)

where L is the Liouville operator:

: O0H 0 OH &8

i

Clearly :LP is the Poisson bracket of H and P.

An interesting advantage of the action-angle formulation over the gp-alternative may be
explained by a simple analogy: random walk in two dimensions. If the probability density,
P,(z,y), that the moving point lies at (z,y) after n steps is required, there is no need to
distinguish between the polar angles 6 + 2mm (where m is an integer, positive, negative or
zero) corresponding to (z,y), and 6 may be restricted to (say) the interval 0 < 8 < 2x. If
however the probable number of times the wandering point has encireled its starting point
(the origin) is sought, it is necessary to distinguish between the points (r, 6 + 2mr), and
to work with a probability density pn(r,#) defined on —cc < 8 < oo, which generally takes
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different values at 8 + 2mn. The determination of Pn is known as “the winding number
problem”; see for instance Lévy (1940) or Spitzer (1958). It is simple to obtain P, from

Pn but not the reverse:
o«

Pp(r,8) = Z Pn(r, 8+ 2mm).

m==—0C

When determining moments of single-valued functions of 8, it is unnecessary to employ p,
but, if for example we need a moment of a non-single-valued function of 8 (such as 6?), p,
must be used.

In a similar way, we may for most purposes regard P in (2.12) as a function of (q, p),
and ignore differences between P at 6; + 2m;7. When we want moments of functions that
differ at 8; 4+ 2m;7, we must regard 6; as defined over —co < 8; < o0, and introduce p to
distinguish between probability densities for the different integers m;.

Corresponding to the initial state (2.11) is

P(L; 6, 0) = [T 15  os) 6(6: — 64:)]. 2w

The trajectory [I(t), 6(t)] obtained by solving (2.9) and (2.10) subject to (2.11) then gives
the solution of (2.12) satisfying (2.14):

P(L; 6; t) = T [6(L - Li(¥)) 6(6: — 8:(2))]. (2.15)

1

In what follows, we shall be more interested in considering an ensemble of trajectories,

with P measuring the probability of the occurrence of each. Time reversibility is reflected

by the statement that, if P(I; 8; t) is a solution of (2.12), so is P(I; ~6; —t).
Corresponding to (2.2), we divide L into two operators,

L=Lo+eL,, (2.16)
where 5
Lo = «—izi:w;—a?i, \ (2.17)
= | ., /2 is 9 : 9
Li=-3 Z Cijk Iijk e TIK (515'5 + 'é‘lz:a'g;‘) ) (2.18)
IJIK
and (2.12) becomes
.{OP oP
2 [—é?-'-zwzgg—;} —€L1P. : (219)

The form of (2.19) suggests that we might benefit from a change of variables. Let
$i = 0; — wit, (2.20)
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and replace P(I; 8; t) by P(I; ¢; t). Note that ¢ coincides with @ at ¢ = 0. We may now
write (2.19) as

i?:,ﬁ = el P, (2.21)
at
where by (2.18)
1=~ Z cijkfilj/]fei(qi‘ux-l-wrurt)VIJK_ (2.22)

IJK

The partial derivative in (2.21) is here and below taken at constant ¢;, rather than at
constant §;. In (2.22) we have introduced further abbreviations:

Pror = 8id; + 8;0; + spdr = ~b_1,_7-K,

WIJK = 8iW; + 8jwj + SpwWi = —W_J,—J -K,
Vi =siVi+siVi+ Ve =-Vi; _;_k,
o is; O N
VI=oLtarag Y

[Because of (2.4) we could, as in (2.18), write (2.22) as a triple sum involving 3s;V; in
place of Vrsx. The greater symmetry of (2.22) has, however, technical advantages.] Note
that Vi commutes with I,-lf2 e'*1% and that V; (Iil/2 e ) = Ii_”2 eTisibi,

Ife = 0,1 and ¢ are constants of the motion. We may expect that, for finite but small
€, these variables will change their values secularly, on a timescale of order e~2. Thus we

are motivated to seek a solution to (2.21) in the limit € — 0 by the method of multiple
timescales. We introduce

To=1t Ti=¢€, ,T2= €2t7 (223)
and expand P as a power series in e:
P=P(I; ¢ 1)+ e AL & 1)+ P(T; 4 1), (2.24)

with 7 = (7o, 71, 72). We substitute (2.24) into (2.21) and equate like powers of e. An
infinite sequence of equations results, the first three of which are

0P,

381'0 0, (2.25)
0P 0P,

— T} e 2.9
zaTo 337'1 + L1 Py, (2.26)
8P2 _ aPO 8P1 99
237-0 -3 81'2 - aTI —+ L1 Pl. (..,...;7)

The initial state P(I; ¢; 0) divides similarly:

Po(L; ¢ 0) = P(I; ¢; 0), (2.28)
P\(I; ¢; 0) =0, (2.29)
(L ¢ 0) = 0. (2.30)
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By (2.25) and (2.28), we have
P = R(L ¢ 71, ) = P(L; ¢ 0). (2.31)

The solution of (2.26) and (2.27) subject to (2.29) and (2.30) is effected by Laplace
transformation. Let us write

(= ]
B ¢ s, 11, 2) =/ e "™ P(I; ¢; 70, 11, 72) dro,
0
and note that, if £ denotes the Laplace transform operator, then

ﬁ(eiw”KtP;(Tg)) = }5,'(8 — WITK). (2.32)

It follows at once from (2.26), (2.29) and (2.31) that

, 1/2
3 ciip TV _
B = ~Ea%& +iy Uk ibuxyg, Py (2.33)
52 9y 57 5(s — wrk)

which on inversion gives

P . .
P = _Toé_._g, + 8> AT(wrsk) ey I %195 v, 0 By (2.34)
ory ITK !

We have here introduced one of the three dephasing functions defined, for real &, by

_ (eihrg - 1) _ . (e_:'hrg _ 1)
A+(h) = _—_ifT_’ A (h) = —h g (2.35&)
A(h) = 2 (A*(R) + A=(h) = Sin:”"". (2.35b)
We note that
AT(h) = AY(=h) = AT(R)* = e OAT(R) (2.35¢.)

The multiple timescale method is a convenient means of removing secularities, i.e. con-
tributions to P that iricrease, rather than oscillate, with time. The first term on the
right-hand side of (2.34) is secular in 5. Other secularities arise from “accidental res-
onances”, to be denoted by ‘AR ’. These originate from modes for which wy JKk = 0
in the sum appearing in (2.34). Such accidental resonances are easily imagined. If, for
instance, wr = kwq, where k is a positive integer and wy is some constant frequency,
then wjir and w);_y resonate with w;j and wg, and there will be approximately V2 such
resonances. This situation is physically realistic, and would arise for sound traversing a
one-dimensional non-dispersive medium.
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Let S-*® denote the sum over the AR-terms of the (2.34) sum, and let SV pe the

sum over the remaining non-resonant terms. Then secularities are removed from (2.34) by
taking

_ AL .

9P :

_61-; = zZ Cijk I,-ljf,f % Vigx Py, (2.36)
ITK

and substituting that back into (2.34) we find

NR
P = %Z AT (wrix) cijk I,vlj/,f e"1IK 711 Py, (2.37)
17K :

In a similar fashion (2.27), (2.30) and (2.37) yield
NR NR

i 1 8P, 1
By =572 . : X
2 32 Omy §(L§N S(s —twrpmN)(8 —twrIKLMN)

ClmnII/ LMY e [ciJkIJ/k PR By, (2.38)

Even though the individual sums in (2.38) are non-resonant, secularities can arise in two
principal ways: .
(i, j, k) = permutation of (I, m, n); (2.39)
wrrkLmny = 0, but (7, j, k) # permutation of (I, m, n). (2.40)
The former are essential resonances (‘£ R ’) that necessarily arise regardless of the depen-
dence of w on 1. The latter are again of accidental type. From (2.38), we now obtain

3P2 OF,
+ 226y A (w V[ Lie Virwe P
31.0 BTz 1%' IJK) Ciik I.IR[ ik YIJK 0]
NR NR
{Z > } A (wimn) eimn iy €459V arn [ciji L &% Py
IJK LMN
NR NR
{Z Z } eEMNTO A+ () 11¢) Clmn I},ﬁ e PEMN T v [cis I,-Ij/: e PIEY 111 Py].
IJK LMN

(2.41)

The first sum on the right-hand side of (2.41) arises from essential resonances; use has
been made of the identity

Vi(I} %) = 0. (2.42)
The secularity is removed from (2.41) by requiring that
By 6;;{ A ciix Visk [Lijk Visk Po]

NR NR )
{Z 2 } Ctmn T, @48 Vg [eiji Iff €195V 55 Py]. (2.43)
IJK LMN WLMN
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Equations (2.31), (2.37) and (2.43) may now be summarized by the following equations,
valid up to order e2:

P=P+P, P=Ph +5 4+ .. (2.44)
where
3}3 2 - 2 * 5
—8~t—-—- = Ge Z A (WIJ'K) cijkVIJK [I,‘jk VIJK P], (2.45)
IJK
f)l = i€ Z A+(WIJ‘}"{) Cijk I:'Jég eiw"KVIJKP, (2.46)
IJK
R + — -+
By ——¢ ) {A (UJIJKLM{V) A (WLMN)} y
TJKLMN WITK -

IJK # — (LMN)

1/2 . —
C‘i.'fkclm“'[ij/klmn emsIJKLMN VI.IKVLMNP~
(2.47)

The AR terms have been excluded from (2.45)~(2.47) since we shall consider only those
systems for which accidental resonances are negligibly few; the superfix NR, being then
superfluous, has been omitted. Because of the e™*1/xt contained in A (wrsk), the P
appearing in (2.45) includes not only P,, but also part of the rapidly oscillating Py; see

(2.41). The remainder of P, is the B, of (2.47). Tt should not be forgotten in interpreting
the left-hand side of (2.45) that

g a 19} , O
'5{—“87_0—-{-&5?;4:-6—5?2. | (2.48)

The 7o of the definitions (2.35) of A% is replaced in (2.45)-(2.47) by ¢.

Equations (2.45)-(2.47) form a closed system that determines the motion of the “ensem-
ble fluid” to order €2. To that order they are reversible, i.e. if we use them to determine
P(=P + B + }52) at time ¢ from an arbitrary initial state, and we then reverse @ and
integrate for a further time ¢, we recover to order €? that injtial state (with reversed 8).

A main use of the probability distribution is that of calculating moments of physical
quantities that are functions of I and 8, rather than I and ¢:

(% o)) = [[ 755 0) P 8 ) a1 o, (2.49)
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It is then found (see §3) to be useful to restate (2.45) - (2.47) in terms of @ rather than ¢:

op P _ ) _
=+ ) wimr = 66 T A™(wrrk)eia Virc{ L Visk P}, (2.50)
ot~ " 06;
17K
P EGZA wIJK)c,Jk ik eﬂ”KVI‘]KP, (2.51)
17K
Py = ¢ Z {/—\ (wIJKLM{V) —A4 (WLMN)}
IJKLMN —WIIK

IJK # — (LMN)

2 g B
CijkclmnI,J/kfmn PIIKEMN N 1V imNP.

(2.52)

Here Vi and Visx are defined as below (2.22), with 8/8¢; replaced by 8/88;. In future
transformations between ¢ and @ we shall not need to distinguish between these two forms
of derivative.

Corresponding to the expansion (2.44) for P, the average of some functmn f(1, 8) is, as
in (2.49), given by

(£ = {flo + (M + (N | (2.53)
where
(flo = f f(L, 6) B(T; 6; #) dI o, (2.54)
() = / F(L, 6) By(I; 0 ) dI a8, (2.55)
(F)2 = / £(I, 8) Bo(T; 6 t) dI do. (2.56)
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. 3. Continuous Systems: Irreversibility and the Fokker-Planck Equation

The theory developed in §2, as exemplified by (2.50)-(2.52) for instance, is reversible in
time, but it predicts that the the structure of P will become increasingly irregular with -
time. For example, according to (2.46), even if the initial P(= P,) is independent of 9,
P will, through the dependence of Py on ¢ (= @ — wt), develop a rapid variation in
t. This rapid variation is an essential ingredient of the phenomenon of time reversibility,
and any smoothing operation introduced for ¢t > 0, such as the one we use below to
convert the truncated Liouville system into a Fokker-Planck equation, will introduce time
irreversibility. ‘

We shall argue below that, when the spacing between modes is sufficiently small, the
behavior of a discrete system mimics that of the corresponding continuous system, in which
a smoothing operation has taken place, and which therefore evolves irreversibly.

The continuous system is governed by equations analagous to (2.50)—(2.52), but with
the dephasing factors, A*(w) replaced by

AT (w) — 76t (w) = ré(w) + iP(w™1), (3.1a)
AT(W) = 767 (w) = 7b(w) —iP(w™), (3.1b)

so that
Alw) — m8(w). (3.1¢)

Here “P ’signifies that the principal part should be taken in the integrals that arise below.
The equations analogous to (2.50)-(2.52) are

oP oP - ) )
2 Zw"'{;)_&.' = 6e” ;{5 (wrrr) ik Vi Liix Visx PY, (3.2)
pl = i€ Z 5_(WIJK)Cz'jkIt-Ij/k2ew”KVIJKP, (3.3)
IJK
132 = —re? Z': {5‘(wnKLM_{V) — 5_(WLMN)}
IJKLMN TWIIK
C:'jkClmnIilj/k%mneiefJKLMN vIJKVLMNP, (34)
where to order &2
P=P+ P 4P, (3.5)

Equations (3.1) - (3.5) have been written in a form that brings out the similarity between
the continuous and discrete cases, but it is to be understood first that the 0/0I; parts of V;
and Vj s have become functional derivatives. Second, the sums are now to be interpreted
as integrals over the continuous labelling variable (0 £ i< o0) according to the
prescription

N co
>0 — [ dio)Qu), (3.6)

i=1
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where o(i) is the density of states. In this limit, the measure of the surface on which
wrsk = 0 is vanishingly small. We assume that in the continuous limit, the contributions
from accidental.resonances have vanishing weight, but note however that there exist very
special systems of lower dimensionality for which this assumption would not be justified.

The similarities between the continuous and discrete cases is, in one respect, both de-
ceptive and ambiguous. For finite N, it is incorrect to include the “diagonal” terms,

IJK = —(LMN}) in (2.52), but in the limit N — oo the “off-diagonal” terms,
IJK # —(LMN), are infinitely more numerous, and it might appear that negligible
errors would result from including the wrygrmny = 0 surface in (3.4). This however is

not the case. The matter is discussed in Appendix B, where a prescription for overcoming
this difficulty is developed. Meanwhile we add a prime above the IJK LM N-summations
as a warning. :

It may be wondered why the equations that arise in the continuous case resemble (2.50)—
(2.52) rather than (2.45)-(2.47). The reason has been touched on at the end of §2. Of
greatest interest is the asymptotic form of moments like (2.49) in the limit ¢ — oo, with
¢’t (= ;) and 8, not $, held fixed. The situation may be clarified by an example. Let P
depend on I, and of course on 7, but not on @ (or equivalently #), and suppose that we
wish to find the average of a #-dependent function such as

F(I; 8) = g(I) e™0rax,
Equation (2.54) shows that P does not contribute to the average, i.e. {f} is O(¢) and is

given to that order by (2.51) and (2.55). The only the terms that remain after 8 integration
are those for which IJK is a permutation of PQR, so that

(5 8) = sie [ o(1) A~(~wpan) cpur {2 Ve P dI,

where the lower case letters pgr on V4 imply that, since P is independent of 8, only the
0/01I, part of Vp is effective in Vpgg, i.e.

Voar = $pVp + 3,V + $.V,, where Vp = ——c?m
al,
- The limiting form of {(f(I; 8)) as t — o0 is
(fL, &) = Giwefg(l) 6~ (wpQR) Cpgr I;gf. Vpgr P dL (3.7)

This is the expression that would be obtained by formally taking the limit ¢ — co in (2.51)
— that is with @ fixed — using (3.1b), and then computing the moment {f) subsequently.
If however we took the corresponding limit (t — oo with ¢ fixed) in (2.46), using (3.1a)
before computing the moment, we would obtain

(f(I, 9)) = GiWE/g(I) 5+(WPQR) e_inQRt Cpqr I;{;E qur P dl. (38)
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Incorrect results such as (3.8) arise whenever the limit At — 78+ is taken, disregarding
the fact that A% is multiplied by a rapidly oscillating term, in this case e~“Part The
guiding principle is that the # — oo limit of the Liouville theory of §2 should be such that
it gives the correct moments in the same limit.

We shall call (3.2) the Fokker-Planck equation for our model hamiltonian (2.2), and on
occasion we shall prefer to use the equivalent ¢-forms of (3.2)~(3.4), which are

oP

Ta? = Grel I;K 5—(WIJK)C?jkV}JK{I;'J'kVIJ[(P}, (3.9)
Py=ime Yy 67 (wrik)cijplifieirntonixtyg, b, ‘ (3.10)
IJK
By = —pe? ' {5“(w.rJKLM1.V) - 5_(wLMN)}
ITKLMN WK
Cz.jkclmnl'i_ljszlmneiWUKLMN+0-'IJKLMN t) VrirkVounP. (3.11)

Subsequent sections will describe properties of (3.2)-(3.5). The remainder of this section
will be devoted to identifying circumstances in which the limiting ¢+ — oo forms (3.2)-(3.5)
describe the behavior of a discrete system for which (2.50)-(2.52) hold. This question is
not examined in most analyses of interacting waves where it is assumed from the outset
that the spectrum of normal modes is continuous, and in which therefore some subtelties
(such as the one concerning (f) just considered) need not be faced. The question deserves
further attention however. Continuous spectra pertain only to unbounded systems, and
no physical system is in reality infinite, though if large its spectrum of normal modes will
be tightly packed. It is then natural to suppose that, in some range of parameters, the
discrete system will behave not very differently from the corresponding continuous system,
lLe. the system obtained by allowing the volume V it occupies to increase indefinitely,
with a corresponding decrease in mode spacing to zero. An examination of this prejudice
inevitably poses mathematical questions concerning the interchange of two limits: + — oo
(with 73 = €%t held fixed), and V — co. In the usual treatments V is allowed to tend to
oo first, so that the spectrum is continuous; the waves then interact irreversibly on the
slow (7;) timescale. It is apparent from §2 however that, while V is finite, P remains
reversible no matter how large ¢ becomes. This non-uniformity in the mathematics gives
rise to subtelties in the physics, such as the paradoxes of Loschmidt and Zermelo (e.g. see
Chandrasekhar, 1943).

The issue may be clarified by means of an example. For simplicity, suppose (2.45) is
replaced by

0P _ i\~ a4 5
-bT =€ ZA (wj - wk)fjkP. (3-12)
ik ’

We derive criteria under which this becomes
AP _
S =7 Y 8wy —wi) fP (3.13)
Ik
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in the continuous limit. As usual, the summation in (3.13) is to be understood as an
integral over the labels j and k.
First suppose that P is smooth, or is represented by an average (F , say) that is smooth,

and does not change appreciably over the frequency scale {i. On the one hand, the limit
(3.13) of (3.12) cannot be justified unless

Q> 1. | (3.14)

This lower bound on ¢ is determined by the graininess of 7. On the other hand, when # be-
comes large compared with the reciprocal spacing between modes, the peak of A™ (w; —wy)
will in general lie “between” the discrete points of j or k& summation, and the replacement
of A*(w; —wy) by §*(w; — wi) will be unjustified. It is essential that many of the dis-
crete modes lie within a “bandwidth”of w; or wg. This bandwidth, B(w), is proportional
to the rate at which P is removed from the mode of frequency w by the non-integrable
interactions. In the case of model (3.12),

. B(w) = 0 (€ f(w,w)o(w)), (3.15)

where f sets the scale of f;; and o(w) is the density of states, i.e. o(w)dw is the number
of modes with frequencies lying between w and w + dw. The bandwidth condition requires
that

B(w) > 1/o(w). (3.16)

By (3.15), this places a lower bound on ¢; unless 8F /Ot is sufficiently large, F will not
have changed substantially before t~! becomes small compared with the mode spacing.
The lower bound on e placed by (3.16) does not violate the upper bound necessary for the
perturbation expansion to be valid:

Bw) € w. (3.17)

Returning to the Fokker-Planck equation (3.9), we may regard B as the rate at which P
varies with time, and 2 as a measure of the smoothness of P in I; as i varies. In general,
physical results are obtained as moments, by multiplying P by some function of I and
¢, and integrating over-all T and ¢. Contributions which do not exactly “match off "in ¢
integrate to zero, as in the example considered below (3.6). Thus, when P is expanded as

P(I; ¢; ¢t EP T; t) e™ (3.18)

it is only the dependence of P, on I that is relevant in the inequalities (3.14), (3.16) and
(3.17).

While we believe that the inequalities (3.14), (3.16) and (3.17) are necessary to justify
the transition (3.1) from the reversible Liouville system (2.45) — (2.47) to the irreversible
Fokker-Planck system (3.9) — (3.11), they are not necessarily sufficient. One key question
remains concerning the assumed smoothness of P: if at some initial instant, P is sufficiently
smooth, so that (3.14) holds true and, if H, is “sufficiently non-integrable” so that (3.16)
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1s met, will the Liouville system lead to a smooth P at later times? This question is evaded
when, as is customary, the ¢ — oo limit precedes the ¢ — oo limit. A complete answer to
the question would be tantamount to proving the second law of thermodynamics. N othing
so ambitious is attempted here, but some speculations may be in order.

Whenever a measurement is made of the state of a gystem, an interaction is introduced
with another “measuring system”, that of the “observer”, which is characterized by its
own P. If the P of an extended observer is smooth, it is reasonable to suppose that during
its interaction it will impose its own smoothness on the P of the observed system. This
assumption does not remove the difficulty; it transfers it to a more remote level, that of
explaining why the observer’s P should be smooth. This scenario, and its shortcoming,
runs parallel to the familiar difficulty of measurement in quantum theory. In this respect
one is tempted to regard P as a physical variable that is the counterpart of the wavefunction
in quantum mechanics, with the smoothing of P through measurement paralleled by the
collapse of the wavefunction. (Note also the linearity of Liouville’s equation and that
of Schrddinger’s equation.) There is of course one important difference: the minimum
scale for irreversibility in quantum mechanics is set by & and is finite, whereas in classical
mechanics it is infinitesimal. (See chapter 1 of Landau and Lifshitz, 1969.)

From now onwards we shall set these questions on one side, assume that P is smooth
and that (3.16) and (3.17) hold so that, over sufficiently long times as dictated by (3.14),
P is governed by the Fokker-Planck system (3.2) - (3.5).

22



4. General Consequences of the Fokker-Planck Equation

In this section, general consequences of the Fokker-Planck (“FP”) equation (3.9) gov-
erning P are presented.

The full Liouviile equation (2.12) admits any differentiable function (g(H), say) of the
Hamiltonian (2.2) as a steady state solution. It is not difficult to show that the truncated
Liouville system (2.45) — (2.47) shares the same property to O(e?). More precisely, recalling
that ¢ and @ coincide at ¢ = 0, and solving (2.45) subject to the #-dependent initial
condition

Py = g(Ho)+eg' (H)Hi(L4) + 580" (H) (L) ~ g(H),  (41a)

substituting the resulting P into (2.46) and (2.47) to obtain P; and P, and simplifying
with the help of (2.42), we find that to O(?) for all ¢,

: 1
P = g(Ho) + ' (HO)H1(5,0) + 3" (H)Hy (30 ~ g(H). (4.1b)
I, in contrast to (4.1a), we start at ¢ = 0 with a #-independent probability such as
Py = g(Hy),

which differs from (4.1a) by O(e), we find that P varies rapidly at all subsequent times:
to order &2,
P = g(H — € C'ijk I:Jsz ei(eIJK‘“uIJI{t)).
IJK

We shall shortly discuss an analogous but irreversible property of the F P-equation: start-
ing from an arbitrary P,

P - g(HO)ﬂ P — g(H)v i — oo, (42)

for some function g; see (4.14) below.

The F'P-equation maintains the positivity of P. To see this, assume that P > 0 for all
Iand ¢ at ¢ = 0. Then (3.9) shows that the same is true for all ¢. For suppose otherwise.
Then as ¢ increases, a time will be reached at which P = 0 at one (I, @), say at (I, ¢).
Being a minimum of P, all first derivatives of P vanish at (Io, @), and second derivatives
will be non-negative in all “directions” from that point. Thus at (Io, ¢o) we have

* = 0 9 0 P
VIJK[I‘I:jk VIJ'K P} = ijk{(Siaf; -+ 3181-] - 3kaIk)2P
1,18 18 19,24 |
ti%es * 53 * Tos) P}’ )

which is positive. When we substitute (4.3) into (3.9), we find that, because the rest of the
integrand is even in s, the principal part of 6~ (wrsk) makes no contribution and may be

23



omitted. Using (4.3), we see that 0P /8t > 0, so that the zero of P disappears, leaving
P again positive for all (I, ¢).
On multiplying (3.9) by ¢'(P) and integrating, we find that

0 5 = 5 |2
e g(P) dl dp = —Bre® g"(P) 8w ) c?- Lije | Visg P " dI d¢. (4.4)

Again, the principal part makes no contribution, this time because {V;;x P|? is even in
s. In writing (4.4) it has been suppose that g(P) is such that the integrated part vanishes

at I; = 0 and co. Particular cases of (4.4) are
2 [[Pares = o ‘ (13)
ot ’
) %[fﬁ2d1 d¢ = —127&'62 // Z 5(LUIJK) C?jk I,'jk | VIJK P *2 dI dtﬁ
1JK (4.6)
Equation (4.5) ensures that the normalization of P is maintained: if at ¢ = 0

//Pdqu&:f/Pdqub:l, (4.7)

then the same is true for all ¢. [Note that the integrals of P, and P; over I and ¢ are zero
by (3.10) and (3.11).] From (4.7) and the fact that, by (4.6),

9 52
3¥f Pdldg < 0, (4.8)

P must ultimately equilibrate to a distribution, Pg say, that makes the right-hand side of
(4.6) vanish.

To elucidate the nature of Ppg, it is convenient to note first that, because of its single-
valuedness, P may be Fourier expanded:

P = Y Pu(I, t) &9, (4.9)

where, because of the reality of b,
P_,(I, t) = PXI, t). (4.10)

Substituting (4.9) into (4.6) we obtain the “H-theorem”:

d _
5 / / Pl d¢ = —12xé / / D Slwrix) kg Lijk x

IJK n

S AN S B WO N YRR
{’ [s:37; + 557, +9+57] o tllpr g+l A [}dxd"' (4.11)
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In equilibrium the two negative definite contributions to the right-hand side of (4.11) must
vanish separately. Thus only then = 0 termin (4.9) survives. In fact the development of a
¢-independent P must take place rather rapidly, since these terms in (4.11) are associated
with decay rates proportional to n2. One may conclude that after a short time, any
surviving n-dependence in P must be confined to relatively small n.

According to (4.11), in equilibrium Pr = Pg(I) and

0 a 8

= 2
Iz, + sigp; + sppl P
must vanish whenever wryx = 0. It seems plausible that therefore
d 0 J 4 =
Y e -~ 9
[SgaIi + sjal_j + SkaIk] Pr xwrik, (4.12)
which is satisfied if ) ~
Pg = Pg(Hs). (4.13)

Conversely, it is clear that (4.13) satisfies (3.9). Corresponding to (4.13), we have, by
(3.10) and (3.11),

Py = Po(Ho) + ePh(Ho)Hi (5,6) + 3¢ P(Ho) H (L,0)%, (4.14)

which is the expansion to O(e?) o

Pgp = Pg(H). (4.15)

Compare (4.13) and (4.15) with (4.2).
A subtle point arises here, which concerns the diagonal terms defined below (3.6) and
discussed in Appendix B. There is no justification, at the O(€?) accuracy of the present

theory, for including the diagonal part of H;(I; #)% in (4.14). More precisely, one should
replace (4.14) by

P = PE(HO) + EPE(H{))Hl(I 0) + —62P w(Ho) | H1(I; 0)2 - 482 C?jk L] - (4.14)
i1k

At first sight, the difference between (4.14) and (4.14') appears to be inconsequential;
Hi(I; 8)* involves a six-fold integration whereas the summation of ¢t Lije involves only
three integrations, and seems comparatively negligible. If however we use (4.14) to obtain
the moment of a function of I alone, we obtain an O(e?) contribution that (4.14') would
not produce.

Ironically, it is (4.14) that gives the physically correct moment at O(e?). The Liouville
and Fokker-Planck equations, truncated at the O(e?) of the present theory, cannot repro-
duce this term. We presume that, if we generalized our expansion to the O(e?) level, we
would obtain a truncated Liouville equation for P of the form

?ég' = GZ,CQP + E4£4P,
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in place of (2.45), and that the resulting post-Fokker-Planck equation, replacing (3.9)
in the continuous limit, would, when solved for the equilibrium distribution, supply the
missing diagonal terms in (4.14'). This is, however, a matter of conjecture: the fact is
that, when we take moments of f-independent functions, we obtain answers from (4.14")
that are physically valid only to order e.

If the initial energy, E, of the system is known with certainty, then for some F (that for
finite N need depend on only 2N — 1 actions and angles),

P(; 8 0) = F(I;-a) §(Hy — E). (4.16)

This suggests that we should seek solutions of (3.2) of the form
P 8 t) = F(I; 8 t)6(Hy, — E). (4.17)
On substituting this into (3.2), we discover that the factor & (Ho ~ E) factors out, leaving

oF OF - x
'5;' + w,'gdr = 67‘?62 Z: é (CUIJK)C?jkaJK{IijkVIJ}‘{F}, (4.18)
i ! IJK

The arguments that led to (4.13) may now be repeated to show that
F — Fg = F(Hy), as t — oo, {4.19)

which, in view of (4.17), implies that

P — Pgp = Cé(Hy ~ E), as t — oo, (4.20)

so that
P - Pp = C§H - E), as t — oo, (4.21)

where C' is a constant. This is the microcanonical distribution: amongst the states of the
given energy, all I and & become equally probable .

It is perhaps worth mentioning that only minor modifications are required to generalize
the arguments of this section to the multivalued probability p(I; ¢; ) described below
(2.13). The demand that p vanishes for ;] — oo stands in place of the assumed periodicity
of Pin 6;. The Fourier sum (4.9) is replaced by a Fourier integral over a continuous variable
1, and similarly an integral over n replaces the sum over n in (4.11).
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5. Reduced Distributions, Kinetic Equations
and the Stosszahl Ansatz

In this section we shall use the Fokker-Planck equation to follow the evolution of mean
values, (f(I; 8))(2), of bounded functions f(I; 8); see (2.49).

Consider first the simplest case, f = f(I), in which f is independent of the angles 8,
so that only the n = 0 terms contribute to {f). Then, as regards the secular, O(e°),
contribution to the average of f(I) as given by (2.54), we may disregard the dependence of
P on . If, in fact, P is independent of & then (f); = (f)2 = 0, because the 8-dependent
terms in P; and P; do not affect {f) in this case. In this section, we shall consider only
{f(I))o, and can therefore ignore both the subscript y and the #-dependence of P:

(F(1)) f f F(T) P(T) dT a6 (5.1)

[The integration over 8 is cosmetic, introducing the factors of 27 necessary to maintain
the normalization (1) = 1; see (4.7).] Since the @-derivatives in V; and Vj x act on
0-independent functions we may, in the notation introduced above (3.7), replace V x in
(3.9) by Vijk (= V). The principal part term in (3.9) is now odd in s, so that § may
stand in place of 67, On differentiating (5.1) by ¢, applying (3.9) and integrating twice by
parts, we obtain

%(f(I» = 6me’ Z 8(wrik) ik (Vise(Tijx Vief))- (5.2)
17K

[To make the integrated parts zero, f must be bounded at I = 0, and P must vanish
sufficiently rapidly for [I| — o0.]

When f = f(I,} is a function of one particular action I, alone, (5.2) simplifies further:
d
Z{F(B)) = 187 ) 8(wpik) sy [sp(LILSFY) + si{Llpf') + si(LLf)]-
5, JK _ (5.3)
In particular
d .
}E(IP) = 187é? Z 5(wPJK) C?,jksp[sp(fjfk) + Sj(IkIp> + Sk(fjfp)}, (5.4)
s JK
d _
Z{(sz) = 36me? Z Swprk) sy [28p (LI ,) + si{Iel2) + se{I;I2)]. 55)
$p JK .

Equations (5.4) and (5.5) are not closed kinetic equations, since it is in general impossible
to express the mean of products, such as ([;I;), as products of means, such as (I;}{;).
What can be demonstrated however is that, if I; and I; are initially uncorrelated, they
will develop correlations at a rate that is “thermodynamically small”, i.e. at a rate that
vanishes in the V —» oo limit of a continuous system.
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In order to examine this question, we must return to the discrete system of §3, and again

examine the transition to the continuous case. Suppose that at ¢ = 0, some finite number
n (<< N) of actions are uncorrelated, so that
(91(1)g92(L2)ovgn(Tn)) = {g1(I1))(g2(L2))....{gn(L)). (5.6)

We aim to show that, although (5.6) is, according to (3.9), untrue for any ¢ > 0, deviations
from (5.6) build up at a rate proportional to N, or more precisely o(w)~!. By (3.16),
this is small compared with [y(w)]~?, the timescale of thermal equilibration in which we
are primarily interested,

We illustrate the argument through the special case of (5.6) in which all g; are unity,
except gp(l,) = I, and 94(I;) = I, where p # ¢. By (5.2) we have

d
:E(Ipl-q) = 187&'62 Z 5(wPJK) cijk .Sp [Sp(IjIkIg)
8 JK .

+ s;(1 + 6iq)(IkIpIq) + k(1 + 5kq)(IjIpIq)] +(p < q), (5.7)

where by ‘(p < ¢)’ we mean that the previous expression on the right-hand side of (5.7) is
repeated, with p and ¢ interchanged. When we combine (6.7) with (5.4), the cumulant

Cik,g = (IjIkIQ) - (IjIk)(Iq), (5.8)

arises. Clearly Cj, = Ckj,q» and for convenience we shall take Cik,g = Cigq = 0 (not
summed). [Strictly A should replace 76 in (5.7) and (5.9) below, but its effect in the later
limit N — oo is that of the 7§ shown.] By (5.2) and (5.7)

d
E[(Ipfq) - (IP><IQ)} =

18“2{ > S(wpik) chik Sp [5Cjk,q + 5iChp g + 5kCip,q]

s, JK
J.k#g
+ 2 Z 6(“’PQJ) Cjzrqj $p [SP{(IjIp?) - (IjIp)(Ip)} + Sq{2<IjIPIg> - (IJ'IP)(Iq)}
2pa,J
+ 5B = (BN} + (o) (5.9

The first summation in braces is a double sum over J and K , or (in view of the §-function)
a single sum over J or K. The second summation is a single sum over J, or (in view of
the é-function) a sum essentially only over two nonzero terms at the sum and difference
frequencies w; = w, + w, and wj = |wp — wy|. The first summation in braces is
therefore formally larger than the second by a factor of order N. Suppose now that (5.6)
holds initially, so that Cjz, = 0 att = 0. Then {(Iply) — (I}{I,) evolves at a rate that
vanishes in the limit N — co. But (I1,) and (I,}{I,) evolve at rates determined by the
nonlinearity, i.e. at rates proportional to €2, Thus, if at t = 0,

(IpIq) = (IpHIq)a (5-10)
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then this continues to hold with negligible error throughout the subsequent thermalization.

This argument may be generalized to a cumulant of order n (<< N). The principal terms
that lead to the development of cross-correlations vanish when the cumulants are zero, but
they are formally N/n times more numerous than the secondary terms that are present
because of the finiteness of the system. The latter can be regarded as “thermodynamically
insignificant” in the limit V' — oo. Henceforward we consider only continuous system, and
omit the thermodynamically small terms without comment.

The lack of correlation epitomized by the factorization (5.10), or more generally (5.6),
was named “the Stosszahl Ansatz” by the Ehrenfests (1912). It is a common tool in
theories of wave interaction in continuous systems, e.g. Hasselmann (1960), Litvak (1960),
Newell and Aucoin (1971), Putterman and Roberts (1983a,b). It has been the object of
special study by Benney and Saffman (1966) and by Newell (1968); see also Hasselmann
(1967) and Saffman (1967).

With the help of factorizations such as (5.6) and (5.10), we may now close kinetic
equations such as (5.3) - (5.5). For example, we may write (5.3) as

Of (L)

d ad of(r
G = ap(ar(BTh) - 51,200, (5.11)
where
Ay = 187¢ Y S(wpsk) (L) > 0, (5.12)
sp JK
B, = ~187e? Z (wprk) c?,jksp[sj;(fk)_ —{-—Sk(fj)]. (5.13)
3, JK

In particular, taking f(I,) = I, in (5.11), we obtain in place of (5.4),
d
(L) = 18ré Y 8(wpak) rsplsplifIe) + sj(I)L) + selli)(L)],  (5.14)

8 JK .

as indeed would be obtained by direct factorization of the products of moments in (5.4).
The factorization (5.6), which has led to simple kinetic equations like (5.11), indicate

that P itself can be factored. To study this question, we introduce reduced probability
densities, such as

PUI; t) = ffP d,I dé, (5.15a)
P¥(I,, I; t) =f P d,,I de, (5.15b)
which only involve a small number, n (<< N), of modes. Here

d,] = 1;Id1',- =dl/dl,,  dpI= [] df = dI/dLdI,. (5.16)
t#p i£p,q
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It is clear that
L) = [105) Pg)an, (5.17)
UL = sz(Ip, 1,) di,. (5.18)

It is also convenient to introduce averages taken over all modes except p or except p and
q:

@ = [[ 50 Py a1 e (.19
Oy = [[50) PO dyy1 a0 5:20)
In this sense ) )
PUL) = {1}p, Pz(ng I) = (L (5.21)
{ paggrp)) = / ) I, op I(IP) dr,, | (5.22)
(ai, @ arpp))) N /f aI (p)) T (5.23)

the integrated part vainshing for the usual reasons. On substituting into (5.11), we obtain

oP' o . . aPt |
/f( { 5t BI [I (Ap-a—l_; + BPPI)]} dIP = 0,

and, since this holds for arbitrary f(Ip),

oP! o op? ~
A = [ (Ap=— 5T, + B,P')]. (5.24)

Alternatively, we may argue as follows. Integrate (3.9) over all 8, and over all T except
I,. This gives

OPY(I,) 0 i,
at p o= ]_87('52 ;{6("‘)1).1}() PJkSPaI {Spa'l,“;<IjIk)P - [Sj(Ik)p -+ S,L(I:,)p}},
3p
(5.25)
and, apart from thermodynamically small terms, we find similarly that
8P*r,, I 3,
——%i;—g—)- = 187é? Z Swprk) cf,jkspgz I,

sp JK
ad
{Spgj;(IjIk)pq - [3j<Ik)pq + Sk(Ij)PQ]}+ (p & q). (5-‘26)
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Hatt =0

152(1?, I) = Pl(IP) pl(Iq): (5.27)
then, recalling that when f is independent of I, and I, '
(Flog = {flp pI(Iq) = (fle Pl(Ip): (5.28)
we have (taking successively f = I; and f = I;I;) by (5.25) and (5.26)
I - _
5Py I) — PHL)PY(IL)] = o, (5.29)

i.e. the factorization (5.27) is maintained. To the extent that the effect of a single mode
p to an average (f) over all N(>> 1) modes is negligibly small,

(Flp = (f) PT,). (5.30)

On using this result in (5.25), we again obtain {5.24).
We now turn our attention to steady states, and equilibrium states. According to (5.11),
the mode p cannot be steady unless

B, > 0. (5.31)
For, setting f(I,) = I, in (5.11), we see that in steady conditions
(I,) = A,/B,, (5.32)

the left-hand side of which is necessarily peositive, as is A,. We shall find that (5.31) is
obeyed in thermal equilibrium. By setting f(I,) = I in (5.11), we obtain

d Yy .2 -1 n
(L) = nPALY) — nBy(I), (5.33)
so that p '
UL — ALY = 2B, [(I}) — 2(L)7). (5.34)

Even if only the first moment has its equilibrium value, the second moment will evolve
and, according to (5.34), will attain its equilibrium in a time of order B 1, More generally
it follows from (5.33) that, when all moments have become time independent,

(I) = nl{L)", (5.35)

1

so that (assuming the series involved are convergent)

o0

% 4(n)
sy = Y Em - > i (5.36)

n =20 n =0
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The result (5.35) reflects the fact that, when mode-p is statistically steady,

PI) = — oD/l (5.37)
P

which also satisfies the steady-state form of (5.24).
Suppose now that all modes are statistically steady. According to (5.14),

0 = 187¢® 3 8(wpik) Eusplsp(Ldle) + s, + sl (Dp)]. (5.38)
, JK

There appear to be just two ways in which the right-hand side of (5.38) can be made zero.
First, one can arrange that, for all ¢, j, &,

silliM(Iky + si{IiNL) + si(Tfl;) « wrik,

by taking (I;) o« w;’. In this case of thermal equilibrium, the constant of proportionality
is kpT, where T is temperature and kg is Boltzmann’s constant:

(LY = kT /w;. (5.39)

By (5.32), B, > 0. When (5.39) holds, both Ay, and B, become infinite in the limit
N — oo. Nevertheless, (5.32) is still justified, since it applies term by term to every
summand in expressions (5.12) and (5.13) for 4, and By. That is, when (5.39) holds,

5(prK){wp(Ij)(Ik) + kgT SP[SJ‘(I];) + Sk(Ij)]} = q, (5.40)

Infinite sums can also be evaded by the time-honored device of cutting-off high frequencies.

The second way that all modes can be maintained steadily is by “pumping” energy
into the oscillators in a band surrounding some low frequency at a constant rate, Qo, and
removing it at the same rate at high frequencies, e.g. by invoking dissipative processes. The
lack of dissipation between the injection and ejection frequencies in this “wave turbulence”
is analogous to the lossless “cascade down the spectrum” occurring in the inertial range of

vortex turbulence. And, in the same way, energy in the inertial range of wave turbulence
follows a power law:

L ' :
K Qo \7 -2
(It = £ ‘““"‘Qoz" wy B, (5.41)
go \ ooch

where T is used to distinguish this steady cascade solution: d (> 1) is the dimensionality
of the system, which enters because the density of states is of the form

o = ogw? "1, | (5.42)
where oy is constant; the constants B and ¢y appear in Cijk, for which it is assumed that

€Cijp = ce(w,-w,-wk)ﬂ; (5.43)
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K is a dimensionless constant of order unity. That (5.41) obeys (5.38) was first established

by Zakharov (1965) for the case d = 3, § = 0, for which {I;}T o w; 7T, The more
general result (5.41) was obtained by Larraza et al (1985), see also Appendlx A below. By

analogy with (5.39), we may use (5.41) to define an effective temperature, Tj, associated
with mechanical noise at frequency w;:

TT - K [Qg ]% —3(3d + 68 — 2)

) — [ ) ) H.44
: kpog “oock wi ( )

This increases as w; decreases and, at sufficiently low frequencies, the fluctuations due to
mechanical noise greatly exceeds thermal noise.

A word of caution may be in order. The simple exponential form of (5.37) for a single
degree of freedom implies by (5.6) that the reduced distribution function for n (<< N )
modes is also exponential. This in no way implies that the global distribution function P
for the full NV degrees of freedom is also exponential. For example, it was proved at the
end of §4 that the microcanonical dlstnbutlon in thch

PE o« §(Ho — E), (5.45)

where E is the total energy of the system, is a solution of the FP-equation (3.9), but it is
not of exponential form. Nevertheless (5.6), (5.27) and (5.37) are true. There may be many
other global distributions P that are not exponential but which imply those equations. A
noteworthy difference between the stationary state (5.41) and the equilibrium state (5.39)
is that the canonical distribution, . |

N
- I1 7@, (5.46)

is a steady state solution of (3.9) when (I;) takes the form (5.39) appropriate to thermal
equilibrium; nevertheless, (5.46) is untrue for off-equilibrium stationary states. The re-
quirement n << N attached to (5.6) is especially significant for states out of equilibrium.
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6. Angle Dependence and Frequency Renormalization

Because of nonlinearities, the frequency of an oscillator is a function of jts amplitude. In
our model, direct self-interactions are ignored (ciik = 0, see §2), and the frequency shift
is created by indirect interactions with the other oscillators of the bath in which oscillator
p influences oscillators j and % at order €, and those oscillators return that influence to
oscillator p at order e2. We shall exhibit this this effect in two ways.

First, according to (2.2) and (2.7) - (2.10), we have

by = s cpu(Lh)remiveor, (6.1)
sp JK ?

and

(¢p) = f/ $p[P + Py dI do (6.2)

gives (c;'ﬁp) correctly to order €2. Even when P is independent of 8, P possesses (through Pl)
f-dependent parts, so that the average (6.2) of ¢, is nonzero. This systematic contribution
to (¢p), which remains when P is independent of 0, is by (3.3)

(fp) = Omie® > f/am(wpm') c2ix i Ik Vo P dI'd. (6.3)
8, JK

On integrating by parts and assuming that the factorization (5.10) is valid, one obtains

(4) = - 3B, (6.4)

where

B, = 18¢ Y P( L

wPJ_K) Cf:jk[sj(fk) + Sk(Ij)]. (6.5)
sp JK

By (2.20), we may also write (6.4) as

(g}") = QP? (6.6)
where _ .
Qp = wp et é*.B;, (67)

L.e. the bath has renormalized the frequency of oscillator p to be (1,,.
_ The second method of deriving these results is to generalize the reduced distributions,
Pl P?%..., defined in §5 to include angles. We replace (5.15) by

PYI; 0, 1) = / P d,I 4,6, (6.8)
Pz(IpaIﬁ Op, 045 t) = f deI dpq, (6.9)
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where in analogy with (5.16)

11 6, = do/as,, dpf = [ dé: = do/de df,. (6.10)
i#p i # pg

When P is 8-independent, (6.8) and (6.9) reduce to (5.15), apart from factors of 2m.
When repeated here, the arguments of §5 about factorization of P lead to

35: wp 39 Zv* L(ApVpP' 4+ BpPl)], (6.11)
where
Ap = 187 Y 87 (wpik) i) (Ik) = Alp, (6.12)
JK
Bp =—~181r5226“'(wp);<) cixsp(8i(le) + sk(l;)] = Bip. (6.13)
JK :

It may be noted that, according to (5.12), (5.13) and (6.5),
1
=) Ap, B, =) Bp, B, = ESZSPBP. (6.14)
3p 3p ?

The operations on the right-hand side of (6.11) do not destroy the reality of P!, and this
is also evident when that equation is rewritten in the form

op! 8Pt 9 oBt _ A, 82P
ot T g, = g b + BPO e (619)

Before we apply (6.15) to the computation of (ép), we should note that we shall have
to average non-single valued functions of 8, and that, when we multiply such functions
into (6.15) and integrate over @, the integrated part will not vanish. The first step in the
argument is therefore to replace P by the p introduced below (2.13), and to perform the 8
integrations from —oo to oo. The integrated parts then vanish, because p — 0, as# — +o0:
under those conditions, equation (6.15) is as valid for 5 as it is for P!, Thus, defining

(9;0) by
8,) = //HP P dl, dé,, (6.16)

multiplying (6.15) (with 5* in place of P!) by 8, and integrating, we recover (6.6). [Since
the right-hand side of (6.1) i 13 single-valued in 0 the first method of computing (8 p) did
not require us to introduce p'.]

If one regards the oscillator hamiltonian (2.7) as a discretization of the sound field in
a continuous medium, then p labels a particular normal mode, and the renormalized fre-
quency {6.7) corresponds to a renormalized speed of sound. In §8, this fact is used to
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compute the temperature dependence of the speed of sound in a dielectric at low temper-
atures.

In conclusion, we observe that, in analogy with the expansion (3.5) of the full proba-
bility distribution P, the reduced probability distribution P! is the first term in a similar
expansion,

Pl(Ip; 9115 t) = Pl(fp; 9?? t) + Pll(Ip§'6p; t) + ]3’21(1?; gp; t)a (6-17)

of the full reduced probability density:
PY(I,; 6, ¢) = f f P(T; 6 t) 4,1 4,0, (6.18)

[cf. (6.8)]. It will be recalled that, after P has been obtained by solving the full FP-
equation (3.2), P, and P, can be derived by integrations (3.3) and (3.4). Analogously,
once P! has been derived by solving (6.15), P! and P} can be obtained by integration:

pf(Ip; ep; t) = Jime Z 5_(WPJK) dpjk (quK)O $pqp VPPI, (619)
,JK
' - ——
szl(Ip, 91,; t) = _"97762 Z {6 (WPJKP'ﬁi]:) - § (wP’MN)}
spsl, JKMN WpIK

dpjk dp'mn <Q'JQKQMQN)O Spdp Sprqpr VPP’PIA
(6.20)

We have here used representation (2.6) and definition (2.54). Results (6.19) and (6.20)
will be useful in §7. '
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7. Langevin Equations and Fluctuation-Dissipation Relations

As well as leading to kinetic equations, such as (5.11) and (5.14), the FP-equation can
be used to trace the time development of the primitive variables q and p. This is possible
because our Fokker-Planck equation governs a probability density that depends not only
on the actions but also on the angles. Of particular interest is the Langevin equation for
one particular oscillator. It is supposed that the coordinates (g,, p,) of that oscillator are
accurately known at ¢ = 0, in the sense that

ﬁl(IM bp; 0) = 8(I, — Inp) 6(6, — Bop)- (7.1)

In contrast to (7.1), the probability distribution for all other oscillators will be assumed to
be smooth, i.e. P is smooth in pI and 40, a notation we use to mean all I; and 6; except I,
and 6. This smoothness characterizes the state of the bath, and because of it P1(I,; 6,; t)
will not maintain its initial sharp distribution. The interaction of the p-oscillator with the
bath destroys the sharp initial condition and leads to the diffusion of P! in (I,, 8,) space.
This diffusion, and therefore all moments of g, and py, can then be calculated from (6.17)
— (6.20) or from (3.2) - (3.5). An equivalent way of viewing this diffusion is through the
Langevin equation, which describes the fluctuations about the average time development
that would result from the initial condition (7.1) were there no fluctuations. We develop
this picture below, but emphasize at the outset that it contains no new information beyond
what is already contained in (6.17) — (6.20).

To obtain the Langevin equation for oscillator p, we recall that, by (2.1) - (2.3) and the
canonical equations governing ¢; and p;,

d* 2

Tl T Wt = By (7.2)

where
Fp = — Je dejkq;r'Qk- (73)
jk '
In the framework of the Langevin picture, F}, is to be regarded as the “external” force that
the bath provides through the current configuration of its oscillators. This force will have
a systematic part, proportional to ¢,, as well as a fluctuating part which is independent of
the instantaneous value of ¢,, and thus depends only on the bath coordinates.

To clarify the averaging procedure appropriate for the Langevin approach, we appeal to
85 and factorize P:

P = PY(I; fp; 1) pB(pI§ #0 1). (7.4)

Here PP, which is O(¢®), is the distribution function for the oscillators of the bath. To
order €,

P = [Pi(Ip; Op; t) + 1511(1; 8; t)] [PB(PI; M t) + 151}3(1; ; t)], (7.5)
where by (3.3)
AII(I; @, t) = 3Jime Z 5_(pr;() Cpjk I;J/: efPiK 3p Vppl, (7.6)
ap.ff(
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and

P].B = pII?B + Plajpa (77)
where .
Blp =ime Y § (wisk) cije L[} efrx v, 1 BB, (7.8)
ITK#P
PP, = 3ire > 6 (wpik) epjk I;j/f 7K (5;V; + sxVi)PE, (7.9)
ap JK

Here PB is the O(e) part of the probability distribution of the bath alone. It consists of a
part }51‘?? that is proportional ¢, — see (7.9) — and a part JE’IE,’B that is independent of the
state of the p oscillator and concerns only processes in which the bath interacts with itself
~ see (7.8).

Consider an instant in time when gp and p, are measured with sufficient accuracy so
that (7.1) is a reasonably accurate description of P!. On averaging the total probability
distribution P over a small domain (AL, A8,) surrounding (Iop, Bop), where Al < I,
and Af, <« 2w, we obtain

1 _ .
. 6, = PB L pB
AT A7, /f P dI,dé, + P
‘ AL, A6,

This follows because the O(e) term, which according to expression (7.6) for P} is propor-
tional to the derivative of a §-function from the initial state (7.1), integrates to zero. Thus,
PB 4+ PP is the distribution function for the reservoir that provides both the system-
atic (long timescale) and fluctuating (fast timescale) contributions to the motion of the
p-oscillator. For instance, the average force on the p oscillator due to the bath is

(F,)B = / / F, [BPGI; .6 t) + BB, 6; )] d,1d,0, (7.10)

an expression that is valid to O(e?), since Fy is already O(e). It is convenient to divide
(F,)B into two parts. One is

Fl = //FP[F’B + PJ5] 4,14,8, (7.11)

which is that part of the average force which the bath exerts on the p-oscillator that is
independent of the state of that oscillator. The other,

F} = f / FPE d,14,0, (7.12)

1s the average force that the bath exerts on the p-oscillator through the influence of that
oscillator on the bath, i.e. it depends on the coordinate of the p'® oscillator. It follows
from (7.3) and (7.9) that

~

F} = ~Bygp — 2w, (, - wp) (7.13)
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where

BP = --187!‘62 Z 6(WPJ’K) Cpik Sp
sp JEM

[s7 Cpjm (TeZ €M) & sp coppm (I302 €i012)], (7.14)
< 1
O = wp = 9 3 P(—) cpis

WprK
sp JKM
(5 Cpjm (Tl €%} 4 85 copm (I}17 €¥70)]. (7.15)

(Here and henceforward the superscipt £ is omitted from bath averages (...)? whenever
such terms are already O(e?).) We may now write

F, = (F,)? +F, (7.16a)

or as _
F, = Ff +F} + F,, (7.16b)

F, being the fluctuating force on the p-oscillator. On substituting (7.16) into (7.2}, we
obtain

gp + Bpa, + Q2¢, = F} + F.. (7.17)

In the Langevin approach, the randomness in g, is attributed to the fluctuations of the
bath, i.e. to Fy, so that the autocorrelation of this force is of central interest. From (7.3),
(7.10) and (7.11), one finds that ‘

(F;:(tl)F;:(tZ))B = 9¢° Z dpjkdpmn [(Qj(tl)Qk(tl)Qm(tZ)QH(t2))

Jkmn
— {gi(t1) g (1)) {gm (t2) gn(t2))]. (7.18)

Equation (7.17), supplemented by (7.11), (7.14), (7.15) and (7.18), determines the gen-
eral Langevin-type motion of the p-oscillator. Further simplification follows from taking
P3B independent of angle; then FJ = 0, and only terms for which M = —J or ~K make a
nonzero contribution to the sum (7.18), so that (7.14) and (7.15) lead to (5.13) and (6.7).
All the ™ may then be removed from (7.17). It follows that

dp + Brqp + Qggp = Fz:’ ‘ (7.19)
and (7.18) reduces to
(Fp(t1)Fp(t2))? = 36€%w, > clipI; 1) etrx(ti=ta) (7.20)
JK

where we have used the O(e) part of (2.6b) to relate averages at ¢, to averages at .. This
is equivalent to taking

qr(tz) = gr(ty)e™osilti=ta), (7.21)
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i.e. to ignoring the slow time-dependence in gr, which does not affect the validity of (7.20)
at O(e?). The response described by (7.20), or for that matter (7.18), is stationary, i.e.,
on the fast timescale, (Fp(t1)F,(t2))® depends only on ; —t,. Also, the autocorrelation
(7.20) is even in ¢; — t,. Had P®B depended on angles, the response would no longer have
been even in ¢; — 1,; reversibility on the fast timescale would have been lost. In terms of
the Fourier transform,

! _ 1 /GQ ! iwt 99
Fw) = T ) Fo(t)e*“ dt, (7.22)
of Fy(t), (7.20) is
(Fp(w)Fp(w))? = Fl(w)d(w' +w), (7.23)
where '
Flw) = 727’ w, Z i LIk )6(w + sjw; + sgwp). (7.24)
JK

In thermal equilibrium (I;) = (L)g = kzT/w; and, according to (5.40),

' [silZe}e + sk{l;) ]
LI = kpT . 7.25
(Lilk)e B (sjwj + spwy) (7.25)
In this case, therefore, F? o= F, g* where
v = —36we’kgT %E- Z §(spw + sjw; + spwe) c?,jk sp [i{Ie) B + sxl{l;)E]. (7.26)
-8 JK .

The response of the p oscillator to the fluctuating force, F3(t), may, in the case in which
PB is independent of angles, be found from (7.19):

Fp(w)
! = — L . 2
QP("") w2 — 02 + wB, 5 (7.27)

Since the response of the oscillator to the fluctuating force is concentrated within a band-
width B, g about Q,, it is, to the 2 accuracy considered here, only the value of Fy gt (w)
at w = wp that has any real significance, and by (7.26) this is

Fp5*(wp) = 2kpTB, &, (7.28)

which is the fluctuation-dissipation relation for thermal equilibrium.

The physical realization of the fluctuation-dissipation relation for our system may be
seen in the following way. First, let the distinguished oscillator be displaced far from
equilibrium, and be held in some state (Iop; Bop) while the bath comes into equilibrium. (By
“far from equilibrium”, we mean only that gq, is large compared with a typical fluctuation
in g, due to the bath.) Let the oscillator now be “released”. Due to “collisions” of the P
oscillator with the bath, gp will (averaged over many repetitions of the same experiment)
decay from its initial value, qop, b0 zero at the rate B, which according to (7.26) then
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determines the spectral intensity of the fluctuating force that describes deviations in ¢,

from its averaged evolution, {g,)%.

The decay of (g,)® from some initial value,-gq,, to zero is the result of direct collisions
between oscillator p and the bath, as represented by B;. Also present are restituting
collisions in which two oscillators of the bath interact to restore energy to oscillator p.
This effect i1s apparent in the kinetic equation (5.14) through the term A,. The Langevin
equation that demonstrates this effect can be obtained by multiplying (7.19) by ¢, to

obtain

dr.
“&f’ + Bpl, = G, (7.29)
where o
qp 1 ) d
G =22t B~ ) - @-p3g) 0w
Again, we may write
Gy, = (Gp)? + G, (7.31)

The fact that G, depends explicitly on ¢, means that some care must be exercised in
evaluating the bath-average of (7.29). In the framework of the Langevin equation, one must
include the dependence of g, on the initial conditions as well as on the bath coordinates,
which determine Fy. And so one writes the solution of (7.19) in the form

&% = g +4b (7.32)
where _
0 = 4(Fp), (7.33)

is obtained by inverting (7.27), and qf solves the homogeneous equation associated with
(7.19), i.e. the equation obtained by setting the right-hand side of (7.19) to zero; qf is
required so that g, given by (7.32) satisfies the initial conditions. Since (see above) the
initial displacement qq, is large compared with the fluctuations, qf is large compared with
95(F,), and so must in the first approximation coincide with gop at t = O:

qf(t) = qop e~ % Brtcog Qpt. (7.34)

From (7.30) we now have

(6 F)° 1,

(Gp)® = + 5 dape 7 [Bpopcos 20yt — (02 — w2)sin20,1] . (7.35)

“p
In order to obtain (7.35), we have used
, d
(5 )° = (6" — ¢N° = —(@)? = 0.
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To reduce (7.35) further, we take from (7.27)
iw Fp(w)

3! = - , 7.36
- gp(w) wz N 912) + Zpr ( )
and hence obtain
o0
(Q";:F')B 1 . B_—i(wtw')t
= f/(g;,(w) FI(w))Be=i e+t 4y, o
-
oo : FI.'Z
I f ) g, (7.37)
27wy J_ o w? — Q2 4+ whB,
By using (7.24) and contour integration, we may reduce (5.12) simply to
T B _
-——--—-—-( p ) = A,. (7.38)
" p
?

Omitting terms in (7.34) having a zero time average taken over.a period of the oscillator,
we now obtain from (7.29)

d
E(IP)B + By (Ip)B = A, (7.39)
While (I,)® is governed by the kinetic equation (5.14), the fluctuations about this evo-
lution are determined by G, the fluctuating force central to the Langevin equation gov-
erning . Unlike the familiar forms of Langevin equations (such as that governing g,), the
Langevin equation governing I, is not homogeneous in I,. It was shown in 85 that, the
correlations in the actions of initially uncorrlated oscillators grow at a thermodynamically
negligible rate. In the context of the Langevin equation, there correspond properties of
the fluctuating force G'. If one forms the equal time correlations of G, with the actions
I, and I; (i # p), one finds

(I Gp)® = Ap{1,)5, (7.40)
(I,'G;J)B = 187 ¢ Z 5(WPJK)C;2,jkcjk,:', (7.41)
s, JK .

where the cumulant Cjr,i is defined in (5.8). At = 0, when the probability density
factorizes, Cjr; = 0. (It may be recalled that Cokyg = Cigq = 0 by definition.) Thus,
the correlation (7.41) is thermodynamically small compared with correlation (7.40). The
correlation (I, G}) is, however, very significant. [t accounts for the fact that () # (L)%
see (5.35).

In order to derive (7.40), it is necessary to divide the action I, into fluctuating, homo-
geneous and “mixed” contributions:

1

I, = m(qﬁ + wyg;)

1., .
=+ + w—p(q;,qf + wlq, ¢ff), (7.42)
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where

L= L), I = L), (7.43)

so that
()P = L7 + (1), (7.44)

where we have recalled that, in the present situation, P? is independent of angle. Con-
tinuing to neglect terms that are O(e?) or that are purely oscillatory at frequency 2Q2,, we

now have - -
gy Fy + gp Fp

(]
= ~ A, 4
GP wp wp AP (7 5)
From the relations
-H F! B
(E"2)5 = 24,(,)7, (7.46)
?
(IZFGLYE =0, (7.47)
1, . : ! F,
(= (64 + «5aq) TP = 4,17, (7.48)
P . P

we now obtain (7.40).

The equation of motion (7.19) can be related to the reduced Fokker-Plank equation
derivied in §6. By multiplying (6.15) by ¢p, and integrating over all (,,8,), one obtains

d L

d—t(Q’P)O — 15,0{gp)o + 2313(‘11’)0 = 0, (7.49)

where the suffix 0 is added because (gp)o is only the first term in the complete average.
More generally, to O(e?), the average of a function f(I,, 6,) is, as in (6.17),

A = Flo + (M + (Fa (7.50)
where ‘ .
(o = f/f(fp, 6,) P(L,; 8,; t) dI, db,, (7.51)
(s = [[ 115 6) Bty 035 1) a, a5y, e
(F)z = //f(rp, 8,) PI(I,; 6,; t) dI, df,. (7.53)
On substituting (7.50) into (7.49), we obtain, to O(e?),
Flar) — isslar) + Bylar) =[5 — isyen] Ularh + (@) (50
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On taking the time derivative of (7.54), and summing the result over $p, we recover (7.19)
but without the random force Fy, because the average is taken over the probability density
PL. . .

Finally we consider the nature of the fluctuation spectrum when the bath is in the
turbulent stationary state characterized by (5.41) and (5.44). The Langevin equation
(7.19) still applies, with the spectral intensity of the fluctuating force given by (7.22). And
(7.28) still holds with the coefficients Ap and B, taking the values deduced in Appendix
A; see (A18) and (A19):

F2(wp)! = 2kp 7" B, (7.55)
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8. Fokker-Planck Equation for Interacting Waves.
Renormalized Sound Speed

As stated in §1, the present paper is strongly motivated by the study of interacting
waves. Yet in order to simplify the analysis, we have so far considered only interacting
oscillators. Never far underlying our discussion of oscillators has, however, been the study
of waves. We have, for instance, had in mind density of states (5.42), which is the natural
choice for an isotropic distribution of waves, for which there are of order w%*dw modes
with frequencies lying between w and w + dw for a bounded container in d-dimensions.
In this section, we shall explicitly study the case of interacting waves in three dimensions.

Some small but significant technical points should be resolved at the outset. First, the
labelling must be refined; each of the modes mentioned above must carry an index that
indicates both its frequency and direction of propagation. This is most conveniently done
by using the wavenumber vector, k, of the wave as its label, and by taking its frequency
wk (> 0) to be a known function of k: in isotropic materials at rest, w; depends only on
the magnitude k (= |k|) of k and not on its direction k.

The nature of wave interactions depends on whether the waves themselves disperse
normally, anomalously or semi-dispersively. In normal dispersion, the phase speed, vy
(= wi/k), decreases as k increases; in anomalous dispersion, it increases with k; for semi-
dispersion, it is constant. As before, we introduce s; = %1 to distinguish between the
e’*? and e~*“*! time dependencies, but now the composite label will be K = (k,s;) with
—K = (=k,—s3). Three waves I = (i,s;), J = (j,s;) and K = (k, sz) interact strongly
{resonate) if

i+j+k=0, (8.1)

WrgK = 8iwi + sjw; 4 spwr = 0, (82)

In the case of anomalous dispersion, there are, for each I, an infinity of resonating J and K
waves, i.e. these equations can easily be satisfied simultaneously. At low wave amplitudes,
such “3-wave interactions” dominate the processes of energy exchange between waves. In
the case of normal dispersion, (8.1) and (8.2) cannot be simulaneously satisfied, and 4-
wave interactions dominate the exchange processes. The semi-dispersive case, in which
3-wave interactions are possible, but only when the wave vectors i, j and k are parallel or
antiparallel to each other, will be used to motivate (8.18) below.

Our objectives will be to derive the Fokker-Planck equation for acoustic waves in a uni-
form barotropic fluid with small anomalous dispersion, and to determine the renormalized
speed of sound, i.e. the change in the velocity with which a particular sound wave travels,
due to the finite amplitude of the other sound waves traversing the material. The renormal-
ized sound speed will in fact apply to both the cases of anomalous and normal dispersion.
We shall first, as in §2, derive the FP-equation in the discrete case where the container
has finite volume V. We shall then, as in §3, make the transition to the continuous limit,
V — . '

In a semi-dispersive barotropic material, the internal energy density per unit mass, e, is
a function of the density, p and the hamiltonian is

H = /p[%(vqn"’ + e(p)] &, (8.3)

45




where V& is the fluid velocity: p and ® are conjugate variables. For small departures,
P = p — po, from the equilibrium state p = po, we may expand H' = H — H, as

H = [}- (VD)2 + -P-gz-p'z]dz"m
2P0 200

1, 2 ”69' p dv 1 1371 13 :
+ f[2p(V<I’) + 3 g('u 2)0 p ] T, (8.4)

where v? = dp/dp, p = p*de/dp; v is the speed of sound and v, = v(po). The suffix ,

is henceforward omitted from v, and po. In terms of the Fourier components

R I N T
X k . k (8.5)
ok = Vﬁpl(x)eik~xd3x’ (bk = VL@(x)ezk-xd3w,
where
Pk = pr,  Pox = B, (8.6)
and (8.4) is :
H = Hy + e¢H,, (8.7)
where
V v? 2
= — — kd|? 3, 8.8
o = 3| Sl + oo @)
v v? 2p dv
eH; = EZ{;;(‘;;-&; = 1) mpspx
ik
- (j-k)pi@j‘l’k - (k-i)pj@k@i - (i-j)pkfbi@j}5i+j+k. (8.9)
The Kronecker-6 is here defined by
5 = {1, ifm = 0
T 10, ifm # o0
In terms of the hamiltonian density, H = H / V', the canonical equations are
oH : OH
he = = - . 8.10
Pk B(D_.k’ q)k . 3,0—& ( )
We transform to action-angle coordinates by writing
PWE % is
P = (W)z nyze‘ #xc (8.11)
Sk
“i 3 : i3
(I)k = (Vpkz)zzzskf}{/ze kgK. (812)
3k
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A significant difference between these representations and (2.5) should be noted. Since py
and @y are complex and obey (8.6),

r . — T a R (9 192%
dm K =— if, VK — 5[(, (Q.1a)

but the action-angle pairs (I(y 1), (k1)) and (I, —1), B(x,~1)) correspond to waves travel-
ling in antiparallel directions, and are therefore independent of each other. Substituting

(8.11) and (8.12) into (8.8) and (8.9), we find

Hy = ZwkIK, (8.14)

K _
Hi= Y crx Ihy e, (8.15)

IJK
where
8r3\ 7 - _ '

CrIK = (“f;*) Crrk Sitsric, (8.16)

eCrig = l Wil jWk Q—PE@- - 1 +Sj8kj-k + spe; ki + Sﬁji’j .
873 pv? v dp (8.17)

This notation is chosen to parallel that of §2; the principal difference is that I;su, 8;7x
and cryx now depend on s;s;s; and therefore carry capital letters as suffices; these are
used to redefine 8y and later Vyyg:

Orir = 8i0r + 8507 + 816 = —65 _ sk,
Virk =8V + SjvJ + 8iVi = _V*_I,_.J,_,..I(,
ad 15 O
V= : =V*,.
I alr + 217 96y -1

(Discussion of the small technical difficulties that arise because every term appears twice
in (8.14), first as Ixc and then as I_k, is postponed to the end of this section.)

The present case, in which e is a function of p (rather than a functional of p) is semi-
dispersive and, if |i| (say) exceeds [j| and |k|, then by (8.1)i = j + k so that ] jk =

—ki = ~1j = 1, and (8.2) requires s; = —s; = —s;. Then (8.17) simplifies to
_ Wi Wk &
eCrix = (81r3pv2) (8.18)

where (@ is the Griineisen coefficient:

¢ =1+ 222 (8.19)



In the cases of anomalous and normal dispersion, (8.17) does not simplify to (8.18); see,
for example, Putterman and Roberts (1983b). We shall, however, continue to use (8.18)
in all cases, i.e. we shall neglect nonlinear terms arising from amplitude dependence of
dispersion. '

To leading order in the limit & — 0, dispersion arises through the coefficient v in the
relationship,

w? = 0?k? + 44, (8.20)

between frequency and wavenumber; v > 0 gives anomalous dispersion and v < 0 gives
normal dispersion. The cases of small dispersion we have in mind are those for which

2
%Lik— < 1, (8.21)
for the wavenumbers % of interest. Although a term ~ [V2p'12 must then be added into the
hamiltonian (8.4), Hy may still be represented in the action-angle form (8.14). The leading
order (3-phonon) nonlinearity (8.15) is, however, no longer given by (8.17). In particular,
terms that depend on dy/dp might appear. We will regard these terms as sufficiently
small $o neglect, which seems from (8.21) to be a reasonable assumption. For small disper-
sion, the dominant contributions to 6~ (wrsk) in what follows arise from nearly collinear
interactions, so that the approximation (8.18) is also a physically sensible simplification.

The steps leading to the truncated Liouville equation, governing now P(Ix; fx; t)
follow as in §2. We have

L]

P=P+ B + B, - (822
where
op opP 83 _ « =
5 T wigr= = 6e ('"'V—) Z A™wriK) Sigik Clix Vi Irsx Vi P),
F 1 17K (8.23)
2 . 8'11'3 % _ 1/2 9 =
P, = i¢ —-I}—- Z A (wUK)zSi,;.Hk Crri IIJKe WEV i P, (8.24)
' ITK
« 8 A (w — A (w
P = -¢ (7) Z { ( UKLAL[;V) ( LMN)} Oitj+kOl4m4n X
[JKLMN Wrik
IJK # ~ (LMN)
CrixCrun I}J/r:}(LMNew”“M” ViikViunP. (8.25)

In deriving (8.18), we have used the fact that S 6y = ém. [The small technical difficulty
referred to below (8.17) has repercussions for the interpretation of P; these are described
also at the end of this section.]

The transition to the V' — oo limit follows the pattern of §3. The k part of the discrete
label K is replaced by a continuous label k. Instead of derivatives with respect to Iz and
Ok, functional derivatives for the same variables now appear. As in §3, we continue to use
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summation signs for integrals over continuous labels, following the prescriptions:

V I‘OI?[ 13 £ N
A w— .
2 T2 a‘k ..., (8.26)
7 87 o {Lj
8nd . .
6i+j+k — 7 (5(1 +_] -|- k) (8.27)
Thus, for example, though (8.5) hold, they are, when written out in full,
! — —ik-x 3 - _ —tk-x 3
,o(x)—S“_3 ff/pke d°k (I)(x)-Sﬂ_a f[f@e d°k
(8.28)

1, ; 1 ikx

where (8.6) holds. Equations (8.11) and (8.12) are unaltered and, with (8.26) used to
replace k-sums by k-integrals, (8.14) and (8.15) are also unchanged. While (8.17) and
(8.18) are unaltered, (8.16) must be interpreted using (8.27):

873
crik = | 7 C'IJK5( +j+ k). (8.29)

The continuous forms of (8.23)-(8.25) follow in a similar way:
8
Zw,ag = 6re ( i ) Z 0 (wrk)S(i+j+ k)CUKVIJK{IIJKvIJKP};
I ITK (8.30)

2
~ . 83\ 2 - . ‘ ; 5
P, = ime (--;-;—) Z 0 (wrrr)6(i+j+ k)CIJKI;ﬁ{ew”K ViigP, (8.31)
IJK '

N A 6 (wrgkmn) = 8§ (womn) ) .. . .
Py = —7e v Z - A+ j+k)é(1+m+n)
TIKLMN TWIJK

» . -
X CI.IKCLMNII_{TKLMN@‘IG”KLMNVIJ'KVLMNP-
(3.32)

As in §3, the prime over the summation sign in (8.32) refers to the absence of non-diagonal

(IJK # —(LMN)) terms; see Appendix B.

We comment on a few of the many parallels that exist between the consequences of
(8.23)—(8.25) or (8.30)~(8.32) and the corresponding results deduced from (2.50)-(2.52)
or (3.2)-(3.4). Factorization of P is possible under the same circumstances as described
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in §5, and after multiplying (8.23) by Ip and, integrating over all I and @, we obtain the
analogue of (5.14), namely

d 83
T \P) = 187" = 3 6(wp k) SorsaChrxess [sp(In) Ik} + 55(Ix){Ip) + silTo)(Ip)],
JK
(8.33)
which [using now integral signs instead of summation signs — see(8.26)] is
o0
Lipy = & Z//S(w ) 6(p+5+K) x
APl = In?p0? 2z PIK}) AP T]
splsp{IN k) + si{Ix){Ip) + se{Ir){Ip)|wpwjwrd®jd k.
(8.34)
We may write (8.34) in a more accessible form by introducing
I = Ix + Ig = 214, (8.35)
as the total action in mode k, and by noting that
1
I-1) = I—ky) = 3 Iy,
so that generally
I = 3Lk (8.36)

Setting s, = 1 in (8.34) and making the changes of variables s;j — j and spk — k, we
obtain

d G2 ¥ .
T = grroer 0 [ Sn g0+ suse) 6(p + 553 + k)
3,‘ 3k_w
[(B)A) + s5{ET) + sellNI)] wpwson 5 &%, (3.37)

from which we obtained the result (1.14) quoted in the introduction. Equation (8.37)
should also be compared with the corresponding result obtained by directly averaging the
kinetic equations. [For example, see Putterman and Roberts (1983b), eq. (4.16). Note
that their n** (k) corresponds to I /873 used here; see (8.51) below. We wish to take this
opportunity of correcting an inconsequential error in their paper. Their equation (4.12)
should read

(a’(k, t)a” (K, 1)) = C%E"(k, £)8° 6(k + k). |

We may also compute the renormalized dispersion law, using the same methods as in
§6. We find
1

(6p) = Qp = w, — 5B, (8.38)
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where
B = 1862871- }: P(

WPIK ) Sptiti Oy [silIx) + si(ln)]. (8.39)

In the continuous limit, the renormalized speed of long wavelength sound of mode P is
therefore (written again with integral signs)

P = {1 B 87r3pv2 2]

Using (8.18), we write (8.39) as

By = S ( 2 Plpti] ) Ix). 8.41
| i 273 pu? V ,ZK SpWp + 85 Wiptk] T SkWk i) (8.41)

[SJ(IK> + Sk(IJ)] Wik da_jdak}

(8.40)

-

We simplify (8.41) for the case of greatest physical interest, in which the bulk of the wave

energy is concentrated at wavenumbers much greater than that of the impressed wave, p.
Then, to first order in p,

Wip+k| — Wk = P'Vgr = PYGkH, (8.42)

where p is the cosine of the angle between p and the group velocity of mode k, namely

dwy,
ver = - (3.43)
The four choices of sign in (8.41) are
(@) s; = —=sp = —s,,
() s = —sx = Sps
() sj = sk = —sp,
(d) 8 = S = Sp.

No small or zero denominators arise for choice (d) and, since Wiptk| & Wi > Wy, the same
is true of choice (c). For both of these we may set w4k = wi in the P-part of (8.41).

For choices (a) and (b), s; = —si, and the difference between w)g 1y and wy, is influential.
In this way we obtain

G2
"‘-’P

8l
Tripu? Zwk [3{Its,) + Tk=sp))

Wr + onm} {wk + P'UGk.U}
- pletpval g oy plertevenl gy
{wP - vakﬂv ( (kp?P)) wp + P'UGkM ( (k, P))]

Bp =

(8.44)

51



We now introduce Iy defined by (8.35) and further reduce (8.44) by assuming that the
wave field is isotropic, so that

Iy = L = I say. (8.45)

Then (8.44) shows that
= B

BEP,-’p) = BzPs—-’r) P (8'46)

where, in integral form,

v2
B, = E%_ /// (1__73{M} +7J{M})wk(&>k2dkd“d¢

4m3pv? Wp — PUGHL wp + PUGkH
G2w w Wy — DU
- 411-3,022 f(3 T pvgkln wp + ivzz ) “k (T) d°F. (8:47)
P

In the case of normal dispersion (y < 0), there is no value of p for which the denominators
in (8.44) vanish and the P symbols are superfluous. For anomalous dispersion (y > 0),
the denominators vanish for p = 3pwp / pvgk; the principal parts must then be taken,
but the final result is the same.

If we assume small dispersion, as in (8.20), we find that, to leading order in v, (8.47) is

G*w 42

The reduced form of (8.40), for long wavelength sound, is

vy = v{l + 87-(3;;-55 f[ln (3—%}') — 3] wi (Ii) d%}. (8.49)

In the semidispersive limit, y — 0, the expression (8.49) for v, diverges. Such a divergence
does not arise in a theory, such as that of Newell and Aucoin (1971), that confines itself to
kinetic equations. Presumably, the divergence of (8.49) would not arise in a self-consistent
treatment ‘which recognized the dependence of wavespeed on amplitude by replacing wp 5
by Qpsx. Such a procedure could be justified only through a Fokker-Planck equation that
included terms up to O(e*) and which is outside the scope of this paper.

The temperature dependence of the dispersion of sound in liquid He* at low temperatures
has been calculated, and interpreted in terms of expressions like (8.49); see Khalatnikov
(1963, Ch.22) and Maris (1973). Further reduction of (8.49) requires that the distribution
{Ix) be provided. If we replace % in the logarithm of (8.49) by kg, an average over a
thermal distribution of waves, we obtain

2G2U ky
vp = v+ =l (3'88”.%), (8.50)

where ky = v /|y['/? is a characteristic wavenumber for separating regimes of weak and
strong dispersion. [According to (8.21), law (8.20) is inappropriate if ¥ > k., and (8.50)
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will be tenable only if ki < k.] In (8.50), U is the wave energy per unit volume which,
by (8.14) and (8.26) is
U = -87-}5 J[ we{I) d*k. (8.51)
Finally, as promised earlier, we make a few remarks about the dependence of P on both
K and —K. The use of K instead of (k and s is technically a convenient abbreviation, but
it exacts the penalty that, by (8.13), the summation (8.14) is over pairs of equal terms; the
triple sum (8.15) similarly consists of pairs of equal combinations involving (I, J K) and
(=I, =J —K). The canonical equations preserve (8.13) and, when we adopt the equivalent
Liouville formalism, we must insist that P is function of (I, 8x) and (I_k, 6_g) that
is unaltered when, for any K, (Ix, fx) and (I.g, 8_x) are exchanged; the canonical
equations ensure that, if this is true initially, it is true for all ¢. The correlation between
(Ix, Ok ) and (I_g, 6_k) is complete at all times, so that

P(...,IK,.;.,I_K,...;...,BK SOk, .. t)

P(... Ig,...;...,0 1) [[16(Ik — I_x) 6(8x — 6-x)], (8.52)
k

where P involves only those K for which s; = 1. To obtain a mean value, for example
that of I, defined in (8.35), one must multiply (8.52) by 2Iip1y and mtegrate over all
(Ix, 9K, even including (I_p, §_p); equivalently, this is the integral of I, P over all Iy

and O for which sy = 1. Similarly, P is easily obtained from P by integrating (8.52)
over all (Ix, 8x) for which s; = —1.
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Appendix A: The Wave Turbulent Steady State

When energy is supplied at low frequencies and withdrawn at high frequencies, the
kinetic equation (5.14) admits stationary, off-equilibrium solutions of the form (5.41). We
alm in this Appendix to demonstrate that fact.

Written out in full in the continuous case, (5.14) is

dI; o0 poo '
rr = 36me? / / C?jk 5(0),‘ - Wi — wi) [IjIk — It I = Iifj] o; o dw; dwg
0 [

o0 o0
+ 367e? f / c?mn O(wi — wim + wn) ImIn — LI + LIn) 0 0y dwp, dwn,
o Jo
+ 36me? /; /(; Choq 8(wi + wp — wy) (LI, + L I; — LI,] 0p 0y dwp duwy, (A1)

where dummy suffices have been relabelled, the average signs, { ), have been removed
from the mean actions (I,), and the density of states o(w,) has been abbreviated by o,.
The three contributions to dI;/dt in (A1) represent the sum total of all processes that take
energy out of, and bring energy into, mode 3.

Now perform the following transformations on (A1):

wm = u'_?g_’ wn - “w“iLUk,
wj J 2
Wy wiz (AH)
and use (5.42) and (5.43), which are
o = 0Oy wd«-—l, ECijk = co(w,-ijk)ﬁ. (AS)

We find that

dI,‘ o0 poo
-E— = 367{'62'/0. /{: cfjké(w,- -~ Wy —wk){[IjIk --IkI,‘ - I,'Ij] +

(ﬂ)sﬁ+3d—1[

= ImIn — I + LIn) + (2P L1, + 1L — I,-Ip]} ook dw;duwy.
7 : .

“k (A4)

The form of (A4) suggests that the stationary off-equilibrium distribution is of similarity
form:

I,' = agw?, (A5)

where ag is a constant. Then (A4) may be written as

dl; 2 2 [© [T 2 |
7 = 367e a.gf Cijk 5(&),‘ - Wy —Wk) [IjIk - Iin - Iin] X
0 0

_ (Wi\6A+3d42y—1 Wi\ 68+3d+2y~1
- (2

} dekdwjdwk. (A )
§

or



We see that a stationary solution, in which the inflow and outflow of energy into and out
of every mode 7 are balanced, is achieved when 63 + 3d + 2y —1 = -1, ie. when, as
in (5.41),

v = -308 + d) (A7

We may rewrite (5.14) as an equation of energy conservation in frequency space

0 80
E—-l-"é:—o, (A8)

where E is energy per unit frequency interval and @ is the corresponding energy flux:

E = wal, (A9)
B w Wi oo
Q = - / Wy [ U1 de' - f Uz dwj] dw,-, (AlO)
0 0 wy ’
where
U, = 367¢? Ci,j,i—jOi0;Cinj [IjI,'_j - LI — L'Ii_.j} , (All)
Uy = T27é Ci,j,j—iCTiT T 4 [I,'Ij...,' - Iifj - LI, (A12)

and the suffix i—j  denotes values corresponding to w; — wj.

Since , as we know, the steady kinetic equation is satisfled when (A7) holds, the two
integrals in square brackets in (A10) cancel in this case, and it might be thought that,
by the choice of lower limit of w; integration in (A10), @ is zero for all w. This is in fact
not the case. When Q is defined by {A10), it tends to a finite limit as w — 0. Indeed, it
is clear from (A8) that, when E is time independent, the energy flux, Q, takes the same
value (Qg, say) for all w. To determine Qo, we first substitute (A3) and (A5) into (A1)
and (A12) to obtain '

Wi ’ 1
Updw; = 36we?al c2 agw,-27+6ﬂ+3d_2f
0 0
S = PRI~ e T - (1 o de, (ALY
1
OOUQ dw; = 367!‘62(13 Cg oy w-27+6ﬂ+3d—2/ [3—27—6ﬂ-3d+1 +(1 - m)_QT—Gﬁ_Sd”H]
W 0
A S P ) e (Al

[In (A13), z = wj/w;;in (Al4),z = w;fw;.]
Now let

v = —g-(zﬁ + d) + 6. (A15)
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Then, in the limit § — +0,

Wy

o _
Uydw; — / Uzdw; = —727regagcga‘gw?5”2 X
Ja Jo; :

1 — 3@+ _ (1._;,;)%(2ﬂ+d)]

'
20 fo r3CAH) (1 — 4)3EA+I+1 Ine dz.

(A16)

Substituting into (A10), we find

2.2 2 3 ! [1 — g8+ _ (1_3’)%(2’8+d)]
Qo = T2we“aicia /
0 ¢ %9 |

The integral converges for 8 < 2(4 — d). Equation (A17) affords the means of relating
the hitherto unknown amplitude a¢ in (A5) to the energy flux, Q. The most significant
fact is, of course, that ay QO% . i

Equation (A1) tells us that, when (A5) and (A7) hold, the constants Ap and B, which
were introduced in (5.12) and (5.13), and which measure the rates at which the direct and
restituting collisions transfer energy out of, and into, mode i, are related as in (5.32) by

I = AlB, (A18)

and also that |

oo poo
AI = 3671‘62f / C?jké(wi”wj—wk)fj-[k X
0 0
[1 + (2)7“1 + (E’.i)‘r_l i Ok dw,-dwk.
Wi W (A19)

We may deduce the value of B! from (5.41), by using (A18) and (A19).

Use of (5.41) in (A19) yields an expression that diverges at the low frequency limit. Re-
lation (A18) is still meaningful however, in the same sense as the corresponding expression
for equipartition was meaningful [see discussion above (5.40)]. Throughout the frequency
range, the integrand for A:f is, term by term, I,-T times the corresponding term in the inte-
grand for B]. Tt should also be noted that the spectrum (5.41) cannot be extended down
to zero frequency; there is, in practice, some lowest injection frequency determined by the
nature of the external forces that excite the oscillations. Below this frequency I f decreases
rapidly, so that the physical Af converges.

For acoustic wave turbulence, such as discussed in §8, a maintained injection of energy

density leads to the power law (1.17), as can also be established by the methods of this
Appendix.
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Appendix B: Transition from the Discrete to the Continuous

The principal use of the Fokker-Planck equation is the calculation of moments such as
(2.54) ~ (2.56). In the discrete case, (f); is evaluated from the expression (2.52) for Py,
in which the I[JK = —(LMUN) terms are excluded from the summation. At first sight it
might appear that this restriction is unnecessary in the continuous limit, for it involves a
subset of zero measure in the six-fold integration over 17klmn. And yet, by ignoring the
restriction IJK # —(LMN), one would be guilty of double-counting, for the same terms
have already played an essential rdle in (3.2). Moreover, one would obtain unjustified
values for the moments of #-independent quantities.

An unambiguous procedure, that correctly performs the transition from (2.50)-(2.52) to
(3.2)-(3.4), is through Fourier transformation:

P = Z B, enf (B1)

where n stands for a set of NV positive or negative integers n;. (The probability density, B,
that distinguishes between values of 8; differing by multiples of 27, would analogously be
expressed as a Fourier integral over a set n of continuous 7;.) Differentiation with respect
to 0; in Vi becomes now an algebraic multiplication, so_that the operators appearing on
the right-hand side of (2.50) involve 8/8I; but are #-independent. For example, acting on
an n; harmonic of mode 4, Vy is effectively

a 18; T
vf‘n.' - “3"'“1-_‘ + 2I-; .

(B2) _

Thus, according to (2.50), each Fourier component B, of P evolves from its inital state
without being influenced by the other Fourier components; explicitly we have
3}5 n : P 2 A~ 2 * >
5 T imw) Py o= 66 Y A (wryk) Visknining [Lijk Viiknimine Pa) . (B3)
IJK

In taking the continuous limit, one replaces A~ by w0~ , the label 7 and the summation
being interpreted as in §3. From (B3) one obtains in this limit
afjn : 2 - 2 * D
at "+' Z(H-W)Pn - 67"6 Z 6 (WIJK)CIJ"‘, VIJKn;n,‘nk [Iljk vI-II(niﬂjﬂk Pn} . (B4:)
IJK

Equation (3.2) may then be regarded as the resynthesis of P from its Fourier components
after the transition from (B3) to (B4) has been made.

The continuous, irreversible limit can evidently be taken without difficulty for each of
the Fourier components of P but, because these components do not mix, the restriction
IJK # —(LMNY) is as effective after the limit has been taken as it was before the limit
was taken. In the Fourier analysed form of (3.2) - (3.4), the meaning of the condition
IJK # —(LMN) is unequivocal: the Fourier expansion of P generates a like expansion
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in Py, but no term generated from IJK = —(LMN) may appear in the P, expansion.
Operationally, this prescription is summarized by the following statement:

{(fler = J[ {Aﬁgs U f(I, 8 P(I; 8, +) 49 } d1, (B5)
in which ¢7 stands for ‘continuous limit’. We note particularly that the 6 integrations
are performed prior to the passage to the continuous limit, N — oo (which is indicated
in (B5) by A — §).

As an example, consider the explicit Fourier representation of P and P, in terms of their
dependence on zero, one, two ... nonzero integers n;:

PLot) = B(Lt) + > Piny(Lt)e ™% 4 3" By, (L) eilmibitni®) L

‘ ing if nin; (B6)
}52(1;0;#) = 152,0(:[; t) + Z pg,inl-(]:; t) gt midi Z 152,,'3' nin; (I; ) ghmifitnify) ,
ing ij ning (BT)

where we may assume that, whenever two indices are equal, the corresponding coefficient,
Pij...nin; ..., vanishes; for instance

Pi:'n.'ni = O, }32,1':'11,'11.' = 0. (BS)

The continuous limit of (2.52) can now be found using prescription {B5). For example, the
angle-independent part of P, is

Pyo(Lt) = —36me? Z Fry-r-1-INV17-K008, V- (1IN00sn) Phnsy —s,
IJKN

) _
— 216me Z Bt k= 1MNV I~ 1 KOs, s Vo (IMNK0smsn) Pikmns; sy —sm—sn
IJEMN

2 —
— 720me § : F—I—J—KLMN)V—I—J—KE"BJ‘S,Q v—(LMNsramaﬂ)Pijklmns;s,- =8 =S8y 90
IJKLMN (B9)

where

§ (wrakimn) = 6 (wrmn) } Ciiney
12 mrn

Frikrmun = { Bmp—

Ijjéczlmn' (Bl{))

We see from (B9) that only terms in the P expansion (B6) that involve two, four,
and six angles contribute to the angle independent part of P,. The angle independent
part, Py, of P makes no contribution to }52,0. This is a consequence of the requirement
IJK # —(LMN). The exclusion of the “diagonal” terms, IJK = —(LMN), apparently
makes a negligible difference to the sums over n, that involve the far more numerous
terms for which IJK # —(LMN). However, those “off-diagonal” terms make zero
contributions to several moments of physical significance (for example, moments of -
independent quantities), and the present analysis indicates that to include them in the
O(€?) framework of the present Fokker-Planck theory would be unjustified.
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