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SINGULAR PERTURBATION ANALYSIS OF BOUNDARY-VALUE
PROBLEMS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS IV.

A NONLINEAR EXAMPLE WITH LAYER BEHAVIOR*
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Abatract. A study i made of boundary-value problems for a class of nonlinear second-order
differential-difference equations in which the highest-order derivative is multiplied by s small pa-
rameter. Depending on the region of parameter space, solutions of the nonlinear problem may not
be unique, can exhibit extreme sensitivity to the values of the parameters, or may not exist. The
equations can be integrated once trivially to yield an integration constant and the exact solutions
are expressed in terms of quadratures. An integral constraint is obtained for determination of the
integration constant. Approximate solutions of these boundary-value problems are obtained using
singular perturbation analysis and numerical computations and these are compared. In the singular
perturbation analyses, determination of the integration constant requires a case-by-case study in or-
der to match the solutions frem the different regions. The numerical computations are representative
of the variety of possible solution behaviors.

Key words. nonlinesr differentiai-difference equations, boundary-value problems, nonexis-
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1. Introduction. Our previous analyses of boundary-value problems (BVP’s}
for singularly perturbed differential-difference equations (DDE’s) have dealt exclu-
sively with linear equations [4]-{7]. Simple model problems were used to illustrate
that a wide variety of phenomena usually associated with singularly perturbed dif-
ferential equations also arise with DDE’s, These phenomena include boundary and
interior layers, rapid oscillations, resonances, and turning point behavior. A primary

_ objective of our analyses was to demonstrate that singular perturbation techniques'
originally developed for differential equations apply equally well to DDE’s. By pro-
viding viable analytical tools we hope to encourage the increased use of DDE’s where

appropriate to model physical and biological problems.
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Now, in the same spirit, we have expanded our research program to nonlinear
DDE’s. For nonlinear differential equations, simple model problems such as the classic

Lagerstrom BVP (see [3] for details)
(1.1) ey"(z;€) + y{z; )y (z;¢) —y(z;¢) =0, 0<z<1, 0<e<<],

with

(1.2) y(0e) =4, u(l;¢) =B,

have played an important role in elucidating singular perturbation phenomena. The
Lagerstrom model has proved especially valuable as a prototype for problems involving
boundary and/or interior layers. In particular, this model illustrates the dependence
of the layer locations on the boundary data.

To find suitable model problems for nonlinear DDE’s involving layer behavior we

examined several candidates. In this paper, we focus on the following mode] BVP
{1.3) ey’(zie) +y(z ~ L )y(z;¢)) = fl2), O<z<f O<e<<l,

with

(1.4) y(z;e) =¢(z) o -1<z50, y(be). =7

While deceptively _simple in appearance {the equation can be integrated once triv-
ially .int,roducing an arbitrary integration constant}, this problem has solutions which
exhibit multifarious singular behaviors, e.g., interior spikes with amplitudes which
are exponentially large in the amall parameter, ¢, and extremely steep boundary and
transition layers. These singular behaviors are not easily dealt with by numerical
methods. Moreover, for this BVP, nonlinearity introduces additional effects, n;)tably
nonexistence and nonuniqueness of solutions and extreme sensitivity of the solutions

to changes in the parameters and boundary data.



By a combination of singular perturl_)ation analyses and numerical computations,
we present a partial classification of the solution behaviors for the model problem (1.3)
and (1.4). In much of this paper, we assume both ¢(z) and f{z) are constant and
refer to this problem as the ‘constant case.” Otherwise (1.3)-(1.4) will be called the
‘variable casge.’

In Section 2, we state the general problem of interest here. In Section 3, we obtain
_ the exact solution, albeit in terms of quadratures. The value of the solution at z. = .£,
given by 1, is expressed as a nonlinear function of the integration constant obtained in
integrating the second-order equation to a first-order one. Existence and uniqueness
results for the constant case are presented in Section 4. There we d-escribe in detail the
dependence of y on the integration constant (alternatively the slope of the solution
at z. = .0} for various parameter values. A number of illustrative numerical examples
are given in Section 5 to demonstrate the sclution behaviors for given parameter
values as the integration constant (or y'(0;¢)) is varied. These examples also show
the sensitivity of the solutions to changes in parameter values and nonuniqueness of
the solution. In Sections 8 and 7, we obtain approximate solutions by formal singular
perturbation analyses of the BVP for the constant case. 'These are compared with the
numerical solutions shown in Section 5. To demonstrate that the singular perturbation
techniques used here can be applied to the variable case, special cases are analyzed in
Sections 8 and 5. These results can be simplified to the constant case to fill some of

the gaps left in Sections 6 and 7.



2. Statement of the problem. Under study here is the general class of
boundary-value problems given by {1.3)-(1.4), where the functions f and ¢ are as-
sumed to be smooth in z and to be independent of ¢, as are the constants £ and . Our
techniques also would apply to problems where these quantities depended smoothly
on ¢ as ¢ — 0. For analytical simplicity, we confine our attention to the cases with
1 < £ < 2. The essential features are illustrated even with this restriction. Larger
values of £ would intreduce additional analytical and computational complexities,

For a function y(z;¢) to constitute a ‘smooth’ solution of BVP (1.3)-(1.4), we
shall require that y(z;¢) satisfy the conditions {1.4), be continuous on [0, 4, and be
continuously differentiable on (0,£). (In general, we should not expect y'(0%;¢) =
#'(0").) Moreover, we shall stipulate that y{z;€) satisfy (1.3) except possibly at
z = 1 where y” may not exist as a consequence of the shift and a discontinuous ' Vat
z =0

In the DDE problems treated here, the interval (0, £} is split into the two segments
(0,1) and (1, £) which are labelled regions A and B, respectively, and the solutions
in these regions are de;xoted by ya{z;¢) and yz (:c, ¢). Furthermore, (1.3} can be

integrated once trivially yielding
=
{2.1) eyd(zie) + ¢{z — Dya(z;¢) mf fls)ds+g4, O<z<1,
0

(2.2} eyg'(:c; €) +yalz — Lie)yn(zie) = /: fls)ds+gp, 1<z<d,

subject to the boundary and continuity conditions
(2.3) va(0;¢) = 4{0), ya(Le) =1,

(2.4) vallie) =yn(lie), wd(175¢) =us(1t;e).



Because of the continuity conditions {2.4), the integration constants are equal,

(2.5) g=ga=ga.

Thus only one of the conditions (2.4} remains to be applied. Although only of first
order, equations {2.1) and (2.2) retain the complexity of the second-order DDE because
of the appearance of the integration constant. |

In our previous studies of singularly perturbed DDE’s, we found that in many
cases the solutions for 0 < e << 1 are well-approximated by a solution of the associated
“reduced problem” except in layer regions. By formally setting ¢ = 0 in BPV (1.3) -

(1.4), we obtain the following reduced equation

(26) Y(z—1)Y(z)) = f{z}, O<z<§,

with
(2.m) Y(z)=¢(z) on —-1<z<0, Y{@=n

In an obvious adaptation of the notation already introduced in this section we can

express the general solution of (2.8) as

(2.8) Ya(z) = W, 0<z<1,

(2.9) ) Yp(z) = %ﬁ"’ 1<z<fi<?,

with arbitrary constants g4 and gp. In general, it is not possible to choose g4 and gp
such that ¥'(z) satisfies the conditions (2.7) and is continuous on {0, £. Nevertheless,
as we shall show, for appropriate choices of g4 and gg, the solution (2.8) - (2.9)
often provides a valid leading-order approximation for 0 < ¢ << 1 except in layer
regions to a smooth solution‘of BVP (13) - (1.4). In other cases, this solution plays
a less significant role since the solution of BVP (1.3} - (1.4) exhibits large exponential

behavior on much of [0, 4.



3. Exact solution for the constant case. From (2.1)-(2.5), we can determine
ya(z;€) and yp(z; ¢} explicitly in terms of multiple integrals, but these formulas are
not very enlightening. In general, we are able to obtain simpler explicit formulas by
asymptotic methods. For the constant case, ie., ¢ and f constant, exact results can
serve as a guide for these asymptotic analyses. Therefore, here it is convenient to
treat the exact solution only for the constant case and to extract information from
these exact solutions asymptotically. Moreover, as mentioned above, we have looked
at a number of model problems both analytically and numerically including the case
where ¢{z) has a zero in —1 < z < 0, and find that the solution behaviors for the
constant case are representative of those found in the variable case.

The constant case with ¢ = 0 is trivial to solve and not very representative so we
choose not to provide details. For ¢ # 0, it is convenient to introduce the following

normalization of the variables and parameters:

yze) o0 o . o _ . f_ . ¢
(3'1) I¢! y(z,e), I¢l & l‘#t s ¢z f! t¢i ¢!

so that y(0; ¢) = +1. Thus (2.1)-(2.2) become

(3.2 ey:.,(z; €) + ¢yalzie) = fz+49, 0<z<i,
f
(3.3) eyp(zie) + yalz - Lys(z; ) = fz+g, 1<z <8
with the boundary and matching conditions (2.3)-(2.4). A
The exact solution of (3.2) is (using ¢% = 1)

(3.4) yalzi) = c(e**/ =1} + ¢(1+fz), O<z<1,

where we have used the boundary condition at z = 0 to eliminate the integration

constant g in favor of the new integration constant ¢, namely

(3.5) g=1-—4{c—¢f).



Note that the deriva.ti\-re is given by
(3.8) yalz;€) = ¢(F z-e"“/‘), 0<z<l.
In region B, the equation {3.3) becomes
(3.7) wp(aig + {e( V1) g1+ flz - N]lys(=ie)
u—:1+fz—¢(c—ef).

The exact solution in terms of a quadrature can be obtained using an integrating

factor -
(3.8) p(zie) = ¢ EE{H(1+ f) - c(1— e
+ ljm[l-i- s — ¢{c— ef)]ea(’)ds}, l<z<é
ey |
where

(3.9) E(z) ﬁ $e{l — e~ #a-1/e) 4 B-dl=-1) + 22f-(::: - 1)2
€ 2e
and the remaining continuity condition at z = 1 has been used.
Applying the boundary condition at = = £ yields an expression for + in terms of

the integration constant ¢, namely
[4
(3.20) v = e EO{g(1+ f) —e(1— %) + 3[ [1+ fa - ¢(c — ef)]eBl)ds}.
4

This is a nonlinear relation between v and ¢ and it is difficult to determine ¢ if ~ is
given. Instead we view this as an equation for v given ¢ and study it in some detail in
the next section using asymptotic and numerical methods.. Note that from (3.10), «
is defined for all values of ¢, Although ¢ arises natura.ll;lr in our a.na.l'ytical, and hence
numerical, results, we note that for fixed ¢, f, ﬁd ¢, the more natural geometrical

parameter is y'(0%; ¢), the slope of the solution at z = 0, given by (see (3.6))

(3.11) y'(07;e) = ¢(f - %)-



Continuity of y(z;€) at = = 0 and specification of y'(0;¢) would allow us to make
conclusions about the corresponding initial-value problems, but we choose not to focus

on these problems here.



4. Some existence and uniqueness results. Although the model problem
we study is simple, the questions of existence and uniqueness of solutions are not
answered easily and have some subtle aspects to them. In this section we present a
number of results on the e:xistence and uniquenesa of solutions in the constant case
by locking at special cases numerically and using exact and asymptotic formulas, We
point out that the numerical results are at best fragmentary; however, they and other
numerical experiments we have carried out are revealing and suggestive of general
conclusions for the constant case as well as the variable case.

In the constant case, we find that the issues of existence and uniqueness naturally
divide according to whether ¢ = =1 for sufficiently small values of ¢. The curves of
versus ¢ for fixed choices of ¢, f, and ¢ reveal the regions of existence and uniqueness as
well as the number of sollutions in the case of nonuniqueness. We again point out that
while ¢, the integration constant, is the natural variable to use in these discussions,
the most natural geometrical variable is y'(0; €} = ¢(f — ¢/¢).

Although solutions exist in much of the parameter space, for each [finite) ¢, there
exist large regions in which solutions do not exis.t. As ¢ decreases to zero, the region
of existence increases but a large region of nonexistencé of solutions remains for any
given arbitrarily small e. Nonuniqueness of solutions {with 2 or 3 solutions) also occur
in large regions of the parameter space for small ¢, generally each of guite different
character. As ¢ decreases to zero, the region of nonuniqueness increases, but solutions
in ‘most’ of the parameter space remain unique.

Our discussions of existence and uniqueness are bagsed primarily on Figure 1
which.show graphs of v versus ¢ (alternatively y'(0;¢)) for ¢ = £1,f = +4,e =

0.1, and £ = 3/2. The choice of f = +4 is made to give clear illustrations of the



various possible structures of the + vs ¢ curves and ¢ = 0.1 is chosen for simplicity
since some of the formulas for 4(c) with fixed ¢ and f, and much smaller values of €
{e.g., € = 0.01) are difficult to compute numerically. Because of these computational
difficulties, some of the values of ¢ chosen for the graphs are not sufficiently small for
the asymptotic analyses to be valid. Qualitatively, we expect similar behaviors for
changes in the parameter values, although details will certainly change. On each ~
vs ¢ graph are additional numbers which refer to the figures showing representative
numerical solutions for that part of the curve. We postpone detailed discussions of

these numerical solutions to the next section,.
INSERT FIGURES 1a.d NEAR HERE.

Figure 12 shows the + versus ¢ curve for ¢ = 1 and f = 4 and is representative
of the cases ¢ = 1 and f > 0. This curve asymptotes to a finite value of ¥ = Yo
as ¢ — —o0, increases monotonically to a peak value, Ynaz, near ¢ = 1 + f, and then
decreases rapidly with 4 —+ —o0o0 as ¢ — oo. Solutions do not exist for Y > Ymaz
are nonunique with 2 distinct solutions for Y. < ¥ < 7Ymaz, and are unique for
—00 € 4 < Hugor

As ¢ — —co, the expression for 7y given by (3.10) is dominated by the integral
term provided
{4.1) 5-»%-}— >1-— ca:p(—z_e,—l)

(see (3.9)). For ¢ — ~o0, a straightforward asymptotic evaluation of the integral in

(3.10} yields

1 _ f(1+4
1—ezp[—(€~1)/e] e{1- exp[-(£~1)/e]}*"

Thus as ¢ — —oo, <y approaches the value y_o, = {1 —ezp[—(£—1)/¢]}~? from above

(4.2) g~

as indicated in Figure 1a. Note that the leading-order behavior of « is independent of

10



f, and hence this a.sym‘ptotic formula is valid for all f = O(1). Ase—=0,y~1—f/c
for given f and fixed large negative ¢.

In Section 6.3, it is shown that the decreasing part of the (c) curve with 4 = O(1)}
occurs for ¢ ~ 1+ f, i.e, ¥'(0j€) ~ —(1 + f)/e. As is evident from Figure 1a, the
maximum value of ¥ = nqaz also occurs near this value of ¢, say cmaz = 1 + f + €6,

and it is atraightforward to show that

(4'3) Tmaz ™~ 5{"6 + \/5;"7(1 + A - %)Gl—f‘q}

eap{L{2(e-1) - (€= 1))~ 1= f +6(¢- 1))

where
1-fA
(4.4) AE£n1+f, PRV _V2rf(1+ A)e .
! £=1  1+4+/2x/fel-14

For f = 4,6 = .1, and £ = 3/2, we obtain ¢ ~ 5.085 and 44 ~ 16,142 . The
computed values in Figure la are ¢ = 5.080 and 4par = 18,414, As e — 0, ¢c —
14 f and “max goes to infinity exponentially in e. This increases the region of
existence. For ¢ > ¢,,42, 77 decreases rapidly to negative infinity at a rate which is
O{exp[O{1/¢)]}. This type of exponential behavior is typical of the problems here
because of the coefficient y4(z — 1;¢) in (3.3) and the exact solution for y4 given by
(34) The rapidly changing behavior of + as a function of ¢ is also reflected in the
rapidly changing behavior of y as a function of z and ¢ as we see later. Obviously,
for probléms over larger intervals, we would obtain nested sequences of exponentials
and very quickly arrive at the conclusic;n that numerical computations are nearly
impossible. Even for values of ¢ == .1 and £ < 2, some solutions exhibit extremely
large amplitudes and steep siopes.

Figure 1b shows the -y(c) curve for ¢ = lva.nd f = ~4 and is representative of

the cages ¢ = 1 and f < 0. Again, the asymptotic behavior of ¥ as ¢ — —oo is

11



given by (4.2} so that v approaches the value y_oo = {1 — exp[—(£— 1}/¢]}~! from
below. As ¢ increases, 4 decreases monotonically crossing the c-axis at ¢ 23 —5.4, and
continues to decrease towards —oo. Thus for 7 > y_., there are no solutions and for
each 7 < ¥_ o there exists a unique solution. For ¢ > 0, + decreases rapidly towards

~o0. From (3.10), the asymptotic behavior of - is given by
(4.5) yoo meetlE ¢ oo, €0,

The 4{c) curve for ¢ = ~1 and f = 4 is shown in Figure 1c and is representative
of the cases ¢ = —1 and f > ~1/£ Qualitatively, for ¢ = —1 and both f > 0 and
f < 0, the asymptotic behaviors of the {c) curve for [c| — oo is similar to that for
¢ = 1 with the c-axis reversed. For ¢ — —o0o, « decreases towards —co. In Figure 1c,
the « curve increases rapidly with increasing ¢, crossing the c—axis just to the right
of ¢ = 0, and reaches a maximum value, Ypaz & 1.24 X 10% at ¢ & 0.07. Then the
4 curve decreases monotonically towards zero as ¢ — co. From (3.10), the value of
Ymaz for f > —2/(£— 1)? is approximated by

1+ L(e-1)?
€

(4'6) Ymaz 331-"[ - 1],_ € — 0,

i.e.; Ymaz is exponentially large in e. For the parameter values in Figure 1c, (4.6} gives
Ymaz & 1.20 X 10% which compares favorably with the value given above. For large

¢ > 0, -y satisfies the asymptotic relation

(4.7) oy -:-(1 + FO)e1-0/e
for both f > 0 and f < 0. Thus for fixed ¢

(4.8) c_h& A{e) = Yoo = {10/,
Thus for each value of ¥ between exp[(1— £)/¢] < ¥ < Ymaa, there exist two solutions, .

12



whereas for each v < ezp|(1—£)/e] there is a unique solution. These cases are analyzed
in Sections 7 and 9.
The most interesting of the + vs ¢ curves is _shown in Figure 1d with ¢ = —1 and
= —4, which is representative of the cases ¢ = —1 and —2/(£—1)%2 < f < —1/L The
asymptotic behaviors of the v curve as |c| — co are qualitatively similar to those in
Figure 1c. Again -y increases rapidly and monotonically from —oo to 2 maximum value,
However, now it decreases rapidly to a minimum value, and then slowly increases to
the asymptotic value of 4y = 5, as ¢ — oc. This maximum value, Ymae is again given
by (4.6} with ¢ ~ exp[{1 — £)/¢]. However, since f < 0, the exponential term in (4.6)
is large and goes to co as € — 0 only if —2/{£— 1)? < f < 0 as in Figure 1d. For
this case, Y, # 148 from (4.6) at ¢ &~ 0.0067 whereas Figure 1d yields values of

“Ymaz % 54 and ¢ = 0,008, respectively. For f < —2/(£~ 1)?,

1+ f¢
(4.9) Ymaz ~ i € — 0.

fle-1)’
Provided —2/(£~1)2 < f < —1/¢, there exists a local minimum value of ¥ = ¥,in

given by
{1+ 1)

4.10 VR 5.0 L)
(4.10) Tmin T+ L(e-1)?

which is amall and located at
(4.11) ¢~ %{1 + %(z-— 1)2}e(1-8/e,

Note that for f < —2/(£~ 1)?, the 4(c) curve resembles Figure 1b with the c—axis
reversed, i.e., there is neither a local maximum nor minimum value of 4. Hence the
solutions are unique for these values of I

The asymptotic behavior of y as ¢ — oo again is given by (4.7). Since 1+ f£< 0

for f = —4, ~ approaches o, from below as indicated in Figure 1d.

13



For Ymaz < s ther_e are no solutions, Thgre are two distinct solutions for q., <
4 < “Ymazs three distinct solutions for Ymin < 4 < Yo, and a unique solution for
4 < %Ymin- In Sections 7 and 9, we analyze the cases with ¢ = -1, f <0, and y=0
when ¢ can take on three distinct values leading to three distinct solutions,

These ocbservations from the « vs ¢ curves illustrate that the simple model problem
under consideration yields a rich repertoire of solutions.

For the special case ¢ = 0 and ¢ = 1 with arbitrary f, we can obtain asymptotic
expression§ for the crossing point of the ~y curve as e — 0 by approxima;ie evaluation of

the integral. Different cases must be treated separately and we merely state the results:

1-¢=1,“-ef—1<f<oo,and¢=—1,f7é— L

-1
1+ f2 1 !
(4.12) U Ty A e ey Rl e

(£~ 1)? + ¢

~(1+ Nean{-g1 L

—13), e—o.

2'¢=11f=“2"_1_1's

(4.13) | q~-1/m;'7f)-+1- ETEE'ET)" € — 0.

3.¢=1,f<—-5

(4.14) v~ —(-5.; + e}V —2refezp{—- B—%ﬂ”g} + %

€ — 0,

where % is given by the right hand side of (4.12) for ¢ = 1.

14



-2 4 f—4 -1
“+ €

(4.15) 1~-—1+[e(£_ 1y = 1)3]ezp[ P I e_-—»O.

The contributions in (4.13) and (4.14) involving 7 arise as a consequence of $f < 0 in

evaluating the integral, i.e., obtaining an integral over a Gaussian function.

15



5. A picture book - graphical examples. In order to get a better understand-
ing of the cases to be studied asymptotically in the following sections, we present here
a visual menagerie of solutions for various values of the parameters, These solutions
were computed using the BVP solver, COLSYS [2].

All solutions were computed for the interval 0 < z < 3/2. The hierarchy of
parameters in the figures is: (1) ¢ = x1; (2) f = +4; (3) v; and (4) 0 < € << 1.
The choice of f = 14 was made because in some cases this resulted in a zero in the
solution in region A which induced a turning point in region B. Note that in all but
one case, the solutions were computed for a value of € smaller than ¢ = 0.1 which was
used in Figure 1 to maintain computational accuracy. These computed solutions. are
representative of the solutions on various parts of the -y versus ¢ curves shown in Fig-
ure 1 in the previous section. To indicate this correspondence, circled numbers have
been placed on Figure 1 to identify the figure number of the representative computed
solution,

5.1. The case ¢ =1 and f = 4. For ¢ = 1 and f = 4, we recall from Figure 1a
that the -y vs ¢ curve increased monotonically from its asymptotic valué as ¢ — —oo;,
to a maximum value, Ymas, and then decreased rapidly to —oc as ¢ — co. Fore < 1, a
representative solution is shown in Figure 2a (see circled 2a on Figure 1a) with 4 = 2
and ¢ = 0.01. The solution is positive everywhere with a boundary layer at = = 0
which induces an interior layer to the right of z = 1. In the remainder of the interval,
(0,¢), the solution is well-approximated by ¥ (z), the solution of the reduced problem
for suitable choices of the integration constants (see (2.8) - (2.9)). In most of region

A, 0 < z < 1, the slope of the curve is approximateljr equal to the constant f, Because

16



y is positive near z = £ — 1, there cannot be a boundary layer at z = £ Note from
Figure la that the solution is not unique; the other solution for v = 2 is shown in
Figure 2d. The singular perturbation analysis of the cases represented by Figure 2a

is given in Section 6.1.
INSERT FIGURES 2a-d NEAR HERE

As cincreases, ie., as y'(0; ¢) decreases [see(3.11)], the part of the solution between
0 < z < 1 decreases and eventually crosses the z—axis while v increases. A typical
solution for ¢ > 1 is shown in Figure 2b with v+ = 5 and € = 0.01. There iz still a
boundary layer at £ = 0 but now the solution is decreasing and becomes negative. On
the remainder of region A the solution is well-approximated by Y, given by (2.8). Note
that the solution has a simple zero at 2 = £ & 0.25. In region B, the solution has the
form of a large amplitude “Gaussian” function with a maximum near z = 1+ £ = 1.25.
It is not approximated by Yp given in (2.9) for any choice of gg. In Section 8, we
carry out an asymptotic analysia of the variabie coefficient problem with ¢ > 0, f > 0,
which includes the solution presented in Figure 2b as a special case. |

The simple zero in the solution at z = £ moves towards z = 1 as ¢ iqcrea.seg
towards 1+ f. Simultaneously, the location of the maximum value of y moves towards
z = L In Figure l‘a., the maximum point of the 4(¢) curve corresponds to y taking
on its maximum value at z = £ (see Figure 2¢ where v = 18,415 and ¢ = 0.1). To
the right of this maximum point on the y(c) curve, the shapes of the corresponding
solutions undergo rapid changes to that depicted in Figure 2d with 4 = 2 and € = 0.01.
{Compare Figures 2a and 2d which are distinct solutions for v = 2.) There are
boundary layers at z = 0 and z = £ and a corner layer at z = 1. Outsic";e of these

layers, y is well-approximated by Y'(z). A singular perturbation analysis of this case

17



is given in Section 6.3.

5.2. The case ¢ =1 and f = —4. When ¢ =1 and f = —4, the solutions are
unique and representative solutions are shown in Figure 3 for —1 < 4 and v < -1,
respectively, with ¢ = 0.01. These solutions have a boundary layer at = = 0 which
induces an interior layer to the right of x = 1. Since the aclutions are positive in

0 < z £ £—1, there is no boundary layer at z = £= 3/2.
INSERT FIGURES 3a-b NEAR HERE

In Figure 3a for ¢ < —1, the solution in much of region A has nearly constant
slope f = —4 < 0. (Note that Figures 2a and 3a are similar except the slopes in
region A are of opposite signs.) The value of the solution throughout region B is
approximately equal to the boundary value v = 0.5. The analysis of this case is given
in Section 6.1.

As -« decreases with increasing ¢, the jump in the interior layer at £ = 1 decreases
to zero when 7 = —1, ie,, the inferior layer becomes 2 corner layer. As -y continues
to decrease as ¢ increases, the corner layer again becomes an interior layer with a
positive jump which increases, see Figure 3b. The solution in region A still has slope
approximately equal to f, but the behavior of the solution in region B changes to the

approximate shape of a hyperbolic curve.

5.83. The case ¢ = —1 and f = 4. When ¢ = —~1 and f = 4, we saw from
Figure lc that nonunique solutions can occur for «4 > 0 but otherwise are unique for
4 < 0. Pigures 4a and 4b are two solutions for v = .1.0 with € = 0.04. Since ¢ is
negative, no boundary layer occurs at £ = 0. In Figure 4a, the solutionin 0 < z < .9

has approximately a constant slope equal to — f = —4, there is a corner layerat z = 1,
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and a boundary layer is required at z = 3/2. When + is negative, the unique solution
is essentially unchanged from Figure 4a except in the boundary layer at 2 = 3/2. A

singular perturbation analysis of this case is carried out in Section 7.
INSERT FIGURES 4a-c NEAR HERE

As ¢ increases, the corner layer becomes a transition layer which moves to the left
as the crossing point z = { moves towards £ = £ — 1. Thus further up the left side of
the 4(c) curve in Figure lc, the solution crosses the z-axis between £—1 < £ < 1.

On the right side of the y(c) curve in Figure lc, the solution curve crosses the
z-axis near z = £ ~ £ — 1, see Figure 4b. Az a consequence of the solution crossing
the z—axis near z = 0.4, the solution is large near £ = 1.4, which is a turning point.
The slope in 0 < = < 1 is initially negative but becomes positive and then increases
to O(108) at z = 1. Asymptotic results for this example can be obtained as a special
case of the variable case treated in Section 9.

Ascis 'mcrea.at_ad further, the crossing point z = £ moves closer to z = 0 and the
turning point region to the right of z = 1 becomes a region of very rapid decrease in
the solution (the derivative is O(10'®) at z = 1), see Figure 4c for v = 1.647 x 1072

i
with ¢ = 0.04. (It was difficult to compute the solution for smaller €.} Over most of
region B, the solution is small and close to the value of . Note that this solution is

qualitatively similar to that shown in Figure 5¢ for ¢ = —1-and f = —4.

5.4. The case ¢ = —1 and f = —4, When ¢ = —1 and f = —4, as shown in
Figure 1d, there is'nonuniqueness of the solutions over a certain range of 4. In Figure
5 are shown representative solutions on different branches of the (¢} curve. Also,

they illustrate the essential characteristics of the nonunique solutions since all have
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the boundary condition y(£¢) = v = 0 and ¢ = 0.04. All three solutions cross the

z—axis in 0 < z < 1 and induce a turning point problem in 1 < z < 3/2,
INSERT FIGURES 5a-c NEAR HERE

It is interesting to compare the solutions in Figure 5a with that in Figure 4a where
J = 4. In both cases y is well-approximated by Y, in region A except near z = 1.
However, in Figure 5a, the solution has a simple zero near z = 0.25 < £— 1. This
simple zero is responsible for the large Gaussian behavior in region B, not present in
Figure 4a.

In Figure 5b, the solution curve is very different from that in Figure 4b. Again,
there is no boundary layer at z = 0, and the soiutim; crosses the z-axis at z 00 ~1/f =
0.25. Over most of region A, the solution is dominated by a growing exponential which
is large at z = 1. The zero in the solrlbion in region A induces # turning point in region
B and the large amplitude Gaussian function is centered at this point.

For ¢ >> 1 in Figure 1d, the solution in Figure 5¢ is similar to that given in Figure
4c. In region A of Figure 5¢, the growing part of the solution dominates throughout
and y crosses the z-axis at z s 0.007. The solution increases rapidly to a peak of
approximately 3.8 x 1011 at z = 1.007, then decreases rapidly towards zero to the
right of the peak, and is a.pproxima.tély zero over the remainder of region B.

The analyses of the solutions for the constant case shown in Figures 5a and 5c
are given in Section 7. The asymptotic analysis of the solution shown in Figure 5b is

a special case of the analysis carried out in Section 9 for the variable case.
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6. Singular perturbation analyses - ¢ = 1. In this section, we analyze
the BVP (3.2)-(3.3) subject to the conditions (2.3)-(2.4) using singular perturbation
analysis methoda. For different choices of the parameters, ¢, f, and v, the behavior
of the solutions can vary radically {see Figures 2 and 3). Therefore, it is necessary to
treat the various problems on a case-by-case basis.

For the case with ¢ = 1, there is a boundary layer located at 2 = 0 which induces
an interior layer at z = 1. Depending on the value of the integration constant, there
may or may not exist a boundary layer at z = £

In region A, we have the exact solution, but for t};e asymptotic analysis it is
necessary to obtain the leading-order behavior in the various regions. Thus, for the

boundary layer at z = 0, which we call region I, we define the new variables
z

(6.1) B == vl = ylemse),

so that the boundary layer solution is given by

(8.2) yi({z1;€l =1—¢(l— e ) +efzy,

which is the exact solution given by (3.4) rewritten in terms of the stretched variable
z1.

For the outer region, 0 < z < 1, which we call region I, we have the approximation
(6.3) ya(z;€) ~ 14+ fz —ec,

where we assume ¢ = O(1). This outer solution can be obtained by solving (3.2) recur-
sively for small . In the outer region, the magnitude of y; is determined principally
by ¢ but its slope is approximately a constant value given by f.

The boundary layer at £ = 0 induces an interior layer to the right of z = 1 in
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region B. This interior layer will be called region III. Define new variables

-1
(6.4) 3= ——,  ys(zsi€) = y(1+ezsie),

8o that (3.7) becomes
(6.5) ga(zaie) +{1—c{l —e ™) + efxajys(zs; € =14 f—c+ef(l+za).

To obtain the leading-order solution for ys, we assume that both ¢ and ys have power

series representations in ¢ given by
0

(6.8) : efe) = Z "ep,
n=0

(6.7) ya{za; €} = Z €"y3,n(z3).

n=0

Thus (6.5) can be written in the form

(6.8) ) e"{da,n(2z3) + [1— co(1 — e~™)]ys n(z3)}

nz={

= 14+ f—co+elf(1+23)~ca]+ (1—e"%) 2 e” E cm¥Ys,n-m(z3)
n=1

m=1
o0 o0
- z €%y — fzs Z €"ys,n—1(23).
n=1

R

The sequence of equations to be solved for ys.(z3),n = 0,1,2, ..., are given by

equating the coefficients of powers of ¢ to zefo, iamely

(6.9) 3’}3,0(23) + [1 - 00(1 - e“”’)]ya‘g(zs) =1+ f —cq,

(6.3.0) 3}3‘1(.'53) -+ [1 - Co(l - e"’)}y;;,l(za)

= f(l4zs)—e1+[ca{l— ™) — fza]ys.o,

(6.11) Y3,n(23) + [1 = co(l — e7%)]ya n(zs)
= (1-e7%) Zn: ¢mY3,n-m(Zs) = ¢n = fZ3y3,n-1(23),

m=l

n=234,...,
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Note that the coefficient on the left-hand sides is simply the leading-order part of the
boundary-layer solution given in {6.2).
To proceed further, we need to distinguish different ranges for the values of co.

In Pigure 6, we have plotted
(6.12) F(zs;co) =1 —co(l—e ")

for different values of co. The asymptotic value of F' for 3 —+ co is 1 — ¢g and the
value of co is indicated on the right. If ¢o < 1, then F > 0 for all z3 > 0, However, if

¢o > 1, then the curve F(zs;co) crosses the axis at

Co
6.13 = .
( 1) X3 1n60—1

In Sections 6.1, 6.2, and 6.3, we present the analyses for the cases with ¢o < 1 {co #
0},1 <o < 1+ f, and ¢y ~ 1+ f, respectively. The analysis of the special case ¢ = 0
is straightforward and will be left to the reader to complete. For 1+ f << ¢o with
0 < fand 0 < ¢o with f < 0, v becomes large and negative and we choose not to

carry out the analyses of these cases here.

INSERT FIGURE 6 NEAR HERE.
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6.1. The case ¢g < 1,¢g # 0. Examples of the solutions when ¢o < 1for f > 0
and f < 0 are shown in Figure 2a, and Figures 3a,b, respectively. For ¢g < 1, we use
the integrating factor ezp[{1 — cg)z3 + ¢o(1 — £~ %*)] in (6.9), integrate from 23 = 0 to

z3, and use the leading-order continuity condition at z3 = 0 (i.e., z = 1) to obtain

(6.14) wsolzs) = (1+f—co){l+ [o " ezpl(1 = co)s + co(1 — e=*)]ds}
- exp[—(1 — co}zs — col — e~ ™*)].

The continuity condition requires-

(6.15) yg!o(O) =1 f —Cg;

and from the differential equation, we easily find that
(6.18) #15.0{0) = 0.

The leading-order continuity condition in the derivative is satisfied automatically be-
cause the scaled derivative ey5(1; ¢} = Ofe).
We determine the leading-order behavior of y3 as z3 — oo, For 0 < ¢ < 1,

rewrite the integral in the solution (6.14} by defining
(8.17) 2= coe™?, dz= —zds, s=1n(co/z)
and integrate by parts yielding

eq Pt

(6.18) Az’ GZP{{I - c0)3 +eo(t —e™*))ds = ccocgn-co /

1 oo o0 e—-—;

= af0,l—co -

= "¢ ( f 5= 47
coe™=s co 4

= eapl{t — co)as][1 + o(1)].

bt .1 zz_c(]

~

1-—eq
Thus for z3 — o0, ya,0(z3) is approximated by

i+f—e
(6.19) ya,0(za) ~ T I—co
- eg

+0(1), z3— co.
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For ¢o < 0, a slightly different evaluation yields the same result for ys o(xs) given by
(8.19).

In the outer region IV {1 < z < £) of region B, we have the approximate equation
{6.20) eyi(z;e) + 1+ flz— 1) —clya(zie) =1+ fz —c+ €f.

For yi(z; ) = O(1), we solve the equation recursively to obtain

(621)  wlzmeg = 1+ 1+f(zi J et 1”(:_1 p—
M0 j = 6012]} + O(e?).

Assume

(6.22) L4 Ham1) =050

for all z in (1, £, then the denominators in (6.21) are never zero, there will not be a
turning point in region IV, and there cannot be a boundary layer at z = £ Hence,

" the boundary condition at z = £ must match with

f
1€~ ~co

(6.28) vio(f) =v=1+
It follows that v > 1 and f>0o0ry<1and f <0 Solving (6.23) for ¢y gives
(6.24) co=1+ fll—1— ——)

. 0 = - .

Thus if v — 1 for ¢y < 1, the integration constant ¢, and hence the solution, will
become large independent of the exact value of ¢, provided ¢ is small.

If f > O, then the requirement (6.22) that 14+ f(z— 1) —¢co>0inl <z < £
Tequires

(6.25) co<1
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which is the case under consideration. In this case we have the additional restriction
from (6.24) that

‘ 1
6.26 .
(6.26) 1<1<1+£_1

Note that when vy =14 1/{¢£— 1), we haveco = 1.

If f < 0, then the requirement on ¢q is
{8.27) co<1+f(¢£—-1)<1,

again corresponding to the case under consideration. Furthermore, since f < 0, using
(6.22) in (6.24) requires v < 1.
Since the boundary condition y(4; ¢) = < is independent of ¢, the coefficient of ¢

in (6.21) must equal zero at z = £, thus determining ¢, namely

(6.28) G=1-n— ;{-T
Thus
(6.29) ele) ~ 1+ f(£—1— q_ii-) +e(t—ny— 7_{...1.)_

We need to verify that ya o{za) matches y4(z;¢) for 23 — o0, €z3 small. From

(6.21), since z = 1 + ez3, we have

1+f“co

(6.30 ~
(6.30) Ya.0(z — 1) o

L]

which matches {6.19) to leading order.

In summary, using (6.29), we have the approximate sclution for the case ¢ < 1
given by
(6.31) yalzie) ~ 1+ fz

-t fe-1- - - Lol - e, 0<acy,
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(6.32) ys(zsie) ~[f(2- ¢+ 7——}{) +e(y—1+ %)}

f
y—1

ezp{-zs 1+ (= 1= =) +ell =y = ~L)llms 14+ e7]}

A+ [ epla— (14 6= 1= L ety - L 2 e,

_z—1
T3 = — 0< 23 < o0,

(633)  walaid) ~1+ = (11;)1{ =3
ev-1) o (=1 +f (vy—1)2
R e vy e Gl ey oy Rl ey o T o
1-< z < £,
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6.2, The case 1 < ¢ < 1+ f. Totreat the case 1 < ¢ < 1+ f, we assume y4
crosses the r-axis at two points, 0 < £; < £3 < 1, e.g., a8 shown in Figure 2b. These

geros are determined from .
(6.34) 1+ féi—c(l—e"8/) =0, i=1,2.

For 0 < §; << 1, we can neglect the term, f&,, in (6.34), so that £ is approximated

by (cf. (6.13))

(6.35) € ~eln

c—

For £3, we neglect the exponential term in {6.34)

(6.36) 6~ 221,

Using (3.8), the solution in region B is approximated by

(037 1o(e5) = B0+ -+ ()
where
(6.38) E(z) = c(l—e =Dy (1- ’-)e(z -1 .f(:rsz—e 1)2,

(6.39) I{z)

®
%f (14 fs—c+ef)eBWds,
1

A graph of E(z) is given in Figure 7 and the locations a,b,¢, and d denote various

possibilities for the interval length 8.
INSERT FIGURE 7 NEAR HERE.

i £ occurs at a, ie., to the left of the minimum as shown in Figure 7, then
E(&) < 0 which implies that exp(—E(£)) is exponentially large in e. Furthermore, it

is easy to show that for 0 < € << 1, the minimum of E(¢) occurs when
(6.40) cm 1+ f(£—1).
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From (6.38), this means E(£) is a minimum when
(6.41) Gaml-1.

Thus if £ is located at a, then

(6.42) L-1< & <1
or
(6.43) A4 fle-1)<c<1+f.

For the induced internal layer region Il near x = 1, we obtain the same solution
given by (6.14)

(6.44) yaolzs) = {1+ f—co){l+ ‘/:a expl(1 — co)s + co(l — ¢™*)]ds}

. cxp[—(l - Cg)a’.’a e 60(1 - C_ma)].

In order to obtain the asymptotic behavior of y3,0(z3} as z3 — oo, in the integral we

uge the same change of variables given in (6.17) to obtain
z3
(6.45) f ezpl(1 —co)z+ co{l — e™%)]d2
0 .
= ¢% cé"""[ﬁ(qo —1,¢0) = F{co — 1,e0e™ )]
where %(a, z) is the incomplete gamma function with definition [1, pp.260]
F
(6.46) e, z) = f e~ dt,
o

For z3 — oo, we use the asymptotic expansion of %{a, z) for small z to obtain the

approximate solution

(647)  walzs) ~ (14 f—co)[l+e®c ™ 5(co — 1, c0)jele0 V=220

1+f-¢
n f—co

Za — Q0.
1—c0 !
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Under the assumpfion £—1 < &3, we have that 1+ f(z — 1) < ¢o in (1, £}, and
consequently there is no boundary layer at z = L Thus in region IV, 1 < = < £, we

obtain the approximate equation

(8.48) evlzie) + 1+ flz— 1) — colyalz€) = 1+ fz —c + ¢f.
Write the solution as the sum of homogeneous and particular solutions
(6.49) valzi€) = yif (z 6 + uf (5: 9).

The approximate solution is then given by

(6.50) valzie) ~ Ce:cp{—-i‘te-(z 17~ 122~ yy)

14 fz—co

+1+f(z—1)—co’

where C is the integration constant for the homogeneous solution. We evaluate ' by

matching y3 and yy for large z3 = (z — 1) /¢, thus
(651) O = (141 - o)l + e (co — 1, o)l

Then the determination of ¢g > 1+ f(£— 1) is obtained by applying the boundary

condition at z = £,
1—e¢
(8.52) q= Cezp[—'aé(t —1)% - Ta(l -~ 1}].

Since the exponent must be positive, for consigt.ency, we require -y to be exponentially
large in ¢. As an example, consider the case where f = 4,£ = 3/2,¢ = 0.1, and
co = 4, so that (6.52) with (6.51) give, after some approximations, 4 s 930. From
the numerical calculations foi' Figure 1a, we have v & 1550. The discrepancy between
these values can be attributed to having dropped the O(¢) terms in the integral term

in the homogeneous solution which then multiply ¢~ 2(8 a4 403.
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i £ occurs at B, i.e,, to the right of the minimum of E in Figure 7, then

(6.53) 1+I—(£-2-_—1—)-<c<1+f(tw1}.

For these cases, we can avoid having to carry out the necessary boundary-layer analysis
by direct evaluation of the integral I{(z). The dominant contribution to the integral
(6.39) comes from near s = 1forall1 < z < & Let t = (s — 1}/ in the integral I(x)

yielding
(s=1)/e

654 I(z) = f (14 F(1+et) —c+¢f]
Q

cezple(l—e !} + (1~ )t + f-2'1(—1‘.2]clt

ef

oo 2
~ ,/,;, [1+ f(r+ef) —c+ef]ll + _L,_f2+i._é£_2_.t4+...f

-ezple(l — e7*) + (1 — ¢)t]dt

where extension of the upper limit to infinity for z—1 >> ¢ introduces an exponentially
small error.

To leading order with ¢ ~ ¢g, we obtain

(6.55) 1) ~ (1+ £ = coleoel™ [ a2z
0

where z = ¢pe™*. Applying the boundary condition at z = £ yields the nonlinear

equation for cg

¢o
(6.56) g~ g"E(‘)(l + f - "-'0)[1+ ecucé—cof e"z°°'2dz]
o
where
(6.57) E(f) ~ o+ &5 coZ(e =Y, gg(t- 1)? << -1

This result is identical with that for £ located at a in Figure 7. Thus v is exponentially '
large in e. Note that at point b in Figure 7, i.e., 1 + £ < £ < 1+ 2¢, the solution has

an exponentially large Gaussian peak at z = 1+ €.
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The most complicated of the four cases shown in Figure 7 is when £ occurs at
point ¢. Then the spike in the solution occurs near the middle of the interval [1, £, so

that E{(£) = O(1). In this case, {3 ~ (¢ - 1), so that to leading order

fe-1
—

(6.58) co=1+
Now the dominant contributions to the integral J(£) come from both s =1 and s = £
‘We choose not to carry out the asymptotica in this constant case here. Rather, in
Section 8, we carry out the singular perturbation analysis for the variable coeflicient

case when ¥ = O(1). Then the constant case arises as a special case with1 < ¢ < 1+f.

If £ occure at d, then 1+ 263 < £, or

(8.59) e<1+ f_(_£_2:_1_)_,

and the dominant contribution to the integral I{z) comes from near s = z for all

z—1>> ¢ Thus, at z = £ we have

. 14+ fl—c+ef

(6.60) e

which corresponds to matching the boundary condition at z = £ using only the outer

solution. '
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8.3. The case cg ~ 1+ f. For the case ¢o > 1, in the interior layer to the
right of z = 1, we multiply (6.14) by ezp|{(1 — co)za + co{l — e**)] and take the limit
Zs — 00, Assuming

(6.61) z;l.i_.r‘l"loo czp[(l —- Co)za]ya‘o(ﬂ:s) = 0,

we obtain the condition
oD
(6.62) (14 f — co){1+ f ezp|(1 — co)s + co{l — ¢=*)|da} = 0,
0
and since the quantity in braces is positive definite, we have
(6.83) 1+ f—¢co=0 or co=1+f.

This means that the leading-order interior layer solution is equal to zero identically.
Furthermore, the requirement c¢o > 1 requires f > 0. Note that i this case c¢o does
not depend on «.
In the outer region IV, 1 < z < £, the solution is given by (6.21) with ¢co =1+ f,
thus
1 €

zdn-
6. je) = {
(6.64) ya{z;€) 2:_2—-}-“’,:_-_211+

Cc1 1

+
flz-2) * f(z-2)?
Since 1+ f(z —1) —¢g = f(z — 2) < 0 for f > 0, we have a boundary layer at z = I,

]+ 0(e?).

In the special case

(3

-1
-2’

(6.65) =

133

the boundary layer correction to the solution has amplitude O(¢) and is unimportant
to leading order in e. Also, we note that the leading-order solution in region IV is
independent of f,~, and £

For the boundary layer approximation at z = I, call this region V, define the new

variables
L—g

6.68 =
(6.68) z5 -

y  ys{zsi€) = y(€— ezp;¢e),
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80 we obtain

(.67 s(w539) + [F(2 — L+ ez5) + €21 + O(e)]ys(zs; ¢

= f(1—8+¢es + flzs ~ 1)] + Ofe?).
Assume ys has a power series expansion in ¢

(6.68) ys(zsi€) = ) €"ye,n(2s),

n=0

then the leading-order equation is given by

(6.69) ¥s,0{zs) + f(2 — ys,o(zs) = F(1 -9,

with exact solution

£~1

-2

-1,
f(!.—z)zs
T 2)6 +

{6.70) ys,o{zs) = (v~
where the boundary condition at £ = £ has been used to determine the constant of
integration. This corresponds to a boundary layer solution at z = £ since f > 0 and
£< 2. As 25 — o0, y5,0(25) ~ (£—1)/(¢—2) which matches the outer solution y4(z; €)
a8 z — £ For ¢p = 14 f > 1, there are no restrictions on 7.

If f <0, then ¢o < 1 which contraﬂicts-the a.ssur-np‘tion that ¢ > 1, Thus inlthis

case, a solution does not exist unless the right boundary condition is given by (6.65).

In summary, for ¢ = 1+ f, f > 0, we have the leading-order solution

(6.71) yalzmie) ~ 1+ fz—(1+ f){(1-e%%), 0<z<1,

z—1
(6.72)ya(z3;¢) ~ 0, O<zz<o0, ZZ= —
(6.73) ya(z;¢) ~ ::;, 1<z< ¥
£—1 _ £—-1 £—zx
(8.74)ys{zs5;¢) ~ (7v-— m‘)el(t e =5 0< 25 <co, zg= —
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7. Singular perturbation ansalyses - ¢ = —1. In this section, we consider
the case of ¢ = —1 with both f and 4 of O(1). As seen from Figures 1c and 14, for
certain ranges of -+, the solutions are not unique with either two or three solutions.
Some of these cases are considered here.

In region A, 0 < z < 1, the exact solution for ¢ = —1 is given by {see (3.4})
(7.1) - yA(x;e)zc(e’f‘—l)—l—fm, 0<z<],

where ¢ is the integration constant. From Figures 1c and 1d, we see that for each +
such that 0 < 5 = O(1), there are two or three values of ¢, respectively, for which
solutions exist. In Figure lc, if G < 7 = O(1) and not small, then the two values of ¢
are positive and small. If 0 < 4 << 1, then one value of ¢ is exponentially emall and
the other is O{1). In Figure 1d, the three positive values of ¢ include two exponentially
small ones and one with ¢ = O(1).

We first analyze the cases for which ¢ is exponentially small and is located on the
leftmost branches in Figures 1c and 1d. Examples of these cases are shown in Figures
4a and 5a with f = 4 and —4, respectively, and ¢ = 0.04. The exponential term in
(7.1) contributes only in a narrow region close to z = 1 so0 ¢ is exponentially small.

Over most of region A, the solution is well-approximated b}
(7.2) yi{z;e) ~ -1~ fz

which satisfies the reduced equation.

To the left of z = 1, we introduce an interior layer and define new variables

] -
(7.3) T = — =, - va(zai€) = y(1 — ezge).
Thus
(7.4) ya(2z2;€) ~ cet/*=® — 1 — f + efzy
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g0 that ce’/* = O(1) in order for y2 = O(1).
Most of region B, 1 < £ < £, is an outer region which we call region III, and the

solution here is governed by
(7.5) eyh(z; ) + [—1— flz — 1)]ya(z;€) =1+ fz —¢f.

To proceed further with the analysis, we need to restrict the values of f. Assume
yi{z; €} < 0for z < £—1, ie., a zero of yy (if any} occurs to the right of z = £— 1.

Then there is a boundary layer at z = & This requires

(7.6) - 'Eé'i' < f.

For the examples in this paper with £ = 3/2, this corresponds to —2 < f, and is
automatically satisfied if f is positive. The sclution of the homogeneous equation
grows exponentially in z for small ¢ so we exclude it from the solution in the outer

region IfI. Thus

(.7 ya(z; €} ~ y3 (z;€)

1+ fz ef f }

T1+f(z-1) 1+f(z—1){1+ [1+ f(z ~ 1)}2

Matching this solution at z = 1 to y; yields an approximation for ¢ given by
(7.8) e lef(1+ f) = 221 +3f)]e" e

which is exponentially small and ce}/¢ = O(e). Using this in {7.4), we see that region
Il is a corner layer. Note that ¢ is independent of ¥ and hence the solutionin 0 <z < £
does not vary as « is changed except in a boundary layer near z = £ .

The boundary layer at z = £ will be called region IV. We let

-z
(7.9) 2= —, va(zai€) = y(€— ezy;¢)
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and hence y4 satisfies

(7.10) Vilzase) + [L+7(2-1) - efzdvalzaie)

= —1- fl+ef(l+z4).

The leading-order solution is derived eésily and is given by

IS e 2ESE
1+ f(£-1) 14 f(£~1)

(7.11) va(z4;6) ~ [y +
where the boundary condition at z = £ {i.e., x4 = 0) has been applied.

From Figure 4a with f = 4,y = 1, and ¢ = 0.04, the computed value of ¢ is
equal to 8.32 x 10712, whereas (7.8) yields the value ¢ # 6.49 x 10712, The location
and minimum value of y in Figure 4a are given by z = 0.95 and yui, =~ —4.628,
respectively. Using the value of ¢ = 8.32 x 10”12, we obtain the same values from
(7.4).

In the case for which Figure 5a with f = —4 is an example, again the exponential
term in (7.1} contributes only in a small region close to z = 1 30 ¢ is exponentially

small and y4 is a straight line over most of region A. In this case, y4 crosses the

z—axis at z = £ given approximately by

1 ¢
7.12 ~—o e
where now ¢ < £~ 1, so that
1

{7.13) f < - Z—_—-i-

The interior layer solution to the left of z = 1 is contained in (7.1).
In region B, the zero of y4 at o = £ induces a turning point at z =1+ ¢ so we

introduce the new variables
(7.14) gp=z—1-§ yp(zpie) =yp(l+E+1z5;¢).
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To leading order in ¢, we approximate the equation for yp by

(7.15) evb(zaie) - foays(eaid = f(1+25 -
80 that
(116)  vslensd ~ (et~ feapCEZE
109, f:ﬁ% | f e ezpl- fz_’:;ds.
where we have applied the matching condition at z = i{zp = —£). The solution

in this region is exponentially large because f is negative. Since ¥ = O(1) and the
solution has a Gaussian shape centered at z = 1 + £, the exponential growth must
start at z < 2+ 2§ — L

To evaluate ¢, we apply the boundary condition at z = £ and evaluate the integral

in (7.16) asymptotically assuming zp at z = £ is less that £. This and (7.13) require

(7.17) —-—2——<f<—

2
-1 -1

Therefore, we obtain

14 fe—€f + ef?
1+ f(e-1)  [1+f(e-1)P
£—1,

+Heell —ef(1+ f)}“p[f(ﬁ;l)’ + ]

€

{7.18) 5

where we have used (7.12). Thus

(7.15) e~ eVl +y +1);teff“1) Jezp|~ f(zz_e 2 _.g: )
1 f fe-1)?2 -1
+€‘f{1+f_(1+f(l—1)+[1+f(£_1)]3)ezp[_ S — .

This is consistent with (4.1) when ¢ = 0. For vy = 0, f = —4, and ¢ = 0.04, {7.19}
gives ¢ a4 8.28 X 10~ 1! compared with ¢ s 9.22 X 10~1! from Figure 5a, Note that the

comparison is very good even though f = —4 is a borderline case.
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The remaining cases with f < —2/(£-1) are treated in Section 9. Also, results for
the case, for which Figures 4b and 5b are representative examples, can be obtained
from the analysis for th§ variable case carri;d out in the same section. Note that
Figures 4a and 4b are two distinct solutions for vy = 1.

For ¥ r3 0, we see from Figures 1c and 1d that solutions exist for 0 < ¢ = O(1)
and not small. Examples of these cases are illustrated by Figures 4c and 5¢ for f = 4
and f = ~4, respectively. The following analysis holds for all f = O(1).

From (7.1}, the solution y4 crosses the z—axis at z = £ determined from
(7.20) cet/ —c—feE—1=0,

so that £ must be small with

€

f )8n1+c.
+e¢

[

(7.21) E~e(lt -

From the exact solution, we see that with £ = O(e)and ¢ = O(1}, the solution y4
becomes exponentially large over most of the region 0 < z < 1.

In region B, 1 < z < £, the governing equation is given by
(7.22) eyp(ze) = [1+ flz— 1) +¢(t - e/ yplzie) = 1+ e+ fz—ef.

Because the solution is negative near z = 0 and ¢ is small, there is an interior layer
to the right of z = 1 which we call region II. Introduce the layer variables

z—1
(7.23) T = va(za;€) = y(1 + exzg; ¢)

80 that (7.22) becomes

(7.24)  fnlz2;e) - [1+e{t —e®) +efza)ya(za;ef =14+ f+c—ef(1 — z2).
To obtain the leading-order result, we keep

(7.25) fa—[l+e(l—e®)ya=1+f+ec.
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With y2(0;¢) = ya(1;¢€) ~ ce’/¢, we have
e*3 act
(7.28)  yalzai€) ~ {ceV/ + (14 f +¢) f rsdtheapl(1+ e)as — ce),
1

where in the integrand, we have introduced the change of variable t = ¢*. For 0 < ¢,

Tq — OO,

1+ 1+ ¢~
¢

— 0.

1
(7.27)  ya(za — ooj€) ~ cczp[; +{1+c)zg —ce™| +

In the remainder of the interval, 1 < z < ¢, which we call region III, the equation

(7.22) is approximated by

(7.28) eya(z;€) +cel®V/yy(z6) m 1+ o+ fa
so that

(7.29) va(z; €) ~ E_i_"?f_f_“c—(z—x)/e_
Asz 1,

(7.30) ya(z; e) ~ .]:j-_z_-i-_ie'“-"!

c

which matches y; as 22 — oo. Applying the boundary condition at z = £ yields

1+ f£
(7.31) c~ m.

Thus, when ¢ = O(1). and not small, then 4y must be exponentially small which
is consistent with Figures ic and 1d. The parameter values of Figure 4c are f =
4,7 = 1.647 x 107%, and ¢ = 0.04, and the computed value of ¢ is 2. From (7.31) we
obtain ¢ R 2.05. For Figure 5¢, f = —4,7 = 0, and € = 0.04 with the computed value

¢ = 4.84. From (7.31}, we have ¢ s 5.
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8. Singular perturbation analysis - variable :rcase with ¢(z) > 0 and
f{z) > 0. Throughout this paper, we have assumed both ¢ and f are constants. In
the cases where ¢ and f are nonconstant functions, much of the singular perturbation
analysis can be carried out, although not quite as explicitly as before. To illustrate
this, we analyze the case where ¢(z) > 0 on —1 < 2 < 0 with ¢{—~1) =1, f{z) > O on
0<z< £—1,and y= 0(1) as ¢ — 0. The assumption ¢ > 0 near z = ~1 induces
a boundary layer at £ = 0. The governing equations in regions A and B are given ‘by
(2.1} and (2.2) along with the boundary and continuity conditions {2.3) and (2.4}.

As demonstrated in Figure 2, the solutions in the constant case (¢ = 1, f > 0)
exhibit a variety of singular perturbation phenomena. Here we choose to focus on
constructing approximations of solutions which can be viewed as generalizations of
the solution in Figure 2b. That is, the solution has a boundary layer at £ = 0 and
satisfies, to leading order, the ¢ = 0 (reduced) problem on {0,1). As in Figure 2b, we
stipulate that the solution to the € = O problem has a simple zero in {0,£— 1), As
a consequence, the solution will have a large amplitude “Gaussian” type behavior in
{1, £.

To carry out the singular perturbation analysis, the interval 0 € 3 < ¢is subdi-
vided into regions denoted I,...,VI as shown in Figure 8. Since ¢(z} > 0 on [-1,0],
there can be a boundary layer only near z = 0. In region I this boundary layer is of

thickness Of¢) so we set

x
(8.1) ==, {6 = ylezie).

INSERT FIGURE 8 NEAR HERE.

41



Then (2.1) becomes ~

(8.2) g1(z1;€) + ¢(—1+ezi)ys(zri€) = j:z‘ f(8)ds +g.

For € — 0, assume that

(8.3) yi(ziie) ~ ie"yl.f(m)
(8.4 § o~ moremte
(8.5) $(-1+ez;) ~ L1+ (~1)ezy+---,
(8.6) om fs)ds ~ F(O)ems+---.

The two leading-order equations are

(8.7) 1,0 +yL,0=go, ¥,0(0)} = 4(0),

(8.8) 1+ = —¢(-Vayo+ f(O)z +g1, 9.a(0)=0,

with solutions

(8.9) yio0(@1) = cole™ ~ 1)+ ¢(0),
(8.10) . vialz) = —io-‘é:é“:ﬂxfe“"
+ [£(0) + ¢'(~1)(co ~ #(0)}]z1 +er{e™™ —~ 1),

where the unknown integration constants g;,1 = 0,1 are replaced in terms of ¢; by

(8.11) go = ¢{0)}—co,

(8.12) o

¢'(—1)(co ~ 4(0)) + F(0) — .

Region Il is an outer region where we simply retain the particular solution in a

WKB approximation obtained recursively from
1 z
19) wlmd = gl f6)s+o- abima)
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1 z
¢(z-—1){,[0 f(s)ds+90

+ dan - g4 ZEZIL a4 g0l + 0(e):

It is necessary to compute yz{z; ¢} to O(¢) in order to obtain the leading-order solution
for yp(z;€). We note that ya(z; €} matches y;(z;¢€) as z — 0.

At this point we make the stipulation mentioned above that to leading order
yz2{z; €) has a simple zero in (0,£ ~ 1), say at z = §. From {8.13), we then obtain the

following relation between co and §

(8.14) j: f(s)ds + ¢{0) ~ co = 0.

This assumption together with f(z) > 0 on 0 € z < £— 1 insures the solution in
region II has a simple zero within O(¢) of the the point z = £, The requirement {8.14)

reduces (8.13) to

(8.15) (s = ¢{:—_1){./:f(a)ds

flz) | #=—1) "
+elg1 — =1 + ¢2(z“1)/; fs)ds} + O(%)}.

Again we include the O(¢) terms in order to compute yz(z; ¢) to leading order.
The boundary layer at z = 0 induces an interior layer of thickness Of(e) to the
right of £ = 1 which is called region III. Set

z—1
(8.16) T3S — ys(zs; €) = y(1 + eza;¢).

Using (2.3) and (8.1), we obtain

(8.17)  ya(za;€) + y1(za; ya(zaie) = /:" o+ 1)ds+ j: f(s)ds + go.

Assume

o0
(8.18) ys(zs; €} ~ Z *ysn(z3) as e—0,
k=0
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and substitute into (8.17). Using (8.9) and (8.10), we obtain the sequence of problems

1
(5.19) tholms) + loole™™ = 1) + $(Olvsales) = [ 1(s)ds
£
with the requirement from (8.15)
! 1 ft
(8.20) Y3, 0= W-/; fls)ds
and
(8.21) va,1(z3) + [eo(e™™ — 1) + $(0}]ya,1 (=3}

—{~34'(~1)z3e™™ + 2 [£(0) + ¢'(~1)(co ~ $(0))]
+c1(e™™ — 1) }yso(zs) + f(L)za + 01

with the requirement from (8.15)

(8:22) w10 = grortan — S+ 50 [* sy

We note that (8.19) is identical to the problem when ¢ = 1 and f = constant with

the solution

(8.23) waoles) = ( f€ el g+ [ ezplene™ + (8(0) - collas}
-ezp{coe™ ™ + [0 — $(0)]za}.

Since ¢o — ¢(0) > O from our basic assumption {8.14), the solution ys ofzs) grows -

exponentially as za — co. Thus for z3 >> 1,
1
(8.24) ya.o(-'ﬂa) ~ f f(s)dscfco"\ft{o)}za
[¢_(0) +/{; exp{—coe™’ + [$(0) — cos}ds].
The solution y(z;¢) in region IV, 1 < z < 1+ £, is one of rapid exponential

growth. From (2.3) and (8.15) we have

(8.25) evilzie) + {f Py f(s)da ¢(:_ 3) lox - ,ﬁ:: 3
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v S [t + outad

x
f f(s)ds + eg1 + O(€2).
¢
It is essential to keep the O(¢) terms in the coefficient of y, because they contribute

to O(1) in the solution. Uzing the WKB method, we set
(8.26) valzi€) = y{ (z6) + ¥ (= ¢).
To leading order as ¢ — 0, the homogeneous solution is given by

1 z 1 =1
(3:27) e~ haearl=3 [ o [ ptoar

Fls—1)  ¢'(z~—2)
o= B+ 262D [ sganian

where k; is an integration constant to be determined by matching y3 and y4. Note
that for 1 < z < 1+ £, y¥ grows exponentially fast. In the WKB formalism, the

particular solution, yf (z; €}, is obtained to leading order by setting ¢ = 0, Le.,

I¢ fls)ds
(5.29) (59 = - Ao

Note that yf blows up as z — 1+ ¢, which is a leading-order turning point, so the

Ofe), e—0.

WKB approximation breaks down and further analysis is necessary, see below.
In the interval, 1 < z < 14§, the integration constant k4 is obtained by matching
' 1
ys and y, to leading order in the variable z3 = (z — 1) /e which is large. The exponent

in (8.27) becomes

f(t) _ LS, sa
(8.29) f[ ¢(3 O(e)}ds = &3 (MT——)- O(E)

= [co ~ ${0)]z3 + O(e)
where we have used (8.14). Thus matching exponentjally large terms in y3 ¢ and i

yields

030)  ke=(f g+ [ eap—cor™ + 140 ~ olsbas)



For the turning point region, z ~ 1+ £, we must introduce a transition layer of

width O{y/€). Thus set

(8:31) 2= 20t yaanid) = Vel + €+ Veasio),
and to leading order
' (€) e
8.32 1 €) re) = d
(8.2 Whloi ) + g mannlesd = [ fle)ds

with solution

(858} unlesi “’”‘f “”‘“’f ‘“P[z¢(§)2)1ds}ezp{ f((?msl)}

where the integration constant ks is determined by matching yy4 with ys forz — 1+ ¢
with 25 — ~00. The ‘Gaussian’ behavior of the solution for £ ~ 1+ £ is evident from

(8.33). Now

(8.34) Y (1 + €+ Vezs;i €)

1 1+¢ 1 a—1
~ k‘ezp{—-;./; w[./; f(t)dt

_flo=) =) fh
+ enn 362 + a6=2 /, f(t)dt))ds}

| [reeeve '“*f(t)dt
o

+0(Ve}

where the exponent in the last exponential factor becomes as 25 — —co.

S {3 I i PR | (3T
(8.35) CTE =T hae (s —¢—1)ds = 356 = 51)-{-0(\/‘).

Comparing this with y in (8.33) yields

_ _l 148 1 —1
(8.36) ks = Vekeezp{~ fx P fe #(o)dt

g — Mg o =1
e{g — :;L — ;; + :3((3 _?) . f(t)dt)|ds}

46



which is exponentially large O(y/eezp(f/¢)) as ¢ — 0 with 0 < # = O(1). From (8.33),
we aee that

(8.37)  ys{1+Ee) ~ ks a8 €—0

\/E
Although the second term in {8.33) is also exponentially large (in z5), it is small
compared to ks for zg = o(1/+/¢€).

For region VI, 1+ § < 5 < £ it iz clear from the symmetry of the leading-order
part of ys in x5, and from (8.25) which determines y; that to leading order yg is
identical to y4, including the ix;tegra.tion constant kg = k4. However, in region VI,
since £ < x — 1, yg is decreasing exponentially fast.

Finally, to satisfy the boundary condition at = = £ to leading order, we set

7= yel4 €) yielding

(8.38) g~ ([1 f(s)ds){Lo) + fm exp|—coe™" + (¢{0) — co)slds}

.“1 f(t)dt € fls—1
{"f S ey Ly
Blo=2) [ ()
+¢2(8 ) f(t)dt)]ds} + 4(¢ 2)_[;'1 f(s)d.s'

It remains to determine the constants §,¢o, g1, . Clearly, if we restrict v = O(1)},

then we have the constraint

f & f(t)dt

(8.39) o
which determines £, the zero point for y; o(z}. The value of ¢g is then obtained directly
from (8.14). The remaining O(1) part of the boundary condition {8.38) yields g, from
which we can determine ¢, using (8.12). (The sequence of constants, gz, g, ..., etc.

(and hence cq, ¢s, .. .) require higher-order corrections in (8.38)). This gives a complete

determination of the solution to leading order in e.
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Note that in the special case of ¢ = 1 and f = constant > 0, treated in Section
6.2, (8.39) yields £ = {£— 1)/2 as expected. Thus the “Gaussian” peak is centered

between z=1and z= L
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9. Singular perturbation analysis - variable case with ¢{z} < 0. The
distinguishing feature of the case ¢(z) < 0 is that the solution y(z;¢) of BVP (2.1)-
(2.2) cannot have a boundary layer at z = 0. As a consequence a typical solution has
the following behavior in region A. On an interval 0 < z < £ the solution is smooth
and well-approximated by a solution ¥4(z) of the reduced problem. However, on the
rema.inderr of region A, ie, on £ < z < 1, the solution undergoes rapid exponential
growth, For ¢ = —1, the various possibilities are depicted in Figures 4 and 5. The
solutions in Figures 4a and 5a correspond to the limiting situation £ &2 1; whereas, the
solutions in Figures 4¢ and 5¢ correspond to the limiting situation £ = 0. A singular
perturbation analysis of both of these ﬁmi-ting cases in the constant case was carried
out in Section 7. In this section we focus on the intermediate case with £ not close
to either 0 or 1. We construct approximations of solutions which can be viewed as
generalizations of the solutions in Figures 4b and 5b.

In carrying out our analysis we shall be guided by the asymptotic form of the
solutions for the ¢ = —1 case. In region A we assume that the solution of (2.1) can

be approximated to leading order by

(9.1) ya(z;€) ~ Yalz) + cemp[—é'/: $(s — 1)ds],
where
(9,2) YA(:C) = fo f(’)d" + ¢(0)€6(_1)

$(z-1) ’

and, where c is exponentially small in ¢ as ¢ — 0, in accordance with our assumption
on the behavior of y4. Not-t-a that we have chosen Y4 (z), cf. (2.8), so that y4 satisfies
the boundary condition (2.3).

Sufficiently near z = O the exponential term in (9.1) is negligible compared to
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Y4(z). On the other hand, it dominates Y4(z} near z = 1. Thus,

1t -
(9.3) ya(l;e) ~ ccxp{—-e-'/(; $(e — 1)ds].
To find ¢ we must consider region B. With {9.1) the leading-order version of (2.2)

becomes

z—1
(0.4 vpzi) + (Yalz =)+ ceanl=3 [ os— Dsbunzi
~ f: fle)ds + (0)d(=1), L<z<L

At this point we make a crucial assumption based on the exact results for the
¢ = -1 case. For boundary values v = O(1), but not exponentially small, in (2.3)
the rapid exponential growth in region A occurs to the right of z = £ — 1. Thus,
the exponential part of the coefficient of yz in (9.4) is negligible except possibly near
z = £ If this were not the case then yp would either grow so rapidly (¢ < 0} or
decay so rapidly (¢ > 0) that yg (% ¢) would have to be either exponentially large or
exponentially small {as in Figures 4c and 5c¢}, respectively,

Ac;:ording to our assumption, a leading-order approximation of y5 satisfying (9.4}

is given by
{9.5) ye(z;€) ~ kezp[“%f Ya(s —1)ds] + Yp(z), e€—0,
1

with Yp defined in (2.9) with gp = ¢(0)¢(—1). We expect (9.5} to hold sufficiently
near to £ = 1. The arbitrary constant k in (9.5) can be determined by applying
the continuity condition (2.4). Since ya(1;¢€) is assumed to-be exponentially large we

obtain from (9.3) and (9.5)
(9.6) ko~ cczp[-—éf: ¢(s — 1}ds].

Now the fanction Yp{z) in (9.5) is finite in region B except at the zeros of Y, (7~

1). Near such turning points one normally would hz.we to modify (9.6). However, we
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shall assume that yp is exponentially large, at least up to an O{¢) neighborhood of
z = £ In such a case the presence of turning boi.nts has a neghgible effect on.y5. In
fact, in this case, we may drop Yz altogether from {9.5). Our assumption, then, is

that to leading order

(9.7  ys(z;¢) ~ cexp[-%-[) ¢(s - l}ds]ca:p[-—v%/j Yai(s —1)ds], e—0,

in 1 <z < £ except in an O(¢) neighborhood of z = £ Observe that the maximum
value of yp(z;¢) as given by (9.7) occurs at the zero of Y4(z — 1),

To analyze yp near z = £ we introduce the new variables

(9.8) t= <0, §s(%e) =ya(l+ edje).

In terms of these variables the dominant balance in (9.4} becomes

dis et
{9.9) == + {Ya(€- 1)+ cezp]

— $(s ~ 1)ds]e™ "%}

-2/,
_ ¢

~ [ stords + 4(019(-1)

Solving {9.9) subject to the boundary condition {2.3) yields
. ¢ .
010)  da(Ee) ~ E g+ ([ f(e)ds+(0)p(-1)] [ e as)
0 0

with

-1

z )(e-ﬂ‘-z)i-z)exp[--:- : $(s — 1)ds] — Ya(£- 1)i.

(9-11) G(§;€) ~ ¢(£__2

It remains to determine ¢. This can be accomplished by matching yz given by

(9.7) for z — £ with {jp given by (9.10)-(9.11} for £ — —co. From (9.7} we obtain
(9.12) yp(z;€) ~ ceteFalt-D 2
ase =+ 0 withe << £~z << l,v}ith

(9.13) A= —/: ¢(s — 1)ds — j:eYA(a — 1)ds.
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Obtaining the asymptotic behavior of {jp for £ — —oo is somewhat more delicate.
Consistent with our previous assumptions the dominant contributions to the integral

in (9.10) for Z — —co comes from near s = 0. We find that

J& #(s)ds + $(0)$(~1) |
cex {n—fu_ $(s — 1)ds] + Ya(L— 1)

-1
-ezp{‘—mezp[—-e- /0 ¢(s ~ 1)ds{}ezpYa(t

(9.14)  §o(Zie)~[v-

ase— 0 with £~z >> e.

Comparing (9.12) and (9.14} we see that matching occurs if and only if we set

Lt -’)d8+¢ 0)¢(-1) |
cezp[—?fo ¢(s —1)ds] + Ya(£— 1)
c 1 [et
-ez:p{-—a-@-:-é-)-ezp[-: | ¢(s — 1}ds]}, e—0.

{9.15) cet m [y —

This expression provides the desired relationship between v and the parameter ¢.
For 4 = O(1) we find that (9.15) admits two possible asymptotic forms for c.
First, suppose that

1 &1
(9.16) cc:cp[--—: #{s ~ 1)ds] << L
0

It readily follows from (9.15) that

Jo fls)da + 45(0)46(—1)
Yalz-1)

(9.17) ey = et e—o.

"Two consistency conditions must be met for (9.17) to hold; namely, (9.16) and
1 1
(9.18) ceapl-+ f b(s— 1)ds] >> 1.
0

The second condition corresponds to our assumption in (9.3) that y4(1;¢) is exponen-
tially large. Thus, we must have
t-1

1
(9.19) [ gla-tyds<r<- f $ls - 1)ds,
0 , [
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‘with A defined in (9.13).
In actuality (9.19) places a restriction on the class of functions f and ¢ for which

our assumptions are valid. For the constant case
(9.20) ¢=—1, f=constant,
(9.19) reduces to the condition

2 2
(9.21) - W < f < “m.

For f near —2/(£—1)? the solution y4 begins rapid exponenti_a.l growth near z = £-—1;
whereas, for f near —2/(£— 1) it begins near z = 1. For f > —2/{£— 1}, the analysis
of Section 7 is appropriate. We remark on the case f < -2/(£~ 1) later.

As a numerical test case, we computed the solution depicted in Figure 9 for

$=—1,f=—6,y=1, and £ = 3/2. Substituting these values in (9.17)} yields
(9.22) ¢ ~ e~ 31,

From (9.1) and (9.22) we expect rapid exponential growth to begin near z = 0.75.
Indeed, this behavior is reflected in Figure 9. Moreover, for ¢ = 0.04 we obtain an
approximate value of 3.60 % 10~8 for ¢ from (9.17) which compares favorably with the

computed value 3.70 x 10~%,
INSERT FIGURE 9.NEAR HERE.

The class of solutions represented by (9.17) corresponds to the circled number 5a
in Figure 1d. Equation (9.15) admits a secord class of solutions for larger values of ¢
corresponding to the circled numbers 4b and 5b in Figures 1c and 1d, respectively. In
this case the rapid exponential growth always starts near z = £— 1. Set

- -1
(9.2) c= @m(é [ bts - as
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with
(9.24) B= —(t—2(A+ OH é(e — 1)da).

We obtain a relationship between y and the new parameter Z by substituting {9.23) -
(9.24) into (9.15)

#(£—1)Ya()
B+ i+ eYa(l— 1)

(9-25) g~ é(ﬁ + €8)P/-D

as ¢ — 0, This asymptotic relation is relatively easy to interpret.

Recall that (9.25) was derive& on the basis that yp is exponentially large, at least
up to an Ofe) neigi\borhcod of z = L It follows from (9.12}, (9.23) and {9.24) that
we have consistency provided that

(9.26) g>0.

For the constant case (9.20) this condition translates into

2
N

(9.27) >
Again, we remark on the case f < mn-_%)-r later.

The restriction # > 0 in (9.25) means that -y cannot be too negative (O(¢) at most}
for this class of solutions. We mention that the formulas (4.9)-(4.10) for ¥ = Ymin in:
the constant case (9.20) can be deduced from (9.25).

To test the validity of (9.23) - (9.25) we compared the predicted \"a.lues of ¢ with

the computed values for the cases depicied in Figures 4b and 5b. For example, with

¢ = —1 and v = 1 as in Figure 4b, these equations provide the approximation
' 1 L-1)3 ..
(6.28) ¢~ %[1+.§(£— 12 4 eln(~- 272 "r‘(e Ve,

With the values f = 4, £= £ and ¢ = .04 we obtain ¢ & 1.53 x 10™* from (9.28) which

is quite close to the computed value of 1.54 X 10~ * for Figure 4b. In the second case,
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with ¢ = —1 and 4 = 0 as in Figure 5b, these equations yield

+§(e-1)%)?
{1+ f¢)

(9.29) e i1+ 12-'(:* 1)? = etn(~ 2 e,

With the values f = —4, £ = £ and ¢ = .04 we obtain ¢ ~ 5.94 x 10~% from (9.29)
which compares favorably with the computed value of 6.16 X 10~% for Figure 5b. In
both cases it is clear from the figures that the rapid exponential growth starts near
z = £— 1 =5 in agreement with our asymptotic results.

As we pointed out above if f(z) is too negative then oux: assumption that yp
is exponentially large, at least up to an Ofe) neighborhood of z = ¢, fails to hold.
The case f < 0, with 8 defined in (9.24), requires a slight change in our ansatz. The
approximation for yg(z; ¢) given in (9.7) becomes exponentially small in ¢ in an O(1)
neighborhood of z = £. In this neighborhood one can obtain the correct leading-order
approximation for yz from (9.4) by simply dropping the ey'B term and solving the

resulting equation, That is, sufficiently near z = ¢,

fo fs)ds + $(0)¢{-1)
Ya(z — 1) + cezp|—1 [77 ¢(s — 1)ds]

(9.30) yp(zie) ~

as ¢ —+ 0F. In particular, we can use this expression to satisfy the boundary condition

atz=1¢

[of)ds+9(0)8(=)
Ya(t— 1) + cezp|—L [ (s — 1)ds]

(9.31) o~

This formula provides a relationship between -y and ¢ when § < 0. Clearly it is simpler
than {9.15) which holds when § > 0.

For the case of interest 4 = O(1), it follows from (9.31) that

1 fet
(9.32) c= 0(.-.:1:1:{:~ #(s — 1)ds])
0

ase — 07, ie., the rapid exponential growth of y(z; ¢) starts near z = £—1, Moreover_,
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the exponential term in (9.31) is only important in an O{¢} boundary layer region at
z =L

As a numerical test case, we computed the solutions depicted in Figure 10 for
¢ = -1, f =-12, £ = 2, ¢ = .04 and three different values of 4. The chosen
f is sufficiently negative that {9.27) is violated. Clearly the qualitative behavior of
the solution ir Figures 10a and 10c¢ is in basic agreement with our assumptions. In

particular, the solutions are slowly-varying in an O{1) neighborhocd of z = £
INSERT FIGURE 10 NEAR HERE.

The solution depicted in Figure 10b corresponds to a value of 4 for which the
parameter ¢ = 0; there is no exponential growth in this transition case. For larger
values of -y the parameter ¢ is positive and the solution has a large positive maximum
as in Figure 10a; whereas, for smaller values of 4 the parameter ¢ is negative and the
solution has a large negative minimum as in Figure 10c. It is easy to verify that for
each of the three values of v the formula (9.31) provides a prediction for ¢ which is
close to the computed value.
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FIGURE CAPTIONS

Figure 1. Existence and uniqueness results for BVP (2.1)- (2.4) for the constant
case. Graphs of 4 versus ¢ from (3.10) for = £1and f = 4 with£=3/2and e = Q.1.
Note that v = y(£ ¢) and that c is related linearly to y'(07; ¢) by (3.11). Inserts show
selected details including asymptotic behavior for large |¢|, zero crossings, and a local
minimum.

Figure 2. Graphs of numerical solutions to the BVP (2.1) - (2.4) for ¢ = 1 and
f = 4 with £ = 3/2. The values of ,¢, and ¢ are given on each graph. Nonuniqueness
of solutions is illustrated by Figures a and d for which v = 2,

Figure 3. Graphs of numerical solutions to the BVP (2.1) - (2.4) for ¢ = 1 and
f = —4 with £=3/2 and ¢ = 0.01. The values of v and ¢ are given on each graph.

Figure 4. Graphs of numerical solutions to the BVP (2.1) - (2.4) for ¢ = —1 and
f = 4 with £ = 3/2 and ¢ = 0.04. The values of v and ¢ are given on each graph.
Nonuniqueness of solutions is illustrated by Figures a and b for which v =1,

Figure 5. Graphs of numerical solutions to the BVP (2.1) - (2.4) for ¢ = —1 and
J = —4 with £=3/2,4 =0, and ¢ = 0,04, the va.lugs of ¢ are given on each graph-.
Nonuniqueness of solutions is illustrated by these gr;.pl;s fozl which the value. of -c fs
the distinguishing parameter.

Figure 8. Graph of F(z3;¢0) = 1 — co(1 — ™) for diﬂ'ere;nt values of co. The
asymptotic value of F for za — o0 is 1 -—Ico and the corresponding values of ¢y are
given on the vertical scale on the right.

Figure 7. Schematic graph of E(z) given by (6.38). The locations a,b,¢, and d

E

are possible positions for £

Figure 8. Sabdivision of 0 € z < £ into regions for the singular perturbation
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analysis,

Figure 9. Graph of a numerical solution to the BVP (2.1) - (2.4) for ¢ = —1
and f = —86 with £ = 3/2, v =1 and ¢ = .04. Rapid exponential growth starts near
z=.75.

Figure 10. Graph of numericals solutions to the BVP (2.1) - (2.4) for ¢ = —1 and
f = ~12 with £ = 3/2 and ¢ = .04. The values of v and ¢ are given on each graph.

The solutions are slowly varying near z = £
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