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+ 1. Introduction.

An important task of the research on parallel computation is to seek algorithms
which can be conveniently implemented on vector or parallel computers. One com-
mon approach to obtain parallel iterative algorithms for the solution of partial
differential'cquations (PDEs) is reordgring. By reordering, we rearrange the computa-
tional sequences to increase the percentage of computations which can be done
independently [26]. A crucial issue associated with reordering is how the convergence

rate of an iterative algorithm is affected by a reordering scheme.

The multicolor ordering scheme for grid points provides more parallelisin than the
natural rowwise or columnwise ordering scheme. It is well known that by using red
and black two colors to order the grid points in a checkeredboard fashion for the 5-
point Laplacian, we are able to separate the coupling between any two red ( or black )
points so that the values at all red ( or black ) points can be updated simultaneously.
Similarly, four colors are needed to separate the coupling between grid points of the
same color for the 9-point Laplacian [1112]1[3]1{4]{191[20][21]. On either vector or
parallel‘computers, an algorithm with the multicolor ordering is always easier to vec-
torize or parallelize than its naturally ordered counterpart so that such a reordering is

- attractive for parallel impiementation. There are numerous discussions on the imple-
mentation of iterative algorithms with the red/black ordering on vector and parallel

computers in the literature, for example, [2](51(81[11][19][26][271[32].

In this paper, we examine how the convergence rate of an iterative algorithm is
affected by the red/black ordering. Our study includes the successive over-relaxation
(SOR), symmetric successive over-relaxation (SSOR), SSOR, ILU and MILU precon-
ditioners for preconditioned iterative methods, and multigrid (MG) methods. The con-
vergence rates of these algorithms are analyzed by a unified approach called the rwo-
 color Fourier analysis. Althou;gh the .two-color Fourter analysis has been used in

analyzing the SOR and MG methods by the first author of this paper [19][21][22], we
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- believe that results for the SSOR iteration and the SSOR, ILU, MILU preconditioners

arc new.-

Fourier or modified Fourier analysis has been used successfuily to analyze numer-
ical methods for elliptic PDE problems for years. One can conveniently study the
effccts of opeﬁmrs on Fourjer modes if the numerical method of interest is. applied to
a simple model problem which consists of a constant-coefficient PDE on a regular
domain with appropriate boundary conditions. The model problem for 2nd-order self-
adjoint elliptic PDEs is the Poisson equation on a square with Dirichlet boundary con-
ditions. For the model Poisson problem, the SOR iteration was analyzed with
qurier—like basis functions by Frankel [17] anc-i Young [29]. Brandt used Fourer
analysis to study the error smoothing property for multigrid methods [10]. Stiiben and
Trottenberg performed a two-grid analysis to analyze both the error smoothing and the
coarse-grid correction with Fourier basis functions [28]. Fourier analysis has also been
applied to the analysis of the 5-point or 9-point SOR iteration with the natural or mul-
ticolor ordering [4][191[20][21][23], preconditioners for elliptic problems with the
natural ordering [13], and problems arising from the domain decomposition context
[12][14]. |

Due to the multicolor ordering scheme, the resulting system of iteration equations
is not spatially homogeneous but is periodic with respect to grid points, Consequently,
the Fourier modes are not eigenfunctions for the multicolor system, and therefore a
straightforward Fourier analysis does not apply. When these Fourier modes are
operated by -periodic operators, there exists a coupling between high and low frequency
components. By exploiting the periodic property, we reformulate the conventional
Fourier analysis as a two-color Fourier analysis. From this new viewpoin.t, com-
ponents in the high frequency region are.foldcd into the low frequency region so that
there exist two, i.e. red and black, cemputational waves in the low frequéncy region.

The coupling between the low and high conventional Fourier components is therefore
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transformed into a cbupling between the ted and black computational waves with the
same frequency in the low frequency region. With this new Fourier tool, the spectral
representation of operators with the red/blaclg ordering can be easily derived and inter-
preted.  For the model Poisson problem, the two-color Fourier analysis is exact for
Dirichlet boundéry conditions and, with some modifications, is also applicable to
periodic boundary conditions. The two-color Fourier analysis can be generalized to
the multicolor Fourier analysis which applies to ordering schemes with more than two
colors [20].

The determination of the optimal relaxation pafameters of the SOR method with
the multicolor ordering and their corresponding convergence rates for both S-point and
9-point Laplacian operators have been intensively investigated [4][19][20][23]. It is
found that if the relaxation parameters are appropriately selected, the numbefs of itera-
tions required for the red/black and natural orderings should be of the same order. In
the context of MG methods, the red/black_ Gauss-Seidel smoother provides a better
smoothing rate than the lexicographical Gauss-Seidel smoother [28]. Hence, the
red/black reordering does not deteriorate the performance for these two types of algo-

rithms.

However, the same conclusion does not apply to the SSOR iteration and precon-
ditioned iterative methods. The optimal ~rclaxation parameter and its corresponding
convergence rate of the SSOR iteration highly depends on the ordering [7][18][31].
The naturally ordered SSOR method has the same order of convergence rate as the
SOR method and can be accelerated to give a even faster convergence rate by the Che-
byshev semi-iterative or conjugate gradicnt procedure [91[18]{31]. In contrast, for the
red/black ordering, it has been observed that the optimal relaxation parameter for the
SSOR method 1s 1 so that the resulting scheme reduces to a forward and backward
Gauss-Seidel relaxation which converges much slower [18]. Here, we use the two-

color Fourier analysis to analyze the red/black SSOR method and determine its optimal
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relaxation parameter 1 analytically. We also perform a quaqtitative study of the eigen-
structure of the preconditioned Laplacian operator with the SSOR, ILU and MILU
preconditioners. The results indicate that the condition number of the preconditioned
operator with the red/black ordering is in general one order higher than that of its
naturally ordered counterpart. Hence, for SSOR and preconditioned iterative methods,

the convergence rate is greatly sacrificed in order to obtain more parallelism.

This paper is organized as follows. The two-color Fourier analytical approach is
described and the model problem is formulated accordingly in Section 2. Section 3
analyzes the convergence rates of the SOR and SSOR iterations. Section 4 studies the
eigenstructure of the preconditioned Laplacian operator with the SSOR, ILU and
MILU preconditioners. Then, we perform a two-grid analysis to ynderstand the con-
vergence behavior of the multigrid method in Section 5. Section 6 compares the con-
vergence rates of iterative algorithms with natural and red/black orderings. Related

research work and extensions are given in Sections 7 and 8.



2. Preliminaries
2.1 Two-color Fourier analysis

Consider a 2D sequence u;, defined on a grid

Qp=(Uhkh): 0] k<M, M:% even] (21
with zero boundary values, i.e. u4;, =0 if j,k =0 or M. We can expand it with
Fourier series as

M-1M-1 :
Ujp = % 15-:1 B psin(Erjh)sin(mckh) . 2.2) |
As usual we call grid point with index (j.k) the red or black point depending on
whether j+k is even or odd. The functioh u;, at the red and black points defines two

sequences: the red sequence u,;, and the black sequence u,;,. They can be
expanded in Fourier series respectively as | |
Upjp= 2 B pqsin€rjh)sin(nmkh),  j+k  even, (2.3a)
: @cﬂ)exr , ‘
wp e = 2 By posin€rjh)sin(nrkh) , j+k odd, (2.3b)
Gnek, - ,

b

where

Ky=K={Enel*: &4nsM-1,E,n121 or n=M—§.Is§s-}-‘-;--l ),

and
M M
K, =K U {(F 51

It is straightforward to check that the Fourier coefficients Beny Gy in (2.2)

and 4, g q, 8y 0 1n '(2.3) are related via

& En = [1 1] Ben
[ﬁb.a,n] 1 =1 |Gysaten ]’ Enek, (2.42)

B0 = len » & =220 (2.4b)
We can interpret (2.4) as follows. Through the red/black decomposition (2.3), the
component (M-£,M ~1) in the high frequency region is folded into the component (€,1)
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in the low frequency région so that there exist two computational waves in the low fre-

quency region. The original and the folded two-color Fourier domains are depicted in

Figure 1. Note also that X, and X, differs only by a single element (%.—"—245) and,

therefore, at the frequency (%,w’gw) we have only a scalar 4 M > which is considered
. ‘ : 3T

as the degenerate case,

2.2 Model problem: a two-wave formulation

Consider the discretized 2D Poisson equation on the square [0,1]* with grid spac-
ing &, |

-f-f(uj..u-#uj_“*+uj_,‘_l+uj',‘+; —4uj_k)=fj*. ISj,k SM—I, (2.5)
where M ﬂ% is even and u;j, is given for jk =0 or M. Without loss of generality,

we only consider the case where u;, is zero on boundaries, since a nonzero u;, on the
boundary can always be moved to the right-hand side and treated as part _of the driving
function. In addition, since the driving term Fix w1r.h jk =0o0r M does not appcarl in
(2.5), it can be viewed as zero. Consequently, the red/black Fourier series expansion
(2.3) for both 4;, and f ;. are well defined. It is cqnvenicnt to rewrite the equation

(2.5) in terms of shift operators

h2 E, +E'+E, +E!
Aji Ujg == fjx s Ajp=1-————t . (2.6)

where E, and E, are shift operators along the x- and y- directions and A ; ¢ is the local
operator for the the grid point (jk,kk). We use A to denote the global operator which

consists of local operators A;; for grid points (jh.kh), 1 < j .k < M=1.

By substituting (2.3) into (2.5) and relating the Fourier coefficients of red and
black waves, we can trﬁnsfonn (2.5) from the space domain into the red/black Fourier
domain. It is a block diagonal matrix equation, in which the equation for a nondegen-

erate frequency (£,n) can be written as
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¢ ﬁr.ﬁ.‘ﬂ ___f!i fr.ﬁm} A _ |: 1 ‘ _aﬁnﬂ} 27
where . '
- cos(€nh )—;cos(nnh) , @.7b)

is the Fourier transform of the space domain operator

E, +E['+E, +E*
" .

Since §n) e K,0< Ogq < 1.

We will use the two-color Fourier analysis to study the convergence properties of
different numerical algorithms for the model problem (2..5) with the red/black ordering.
Only the nondegenerate case is considered, since the degenerate case can be analyzed

similarly and it in general does not change the conclusion for each case.
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3. Analysis of SOR and SSOR methods
3.1 SOR iteration

‘For the model problem (2.5), the red/black SOR iteration can be written as

n h?
wir% = r k(@] = Pr,j,k(m)‘rfj,k

4 h2 ’ (3°I)
ult! = 8, 1 (@uft% - P, gk (G))Tfj,k
where
.
@) -] -1 .
) 1-m+T(Ex+Ex +E, +E ), (k) red
Srjel@= | (j.k) black °
1, (k) red
Spj 4k (0) = 4 ® -1 -1 ; ’
. L0+ 2(E +E7 +E +57), (j.k) black
- are the local SOR iteration operators at red and black points, and
(&) red 0, (j.k) red
Prja(@) = 0, (j.k) black Py jul@) = ® (j k) black

can be viewed as the local injection operators at red and black points scaled by the
parameter @. As before, we denote fheir corresponding global operators by §,, S,, P,
and P, respectively.

By using the red/black Fourier series expansion (2.3), we can transform (3.1)
from the space domain to the frequency domain and obtain a block diagonal matrix
equation. For each nondegenerate frequency (&n), the iteration equation can be writ-
ten as

A n+1 Y. 2 . . 7
[""‘g"‘J =S, En.e) S, En.w) [u"f"“] - 1'4- [ s En.a)f, Eno) + £, En.0) ] B; '&"‘] :

r+1 ~N
pEn Hpkn bEn

1 n : F
- oo, 1o {"m mmJ ol I S 0 (32)
gy 1-0| | 0 1 5k n 4 |o'agy of |f bEn) .

where o, is given by (2.7b),
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For the error, equation (3.2) is a homogeneous equation, and the error dynamic

can be completely understood by studying the SOR iteration matrices,

- WCtg o

'§rb (§-Tlo€°) = ‘§b (5-71.0)) '§r (é-ﬂ.ﬂl) = (3-3)

[(A-waog, 1-eorefed, |
The objective is to find the optimal relaxation parameter @ which minimizes the spec-
tral radius p of the matrix §,, with respect to all possible & and 1 and its correspond-"
ing spectral radius. | |

To do so, let us first consider fixed & and m. The spectral radius Pen(@) of

$75(€m,@) can be found by solving the quadratic equation

FAga(@) = $, Emo) | =2, - 2 - 20 + 0Padheq + (1 - 02 =0,

so that
Peqp(w) =max | Azp(@) | = w12 : . (3.4)
& & a0, Holed —4(e-1)1% 0 oo _
. ) , <O gy
where
O, = 2

e 1+ (1—odp)”

From (3.4), it is easy to see that when 0 < @, <2, Pen < 1. In addition, the relaxation

parameter ® = @¢, minimizes pg, which takes the value Ofy — L.

Next, let us vary the values of & and n, and determine the optimal relaxation
parameter for (§,n) € K. Since the procedure is standard, only the results are summar-

ized {19][30]. The optimal relaxation parameter is

* 2
= T o = Max o, = Ccos(mh) , 3.5
L+ (1~ mar)” nomex = fiex O6n = C0S(Th) G

where g max OCCurs at the lowest frequency (£n) = (1,1). Its corresponding spectral
radius is

‘peor( red/black ordering ; Dirichlet bc. )= 0" - 1=1 - 21tk . - (36
With this optimal relaxation parameter ', the eigenvalues of §,, are distributed along
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a circle of radius @" - 1 in the complex plane. The results in (3.5) and (3.6) are in

fact special cases of the general SOR theory by Young [29][30].
3.2 SSOR iteration

One SSOR iteration with the red/black ordering consists of one red/black SOR
iteration followed by one black/red SOR iteration. Hence, the corresponding ‘iteration.
matrix can be written as

Sssor &n.0) = §,EN.0) SEN,0) $ENW) 5, Ene) , 3.7)
where §, and §, are given in (3.2). Note that we can rewrite the frequency domain
red/black SOR iteration matrix as

So@na) S, Enwy =1 -~ (I —alEm ) AGW , (3.8)
where / is the 2 by 2 identity matrix, A(Em) is the frequency domain Laplacian
defined by (2.7a), and

LE [ ’ 0}
1n) - a&,ﬂ 0 .
Similarly, the frequency domain black/red SOR iteration matrix can be written

5,EN®) $,EN® =1 —a (I -~olEN )Y AEN , (3.9)
where U(¢Emn) = LT(En). Combining (3.7)-(3.9), we have

Sssor Gn@) =1 - 0Q2-0) (1 - oUEN Y (1 -LE&m ) A&n .  (3.10)
The optimal relaxation parameter is selected to minimize the spectral radius of Sssor »
or equivalently, to maximize the smaller eigenvalue of the second term in the right-
hand-side of (3.10). It is easy to see that a(2—w) takes the maximum value when
o = 1. In addition, it will be shown in Section 4.1 that ® = 1 maximizes the smaller
eigenvalue A;,, . of the matrix

(I -oUEW Y (I -olEM) ' AEN, |

for (§n) € K. Thus, the optimal relaxation parameter is 1, with which the spectral

radius of the SSOR iteration becomes

pssor( red/black ordering ; Dirichlet b.c. ) = cos*mh = 1 — n24? . 3.1D
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4. Analysis of precon&itioners.

An important class of iterative methods for solving elliptic PDEs is obta;.incd by
first preconditioning the system of equations and then solving the preconditioned Sys-
tem with effective iterative methods [9]. One such examble is the preconditioned con-
jugate gradient (PCG) method. It is well known that the rate of convergence of a
preconditioned iterative method system depends on the condition number as well as the

distribution of the eigenvalues of the preconditioned system [71{9].

For the model Poisson problem with the natural 6rdering, Chan and Elman [13]
used Fourier analysis with basis functions ¢!/ ¢/2™M 15 ohtain all eigenvalues of the
preconditioned Laplacian with the ILU, M[LU, SSOR and ADDKR preconditioners.
Here, we analyze the eigenstructure of the model problem (2.5) with the red/black ord-
ering. The two-color Fourier analysis with basis functions sin(§rjh)sinmnkh) is used
to determine all eigenvalues of the preconditioned sszstcm. Note that different basis
functions are chosen for these two orderings. For the red/black ordering, since the
stencils of iterative 'Voperators are symmetric, either sine or complex sinusoidal func-
tions can be conveniently used as basis functions, and the resulting analysis is exact
for Dirichlet and périodic boundary condiﬁons respectively. For the natural ordering,
since the stencils of iterative operators are usually not symmetric, only the complex
éinusoidal functions can be conveniently used as basis functions. Such an analysis is
exact for periodic boundary conditions but in general not exact for Dirichlet boundary
conditions. However, experimental results indicate that the eigenvalue distribution of

the preconditioned system is not sensitive to the change of boundary conditions [13].

Three different types of preconditioners, i.e. the SSOR, ILU and MILU precondi-

tioners, are studied below.
4.1 SSOR preconditioner

Suppose that we define the local operators L; , and U;, as
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. _ , , |
0, | (k) red |
Lix = {4 . Sy (4.1a)
T(E +E7+E, +E1), (jk) black
1 - -1 ,
I7CE BN By + B, (k) red
Uik =g, (k) black - (4.1b)

-~

It is easy to see that their corresponding global operators L and U are related to A by
A=]~(L+U). Then, the global SSOR preconditioner with the red/black ordering

is in form [6]

Qs =(I-oL)(I-0U). 4.2)
where ® is the relaxation parameter. By using the two-color Fourier analysis, we can

transform it to the frequency domain

. 1ot - m&.n} 1 =~ 00,
U= Loy 1]l 11T Lang, o0t @I
where ogy, is defined in (2.7b). From (2.7) and (4.3), we find that the SSOR precondi-

tioned operator Q5"'A ‘has the spectral representation

2 2.2 2.3
1000 ady —g nHO0E 1~ 0,

A1 ~ N
Qs EMAEM = gt l-0ud, . (4.4)

which has two eigenvalues
Agne=1- %aénm@—m) % %ag.n{aénmzcz—m)z - 40(2-0) +4 1% (4.5)

When 0 < @ < 2, the eigenvalues Agn are not only real but also positive and, therefore,
054 corresponds to a symmetric positive definite (SPD) matrix suitable for the conju-

gate gradient method. The condition number « of the operator Q54 is determined by

max | ?“571‘*‘
o LU I
KQs7A) min | lﬁﬂ- |’
En '

which is to be minimized by choosing an appropriate relaxation parameter 0 < @ < 2.

To determine the condition number, it is convenient to rewrite (4.5) as
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J\i(x.y)~1-—-zld:—(xzyz 4y +4 )%
where 0<x-a€“<l and O0<y=w(2-w0)<1. By takmg the partlal derivative
with respect to y for Ay, we find that A, and A_ are monotonically decreasing and
increasing respectively for given x. So, y = 1 gives the smallest condition number and

the optimal relaxation parameter is 1. The corresponding eigenvalues in (4.5) become

Agns =1 -—aani laen (4.6)

The maxima of l§n+ are 1, and the minimum of Ag,_ is 1 - cos’(nh) = n%k2, which
occurs at (1) = (1,1). Therefore, the condition number of the SSOR preconditioned

Laplacian is

1 1 1
= 0(-=} . 4.7
1 — cos¥(mh) 1:2;:2 ¢ 2) ' @D

The dlstnbunon of the eigenvalues A: . given by (4.6) is plotted as function of Uy in

K(Qs'A) =

Figure 2(a). The surface plot of the eigenvalue Agq- as function of (8,9) = (Exh nmA) is

presented in Figure 2(b). Note that the condition number of the Laplacian is

1 __2
.1—-cos(rh) m2p?’

Hence, for small 4, the red/black SSOR preconditioner only

reduces the condition number 6f the original matrix by a factor of 2.
4.2 ILU preconditioner

An incomplete factorization for a matrix can be determined by imposing specific
sparse patterns and constraints for elements on the factorizing matrices as well as their
product, Since the construction of a matrix specifies not only a system of equations
but also an ordering scher_pe for the variables, the incomplete factorization highly
depends on the ordering. In this and the following sections, we study the spectra of
two well-known preconditioners, i.e. the ILU and MILU preconditioners, which are

constructed based on incomplete lower/upper triangular factorization.

The ILU and MILU factorizations were originally defined in [24] and [16] respec-

tively. We summarize their definitions as follows. It is required for both the ILU and
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MILU factorizations that thé factorizing lower- and upper trianguilar ﬁxatrices have the
same sparse. patterns as the lower and upper triangular parts of the original matrix.
Besides, the off-diagonal nonzero elements of the original matrix should have the same
values as the corrésponding cleinénts of the product matnx The major difference
between them is that the ILU factorization i'equires that the diagonal elements of the
original and product matrices be also the same while the MILU factorization requires
that the row sum of the product matrix differ from the row sum of £he original matrix

by a small quantity 3 = ch?, where ¢ is a constant independent of #.

‘The factorizing operators generélly have different coefficients associated with
different grid points due to the boundary effects. However, these coefficients usually
reach their asymptotic constant values for the region sufficiently far away from boun-
daries. In the following analysis, we ignore the boundary effect and analyze the
preconditioned system with the asymptotic preconditioners.

For the ILU factorization, consider the local operators L;, and U;,

”

1, (&) red
Lig = 1
1= (B +E;' +E, +E),  (jk) black

w

r

1= (B + B+ By + 1), Qg ted
Uje =1

_?i" , (j.&) black
With the red/black ordering, the global operators L and U correspond to lower and
.upper triangular matrices. Since the operator L;, (or U; ;) has nonzero coefficients for
the terms 1, E,, E}, E, and E,“, the sparse pattern of L (or U). is the same as 'th_at of
the 'original matrix 4 for the lower (or upper) triangular part. We define the global
operator Q; to be fhc product of the lower and upper élq_bal operators,
o=LU.
LetR =Q; — A . Then, R consists of the local operators
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fae] O | 1 . G red ,
-8-( E,E, +E['E, + B,E;  + E,E ) + -1-8-( EX+E*+E? + ES%),  (j.k) black

for points not close to the boundaries. Note that the operator (Qr);, has the same
coefficients as 4;, (ie. R;; =0) for terms corresponding to 1, E,, E;' E, and Ey“l,
which constitute the nonzero terms for the sparse matrix A. Note that the sparse pat-
terns of L, U and, Q; described above consist with the sparsity conditions required by
the ILU factorization. We conciude that Q; is the desired ILU preconditioner for the

Laplacian with the red/black ordering.

In the Foﬁrier domain, we have

ol |1 - O, 1 - O,
0 &m = [—ag 1] 3 |- 3 "2
" 10 ) ~O%n gt %n

Therefore, the ILU preconditioned operator 0, A has the spectral representation

1 4 . 4
L 3 %n—3 %y

O EmAEm = 4 )
. 0 ? ( 1- (lgm )

which has two real and positive eigenvalues

Mea=1,% (1-ady). " 48)
The condition number of the ILU preconditioned Laplacian can be determined by

4
max | Ag, | Eﬁx?(l—aén)

- 1 1
K(Q/'A) = = = === =0(E),  (49)
min | Agy | min 2 (1-02) T h

&n 3
where the maximum value % occurs when og,=0 and the minimum value

%[l—cosz(rth )] occurs at (é;n) =(1,1). By the ILU preconditioning, we reduce the con-
dition number of A approximately by a factor of 2. The distribution of the two eigen-
values Ay, (4.8) as function of o n and the surface plot of the eigenvalue i;»(l_aén) as

function of (8,6) = (Emh nmh) are shown in Figures 3(a) and 3(b). The corresponding



.16-

plot of the natural ordering case can be fpuﬁd in [13], where the condition number of

A is reduced approximately by a factor 2(2+v2).

4.3 MILU preconditioner

For the MILU factorization, consider the local operators L; , and U ik

F

1+8, (j k) red
Lj*=*1 § - e = 1 ES Efl i k) black
' + "_fIS_—I(Ex+ - +E},+ y ), (j,k) blac
_ .l -t -1 ,
/1 4(1+5)(Ex+5,, +E, +E™1), (k) red
Uik = |1, (jk) black °

where 8 = ch%. The sparse patterns of L and U given above are the same as those for
the ILU factorization, but they have different weighting coefficients. The global opera-
tor Oy is defined to be the product of the lower and upper global operators,

QM =L U.
Let R =Qy — A . Then, R consists of the local operators
R .k =

8, (k) red

8+ 1:-8 (- % + —;-( E.E, +E'E, + E.E + Ex-lEy_l )+ 116 (EZ2+E+ Eyz +E2)] GA) black

for points not close to the boundaries. Note that (Ou)j x izas the same coefficients as
Ajx (Rjy = 0) for terms E,, E;, E, and E,, which are nonzero off-diagonal entries of
the matrix A. However, unlike the ILU case, the matrices A and Oy do not have the
same diagonal entries. Instead, we find that the sum of coefficients of the local error
operator R;, equals to 8. This implies that the row sums of matrices A and Qy differ
by a quantity of 3. By definition, gy, is the MILU preconditioner ‘for the Laplacian
with the red/black ordering.

The Fourier transform of Qy, gives
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ene [0 -] [ 3]
rn = — N1 = 2 -
M ec.-..: 148 — -—1? 1+6 -G 16+ C!,gen_-l
i + 0o 1 | [ £n 149 J
Hence, the MILU preconditioned operator has the spectral representation

. 2
B R . =
5(5-!-2) 5
- Ogyd 48~ oy

Q;Z‘(ém)A En =

which has the eigenvalues

Ao = 281~ ) (1428 (10,2802 ) + 48%0d,,(2+5)1*
Sk = 25(1+3)(2+3) '
Note that if =0 (ie. ¢ =0 ), §)(En) is a singular matrix which cannot be used as a

(4.10)

preconditioner. For ¢ > 0, since

18 0f,(2+8) « (1—0d 280, , (4.11)
as h goes to zero, we can simplify (4.10) as '

N 281+ (-0 )(1+28)x(1-ady -26a§_1_
tn = 25(1+5)(2+3)
For small 2 and positive ¢, I—ag'n-ZSagm is positive. So, Ag . and Ag,_ are the larger

and smaller eigenvalues respectively. Then, the condition number of the MILU

preconditioned Laplacian is found to be
max | Agny | max 8(1-od HorH(1-0,)(1+9)
K(Qi'a) = L = =—L- -0ty
min | Agg | 8(2+3) 2ch? h?
on a

where the maximum value (1+8)% occurs when Oz g = 0.

For fixed &, the optimal parameter ¢ and the corresponding condition number
K(Qi'A) can be determined by solving (4.10) numerically. The condition number

k(Qy'A) is plotted as function of the parameter ¢ with different £ in Figure 4. For

small ¢ (¢ £5 ), the condition number behaves very close to 21 ‘as predicted by

ch?
(4.12). For ¢ = 5, the condition (4.11) is no more valid, and we see that x(Q;'4)

remains approximately the same for a wide range of ¢. Thus, the condition number is
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not sensitive to the selection of the relaxation parameter, as long as it is in the
appropriate range. For these values of » used in Figure 4, the optimal condition
number is achieved when ¢ = 5. Thus, we know from the above analysis that the con- -

dition number of the original Laplacian is improved approximately by a factor of

-%g? = 2. This improvement is about the same as that for the red/black ordered SSOR

and ILU preconditioners.

The distribution of the eigenvalues Agn+ given by (4.10) with § =512 (ie.c =5
) is plotted as function of o, in Figure 5(3). Note that the eigenvalue Mgy - 18 nearly
a constant. The surface plot of the eigenvalue Agq+ as function of (0,6) = Ema ,mih) is

shown in Figure ().
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5. Analysis of the multigrid (MG) method

Multigrid (MG) methéds provide one of the most effective ways for solving ellip-
tic PDEs. The multigrid iteration is often modeled by a (1 24) two-grid iteration pro-
cess so that its mechanism can be easily understood. ‘The efficiency of the two-grid
(or multigrid) iteration is based on a simple idea - to treat error components of low

and high frequencies differently. Suppose that we partition the Fourier domain into
two regions of which the low frequency region contains 1<&,n < A;— and the high

frequency region contains }21 sEsM-1 or -1-‘-;— <7n £M-1. The mechanism of the

two-grid iteration with the damped Jacobi or the lexicographical (naturally ordered)
Gauss-Seidel smoother can be easily explained. That is, the high frequency error is
smoothed at the fine grid while the low frequency error is corrected at the coarse grid.
Thus, the study of the error smoothing over the high frequency region provides a
rough estimate of the convergence behavior of the multigrid iteration. This is known

as the smoothing rate analysis [10].

It is k:x;own that MG with the red/black Gauss-Seidel smoother performs vbetter
than MG with the damped Jacobi or the Iexicogréphical Gauss-Seidel smoother for the
model Poisson problem [28]. However, the efficiency of the red/black Gauss-Seidel
smoother cannot be appmpriatély explained by the smoothing rate analysis. To see
this, let us examine the red/black Gauss-Seidel iteration matrix in the two-color Fourier

domain,

. 0 ogq
Sgacs €m) = 0 o]
which is obtained from (3.3) with @ = 1. The smoothing rate p is usually defined as

= max p[$ , =C821‘th =1-n?,
W mﬂmp[ racs (&) =cos’(mh) = 1 - x

where

Khsg;,={(§,n):§.1‘lel,%—S&SM—Ior%{snSM—l],
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and the maximurmn value occurs at & =1 = M-1. This shows that the red/black Gauss-

Seidel smoother has a very poor smoothing rate as compared to the natural ordering

case for which the smoothing rate is % [10].

Since the smoothing rate analysis does note explain how the MG method with the
red/black Gauss-Seidel smoothing works, it is essential to perform a complete two-grid
analysis, which includes both smoothing énd coarsc-gxid correction. A two-grid
analysis was performed by Stiiben and Trottenberg by using modified Fourier analysis
(28]. Here, we use the framework of two-color Fourier analysis to analyze this
method. Our objective is to give a clearer explanation .of the physical mechanism
behind this method rather than to rederive the specific result obtained in [28]. We will
shbw that the two-color two-grid iteration process asymptotically reduces to a one-

color two-grid iteration process which is much easier to understand.
5.1 Framework of the two-color two-grid analysis

We summarize the two-grid iteration model, which is discussed in detail in [28],
as follows. Let L, and L,, be the 5-point discretizations of the Laplacian on grids Q,
and Q,. Consider the full-weighting restriction operator 12" from Q, 10 Q,, and the

linear interpolation operator /%, from Q,, to Q,, which are usually represented in sten-

cil form as
| I R TS T o 11 1t
16 8 16 4 2 4
#. | 1L 1 1 5 1 1 '
| 3 Z = | %, > 1 > 1. 6D
1l 1 1 1 1 1
16 8 16 | 4 2 4 n

Then, a (h,2h) two-grid iteration matrix with the red/black Gauss-Seidel smoothing can
be written as

T* = (Sracs)™ K (Sapes)” - K =1, -1, LA, (5.2)
where [, is the identity matrix, v, and v, are the numbers of presmoothing and

postsmoothing iterations. We want to determine the spectral radius p(7}%%) and, more
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‘importantly, to explain how the two-grid iteration (5.2) works.

In the current context, (E,n) is nondegenera:e if12&,n< —‘1!— and degenerate if
F4

&= %‘i ormn= % We consider only the nondegenerate case, and the degenerate case

can be treated similarly [22]. Let &, be the Fourier coefficient of the error, and let
Peq and EE.n be the Fourier coefficients of the error defined at the red and black points

respectively. Through the iteration (5.2), four Fourier components €emr EeM-ns Eutm
and &gy With 1€, n< .*"21, are coupled together. Hence, the spectrum of 7,2
can be analyzed by focusing on a subspace spanned by these four components. Stiiben

and Trottenberg used the unit vector of these four Fourier components as a basis, Here,

we use a different basis obtained by

’i En 1100 e
—rgn'n: - -L 0 0 —1 I eM—E.M—q
BE'," 2 l ""‘1 0 0 é‘gt.“l
—bgr'nf 0 0 "1 ] éM_E'M_q'
where
’ s (M - g + N ) if & 2 n
(&.=1ce,m 1) if E<n -

Note that the new basis is basically obtained by folding the conventional Fourier
domain into two-color Fourier domain as shown in (2.4), and thercforc the above
transformation maps the coupled four Fourier components éxn, €ey_n, éytq and

€m—£a1-n into red and black waves with indices (£,n) and &'n") (see Figure 6).

We choose the convention that each 4 x 4 frequency domain matrix describes a

mapping from a vector space spanned by

A T
(7 &no e ben ~ben)
onto itself for the rest of this section. To simplify the notation, the abbreviations

cosEnh +cosnnh & = cost’'wh +cosn'nth -
2. V 2 ’

oL =



B = costrhcosnmh , B = cost'mhcosn’mh | _
are used. We also omit the subscripts §, 1, & and 1’ for o, &, B and P and the argu-

ments &, 1 for frequency domain matrices.
5.2 Analysis of elements for two-grid iteration

The bi:ilding,_ blocks for the two-grid iteration process (5.2) are analyzed in this
section. In the two-color Fourier domain, the red/black Gauss-Seidel iteration can be

represented by

. jroljporl |foJ ,
Spags = 2ollor{=lo 2| (5.3)

where 0 is the 2 X 2 zero maix, / is the 2 x 2 identity matrix, and -

o o O
J_Odt'

In addition, the frequency domain matrices for operators I, L, and L3 in (5.2) are

. |ro I A
h=lot| L=2z7 | (5.42)
and
) |
Lj = -;Eg ., &=20%p-1. (5.4b)

In (5.3) and (5.4), there is no coupling between vectors (Pgnb k) and
(Py by ). The coupling between them comes from the full-weighting restriction and
linear interpolation operations. The decomposition, shown in Figure 7 and commonly
used .in the multirate signal processing context [15], is very useful for understanding
the physical mechanism of interpolation and restriction operators, and for deriving their
frequency domain matrices. Conceptually, we decompose the restriction procedure /4,

into two steps.

Step 1: lowpass filtering ( or averaging ) at every point of Q,, where the weigﬁt—

ing coefficients are specified by stencil 72 of (5.1).

Step 2: down-sampling (‘or injecting ) values from Q, to Q,,.
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The interpolation operator /%, is also decomposed into two steps. -
Stép 1: up-sampling values from Q,, to ,, by which we assign 0 to points
which belong to Q,-Q,,
Step 2: lowpass filtering at every point of Q,, where the weighting coefficients
are specified by stencil 7%, of (5.1). |

It is relatively easy to find a frequency domain matrix representation for each of the
above steps. Combining them together, we obtain |

+B 0 20 0

0 1 0 2w '
(2= 1 L =4
=11 10 0]><4 20 0 48 0 |= 4[1+|3 1+B 20 27,

0 2 0 1+B

and
8 0 20 0 1 1+
o 0 1+ 0 2@ 1 |1 1 [1+B
Ta=tl2a 0 1p 0|%7 |07 ]|2a|
0 28 0 1+8 0 28

Note that in the frequency domain the down-sampling operation adds thé high fre-
quency component ~f. . to the low frequency component Pen. This phenomenon is
known as aliasing [15]. On the other hand, the up-sampling operation duplicates the
low frequency component Feqn in the high frequency region in the form of ~Ferats
which is called imaging [15]. The lowpass filters cascaded with the down-sampling
and the up-sampling operators are basically used to redﬁce the aliasing and imaging
effects. For example, for low frequency components with Enh and nrh close to 0, we
have =1, B=1, &=0, and B = -»1.' Hence, the aIiasingh and imaging effects occur-
ring between (Fyn.be )" and (Pgnbe )7 are substantially eliminated by the associated

lowpass filters.

The product %, /% can be expressed as
P 20dp P

Fy Fpy
" “2}:__}.- .A .
foply " = g |8y Fpl (5.5)



where

o[ a (1+B)(I+B)]‘ T [Za(HB) 2&(1+ﬂ)]
T2 lapa+P)  a+p? |0 TRTIAT | oq14B) 20014+

[4(:!:z 400
Fu= ) o 452

Therefore, from (5.2), (5.4) and (5.5), we obtain the the frequency domain matrix for

the coarse-grid correction operator

Iell KIZ

2"— A
4= &2 #a 9

where
Ry=1I- J‘[ﬁlzf-ﬁn] . Rp=1I- 'I—U’Azlf“f‘an] ;
K= ""'[FuJ-Flz] , Ky= -——M—Fm

The remaining task is to combine results of (5.3) and (5.6) so that the spectral radius

p(T/*") can be determined.
5.3 Two-to-one wave reduction

-The analytical determination of the eigenvalues of the two-grid iteration matrix
7% is in general a difﬁcult. task since it is a 4 x 4 matrix. However, if the red/black
Gauss-Seidel smoother is used, the whole process is greatly simpliﬁed.. When the first
partial step of the red/black Gauss-Seidel iteration, i.e. the Jacobi iteration at red
points, is performed, the values of the red points are updated by the values of their
neighboring black points and their original values are totally discarded. As a conse-
quence, the computational process that follows is only determined by the initial values

of the black points. This is clearly indicated by the first two zero columns in (5.3).

For the two-grid iteration process (5.2), let us temporarily consider the special
case (vy,v) = (1,0). For such a simple case, we find that

Azh—
B0= 1o Ryf+knl G-



S

and the spectral radius of 7 is

TN = pR oS+ Y (5.8)
The two-to-one color reduction is mathematically clear from equations (5.7) and (5.8),
namely, that (5.8) involves the evolution of black waves only. We can interpret its
corresponding physical mechanism as follows. The two-grid iteration process 72" con-
sists of two processes

Tro=Ryf+k /%, To=Rul+Rn*,
which describe the evolution from (bgq~bgn) 1 (eq-req)’ and (beni—brr )T
rcsp_ectively. Since the m -fold repetition of 7% gives
KT e =Tp T8, KT l=15,

the convergence of the two-grid method depends entirely on the process T,,. Hence,
the two-color two-grid iteration process (5.2) can be equivalently characterized by the

black-wave two-grid iteration process.
For general (v,,v,), since

-~ a ¥, ~ A~V A ~ ¥V, +V,
pFPvivl = pSrics i Sraas) = PR Spics)

where the last equality comes from the fact p(AB) = p(BA), we can derive that

PII vV = p(R nf LRl ™y,
where v = v + v,. Let us examine the matrix

f}q = 1321 J-ipg 22j2v ,
which represents a one-color two-grid iteration process and, due to (5.6), can be
expressed as

ﬁq, = ffgquvul ,
where

PR €=))C 0 VR 6 1) (- )
X ' 25 28

- — _1- A__l LY Az_ =
Keqg =1 T Fa0™=D LTG0 T 7, ) ()
28 25

48
is the equivalent one-color coarse-grid correction operator in the frequency domain.
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Since p(JK,,J*") = p(K,,J*), we see that J? can be viewed as the equivalent one-
color smoother .S'",,,, which corresponds to two Jacobi relaxation steps for the black

component bg ;.
5.4 The spectral radius result

The equivalent one-color two-grid iteration matrix can also be determined for the

degenerate case & = -‘1‘21 orn= % [22]. Then, the spectral radius of the two-grid itera-

tion matrix can be found by solving

p(T,,”‘) = maxM p(f',q) .
155_..115-2"'

In [28], Stiiben ’and Tl;ottenberg reduced their analysis to the determination of the larg-
est value among all the spectral radii of the frequency domain matrices f2" eq- Since
we have p(fK,,J*'™) = p(f*'R,,), these two different derivations lead to the same final
result. A closed form of this quantity has been'd.erivcd»in 28] ( pp. 104-108 ), which

is summarized as follows

1 Vo= ]
_ 2y, -
pl T, (v=vi+vy) ] g RPN Va2
2v v+l -

(5.9)

In the above expression, the maximum of p(T/** occurs at Enmh nrh) = (-12E ,0) or (O,%)

= ~lre Y % ~tre ¥V _ (%
when v = 1 and at ( cos [(v-i-l) 1, cos [(v+1 YD when v =2 2.

By uging the two-color Fourier analysis, we can clearly see why MG with the
red/black Gauss-Seidel smoother has a good convergence behavior in spite of its poor
smoothing property for the high frequency components. Through the red/black
Gauss-Seidel iteration, the low and high frequency components are coupled and can be
equivalently formulated as the coupling between red and black waves with the same
low frequency component. It tums out that only the black wave plays a role and that

the low frequency component of the black wave is solved by coarse-grid correction.
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Thus, we conclude that the very high frequency components, namely those with (8.0)
close to (r,x), are in fact corrected at the coarse grid father than smoothed at the fine

grid. Such an explanation is difficult to obtain using the analysis given by {28].
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6. Convergence rate comparison for natural and red/black orderings
6.1 SOR and SSOR methods

Fourier analysis has been used to anﬁiyze the naturally ordered SOR and SSOR
iteration methods for the Poisson problem on a squérc with the periodic boundary con-
ditions by Chan and’ Elman [13]. 1t is shown that the optimal relaxation parameters

for both cases are the same,

2

. ing ; periodic b.c. ) = ————tmm | .1
7 ®’( natural ordering ; periodic b.c. ) T725m057) 6.1)
~and the corresponding spectral radii are ‘
Psor ( natural ordering ; periodic b.c. ) = 1 ~ 0.5nh 6.2)
Pssor ( natural ordering ; periodic b.c. Y =1 —mh . (6.3)

For the model Dirichlet problem, Frankel derived a classical Fourier result for the SOR

iteration with tﬁe natural ordering [17]. That is, the optimal relaxation parameter is |

2

*( natural ordering ; Dirichlet b.c. ) = —=— (6.4
©"( natural ordering ; Dirichlet b.c. ) rve— (6.4)

and the corresponding spectral radius is
Psor ( natural ordering ; Dirichlet b.c. ) = 1 ~ 2rh . (6.5)

This result was mterpreted by LeVeque and Trefethen from a tilted-grid point of view
[23] Although there is no Fourier result of the naturally ordered SSOR iteration for
the Dirichlet problem, it can be shown by matrix analysis that

Pssor  natural ordering ; Dirichlet b.c. )S 1 —7wh , (6.6)
and that the convergence rate is not sensitive to the choice of the relaxation parameter
[18][31]. Note that (6.1)-(6:3) agrees with (6.4)-(6.6) asymptotically except for the
constant multiplying £ in (6.2) and (6.5).

By comparing the above results with those in Section 3, we can clearly see that
for the SOR iteration the red/black ordering does not effect the choice of the optimal
relaxation parameters (cf. (3.5) and (6.4)) and the rate of convergence (cf. (3 6) and

(6.5)). However, for the SSOR iteration, the situation changes drastically. If the
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red/Black ordering is used, the acceleration due to the introduction of the relaxation
parameter totally disappears (cf. (3.11), (6.3) and (6.6)).
6.2 Preconditioners

. Chan and Elman also applied Fourier analysis to analyze the eigenstructures of
the preconditioned system with the periodic ‘boundary conditions and the natural order-

ing [13]. Their results are summarized as follows,

®(Qs™1A )( natural ordering ; periodic b.c. ) = O (%} , (6.7)
«(Q;"A)( natural ordering ; periodic b.c. ) = O (-f;) , | (6.8)

~

N 1 .
0(2‘;), c=0

K(Qj7'A )( natural ordering ; periodic b.c. ) = 3 , (6.9)

0(-%), c#0

where Qg, IQ, and Q,, denote the SSOR, ILU anLi MILU preconditioning operator.
Although no Fourier result for the naturally ordered Dirichlet problem is available,
these results agree with the known results for the Dirichlet case (see the references of
[13]) and numerical experiments indicate that the eigenstructures for the periodic and

Dirichlet cases behave in a very similar way [13].

By examining (4.7), (4.9) and (4.12), we see that the preconditioned system with
the red/black ordering in general does not decrease the order of the condition number
of the original Laplacian. In fact, the condition number is reduced approximately by a
factor 2 for SSOR, ILU and MILU preconditioners. In contrast, effective naturally
ordered preconditio.ners such as SSOR and MILU can decrease the condition number
of the Laplacian by an order of magnitude. Thus, as far as the convergence rate is con-
cerned, a red/black preconditioned iterative me;hod usually converges much slower

than a naturally ordered preconditioned iterative method.
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The condition number analysis of the red/black ordered preconditioners is con- -
sistent with the experimental results reported by Ashcraft and Grimes [5] and, to the

best of our knowledge, no such analysis has been reported before.
6.3 MG method

So far, there is no exact Fourier result for the two-grid analysis of the model Diri-
chlet problem with the natural ordering. However, a simplified local Fourier analysis

which assumes ideal interpolation and restriction operators and ignores the boundary

conditions has been performed by Brandt [10]. The smoothing rate i of one lexico-
graphical Gauss-Seidel relaxation is found to be % by such an analysis. When the

total number v of the smoothing iteration is small, we can roughly estimate the spec-

tral radius of two-grid iteration matrix from the smoothing rate by

Puc ( natural ordering ) = '’ = (%)" . (6.10)
Therefore, from (5.9) and (6.10), we see that the red/black Gauss-Seidel smoother has

a better smoothing rate than that of the lexicographical Gauss-Seidel smoother.
6.4 Summary of Comparison

The above comparison is summarized in Table 1, where N is the number of unk-

nowns.

ordering | SOR | SSOR | PCG | MG

natural | ON*) | oD | oD | 0D

red/black | ONH | o) [ o | o1y

Table 1: Comparison of convergence rates

The spectral radii of the MG method, which are calculated by (5.9) and (6.10), are also

compared below.



ordering | v=1 | v=2 | v=3
mawrat | & | L1 [ L
2 4 ]

1 Z
4 27 512

Table 2: Comparison of the spectral radii for the MG method
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7. Related work |

Most research work on iterative algorithms with the ;nulticolor ordering has been
focused on the SOR method. To achieve the efficiency of the SOR iteration, the deter-
mination of the optimal relaxation parameter is érucial. However, except for few sim-
ple cases such as the model Poisson problem, this is in general a difficult task. A local
-two-color Four analysis was proposed by Kﬁo, Levy and Musicus {19] to design a
local relaxation scheme which uses diffefent relaxation parameters for different finite-
difference equations associated with .each grid point. The four-color SOR iteration
applied to the 9-point Léplacian has been independently studied by Adams, LeVeque .
and Young [4] and Kuo and Levy [20]. The technique used by Adams et al. is to
change the variable of iteration number to a new variable known as the "data flow
time" defined by Adams and Jordan [3]. By using such a technique; the multicolor
ordering scheme can be related to the natural ordering scheme and then analyzed' bya
modified Fourier analysis. In [20], Kuo and Levy used a four-color Fourier analysis to
design a two—1e§e1 SOR scheme which includes an outer block SOR iteration and an
inner point SOR iteration. The four-color Fourier analysis is a natural generalization
of the two-color Fourier analysis presented in this paper. Besides the four-color order-
" ing, O’Leary considéred several other ordering schemes for the 9-point Laplacian and
showed that the convergence rate of the SOR iteration with these orderings is no worse

that that for the natural ordering [25].
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8. Extensions

We can conclude our study simply as follows. Although some algorithms such as
the SOR and MG methods can be reordered to get more parallelism without sacrificing
their convergence rates, some algorithms such as the SSOR and preconditioned itera-

tive methods do have a tradeoff in achieving more parallelism and faster convergence,

A natural question that arises from this research work is: what is the "intrinsic
propérty" of these algorithms which makes them behave so differently with respect to
the reordering? A better understanding of this fundamental issue should help us to
know more aboﬁt parallel computation and its limitation. The poor performance of the
red/black SSOR, ILU, and MILU precondiﬁoners can be partly answered by the obser-
vation that at each iteration the red/black preconditioners use only local information

while the naturally ordered preconditioners do make use of some global information.

The preconditioned iterative methods such as the PCG method are 'a;nong one of
the most effective methods for solving elliptic PDEs in a sequential machine. How-
ever, since effccti}re preconditioners such as the naturally ordered SSOR and MILU

"schemes cannot be easily parallelized, they are not as attractive for parallel computers.
It is an interesting and important research topic to find preconditioners which are easily

parallelizable and give satisfactory convergence rates.
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- Figure Captions

Figure 1: (a) Conventional and (b) folded two-color Fourier domains, where 6 = Exh
and ¢ = nxh.

Figure 2: (a) The eigenvalues A, of the SSOR-preconditioned system as function of
Cg n and (b) the surface plot of A, as function of (8,0) with 2 = 0.05.

Figure 3: (a) The eigenvalues of the ILU-preconditioned system as function of Q.
and (b) the surfacé plot of the nonconstant eigenvalue as function of (0,¢) with
h = 0.05.

Figure 4: The condition number of the MILU-preconditioned system as function of the

1 —l = e—— T — TN ————
parametercmth(a)h-—s,(b)h—10,(c)h G and (d) A 30

Figure 5: (a) The eigenvalues A, of the MILU-preconditioned system as function of
O n and (b) the surface plot of A, as function of (0,0) with 2 = 0.05.

Figure 6: Four coupled Fourier components in (a) conventional and (b) two-color
Fourier domains.

Figure 7: Decomposition of the (a) restriction and (b) interpolation operators.
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Figure 1. (a) Conventional and (b) folded two-color Fourier domains, where 8 = &nh
and ¢ = nnA. R
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Figure 2: (a) The eigenvalues A, of the SSOR-preconditioned system as function of
o and (b) the surface plot of A, as function of (6,9} with 4 = 0.05.
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Figure 3: (a) The eigenvalues of the ILU-preconditioned system as function of o, and
(b) the surface plot of the nonconstant eigenvalue as function of (8,0) with & = 0.05. -
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Figure 4: The condition number of the MILU-preconditioned systern as function of the
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Figure 5: (a) The eigenvalues A, -of the MILU-preconditioned system as function of
oy and (b) the surface plot of A, as function of (8.4) with & = 0.05.
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Figure 6: Four coupled Fourier components in (a) conventional and (b) two-color
Fourier domains. '



-43-

down
lowpass sampling _....
filtering | Q, : Qo
(a)
| up‘ lowpass
_J sampling ‘ R
Qy : Q filtering
(b)

Figure 7: Decomposition of the (a) restriction and (b) interpolation operators.






