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Introduction

We consider solutions to the incompressible Navier-Stokes equations
u; + wu, + vuy +wu, + Vp =vau, v >0,

2a + v +w, =0,

on a 2x-periodic square, where u = (u, v, w) is the velocity vector, p the pressure and v the
kinematic viscosity. Solutions of the Navier-Stokes equations for small viscosity are usually
turbulent; such flows posses a lot of structure in both space and time. The viscosity of
the fluid controls the level of turbulence within a flow by affecting the energy dissipation.
As the viscosity is decreased the size of the smallest features, or scales, diminishes. The
relation between the viscosity, the minimum scale and the total energy dissipation is of
fundamental interest for the understanding of turbulence.

The mathematical theory for the Navier-Stokes equations is not complete for three
dimensional flows: the global regularity is not known and no global bound for the velocity
gradients is available. However, both these results are known in two space dimensions.
Whether the results from two-dimensional flows are of physical relevance is open to dis-
cussion since, in the absence of viscosity, flows in two dimension conserve both energy and
enstrophy, while in three dimensions only the energy is conserved. Nevertheless, resulis
on two-dimensional turbulence may be of significance for large scale oceanographic and
atmospheric motions.

Assuming global regularity, we relate the minimum scale of the flow to l._D_‘;i-w, the
global bound of the velocity gradients. Our main result, precisely stated in theorem (1.1},

is that the minimum scale is essentially no smaller than
— 1/2
Amin = M2 /[Du] .

By comparison, a commonly accepted minimum scale for two dimensional flows, A:p,
(see Lilly [19], Orszag [20]), is based on the total dissipation rate of the ensirophy per unit
volume. The enstrophy is defined as the square of the Ly-norm of the vorticity. From

dimensional arguments it follows that

Asp = vl/?/nljs’



where
n=2v [ [l + e 1Pddy

is the total rate of enstrophy dissipation per unit volume and § is the vorticity.
In three spece dimensions the corresponding minimum scale is the Kolmogoroff dissi-
pation scale {15]

ABD = VS/G./e.‘LI&'

where
e=2v f j f aall? + g} + ffus | *dedydz,

is the total rate of energy dissipation per unit volume.

The estimates for the minimum scale can be used io determine the decay rate of the
energy spectrum, assuming that a power law does in fact exist.

From our results in two dimensions we conclude that the energy spectrum, E(k),
behaves like k=3 when there is 2 maximum rate of enstrophy dissipation in the flow. The
k2 power law is in accordance with the Batchelor-Kraichnan theory of enstrophy cascade
[3] [16]. The high rate of dissipation can not remain for long times without the fiow
disappearing. Indeed, numerical experiments show that the solutions rearrange themselves
into organized siructures which dissipate erstrophy at & much smaller rate. Saffman’s work
[22], which predicts a power law k™%, seems to describe the behavior of the system at this
later stage of evolution. Our theory does not predict the power law but only relates it 1o
the rate of enstrophy dissipation; the k~* law would correspond to 5 of order v'/2.

In three space dimensions thereisnoa priori bound for mm. However, if we assume
that

|Duloo ~ y—llz’

then when the energy dissipation rate ¢ is of order one, we obtain the Kolmogoroff power
law, E(k) = k~%/%, and the Kolmogoroff scale Apin = Asp = v¥/4.

Some of the first calculations on two-dimensional turbulence were performed by Lilly
[19], Fox and Orszag [9], Herring, Orszag, Kraichnan and Fox [12], Fornberg (8], and
Barker [1], among others. More recent computations on meshes of up to 1024 x 1024

points are described in, for example, Brachet, Sulem [7], Brachet, Menegugzi, and Sulem
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[6], Herring, and McWilliams [11] and Bensi et al [4]. In some cases the small viscosity limit
of the equations was approximated by the continuous removal of the high frequency Fourier
coefficients [8]. In other cases the true dissipation term is integrated although some exira
smoothing of high frequencies is sometimes required to suppress the growth of aliasing
errors [1]. Another approach is to replace the viscosity term by & super-viscosity, that is e
higher power of the Laplacian operator 7], [11]. This operator allows simulations with a
formal viscosity which is much smaller. The minimum scele is nevertheless comparable to
the computations presented in this paper.

The numerical simulation of three dimensionel flows is still limited by the power of
current computing machines. Currently, the largest three dimensional simulations seem to
have been performed on 128° meshes. However, by exploiting the symmetries of the Taylor-
Green problem, Brachet et al. were able to effectively solve with a 256° resolution [5]. They
find the slope of the specirum to be least steep when the rate of energy dissipation reaches
& maximum. The numerical results seem to agree at this point with the Kolmogoroff scale.
For further references on three dimensional computations see the review article by Hussaini
and Zang [14].

We restrict ourselves to two dimensional simulations. Our numerical approach has
been to attempt to faithfully solve the viscous Navier-Stokes equations. The computations
were performed using the pseudo-spectral method, Kreiss and Oliger [18], and Orszag
[21]. There is no exira viscosity added to the numerical simulation through smoothing
or chopping of the high frequencies, although the fourth-order predictor corrector time
integrator produces a small amount of it. Numerical simulations are used to confirm
the theoretical estimates and to show that the estimates can be achieved for certain initial
conditions. Results are shown for the time development of a flow which initially is maximal
dissipative. We also show results of forced problems. In this case there is no easy a priori
bound for the maximum norm of the vorticity. We found numerically that the forcing
should be proportional to the viscosity in order to obtein order one velocities. More
numerical work on this subject is still necessary.

In section 1 we present the analytical results. In section 2 we present numerical

computations in two space dimensions which substantiate and illustrate various features
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of the proof. Finally, in section 3 we discuss the implications of the minimum scale result

to the decay rate of the energy spectrum.

1 Analytical Results
In this section we will prove some results about the rate of decay of the Fourier

coefficients for solutions of the incompressible Navier-Stokes equations,

u; + uu, + vuy + wu, + Vp=viu, v >0, (1.1a)
ty + vy + w, =0, (1.1b)

on the region f =: {0 < z,y,2 < 2x} and for ¢ > 0. We assume that u = (u(x, t), v(x,t), w(x, 1))
is 2x-periodic in x = (2,¥,2).

At ¢ = 0 we give the initial data

u(x,0)=ue(x) , V-up=0.

‘/.umdx:==0,
1)

/ u(x,t)Jdx =0 , fort>0. (1.2)
0

For simplicity we assume that
which implies

We assume that (1.1) has a bounded solution for all times and want to show that the

smallest scale is essentially proportional to (v/|Duf_)*/?. Here

[Du]_ = sup|Du|, and |Du|y =sup(|6u/bz||[8u/by|,|0u/bz]).
£ x

In general let
Hu
P = —
D = Geriygrabars’

denote any derivative of u of order p, where p = p; + pz -+ ps.
We are interested in the case when v < 1 and |Du|_, > const > 0. Let us further as-

sume that for every natural number p there is & constant C, such that the initial conditions

satisfy the bounds

max 13(0) = e (190, )" + 1 5n(,O)") + 135 w0 <6 P, (1)

e<i<p
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Here |f|co = 5UPy.q [f(x)] denotes the maximum norm and

(f,g):_[“f-g ix , WP =ED,

the Lj-scalar product and norm. Then we prove

Theorem (1.1): We assume (1.3) holds and develop u into a Fourier series

u(x,t) = Y a(k,2)e’*=>, k= (k1 ks ks).
k

For every natural number j and any real number a > 0 there are constants K and K which

depend on j, a and C; (1 =1(j,a)), such that

lD IJ+1+¢!
. 2
ggglu(k,t)l <K g
and
[Dul..”
B'Ilp [u(k t)lz < K—J_W“;

The estimate of the theorem can be rewritten in the form

e\ 1/2 %
2 Dul, |Du|, 1
il}:g la(k,t)|? < K = { ( ” ) ‘-T} .

We see that the spectrum becomes vanishingly small once [k] 3> (| Dul,,/ v)'/? with |d(k, t)|

decaying faster than any power of (|Dul_/ v)1/2|k|~1. It is natural to define the minimum
scale of the flow to be proportional to (v/[Duf )!/?.
In ihree space dimensions there is no a priors bound for |[Dul_. One can speculate

what the right order of magnitude is. For example, if we assume that
| uloo ~ V””zl
we obtain R
sup ok, O < K 2= /)%,

which corresponds to the Kolmogomﬁ' scale [19] of Amin = 314,
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In contrast, for two space dimensions an a priori bound for [Du|_, can be obtained.

The vorticity, { = u, — vs, which satisfies
& + ubs + véy, = vA(,
obeys the maximum principle
[€loo = sup |€(x, )] < sup [{(x,0)].
Therefore, assuming that the initial data satisfy
sup [{(x, 0} <1, (1.4)

we shall prove that [Du]__ is essentially bounded independent of v, in the sense that for

every B > 0 there is a constant K; = K,(8) such that
| Do < K1v~?.

Thaus if the initial data have derivatives of order one then the smallest scale is essentially
of the order p1/2.

Our proof is also valid for Burger’s equation. In this case one can prove that
|Du|o, < const v~ !sup|Du(z,0)|e.

Thus our result predicts that the minimum scale is of order »~!. This bound can be

attained in the presence of shocks.

1.1 Estimates for p <3
From now on we shall assume that an estimate for |Du|_, exists. Integration by paris

give us the basic energy estimate

Al* = —vHY,

B 2
Q:Im

where

LR O L SL T B L UV L SUTT (15)



-8-

Since by assumption (1.3), |ju(:,0)}|* < const , it follows

w | " B (t)dt < [[u(,0)|* < const  and [Ju(,£)|* < [[u(:,0)* < conat .
u R

Now differentiate (1.1). For any first space derivative Du we obtain

B b
| ®

1Dulf? + I = —v(|| Dua|f* + | Dy |I* + IlD_uzII’),

<

t

where
I = (Du, D(wu, +vu, + wu,)) = II + 111,

II = (Du,uwDu, + vDu, + wDu,),
III = (Du, Dz u, + Dv u, + Dw u,).

(1.6)

Integration by parts and V -u = 0 shows that I = 0. Again by integration by parts we

obtain
IIT < const |Dulo HL.
Therefore
131)=<HJH’D=D’D=
"Z"E” u||® < cons | Dafee : — vl 1, || + || Duy || + | u,||%),
that is
10
EE?HIZ < const |Duj, HI —vH?.

Integmting‘the last inequality with respect to f gives us,
1 ¢
HXt) < H2(0) + const |Du[m/ Hi(r)dr — 2vf HZ(r)dr.
0 ]

Therefore by (1.3) and (1.6)

Bul - Bl
H(t) < const l—n—‘—siﬁ and v/ H}(t)dt < const | :i“’ .
0

For the second derivatives we obtain

| ®

ID*ul? + I = —u(||D%us|l” + | D%y |” + || D*u, %),

B3] =
o

t

(1.7)
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where
I =(D*u, D*(uu, + v, +wu,)) = II + 111 + 1V,
II =(D*u,uD*u, + vD*u, + wDu,) =0,
III =2(D*ua, DuDu, + DvDu, + DwDu,) < const | Duloo H3,
IV =(D%*u, D*u u, + D*v u, + D*w u,) < const | Do H.
Therefore,
%%H; < const |Du|o, H] — vH].

Integrating the last inequality with respect to ¢ and using (1.3), (1.7) gives us

e 2
[D

H2(t) < const " and V/o H3(t)dt < conat —

For the third derivatives we oblain
1
5(193“, Du); + I = —v(||D%u, | + || D%y || + | D%u, |*),

where by Leibniz’s rule
I= (D%, D3 uu, +vu, + ww,)) =T+ I+ IV +V,
II = (D%w,uD%a, + vD%ny; + wD?n,) =0,
III = 3 (D%u, Du D*u, + Dv D*u, + Dw D*u,) < const | Dul HZ,
IV =3 (D%, D*u Du, + D*v Duy + D*w Du,) < const |Du|o Hy H,
V = (D%a, D3¢ u, + D% u, 4+ D3w u,) < const |Du|. H.

Therefore
H? < const |Dulo(HS + HeHa) — vH],

DI
S| ®

H} 1
< const | Du|o, HZ + const |Du[;7’ - Eva,

thus using (1.3), (1.7) and (1.8)

| D] = |Du]
H:(t)gcomt%& end v f H}(t)dt < conat “—g==. (1.9)
0



- 10 -

1.2 The estimates for general p

We now prove theorem (1.1) for arbitrary p. First we obtain energy estimaties for
H, in terms of [Diu]_, 1 < j < max(1,[(p — 1)/3]). These estimates are used to obtain
bounds for [D/u}_ in terms of [Du],,. Finally improved estimates are obtained for Hy,
WW and mw using interpolation inequalities; the theorem then follows. We start
with
Lemma (1.1): For every p there is a conslant K, such that

|(D?u,D? (vu, + vuy + wu, )|
max(1,[{p-1)/3])
<K, ||DulB: +Hpn Y,  |D'uleH,

i=t

Here

[z] = largest integer <z and | D)o = xm.x. | D*ul.
x,|k|=j

Proof: We need to estimate expressions of the form
(DPu, D*~*u D*u, + D**v D*u, + D*"*w D*u,) for k=0,...,p—1.

We integrate by parts to decrease the order of Dfu. In doing this the order of Dr-hy,
D?-*y and DP~*w or the order of D*u,, D*u, and D*u, will increase. For each new

term generated through integration by parts,
D%, Dy D%u,) + (D%, D%y D%u,) + (D%, D¥w D%*u,),
u,

we can decrease the order g and increase one of g; or gs until one of the following conditions
is satisfied:

(1) g-1<gs<gendg; < ¢

(2) g< g2 <g+lendgs<g-—1
Note that in case (1) if gs = g then

(D%, D#uD%, + D®vD%, + D¥wD%,) = 0.
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It follows that
I = (D%u, D*(uu, + vu, + wu,) )
can be written as a sum of terms
A := (D%, D2ty pi-ly, 4 PPty iy, 4+ PPy DT,),
1<2p-29+1<yq,
B := (D%, D"y D¥-2-1y 4 potly D=1y, 4 DIty DM,
1<2p-29-1<g-1,
C := (D%, D% D~ *u, + D% D* %%y, 4+ Dw Driy,),
0<2p~-2g<q—2.
Expression At H 2p—2¢+1 = 1 then the estimate follows, otherwise integration by parts

is applied to expression A,

A = (D?~%,DP~9! (D%uD?"'u,) )+ (DP 9w, DPHH! (D*aD? 'u,))
. H

+ (DP~%w, DP9 (D%D " u,) )
to reduce the order of the factors D2-2a+ly D?P-29tly and D?P-2¢+1y, In this way we
can write A as a sum of terms
(D"‘u, DP iy qu-—lua + DP9y D"’_luv + DP9y D"’_lu_._),
where
p—g21, g<p+1l, and g1 +@=p+g+1.

Also, 1 < 2p — 2¢ + 1 < q implies
1
p-q<mx (13- 1)).

The required estimates can be obtained in the following cases:
(i) f p— g =1 then either g; = g; = p or one of the g; = p+1 and the other is equal to
r—1
(ii) One of the g; is equal to p+ 1.
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When neither (i) nor (ii) is satisfied then ¢; < p+1and p—-g > 1, and we can reduce
D?-? further. This shows that A can be estimated in the desired way.
Expression B: Correspondingly, by reducing the order of D21y, D¥*-29-1y  and

D?-22-1y_, B can be written as sum of terms
(D", D%y D" lu, + D%y DP"9'u, + D¥w DP" 7y, ) =11,

where
g <p+l, qt+@=p+g+1 and p—g-120.
Also 2p — 2¢ < g implies 0 < p— g —1 < [3(p — 3)]. I can be estimated in the following
iwo cases:
(i) Hp—g—1=0theng =p+1, gz=p—1orgq =g =p, and
II < const |Du|eo Hpy1Hpq, or
II < const |Du|e H}.
() fqg=p+lorgz=p+1L
{herwise g < p+landp—g—1> 0 and hence we can diminish p — ¢ — 1 furiher.
Therefore we obtain the desired estimates for B.

Expression C: Integration by parts allows us to diminish the order of D??~?9y obtaining

terms of the form
(D%a, DT DP9 lu, + D%y D”'""lu, + D%w DP9 1n,)
where
g <p+l, qt+@=p+g+l and p—g¢g—-120

Using the same argument as for B we obtain the desired estimate. This proves the lemma.

Differentiating (1.1) p-times gives us

1
ng D?u, DPu) + (DPu, DP(un, + vuy + wu,) )

= ~u(|| D?u|[* + || DPu, | + || D7u||*)
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Therefore we obtain from lemma (1.1)

8 mex(1i(p-1)/3)

EH: <const | |DuloH? + Hyiy El |Div|oo Hpj | ~ 2vH2,,
::

1 mex(Le=1)/3)

<const (|Du|mH: + - |D5u|:oH:_3) -vH}

j=1
Using the notetion
DO
L,= f Hi(t)dt
0

the last inequality implies

, W max(1,[(p—1)/3])) )
H(t) < comst | = +[Dul, L, + > ,Z.; [Diu] L, (1.10)
and
™ TR max(1,[(p—1)/3])
Du u 1 T
Lyi1 < const (iw’_}‘t‘;’ + | VI""L,, +o5 Z; |D-’u[°°L,,_,-) (1.11)
1=

To begin with let us obtain estimates for H, and L,;, for p = 4,...,7. In most applica-

tions this is all what is needed. From our previous results we know that

—
D
Ly < const l usi“’ and L, < const ! ‘1["".
v v
Therefore (1.10} and (1.11) give us
— —t
Du — 11— Du
HZ(t) <const (l—;-il-g— + |Du|,, Ls + ;IDu[ng) < const !—V-QL'—Q,
e
-{|D |D 1 — [D
L <const (I us|°° + W Ly + -—2|Dn|:°L3) < const usl“’ ,
v v v v

The estimates for H2, Ls, H3 and Ly follow in the same way.

For p = 7 we obtain

=T
H3(t) < const (j%l.,li + [Du] Ly + %IDulng + é[D’uﬁoL;) .
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Thus we have to estimate |[D?u|?. . By Sobclev inequalities
o0 q

const
H,
€

ID”uI:O < eH:“, +
and we obtain for e = Hy/Hp.s
|DPu)?, < const HpisHy.

In particular
——8f2

D
|D%ul?, < const HgHj < conat l—‘-:w};"—
v

Now we use the usuel interpolation inequality (see for example [10})
[Diull, < €| DPul, + const e U-e-Npul, 1<j<p
which gives us for € = (|Dul2, /| DPul?, )e-iY(-1)
|Diul?, < conat (|D”u[f,°)(5'1)/(”"1)(|Du|§°)("”/("1).

For j = 2, p = 3 we obtain

18/4
Du
(Duf2, < const (1Dul%,)2(DufZ,)V? < const oae
Therefore
-‘-—u-|'7+1/4 l_lx_.l_7+1/4
H(t) < conat —ﬁﬁ—- and Lg < const _'l",'e"_-f':/T—'

(1.12)

(1.13)

(1.14)

Using (1.14) we can in the same way estimate H, 2 and H?. These estimates are not as sharp

as required by theorem (1.1). To obtain the required estimates we have to estimate H:

for general p and then improve the lower order estimates using inierpolation inequalities.

Using {1.10) and (1.11) recursively and the estimates for Hy and Lp4y for p < 6 we

obtain

Lemma (1.2):

2 2 ra-2zk
|Ditul__ ...|{Di*u| | Du]
H},, <const ) e

Jrodn

(1.15)
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where the sum is over all {k,j;,pi,q:} satisfying the consirainis

h h
H=p+1- (i—1)=2k+) g,
i=0

i=1
1<7i<[p/3) , Pyri=pi—di-1—-g¢ , 0<q<p—j for i=1,...,k
0<g<p+l, ag=px—Jr, PL=P—q , k20

Note that n, =p+1 forp<b.
Proof: We first obtain estiamtes for L, from (1.11). H2,, is bounded by » times this

estimate for L, 2.

max(1,[p/3])
Ly4a < const ( ]_.'_)1_1]',:’1/;1"’+z + ([Duf, /v)Lp41 + 2 Z |D‘i“l:oLp+1—.i )
J=1

< const A + B + c h

where we have labeled the three terms on the right hand side as A, B and C. In the
recursive reduction of L,y we must consider all possible terms which may arise; at each
new stage one must consider the effect of using expression 4, B or C. In the general case
one chooses B go-times followed by term C with j = ji, then B gi-times, C' with j = j»
and so on until finally finishing with term A or B and using the estimates for L, with

p < 6. In this fashion the general term will be

[Dul DFul, [Dul. [DPul., [Dul
VQO yz yql vz e yﬂ'l+1
——
2 |Dulo:‘
oo o Bq+2k+1

- 2 T
=Dl ...[Divy]

We define 7, = 2k + Y_g;. The constraints on j, g; and p; follow from the manner in
which the general term was obtained.

Now we use (1.13) to estimate |D5iu|:° in terms of {D?-1u|_ and |Du|_,

]

YVt oY z-ih [Du o:_"'
H2a(0) S const 3 TDFTal. P Dl = 7 L
J1:-dh

——14+p{ra—-3)/(p-2)

2(1-257) |Dul

< const Z |DP—1u|

F1dn

o0 u-r.
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Therefore by (1.2) and Sobolev inequalities

|D?‘1u| < const (H pt1 T H )

< const Hp+1
rite(ra-3)/(r-2)

3 -3
< const max | [DP~Tu|_ (1-35) |Du [Dul,,
LY pTE
It follows that -
|D?*1u]z < const max |Du| S
oo = o V );:.__s .
One more application of the interpolation inequalities gives for1<j<p-1
1 -1
oo = ™ i- 1+s;lh;_‘,

In order to obiain our final estimate we need to show that that ¥ = min, 7 tends to

infinity as p tends to infinity. Recall that

Th = P+1"Z(Ji"‘})—2k+2%

i=1
1<i<[pf3) , pp=m-si-1-g , O0<g<p—j for i=1,....k
0<qg<p+l, G=pPx—Jr, PL=p—q , k20

From j; < [pi/3] < pi/3 it follows that

2
= (pis1 +3) 2 *(p.' +3) — g,

= +3)2(3 2)-1(p+3) - Z( )+-1-ig

=0

This last expression can be written as

(p+3)- i (3w
E>1+1 i=0 12 .
2> 1+logys;s ( Prt3
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Since q, = px — Ji > (2/3)ps we have

h-1
—2k+2q,>2k+-2-m+qu

Now consider the two cases
() Tise (3/2)q > (p+3)/2
(1) 55 (3/2)q < (p+3)/2

In case (i) it follows that

Z—:(:’/z)k_lq; > 2(3/2)"% > (p+3)/2
-1

= Y a> (/3" +3)/2

= n 2 2k +(2/3)* " (p + 3)/2

Minimizing this last expression with respect to k (> 0) gives
7, > const log(p) for some const > 9.

In case (ii) we have

p+3 )
2(ps +3)

k>1+logy (o

Since 0 < pi < p+1 it follows that as a function of p, the above expression has the bound
T > const log(p) for some const > 0.

Hence ¥ = ming 1, > §log(p) as p tends to infinity, for some constant § > 0. Thus
Theorem (1.2): For every j > 1 and any a > 0, we can choose p sufficiently large s0
that ita

[DTul., < conat Dul, (1.16)

pi-ita }
where the constant depends on p and Cpy1 iniroduced in the estimales for the initial con-

ditions (1.3} .
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By using (1.16) in (1.15) we obtain
Theorem (1.3): For every j > 1 and any a > 0, we can choose p sufficiently large so
that

e R}

|Dufg,

H}(t) < const e (1.17)

where the constant depends on p and Cpyy .

Using the simple estimates for H f in terms of maximum norms gives

Theorem (1.4): For every j > 1 and any a > 0, we can choose p sufficiently large so
that  tlta

|Dul,
H}(t) < const %TR— (1.18)

where the conslani depends on p and Cpyy .
Theorem (1.1) now follows from Parseval’s relation.

It may seem curious that the initial conditions satisfy
7
|Du|

H}(0) < const ” 2,

while we are able to prove that (1.18) holds. However, (1.18) can be derived from (1.17)

as follows (for convenience we drop the a’s) :

D,

Du
H‘,-z < consl —=
T
TRoPt2
Du
= |DPul2, < const H.,, < const L;”:LL;

and thus using the interpolation inequality (1.13)

|DFuj?, < const (lD’u|§°)("‘1)/(?“‘1)(|Du]§°)(P“f)/(l"l)

Dujpt? . _ _ _ _
< const (lj.:;-z—)(J D/e=1)(| Du)?, Yp-9) (> 1).
re——f+14a
jDul_
S_ const W

(1.18) now follows.
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1.3 Estimates for two space dimensions
In this section we obtain a sharp bound for |Du|_, for two dimensional flows. In this

case the incompressible Navier-Stokes equations can be written in vorticity form

Lo+ ubs +vly =vAE , v>0, (1.19a)
vy tvy, =0, u;—vy=4¢ (1.19Db)

where £ is the vorticity and u, v are the velocity components.

Lemma (1.2): The solutions of (1.19) satisfy the mazimum principle

|£('i t)loo < |E(': O)Ioo .

Proof: This well known resuli follows from the fact that at a local maximum (minimum)
of§, € =& =0and § <0 (2 0).

We would first like to show that |Du|y, is bounded for all time. Note that our energy
estimates of the previous section are still valid if we integrate to t = T > 0 instead of
integrating to £ = oo. For this section only, let us redefine the quantities which depend on

this bound on the time. For example we define

T
|Du|_, =sup|Du|,, and L, = / H2(t)dt.
t<T 0

We know from basic resulis that [ Du., exists and is bounded for some finite time interval
[0,T]. We will now derive estimates for |Du|_ which are independent of T. It follows from
the results of the previous section that we can obtain estimates for all derivatives which
are also independent of T. Then from well known results we can conclude that |Du|,
exists and satisfies these same bounds for all times.

Lemma (1.3): For any a; > 0 there ezists a constant C(ay) such thal

[Du],, = sup|Dulee < Clan)lé( 0)/F v (1.20)

Proof: For any 8 with 0 < 8 < 1 we define the Holder semi-norm by

Dl wp M) IG5

x3,xzell |I1 - x2|'8
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Using the notation
|DPu)o, = mex{|D?1t|e, |DPv]eo }

the usual Hblder estimates for the solutions of Laplace’s eguation (see for examp
iy 9 \ ¥

tell us that for any 8 > 0 there is a constant C(8) such that
|D*~Puly, < C(B)[€loo- | (1.21)
Also, the convexity of Holder norms (see {13])
| DM floo < comat |DMH I DM AL
kta=1tk +a))+(1—t)(ks+az) 21, 0<t<], aqyoq,02 20,
and Young’s inequality give us for any ¢ > 0
|Dule < €|D%u|o + const € ?| D' Pule.

Using the Sobolev inequality (1.12) for |D?ul_, and (1.21) we obtain

—/2

l—_yﬁi%om + const € P|D1-Pu|_,

Choosing
LI
etth = C(B)l¢l 7/2!
Dul.,
gives
. R /1 Bl
[Dul, < const C(B)|€], | C(B)|o ]2
[Du[m
Thus
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In two space dimensions estimates on the vorticity appear more naturally. In [17]

we proved the results of theorem (1.1) in the two-dimensional case using the vorticity

formulation of the equations. In that paper the quantities

o6 5, 0%
73 = g I + I

take the place of the H?. The estimate corresponding to (1.18) is

T t2ta
| Dy

J:(t) < const H;_H(t) < consi e

We refer to the Jp, in the section on numerical results.

(1.22)

(1.23)
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4 Numerical Results

'We first describe the procedure we use to numerically solve the two-dimensional
Navier-Stokes equations. In brief, we discretize in space using the Fourier (pseudo-spectral)
method and solve in time using a fourth order predictor-corrector method. The equations
are solved in Fourier space and the diffusion term vAw is {reated in a fully implicit manner.
We now proceed to present more details.

We solve the two-dimensional incompressible Navier-Stokes equations in the vorticity

stream function formulation:

b+ (ul)s + (v€), =vAL+ S (4.1a)
A'¢’ = _£: (uy”) = (¢l’! _1”!‘,' (4'1b)

The computational domain is taken to be a 2 periodic squere. The solution is represented
as & truncated Fourier series with w denoting the discrete approximation to { and &

denoting the discrete Fourier transform of w:

§N -1 iN;-1

w(z,y,t): E Z ‘-'l\’(khkg,t)ei(h"”'w).

—%N;-}-l —1N:+1

Similarly the Fourier transform of ¢ and f are denoted by 1/; and f respectively. The

equation for the Fourier coefficient O(ky, ks, 1) is

B + ik (T0) + ika(7@) = —u(k + K)o+ f (4.22)
(R +k =0 (4.2b)

The convolutions #w and & (i.e. the Fourier transforms of the products uw and vw)
are computed from 4, 6 and & by transforming to real space, forming the products and
then transforming back to Fourier spece, (pseudo-spectral method). It is not hard to see
thet the computation of & can be done with five two-dimensional fast Fourier transforms

(FFT’s). In fact, only four FFT’s are needed since one can write (reference Basdevant {2])

\l’a“v - "/’y“"a = (('!’a)z - (%)’)u - [(1[’:11’1):3 - (¢a¢v)vv]-
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However, in the calculations presented here the less efficient method was used.
The equations {4.2) can be written in the form of a large system of ordinary differential
equations:

dy

= ) (4.3)

where y is the vector with components &{k;, ks}.
Time stepping is performed using a predictor-corrector applied directly to equation
(4.3). Let y, denote the approximation to y(nAt) and F, = F(y,,nAt). We use the

fourth order Adams predictor-corrector scheme given by

At
Yp =Y¥n + 5(235':; —16F,_; + 5F,_3) (4.4a)
At
¥nit =¥n+ 'ﬁ(ng + 18F,, —bF, 1 + F,._z). (4.4b)

Here y, is the result of the Adams-Bashforth predictor, F, = F(y,,(n +1)At) and yo 41
is the corrected value obtained from approximating the implicit Adams-Moulton scheme.
A single time step thus requires two evaluations of the right hand side ¥. The classical
fourth order Runée-Kutta method is used to obtain starting values for (4.4). These are
required initinlly and whenever the time step is changed.

For stability reasons one may want to integrate the diffusion term, ¥Aw, in an implicit
manner. In the Fourier representation this term is very simple and thus can be easily
treated in a fully implicit and accurate manner. We write the equations (4.3) in the
following way

dy

i G(y,t) — Ay A= diag(...,w(k] + k3),...)-

where the right hand side F has been split with A the diagonal matrix corresponding to

the diffusion term. This last equation can be written in the form
d
E(emy) — eA'G.
Now apply the time stepping procedure (4.4) to this equation viewed in terms of the new
dependent variable eAy. After division by e?* the predictor-corrector scheme which results
is
—AAt At . -ras e —2Mat —sAAt
Yp=¢€ ¥n + 5(233 G, — 16e G, _1 + 5e Gn-2) (4.5a)

Yni1 =e Mty 4 %5(9@., +19e724G, — Be~A8tG, _, + 734G, ;).  (4.6b)
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The Runge-Kutta scheme is transformed in a similar fashion. The terms e~v(k]+R3)At gre
stored and need only be recalculated when At changes. These resulling schemes are exact
in the absence of the convection terms (G = 0}.

The variable time step is chosen by stability and accuracy considerations with Af

chosen to satisfy the condition

t
CFLoin < (|u;w+|v|w)%— < CFLiex (4.6)

where b = 2/N, (N = max(Ny, N2)).  The stability region of the explicit predictor-

correcior method (4.4) is shown in figure 1.

Predictor Correclor P(ECY'E
P 3rd Order Adams Bashforth
1.2y C 4th Order Adams Moulton ~

o T DY SE TR WIS SHEr U ST W S T SYURT W S
«2.86 ~l.8 -L6 -14¢4 -2 -0 -B ~-E& -4 -2 0

Real

Figure 1 Stability region for the predictor-corrector scheme.

When (4.4) is applied to the model problem y' = Ay, the time step is restricted
by (approximately) |A|At < 1.2 if X is purely imaginary and by —AAt < 1.9 if A is real.
One expects the implicit predictor-corrector scheme (4.5) to have better stability properties
then the explicit one (4.4). CFLy;, and CFLy,. BT the minimum and maximum allowable

values for the Courant-Friedrichs-Lewy number:

At
CFL := (|u|oo + |'u|°°)-f.l—
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CFL,,, would be taken less than the stability limit for the model problem. (The choice of
% in our definition of CFL instead of the true b = 2x/N means that we can compare CFL
directly to the normal stability limit for the model problem.) When the condition (4.6) is

violated the new time siep is chosen so that

At
({uloo + Ivlm)T = CFLopt.

4.1 Verification of the Numerical Approximation

In this section we present results which illustrate the accuracy of the numerical ap-
proximation that we use. In test 1 we show that the time stepping procedure is accurate
to fourth order in At. In test 2 we consider the convergence of the numerical solution as

the number of modes is increased.

Test 1: Accuracy of the time stepping procedure

It is easy encugh to choose the forcing f in the Navier-Stokes equations (4.1) so that
the true solution is known to be some given function. Numerous tests of this kind were
performed. In all cases the numerical solutions converged to the exact solutions at & rate
very close to fourth order in the time step At.

As a more realistic study of the convergence of the time stepping routine we consider
a sequence of calculations with fixed random initial data and decreasing time steps. The
initial conditions are identical with those used in section (1.2) for the decay of random
initial data. Keeping the same initial conditions, and with N; = N, = 128, v = 104,
the equations were solved with three different (fixed) time steps: At = .05, Al = .025
and Af = .0125. The computed maximum value for the CFL number in each run was
1.2, .6 and .3, respectively. (Recall that the stability limit for the explicit version of the
predictor-corrector scheme is about 1.2 on the imaginary axis. We were able to obtain
good resulis for values of the CFL number as large as 1.5, which substantiates the belief
that the implicit predictor-corrector scheme has better stability properties.) We use the

results from the three runs to estimate the rate of convergence as a function of At as well
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as to estimate the actual error. We measure both the discrete maximum error and the I,
error defined by

PN _ i i i i ' 12 = i
@l = mex jwlz:,35)] and fula = g

oy o2
Z_J T, Yy .

(2:035)

By assuming that the computed solution is converging to the true solution as O(At?) we

can determine approximate velues for p and the errors
Ey (ta At) = ‘“’computed(':t; At) - wtrue(':t; At)loo = O(At?):

Es(t, At) i= |weomputea(s 8 AL) — Wirne (- t; At)|2 = O(At?).

These values are given in table I for the maximum norm errors and in table II for the I,

eITOoIs.
A Eo{At = .05) Eo (At = .025) E. (At = .0125) P
10. 0.68 x 10~2 0.47 x 1073 0.32 x 10~4% 3.9
20. 0.27 x 10-2 0.18 x 10~ 0.13 x 104 3.9
30. 0.97 x 10~ 0.69 x 10~* 0.49 x 10™3 3.8
40, 0.69 x 10~8 047 x 10~% 0.32 x 10~8 3.9
50. 0.48 x 1073 0.31 x 10~* 0.20 x 107° 4.0

Table II - Estimated maximum errors and convergence rate: O(At?)

¢ E,(At = .05) Ey{At = .025) Ex(At = .0125) P

10. 0.40 x 10— 0.29 x 10~ 0.21 x 10~% 3.8
20. 0,17 x 103 0.12 x 10~ 0.86 x 107© 3.8
30. 0.73 x 10~ 0.50 x 10~° 0.34 x 107° 3.9
40. 0.56 x 10~* 0.37 x 105 0.24 x 10~ 3.9
50. 0.48 x 10~* 0.31 x 10°5 0.20 x 10~8 4.0

Table II - Estimated I, errors and convergence rate: O(At”)

Test 2: Convergence for random initial data
We consider the computation which is described in section (1.2) under the heading of
Run 1: Decay of Random Initial Data. This computation was run with N=N, =N, =

128 (w12s) and also with N = 256 {(w2ss). The initial conditions for the two runs were the
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same to single precision {about 6 — 7 decimal digits), although the actusl computations
were done in double precision. The veriable time step was determined by thé parameters
(CFLmin, CFLopt, CFLmax) = (.8,1.,1.2) In table II we indicate the maximum difference
and the I, difference between the two runs at various times. Due to the variable {ime step
the solutions were not compared at exactly the same times. The difference between the
times is given in the table as {354 — ¢;25. Note that the maximum difference between the

two solutions occurs at smaller times. Later on when the solution becomes smoother the

errors are smaller. Further details of this run can be found in the next section.

t |w2s8)00 |w2ss — w128l00 |wise — wizs|2 t258 — t128
0. 1.00 .10 x 10°8 .38 x 107° 0.0

10. 5 .55 x 10~ 45 x 1072 +4+.42 x 168
20. 67 .20 x 10% .29 x 10™2 ~.21 x 1073
30. .60 15 x 101 21 x 10°2 +.23 x 103
40. .59 10 x 1071 73 x 1073 +.18 x 10~
50. .58 73 x 1072 b8 x 1073 +.23 x 107
60. BT 43 x 1072 .88 x 1073 —.19 x 1073
70. .56 51 x 1072 .88 x 1073 +.25 x 1073
80. .56 .26 x 1032 .38 x 103 +.37 x 10~¢
90. .56 27 x 102 .36 x 10-3 +.12 x 104
100. 55 .31 x 102 37 x 10°3 —.62 x 10~*

Table II - Convergence of random initial data v = 10~*
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4.2 Computational Results
In this section we present the results of four different runs:
(1) Run I: Decay of random initial data, v = 10~4, N = 256 and N = 128.
(2) Run II: Decay of random initial data, v = 105, N = 512,
(3) Run II: Decay of smooth random initial data, » = 2 x 1078, N = 256.
(4) Run IV: Random forcing, v = .5 x 1073, » = .b x 1074,

Run I: Decay of random initial data, » = 10~*, N=256 and N=128.
For the first run we consider the time evolution of the Navier-Siokes equations for

random initial data. The initial conditions for the vorticity were chosen so that

l‘:'(kirkz)‘ = k = |(k1|k2)|a

C
(k + (vvk)*)’
with a random phase. (Actually the initial spectrum was set to gero for all wave numbers
above some large value of k.) The constant C was determined by normalizing the maximum
value of the vorticity to be 1 at £ = 0, |w(-,+,0)]c = 1. The value of the viscosity was
taken as v = 10~ % and the number of modes was N; = Ny = 256. We show
1) contour plots of the vorticity (figure 2). Dashed lines indicate negative contour values.
2) surface plots of &(ki,k,) in the cosine-sine representation. The discrete Fourier series
for & is actually represented in the computer code as & real series in cosines and sines.
The surface plot shows the magnitude of the coefficients of this series. The coefficients
are ordered in the following manner:
[€1€1 €181 Ci1C2 €182 €1C3
s1c1  818; #£1C3 8182 8153
C3C1 €381 CaCz €383 C3C3

83C1 #8381 832C2 8287 #3203 ... '
CaC; C3#; C3C2 Cs¥2 CaC

where ceq is the coefficient of cos(kz)cos(ly), cus; the coefficient of cos{kz) sin(ly),
and so on. The lowest frequency modes are located at the fop of the surface plot

(figure 3). Only the first 128 modes are shown in the surface plots.
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3) plots of the energy, enstrophy, Jy, Ja, Js as a function of time, and the decay of the
vorticity spectrum as a function of k. In figure 4a we plot the square root of the total

energy

(1/2(llul* + l1o1?)*2,

the square root of the enstrophy

lfll,

and B
V204 (8) = v (flwa||? + [y )2

as functions of time. In figure 4b we plot the normalized versions of v2J (1), 22 T5(1)
and »%/2Js{t). Recall that
07§

206 =gl +1

il
Oyr

i

In each case the functions plotted are scaled so their maximum value is 1. This
maximum value is indicated on the plot as the value of Scale. In figure 4c some
selected Fourier coefficients are plotted as functions of time. Finally in figure 4d we
show log-log plots of &(k) versus k. The quantity &{k),k = 1,2,... is defined to be
the average value of |&(l;,1;)] over all wave vectors (l3,1;) for which k is the closest
integer to I = |(I1, l2)|:

o= X )/ X 1)

[I-k|<1/2 [I-kj<1/2
We plot log,o(@&(k)) versus log;o(k) for different times. Lines with slopes —1 and —2
are also marked. Note that if &(k) ~ k™ then E(k) ~ k=371,

For comperison, in figures 5-6, we show the results of the same run when only half
as many modes were used, N = 128. Essentially the only noticeable difference is in the
plot of the spectral decay. A quantitative comparison of the 256 and 128 runs was given

in section (1.1).

Run II: Decay of random initial data, v = 1075, N = 512.
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The value of v is taken as 105, The initial conditions are the same as Run I. The
number of modes was N; = N, = 512. The resulis are shown in figures 7-8. Note that for
technical reasons the contour plots were made by projecting the solution to a 256 x 256

grid. It is interesting to compare this run (¥ = 107°) to the previous run (v = 107%).

Run III: Decay of smooth random initial data, v = 2 x 10~°.
In this run we begin with initial data which is much smoother than in the previous

runs. The initial vorticity spectrum is choser so that
Ok, k)| = Che= 3070 | ko= 3.5

with random phase. The constant C is chosen so that |w(:,+,0)|e = 1. The viscosity was
2 x 10~ % and the number of modes was N = 256. These initial conditions are similar to
those used by Brachet and Sulem [7]. We have run for longer times than the resulis shown

in [7]. Plots for this run are given in figures 9-10.

Run IV: Random forcing.

In this run we consider the problem when the equations are forced in a range of low
Fourier modes. For the forced problem there appears to be no easy way to obtain a sharp
bound on the maximum of the vorticity. We have found experimentally that when the
forcing is chosen to be O(1) the solution grows and does not remain O(1). For example in
figure 11 we show the results of  run in which the forcing f is chosen so that |f|e =1
and in which the initial vorticity is rero. In particular the amplitudes and pheses of the

the fourier components of the forcing were chosen as

fc16p €181 C€1€2 Ci82 Ci1C3  C18s] r+12 —4 -—16 44 420 -—-121
81C1 #8187 81Cz 8187 8iCy 81283 +8 —24 -20 +12 +28 44
€Cacy €381 €3z C282 CaCs Cafs| _ +12 -8 432 424 48 436
82C1 #2817 83C2 83282 83C3 8383 e —-12 412 +4 +32 —4 -16
€3C; Csdp C3Cz C382 CaCy C3dy —4 36 -—-16 —36 -—24 +4

L 8gC1 8387 83C3 838z A8sCy 8383 | —20 -20 -36 +8 -28 +12..

where the scaling factor C, was chosen to ensure that [f|e = 1. In this run v = 1073,
Ny = N; = 256 and (CFLmin, CFLapt, CFLmax) = (.5, .8,1.). In figure 11b we have made

plots of the maximum norms

MAX(U) = max(Ju(-,,£)]oo, [2(*; -1 E)loo)
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MAX(DU)—-max(I (, , )[m,l (, : )Ioo:l (, , )!oo,l (, 18)leo)s

and

MAX(W) = lw(y y1)|oo-

Even by time £ = 200 the solution continues {o grow.

In contrast when the forcing is chosen to be O(r) we do not see growth in the
|w(*, 1 t)|so- This observation is presented in figures 12-13 where we have made runs with
v=05x10"3 (N = 128) and v = .5 x 10~* (N = 256). The initial conditions for |&|
were defined by the matrix of coefficients given above but in this case the consiant C, wes
chosen so that |w{,+,0)lc = 1. The forcing was constant in time and defined from the
relation

vAw+ f = 0.

5 Discussion
We have shown that for both two and three dimensional flows the minimum scale,

1/2

Amin, is essentially proportional to vi/?) [Du], ' . We now relate this minimum scale to
the decay rate of the energy spectrum.
Let us assume that at a given time ¢ the energy spectrum has & power law behavior

in some range of wave numbers, the inertial range,
E(k) ~ k_=ﬁ1 kl = 0(1) S k S O(I/Amin)'

We have proved that the quantities

r—";,:’;—“—;x”’() w"’;_;l (na,( OIF + I3 I + g )

remain of order one, provided they are initially so. When this order one bound is achieved
we call the flow mazimal dissipative. Note that 2vH? is the rate of energy dissipation, ¢,

and that the rate of enstrophy dissipation % is bounded by vH3.
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Assuming that the leading order contribution to the integral for H:(t) is determined
from wave numbers in the inertial range and using the power law behavior for E(k) we
obtain

RYswp T="7 I —B-1f2

f T kP (k) dk ~
ky

pri pPol
H}(t) ~
pHL TP p+1
|Dul, |Dul,,

In two space dimensions we know that [Du|_ is essentially bounded by the maximum

norm of the initial vorticity. Let us thus assume that the initial values are scaled so that

|Du|, is of order one. In this case

—H(1) ~ P32 (5.1)

and for maximal dissipative flows it follows that E(k) ~ k=3, the power law behavior
predicted by the Batchelor-Kraichnan theory [3]{16].
In three dimensions if we speculate that |Duf_ = O(v~"), then
proi

{Dul,

2 +1/2)+8-3/2
p-i-lHPNVT(ﬁ [2)+8-3/2
In this way for maximal dissipative flows, we obiain a relation between the power law
behaviour of the energy spectrum and the size of [Du|_:

3—1

ﬁ:2+21'

When [Du]_, = O(v~1/%), and v = 1/2, we obtain 8 = 5/6 and E(k) = k~5/3, the power
law behavior predicted by Kolmogoroff [15].

We now return to the numerical results of the random initial data runs, reference
figures 2-4 and 7-8. The initial conditions were chosen so that E(k) ~ k~3. The numerical
results show that this 3 power law seems to remain over an initial time interval. The
numerical results further indicate that as the flow evolves, the quantities u’J:, which
behave like ? H,1, slowly decrase and the energy spectrum sieepens. In a later regime

the flow is dominated by the presence of large regions of relatively constant vorticity. There
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seems to be some evidence from the figures to suggest that the quantities J: decay by &

factor of about Anin = #'/2, and that f(k) ~ k8 E(k) ~ k™% When

Vp—l
[Dul,,”"

H:(t) ~ Vl“:

the argument in (5.1) predicts 8 = 2, and is thus consistent with the numerical results.
These resulis are in agreement with Saffman’s theory for two dimensional turbulence [22].

In figure 14 we outline an hypothesized behaviour of ¥#J2(t) for the decay of two-
dimensional turbulence. In the first stage of development of the flow, V’J: may show an
overall increase as the flow evolves to a state of maximal dissipation. (Of course, depending
on the initial data, this maximal dissipative state may never be reached.} This dissipation
rate can not continue for a long time interval but must decrease. The power law then
slowly changes from k™3 to a more rapid decay. The flow becomes organized into coherent
structures, a regime with ¥#J3 ~ v!/? (?) and where Seffman’s theory would predict
E(k) ~ k~*. This regime presumably exists for long times, since the viscosity now plays a
minimal role. This scenario is suggested by our t-:omputations and other similar ones. In

particular, Brachet and Sulem [7] show high resolution computation with initial data
E(k) ~ cke'(_"ﬂ'")’,

similar to the one presented in this paper (reference figures 9-10). They found an increase
in the energy power law reaching a maximum at about k3. At this stege the rate of
enstrophy dissipation is maximum, in accordance with our analytical results.

It is conceivable that & similar scenario is present in the decay of three dimensional
turbulence. In two dimensions when large coherent structures are formed the main con-
tribution to H}(t) comes from one dimensional leyers separating these structures. When

the solutions across ithe layers have a simple structure, one can argue that that

-1 1/2
m___;_.;r..i,}[:(t) ~ Amin ~
|Dul,, | Dul

v

iz’

Correspondingly, in three dimensions the same argument can be made assuming that the

regions of rapid variation are concentrated along two dimensional structures of width A,.in.
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Thus in either case we obtain & new relation between the power law behaviour of the energy
spectrum and the size of |Du|_ = O(¥™7):

b ]
'

1+4

B =

In two dimensions v = 0 and we again obtain E(k) ~ k~*. If, in three dimensions
|Dul, ~ »1/? we obtain E(k) ~ k~%/3. Large three dimensional simulations are necessary
to confirm the validity of the assumption mede on the size of [Du|_, on the time evolution

of H2(t) and the sharpness of our estimates.
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Figure 14 Hypothetical behaviour for wPI(1)






