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ABSTRACT

Efficient implementations of of the Runge-Kutta type essentially
non-oscillatory (ENO) scheme of Shu and Osher [1] for nonlinear
strictly hyperbolic systems of conservation laws are presented. These

. new schemes are applied to numerical test problems of one-dimensional
gas dynamics and the results are compared with results of the MacCor-
' mack scheme [2] and the total variation diminishing (TVD) scheme of
Davis [3]. The interaction of a shock with an entropy wave is used as a
crucial test for the numerical algorithms. The results of the ENO
schemes are more acurate then those of the TVD scheme and are more
reliable than those of the MacCormack scheme. The new schemes
avoid a field by field decomposition of the flux and are much faster than
the original version.
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1. Introduction

We present efficient essentially non-oscillatory numerical schemes for solving
nonlinear hyperbolic systems of conservation laws in one space dimension. Consider

the initial value problem:

W+ fu) =9
u(x,0) = 4%x) (1.1
u, f):R? > R4
This system is assumed to be strictly hyperbolic, i. e. the Jacobian:
a=9L (12)

= u

has a complete set of eigenvalues and left and right eigenvectors. In the applications

we always consider the case of one-dimensional gas dynamics ( Owczarek [4] ). Here
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the vector of density, momentum and total energy and the flux f is given by:

u=(_(p,pv,pe)

fF=Cpv,pvp ,(pe+p)v) 13)

where p = (y-1)p (e~ Y%v?) is the pressure ( y= 1.4 ),

It is well known ( Lax [5] ) that weak solutions of (1.1) may have discontinuities
or discontinuous derivatives. These discontinuities correspond to shock waves, contact
discontinuities and the head and tail of expansion fans. Many ‘classical’ numerical
methods for solving (1.1) either are only first order accurate or produce numerical
oscillations near these discontinuities. See Sod [6] for a discussion and comparison of
various schemes. Total variation diminishing (TVD) schemes, a concept introduced by
Harten [7], avoid these oscillations, but they degenerate to first order accuracy near
extrema of the solution. For a classification of these schemes see Sweby [8] and Jame-
son and Lax [9] and the literature there. Osher and Chakravarty [10] presented TVD

schemes up to order fifteen.

Recently Harten and Osher [11] and Harten et al. [12], [13] have developed so
called essentially non-oscillatory schemes (ENO schemes). These are almost free of
numerical oscillations, and remain of uniformly high order of accuracy in smooth
regions of the flow and up to the shock. Shu and Osher [1], [14] derived more
economic ENQO schemes which avoid the reconstruction of the solution from their
averages. They are based on the flux values only, and apply a TVD Runge-Kutta pro-

cedure for the time discretisation.

Basic principle of the ENO schemes is the usage of an adaptive stencil depending
on the smoothness of the numerical data for reconstructing the solution or the flux.
This adaptive stencil automatically chooses the data corresponding to the least oscillat-
-ing plynomial, and leads to an highly nonlinear scheme even in the case of a linear

equation with constant coefficients. See Osher and Sweby [15] for a short review.
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Clearly ENO schemes are more expensive than linear schemes, as for example the
MacCormack scheme [2]. But they are worth it if one is interested in accurate solu-
tions without numerical oscillations which are designed to simulate a physical mechan-
ism correctly. This is of particular importance if the physical problem to be simulated
numerically contains much internal structure. In Chapter 2 we present a test problem
which is a simplified model of shock/turbulence interaction. The numerical results in
chapter 4 for that test problem clearly show that ENO schemes are superior to the

MacCormack scheme and the TVD scheme of Davis [3].

The extension of the ENO schemes to nonlinear systems further increases the
numerical effort. This is due to the fact, that this extension is based on a field by field
decomposition of the flux. This requires the calculation of the eigenvectors and
several matrix multiplications at each grid point. In chapter 3 we present several more
efficient implementations of ENO schemes for nonlinear systems, which reduce the
numerical work greatly. - These schemes avoid expensive eigenvalue decompositions
and matrix multiplications at the cost of a slightly reduced accuracy. In chapter 4 we
compare the numerical results for these new schemes with the field by field decompo-

sition scheme, the MacCormack scheme [2] and the TVD scheme of Davis [3].

2. A One-Dimensional Model of Shock/Turbulence Interaction —

A Numerical Test Problem.

Riemann problems proposed by Sod [6] and Lax [5] have been commonly used
as test problems for comparison of numerical algorithms designed to calculate
compressible flows. These test problems are well suited to demonstrate the capability
of an algorithm to capture discontinuities. But in smooth regions the exact solution of
a Riemann problem either is constant or may be sufficiently approximated by a linear
function. A Riemann problem has a very simple structure and these test cases are no

challenging problem in smooth regions.
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In engineering applications, numerical schemes are supposed to be applied to the
calculation of complicated flows around aircraft and reentry vehicles, and in combus-
tion engines. There are regions with higly complex internal structure embedded in
these flowfields. (See Katzer, Reister and Oertel [16],[17],[18] for examples of such
structures.) The interaction of a shock with a turbulent flow is one of the challenging
problems of fluid mechanics. It is an highly nonlinear, three-dimesional unsteady
phenomenon, which is not understood in detail. See Delery and Marvin [19] for a
- review and Zang et al. [20], for numerical and Haas and Sturtevant [21] and Hesselink
and Sturtevant [22] for experimental results, This phenomenon inspired a simplified
model of shock/turbulence interacion which is simple enough to serve as a test prob-

lem but posesses more structure than a Riemann problem.

Consider the one-dimensional problem of a shock traveling into a nonhomogene-

ous flow region. The initial conditions are:

plmy=P2 if x<0
pn(x)= p1 — pyysin{ kx ) if x>0
px)="2 if x<0
po(x) =P if x>0 2.1
o) = vy if x<0
vy = v, if x>0
The jumps:
P2—P:
P2— Py
Va— ¥y (2.2)

fulfill the Rankine-Hugoniot conditions for a given shock speed v,;,. Here py; is the
amplitude and x the wave number of a density wave impinging the shock. The density
wave is a model (admittedly very crude) of turbulent flow ahead of the shock. Notice
that we obtain a Riemann problem whose solution is given by a simple shock if py;

vanishes. Problem (2.1) is a distorted Riemann problem.,
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Let us first discuss what kind of solution we would expect for small amplitudes
(small compared to the shock strength p, — p; and the mean density ahead of the shock
p1). Then we have a small disturbance of a running shock. Acoustic theory is valid
ahead of and behind the shock, and we may linearize the Rankine-Hugoniot equations
which couple the solutions on both sides of the shock. Details can be found in
McKenzie and Westphal [23]. We consider the solution in a coordinate system which
moves with the shock (figure 1). The density wave may be considered as an entropy
wave impinging on the shock. The interaction with the shock generates three waves

behind the shock:

o a fast acoustic wave running with speed vytc,.
This wave immediately merges with the shock thereby changing its strength

and speed.
»  a slow acoustic wave running with speed vy~c, and
e  a transmitted entropy wave running with speed v,.

Here ¢, is the sound speed in the region behind the shock, We expect no
reflected wave ahead of the shock because the shock runs faster than the fast acoustic
wave in the region ahead of the shock. Thus we have a clean entropy wave impinging

on the shock.

For larger amplitudes we expect the same type of wave pattern. But now the the
waves behind the shock interact with each other nonlinearly, and the acoustic waves
would steepen and eventually generate left running shocks. This global picture is valid
as long as the density waves ahead of the shock are not too large. For very large
amplitudes the variation of the sound speed in the region ahead of the shock is larger
than the shock speed. This weakens the the shock periodically so that the shock degen-

erates to a fast acoustic wave.



3. Essentially Non-Oscillatory Schemes

We first recall the Runge-Kutta type essentially non-oscillatory schemes with
Lax-Friedrichs building block introduced by Shu and Osher [1]. In chapter (3.2) we
extend these schemes to linear, and in chapter (3.3) to nonlinear, systems. In (3.4) we
introduce simplifications which reduce the numerical work involved with the field by
field decomposition and avoid the calculation of the eigenvectors. For the case of the

one-dimensional gas dynamic equations a further simplification is presented.
3.1 Runge-Kutta Type Essentially Non-Oscillatory Schemes

Here we consider the scalar version (4 =1) of the conservation law (1.1). As

usual we introduce a space and time discretisation:

x=jAx (3.1)
t" =n At
with ratio of the step sizes:
At
=2 2
A A (3.2)

and introduce grid functions:

ul = u(x;,t")

3.3
Fi=ru. 33)

We only consider conservative discretisations:
w = ut = A (Fim = Fion) (34

where f j+u 18 a consistent numerical flux between cell j and j+1 and depends on the

grid function u; near x; and x;,, .

Runge-Kutta type schemes are based on a semidiscrete method of lines approach.

This allows a decoupling of the space and time discretisation. Let us first consider the
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time marching procedure. We assume that we already know a numerical space operator

§ which approximates the flux derivatives with r* order:

S@u)=Ax f(u), + O @Ax™. (3.5)

This allows the construction of a first order (in time) scheme:

=y A Sw™) (3.6)

Shu and Osher [1] presented new Runge-Kutta time stepping algorithms which give
higher order TVD or TV-Bounded schemes provided that the underlying first order
scheme (3.6) is TVD or TV-Bounded. Here we will only recall their schemes and refer

to [1] for details. We define a sequence of intermediate solutions:

witl= y®) - O e 3.7
and define the following schemes:

1 Forward Euler method ( first order scheme ):

w' = g0 = 4O _ ) s (u©) (3.8)

2 Heun’s predictor-corrector method ( second order scheme ):

2O = 4O % 5™
u® =@ _ % 50 (3.9)
w =1 @@ 4 4@y

3 A new third order Runge-Kutta scheme:

OO TS W PO
u® =4O - —} S @ + 5wy (3.10)

n+l

=0 2 5w+ 456 +su)
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Notice that this scheme is not one of the classical Runge-Kutta schemes. (The

superscripts in the last equation are indeed correct.)

A reformulation of the last scheme allows a hierarchical increase of the order of
accuracy, by starting with the Euler method and continuing with the Heun method to

obtain the third order scheme ( 3.10) as:

u® =1 (u(ﬂ) + u(z))

u® =1 (u(ﬂ) + u(3)) 3.11)
u® =50 3 S(u(4))
un+l = (u('.’t) + zu(S))l3

These schemes (3.8) - (3.11) are stable under a CFL restriction of:

Alal €10 (3.12)

if the basic scheme (3.6) is stabel under the same condition. We will not consider
fourth and fifth order schemes provided by Shu and Osher [1] because these schemes

are more complicated and possess lower CFL restrictions.

Notice that the MacCormack scheme [2] may be formulated as a Heun type
method where the spatial operator in the first step is based on forward flux differences

and in the second step on backward flux differences.

We now construct a non-oscillatory spatial operator S based on the local Lax-

Friedrichs flux, Let:

1 = 9f

" zo2a = (3.13)
and define:

Fr=W%(f +au) (3.14)

fT=%(f —au)

We obtain a decomposition of the flux into a part f* with non-negative signal speed
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and a part f~ with non-positive signal speed. The flux at the cell inteface between j
and j+1 is then given by:
Fivw =1 + Fiam (3.15)
A first order upwind biased approximation of the flux is given by:

2+
fj+‘/& =fj

P (3.16)

which, in the scalar constant coefficient case, is an upwind scheme if o =a and the

Lax-Friedrichs scheme if o= 1/0 .

A Taylor series analysis shows that we obtain a 2m order approximation of the

spatial operator § if the numerical flux fulfills:

m-1
Fron=Fim+ Sow@dn? |-2L | 4 0 qann G.17)
k=1 (0%)” o0

We require that equation ( 3.17) is fulfilled by the positive and negative fluxes f* and
J~ separately. We approximate f* and its derivatives in the intervall [x;,x;,,] by the
Newton interpolation polynomial p* through r+1 nodes where r is the order of the
spatial operator. According to the ENO adaptive stencil idea, these nodes are chosen

such that the interpolant has the lowest variation and is upwind biased.

Let us first consider the numerical approxinmation of f iw. We start with one

node;

kD =k = j (3.18)

If n-1 nodes are already defined, we choose the next from the two neigbouring nodes:

a=k&N <1, b=k 41 (3.19)
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such that the interpolation polynomial trough r+1 nodes has the smallest leading

coefficient. Calculate the divided differences (Hildebrand [24]):

c=f* T x| kD Sk Skig) ]

d=f%[x | k&Y <k <k&D 5] (3.20)
and chose:
W =a, k8 =k8D i lcl<id] 321)
W =b, B =kED i dclsid] :
Then p* is given by the Newton interpolation polynomial trough the nodes:
[xe | &GHD <k <) (3.22)

The numerical flux 7%y, is then approximated by this polynomial and its derivatives
according to equation (3.17). We will denote the spatial * order adaptive stencil

ENO operator by:

Fiis =Nfw (£, kG <k <D (3.23)

The negative flux f j+w 1s approximated in the same manner but with starting node

j+1. The numerical flux between j and j+1 is then:

Fivw=Flon + Fion (3.24)
We will indicate the order of the ENO scheme in the form:

spaceorder — timeorder — ENO scheme .

3.2 Constant Coefficient Systems

We will now extend the spatial ENO approximation to liner systems with con-

stant coefficients:
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u+Au, =0, f=Au
We denote the matrix of the left and rigth eigenvectors by:
LTm(II![2|°°-r Id)
R=C1,r, .., 7)
and define the diagonal matrix of the eigenvalues by:

D =diag (ay,a,, ..., ay)

With appropriate scaling we obtain eigenvectors which are orthonormal:

L =R

and the matrix A may be expressed as a transformed diagonal matrix:

A=RDL

A field by field decomposition of u# decoupules the system (3.25):

w,+Dw, =0, w=Lun

The decoupled flux is given by:

g=Dw=Lf

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

- (3.31)

Now we apply the Lax-Friedrichs ENO scheme to each component seperately and

define:

gt=" (g +BID Iw)
g ="%@-BiDIw)

where:

—h
1A
=
IA
B [
]

(3.32)

(3.33)
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Notice that the constant o of equation (3.14) is replaced by the quantity Pa; . The
numerical fluxes are then obtained by the adaptive stencil operator (3.23) aplied on

each component seperately:

Givw =NAu @), kD <k <k T (3.34)

We will restrict the formulation to the positive fluxes. The negative fluxes are approxi-

mated in an analogous manner.

Multiplication with the right eigenvectors transforms the decoupled flux into the

original flux:

Fiow =R gy (3.35)

Thus the flux may be formulated as:

1

Ffon = RNfw (Lf +B1D 1Ly )

KRG <k < kD (336)

3.3 Nonlinear Systems

Formulation (3.36) is easily extended to nonlinear systems of hyperbolic conser-
vation laws. We use a ‘local linearisation® and define an average Jacobian at the cell
interface j+% :

Ajy, = "g"fl;(ujm) (3.37)

Here we have several choices for the average Jacobian, i, e. we may take the Jacobian

at the mean value;

Aj+’é =A ('LTJ,_’_%) = A (l/z(uj+uj+1)) (3.38)
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or we may take the Jacobian at the average #;,., introduced by Roe[25]:
Ajpp = A(i,) (3.39)

The numerical results in chapter 4 are obtained using the Roe average but numerical
test gave the same results with the cheaper mean value Jacobian (3.38). The eigenvec-

tors and eigenvalues of the average Jacobian will be denoted as:

Lj+1/z ’ Rj+1A ’ Dj+%& (3.40)

Then we obtain the nonlinear version of the numerical flux (3.36):

RNDL-ENO scheme

2 1
Fiw = D) Ry Njs (Ljss i + BIDj s Liss thy )

kSHD <k < kSID (3-41)

To avoid expansion shocks we may add some more numerical dissipation at sonic

points thereby replacing 1D;,41 by
IDJ+%| = diag ( max(la,-J- l, Ia‘-'j“ |) ) (3.42)

We now discuss the numerical work involved in calculating the fluxes. The adap-

tive stencil operators N}y, and Nj;,, chose the actual nodes in the range:
Lj—r , j+r+l] (3.43)
where r is the order of the scheme. This gives a crude estimate of the number of

matrix multiplications involved in calculating the flux of :
operations =3 X (2r) (3.44)

This is a somewhat pessimistic estimate because the adaptive stencil operator does not
check all possible nodes in that range. But even a more realistic estimate has to take
into acount that this operator compares the divided differences of two candidates

before it can add a new node to the stencil. Therefore this estimate might not be
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reduced very much if the order is not too high. We also did not take into account the
numerical work involved in calculating the flux f, the eigenvectors and the divided
- differences. For the one-dimensional gas dynamic equations, a multiplication with the
three by three matrix L; i, costs about the same as the calculation of the flux f. The
estimate (3.44) may be compared with the cost of the MacCormack scheme, which
needs only one calculation of the flux. In the following chapter we present several
more economical schemes, which need fewer matrix multiplications, but we will not

change the adaptive stencil operator itself.

3.4 More Efficient Schemes

Here we will present simplifications which increase the efficiency of the RNDL-
ENO scheme for nonlinear systems. Let us first assume that we may exchange the
moving stencil operator N;,, and the matrix of the left eigenvectors Lj,y . Then we

obtain the following

NRDL-ENO scheme:

2z 1
Ffw = > Nivs (fr + Rjyys |Djug| Lissetty )

k (r_+l) < k < k(r-i-}) (3'45)

We do not claim that the exchange of operators is justified, but numerical tests
showed that the results obtained with the NRDL-ENO scheme differ only slightly from
the results obtained with the RNDL-ENO scheme. The number of marix multiplica-
tions is only reduced by one and therefore the NRDL-ENO scheme is not much more

efficient than the RNDL scheme.

The NRDL-ENO scheme would be simplified drastically if we could interchange
the matrices R;,y, and ID;,yl. In general this is not possible, but we may replace the

diagonal matrix 1D;,,| by a matrix with larger diagonals:

o o+l I (3.46)
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where:
ocj+%=max(lall,iagl, C ey lad I)}+’/§

and I is the identity matrix. We then obtain the following

NDRL-ENO scheme:

+ 1 .4
i = Njvs (Fr + Otpupty)

KO <k < kED (347)

which contains no matrix multiplications. Clearly, this procedure increases the amount
of dissipation associated with slower wave speeds. This will be confirmed by the
numerical results presented in chaper 4.2.

A further simplifiation could be obtained if we avoid the repeated multiplication
of u; by the local factor o, for several nodes k. We try if it is possible to calculate

this product only once at each grid point. This scheme will be denoted by

NFEU-ENO scheme:

2 1
Fii ““"':;_'th% (e + oy i)

oy =max(layl,tazl, ..., lag 1) (3.48)

The numerical results in chapter 4.3 show that the third order NFU-ENO scheme is not
free of spurious numerical oscillations. A reduction of the spatial operator from three
to two gave smooth results with only slightly reduced accuracy.

We now apply this idea to the NRDL-ENO scheme (3.45) and obtain the

NFA-ENO scheme:
Fiiw = WNZy, (F + Ry \Dy1 Liwy) (3.49

The numerical results obtained by this scheme in chapter 4.3 show that we have less
dissipation than with the NFU-ENO scheme, and we also had to reduce the spatial

accuracy to obtain a smooth solution.
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For the one-dimesional gas dynamic equations we are able to simplify the calcu-
lations for the NFA-ENO scheme. We will first assume that all eigenvectors of the

Jacobian A are positive. Then we may simplify the second term in the brackets of for-

mula (3.49):
Rk IDk ILk Uy = RkaLk iy, = Ak Uy = fk (350)

The last equation is a consequence of the Euler homogeneity relation (Courant Hilbert
{26], p. 9 ) and the fact that the gas dynamic flux is homogeneous of degree one.

Thus we obtain;

Fiw =Ny G0 (3.51)
and:

Frn =0

In general the wave speeds g; may obtain positive and negative values. We res-
trict the following calculations to the case that two wave speeds are positive and one,
€. 8. a; , is negative. Other possible combinations may be treated in a similar manner.

We then simplify the scheme (3.49) using :

fal = a; — 2a, (3.52)
and:
ID| =D ~2diag (a;,0,0) (3.53)
This gives:
(RIDIL ), =(A =2a,r 1T ), (3.54)

and we obtain:

fe=Cayridlu),

fe=Ffe—Ffi (3:55)
For the special case of the gas dynamic equations the calculation of £~ is very cheap.

Many terms in the matrix products in equation (3.55) cancel and we obtain:
p

f =0 pv—c) (3.56)
pE+p —pv ¢
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where:

oy =min(a,0.0) (3.57)
This gives also a very simple scheme which includes no matrix multiplications.

4. Numerical Results

For two test problems a simple shock wave and the shock/turbulence interaction
model of chapter 2 we compare the numerical results obtained with the MacCormack
scheme [2], the TVD scheme of Davis [3] and the ENO versions of chapter 3. In all
case the Mach number of the mean shock speed M,, = vy, /c, is 2.0, the step size Ax is
0.1 and the time step ratio At/Ax is 0.25, which gives a CFL number of 0.65 in the sim-

ple shock case.

We add fourth order numerical dissipation similar to the nonlinear adaptive dissi-
pation of Jameson and Schmidt [27] to the MacCommack scheme. (We omit the
second dissipation term €® of [27] p. 472). The dissipation is controlled by a constant

& (which is the constant £® in [27], p. 473).
4.1 Simple Shock Wave

Figure 2 to 5 show the density profiles for a simple Mach 2.0 shock wave. Ini-

tially the shock is at position 0.0; the final shock position is 4.0 .

Figure 2 shows the influence of the additional dissipation for the MacCormack
scheme. The MacCormack scheme captures the shock and gives the correct shock
position. Without additional dissipation (e = 0.0) the scheme leads to considerable
numerical oscillations behind the shock. With additional dissipation (g=2.0) these
post shock oscillations are reduced but they are still present. In both cases the numeri-
cal shock profile is sharp and stretches over three grid spacings. Notice that the stars

mark the shock profile. Numerical tests showed that it is not possible to reduce the
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post shock oscillations totally without smearing the shock over too many grid points.
The present result is therefore a compromise between a sharp shock profile and accept-
--able oscillations. The amount of necessary dissipation depends on the problem, the .
CFL number (i. e. the time step and the grid spacing ) and personal preferences of the

scientist.

In both cases we obtain numerical disturbances near x =0.0 and x =2.0-30 .
Further investigation showed that these disturbances are due to the discrepancies
between the initial shock profile, which stretches over one grid spacing, and the
numerical shock profile. There exists a characteristic, almost self similar, numerical
shock profile which propagates through the grid. In the first few time steps the numer-
ical scheme transforms the initial profile into a numerical profile, and emits an entropy
disturbance travelling with approximately the flow speed v and a slow acoustic wave
travelling with the speed v—c. In the present case this speed is —0.049 and therefore the
acoustic disturbance moves to the left very slowly. We found similar numerical distur-
bances in the results of the other schemes (figure 3 to 5 ). For the shock turbulence
interaction results in chapter 4.2 we used an initial shock profile generated by a prel-

iminary calculation. This procedure avoided these numerical disturbances.

Figure 3 compares the result of Davis’ TVD scheme [3] with the MacCormack
scheme. The TVD scheme gives remarkable accurate results with no post shock oscil-
lations. The TVD scheme has no free control parameters which have to be adapted to

the problem. Both schemes show the equally sharp shock profiles.

The density profile obtained with the third order RNDL-ENO scheme of chapter
3.3 shows a sharp shock profile without post shock oscillations (figure 4). Let us now
consider the results for two first order accurate RNDL-ENO schemes in figure 5. The
first scheme, indicated by circles, uses only one node, the starting node, and approxi-
mates the positive and negative flux by a constant function. It is clear that this scheme

is very dissipative and leads to a poor resolution of the shock. The second scheme,
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indicated by a solid line and stars near the shock, uses two nodes and approximates the
fluxes by a linear function. This is still only first order accurate in space. It is seen
that this scheme leads to a remarkable sharp shock profile. Further investigation
shows that this is a consequence of a compressive mechanism of this first order

scheme,

Results for a scalar, constant coefficient hyperbolic equation

w +u, =0 (4.1)

with sine wave and zigzag wave initial conditions and periodic boundary conditions
are presented in figure 6 and 7. We present the initial profiles and the solutions after
four periods. The inherent dissipation of the constant polynomial scheme (figure 6),
which in the present case is identical to a first oder upwind scheme, reduces the ampli-
tude of the sine wave and smears the zigzag wave considerably. On the other hand,
the linear polynomial scheme (figure 7) steepens the gradients and transforms the ini-
tial waves to a step wave. This property is lost if we increase the order of the time
marching procedure. The averaging procedures of the second and third order Runge-

Kutta time marching schemes removes the steepening trends.

4.2 Shock [ Turbulence Interaction

We now discuss the numerical results for the shock/turbulence interaction model.
Figure 8 shows the pressure and density profiles of the a numerical solution obtained
with the third order RNDL-ENO sheme of chapter 3.3 using a fine grid with 951
points. This high resolution solution will be referred to as the exact solution. We show
the initial (numerical) shock profiles and the profiles after the time which a shock, run-
ning with the mean speed vy, needs to pass four wavelength of the density wave. The
pressure profile shows four wavelengths of the left running acoustic wave generated by

the interaction process. It is clearly seen that this wave steepens to left running
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shocks. This steepening process, together with the interaction of the shock with the
density wave generates a kink near x = 12, The small disturbance near x = 14 seems to
be a numerical disturbance. In the density profile only the two leftmost acoustic
waves are clearly visible. Just behind the shock we see four waves of the entropy
wave generated by the shock. The amplitude of this wave is considerably larger than

the amplitude of the impinging wave ahead of the shock. There is also a modulation of

the entropy wave behind the shock which is due to the acoustic wave. Near x = 10 we

have an interaction between a shock produced by the steepening of the acoustic wave
and the tail of the entropy wave. Notice that the entropy wave is not visible in the
pressure profile. The shock profiles indicated by the stars consist of only one or two

points and are extremely sharp.

For various schemes we will now compare the numerical results obtained with a
grid consisting of 191 points and the fine grid ‘exact’ solution. Figure 9 shows the
results for the MacCormack scheme with additional numerical dissipation (e = 2.0).
The pressure profile is in good agreement with the exact solution, but the details near
x =12 are not resolved with this coarser mesh. We also see post shock oscillations
behind the strong right running shock. The numerical shock profile contains two to
three points. The density profile shows that the amplitude of the entropy wave is
smaller than for of the fine grid solution. This could have been expected. But it is
surprising that the wavelength is not represented correctly by the MacCormack
scheme. Control calculations with a 951 grid gave the correct wavelength, but numeri-
cal oscillations were still present. For the grid of 191 points the intraction between the
tail of the entropy wave and the steepening acoustic wave is not represented. We
obtain large numerical oscillations in that region. As the numerical dissipation added
to the MacCormak scheme is controlled by the gradients of the pressure, these density
oscillations are not damped. But it would be difficult to control these oscillations

without effecting the entropy wave, because these numerical oscillations have large
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~wavelength and gradients of the same order than the entropy wave.

The numerical solution obtained with Davis® TVD version [3] of. the MacCor-
mack scheme is presented in figure 10. There are small numerical oscillations behind
the left running shocks. This cold be due to the simple TVD algorithm which avoids
the field by field decomposition of the flow into the eigenvectors. The strong right run-
ning shock has no oscillations. The scheme does not resolve the details near x = 12.
The density profile shows that the wavelength of the entropy wave is accurately
resolved but the amplitude is considerably reduced. This is due to the loss of accuracy
of TVD schemes near extrema. The oscillations near the tail of the entropy wave are
much smaller than in figure 9, but the interaction of the entropy wave with the
steepening acoustic wave is not resolved accourately. The numerical shock profiles

contain two to three points.

The comparison of the results for the third order RNDL-ENO scheme obtained
for a grid of 191 points with the fine grid solution in figure 11 shows the remarkable
good accuracy obtained by the coarse grid. There is only a slight loss of accuracy. The

shock profiles are sharp and contain only one to two points.

Figure 12 shows that exchanging the spatial ENO adaptive stencil operator N and
the matrix of eigenvectors R does not change the solution. The results obtained with
- the third order RNDL-ENO scheme are almost identical with the results obtained with
the third order NRDL-ENO scheme defined in chapter 3.3, Both schemes need about

the same amount of computation time.

In figure 13 results obtained by the NDRL-ENO scheme are compared with
results of the RNDL-scheme. The pressure profiles show that there are no differences
at the right running fast shock. Even the shock profile is almost identical, For the left

running shocks we observe a slightly larger smearing of the shock profiles by the



722 .

NDRL-ENO scheme. There are about four points in the shock. This could be expected

because in constructing the NDRL-ENO scheme we increased the wave speeds of the

slow-waves thereby increasing the numerical dissipation associated with these waves. = ..

We also observe more dissipation in the entropy wave following the shock. The ampli-
tudes of the entropy wave for the NDRL-ENO scheme are smaller than for the
RNDL-ENO scheme. Notice that there is no increase of dissipation for the right run-

ning shock.

Figure 14 clarifys the relations between the wave speeds. The absolute values of
the eigenvalues of the Jacobian (3.2), normalized with the sound speed ¢ are shown as
a function of the flow speed v. For the present problem of a Mach 2.0 shock we
obtain a flow speed of 0.96¢ behind the shock. The Mach number of the flow behind
the shock is therefore close to 1.0 and the slowest wave speed is almost zero. On the
other hand, the fasted wave speed is almost 2.0. We therefore increase the dissipation
by replacing the slow wave speeds with the fastest wave speed. Figure 14 shows that
the present problem is almost the worst case. For most other flow Mach numbers, the
difference between the maximal amd minimal wave speed is smaller. The result in
figure 13 is therefor a very dissipative case. For other shock speeds, expecially for

fast shocks, we might expect less dissipative shock profiles.
4.3 Results for the NFA-ENO and NFU-ENO Schemes

In figure 15, We compare the results for the even more economical NFU-ENO
schemes with the NDRL-ENO schemes. Both are in close agreement with each other
and the shock profiles are spraed over the same distance. But there are some numeri-
cal disturbances in the NFU-ENO data. These could be removed by reducing the order
of the spatial adaptive stencil operators Ny, and Nj;,. We kept the third order
Runge-Kutta time discretisation because a reduction to second order gives to much dis-

sipation near the shocks. The result for the second order NFU-ENO scheme is
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presented in figure 16. The pressure and density profiles are smooth and in good agree-
ment with the third order NDRL-ENO scheme. The amplitude of the entropy wave and
small details of the profiles are not accurately represented by the second order scheme

due to the reduced accuracy.

We now compare the EFA-ENO scheme with the NRDL-ENO scheme. Here
again, numerical disturbances are obtained with the third order EFA-ENO scheme. We
only present the results for the second order scheme in figure 17 and 18, The pressure
and density profiles are in close agreement with the much more expensive third order
NRDL-ENO scheme., The shocks are pretty sharp but the maxima of the left running
shock profiles are sligthly more smoothed than with the NRDL-ENO scheme, The
NFA-ENO scheme seems to be more dissipative in subsonic flow regions than in
supersonic regions. For the present problem, the flow is subsonic near the maxima of
the shock profiles and supersonic near the minima. We also observe small expansion
shocks near sonic points of the solution. At the present stage of the work we are not

able to avoid these expansion shocks.

Finally we will apply the NFA-ENO scheme to a shock turbulence interaction
problem with a mean shock Mach number of 3.2 (figure 18). For this problem the
mean flow behind the shock is supersonic and we expect sharp shock profiles and no
expansion shocks. The results of the NFA-ENO scheme show no expansion shocks
and are in excellent agreement with the third order RNDL-ENO sheme. Notice that
we supress the data for the RNDL-ENO scheme in regions where both shemes give
identical results, Only the amplitude of the entropy wave is sligthly smaller than for
the field by field decomposition RNDL-ENO scheme, and we found a very small
numerical disturbance in the pressure profile of the NFDA-ENO scheme which is not

present in the RNDL-ENO data. The shock profiles of both schemes are sharp.,
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In the present stage of the investigation we have not optimized the programms for
the various scheme. Therefor we do not present a comparison of the computational
. time required by the different schemes. This would have been unfair for the more

complicated schemes which are much harder to optimise.

5. Summary

Efficient implementations of Runge-Kutta ENO schemes based on the Lax-
Friedrichs building block (Shu and Osher [1]) for hyperbolic systems of conservation
laws are discussed. There are two causes which make ENO schemes expensive. One is
the nonlinear adaptive stencil principle, which is essential for the excellent shock cap-
turing properties of the schemes. The second, relevant only for nonlinear systems, is
the field by field decomposition of the flux. We present several more economic ENO
schemes, which reduce or avoid the numerical work involved with this decomposition.,

This makes ENO schemes much faster and more competitive,

The new schemes are applied to two gas dynamical test problems, a simple shock
wave, and the interaction of a shock with an entropy wave, which is regarded as a
simplified model of shock/turbulence interaction. The solution of the second test prob-
lem possesses a complicated structure, but is still simple enough to be useful as a
one-dimensional test problem. Results obtained with the new economical ENO
schemes are compared with the field by field decomposition ENO scheme, the Mac-
Cormack scheme [2] with additional nonlinear viscosity [27], and Davis’ TVD version

of the MacCormack scheme [3].

All the schemes are adequate to calculate the simple shock problem, and the

steepness of the numerical shock profiles are approximately the same. The additional
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numerical viscosity of the MacCormack scheme damped the post shock oscillations
sufficiently when the control parameter was adjusted to the problem. The TVD scheme

-and the ENO schemes are free of numerical oscillations.

The results for the shock/turbulence interaction show that the MacCormack
scheme gives an incorrect answer unless a very fine grid is used. Small post shock
oscillations, and large numerical oscillation behind the tail of the entropy wave, are
observed. Furthermore the wavelength of the entropy wave and the interaction between
the shocks and the tail of the entropy wave is not represented correctly. The solution
obtained with the TVD scheme of Davis [3] gives the correct wavelength for the
entropy wave, but the amplitude is clipped. The interaction between shocks and the
tail of the entropy wave is distorted, and small numerical oscillations are present, The
results of the ENO schemes show only very small numerical oscillations. The
wavelength and amplitude of the entropy wave and the interactions between the tail of

the wave and shocks is resolved correctly.

Results for the simple and fast NDRL-ENO scheme (which avoids a field by field
decomposition of the flux) are as accurate as results for the much more expensive field
decomposition RNDL-ENO scheme, and show only slightly increased smearing of the
slow running shocks. It should be remarked that the shock/turbulence interaction with
a Mach 2.0 shock is a crucial test, because the differences between the slowest and

fastest wave speeds are almost maximal,

The even more economical NFU-ENO and NFA-ENO schemes require a reduc-.
tion of the spatial order to produce smooth solutions. Results of the NFU-ENO
scheme are only slightly more dissipative than the NDRL-ENO scheme. The NFA-
ENO scheme gives steep shock profiles. For that scheme we obtained an accurate solu-
tion for a Mach 3.2 shock/turbulence interaction, but for a Mach 2.0 problem we
observed small expansion shocks. We were not able to remove these expansion shocks

at the present stage of the investigation.
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The calculation of complex flows requires numerical schemes which are able
accurately to calculate complex flow structures. The field by field decomposition ver-
sion of the ENO scheme gives the most reliable and accurate result, but this scheme is
also the most expensive in the present investigation. More economical ENO schemes
with only slightly reduced accuracy are presented. Further simplifications and optimisa-

tions, as for example was begun by Shu and Osher [14], are mandatory.
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