UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Domain Decomposition Preconditioners for
General Second Order Elliptic Problems

Tony F. Chan
Thomas Y. Hou

June 1988
CAM Report 88-16

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555




ensional el-

1| Vector and

lementierung
FRG, 1989,

id solution of
rid Methods,
aics, Vol. 23,

elberg. 1985.
»ds, Proceed-
, 23, Vieweg

1ce mullipro-
ercomputing

rbeit, IMMD

SUPRENUM
9.

near systems
iputation, 31
artial differ-
Sci. Statist.

-y 10 (1989),

., 54 (1989).

SIAM J. SC1 5TAT COMPUT {© 1891 Sociely for Industrial and Applied Mathematics
Vol. 12, No 6. pp. 1471-1479, November 1981 014

TIMELY COMMUNICATIONS

Under the “timely communications™ policy for the SIAM Journal on Scientific and Statistical
Computing, papers that have significant timely content and do not erceed five pages automatically
will be considered for a separate section of the journal with an acceleruted reviewing process, 1t will
be possible for the note to éppear approzimately siz months after the date of acceptance.

EIGENDECOMPOSITION OF DOMAIN DECOMPOSITION
INTERFACE OPERATORS FOR CONSTANT COEFFICIENT
ELLIPTIC PROBLEMS"

TONY F. CHAN! AND THOMAS Y. HOU!

Abstract. In this paper the authors derive the exact eigendecomposition of the interface op-
erators arising in domain decomposition methods for general five-point discretizations to constant
coefficjent elliptic equations on rectangular domains. The special case of convection-diffusion prob-
lems is studied in some detail, including both centra! and upwind differencing for the convection
term and flows normal and tangential to the interface. It is shown that preconditioners based on the

diffusion cperator alone may give very slow convergence when the cell Reynolds number is of order
O(1).
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1. Introduction. In nonoverlapping domain decomposition methods, the key
idea is to reduce the differential operator on the whole domain to an operator govern-
ing the solution on a reduced set of variables on the interfaces between the subdomains
and perhaps a set of cross-points on which a coarse grid discretization is available 12,
[13]. The understanding of the properties of the reduced operator is fundamental to
domain decomposition methods.

In this paper, we follow the approach in [4], [5] and derive the exact eigendecompo-
sition of the interface operators arising in domain decomposition methods for general
five-point discretizations to constant coefficient elliptic equations on rectangular do-
mains. We study in some detail the special case of convection-diffusion problems,
including both central and upwind differencing for the convection term and flows
normal and tangential to the interface.

One of our motivations is to study the effect of the size of the convection term
on the performance of preconditioners based on the diffusion operator only (1], [2],
4], 5], [9), [11). In particular, we show that convergence can be slow when the cell
Reynolds number is of order G(1).

Another possible use of the eigendecompositions is as. direct preconditioners for
variable coefficient problems (e.g., by averaging coefficients) on more general domains
(e.g., by approximating irregular domains by dormains with regular geometries sharing
the same interface [6]}. Although we do not have theoretical justifications for such
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g a procedure, the motivation is that by taking into account the convection term in an
P the preconditioners, the rate of convergence will be less sensitive to the cell Reynolds
i number. For some numerical experiments along this line, see [8]. We note that some
, 5;," of the known preconditioners in the literature, in particular the Neumann-Dirichlet
i preconditioner [1] and Schwarz-type methods [3], do implicitly account for the first- Th
. “ order terms.
i L 2. Formulation. Since we are primarily interested in deriving interface precon- {3.
i ditioners, we need only consider the simple case of a domain split into two subdomains }
f;: with one interface. For example consider the following problem: Lu = f on {1 with ; _
}' boundary conditions u = w, on JQ, where L is a linear elliptic operator and the wr
{ domain {? is decomposed into two subdomains §1; and £} by an interface I'. If we
i order the unknowns for the interna! points of the subdomains first and those in the
8 interface ' last, then the discrete solution vector u = {u;,uz,us) satisfies the linear !
IE system Au = b, which can be expressed in bleck form as !
e :
i An Az u) by i
y ( Agp A?S) (UQ) = (bz)- ! W
}i. Az Az A/ \us bs :
By block-Gaussian elimination, the reduced operator on T (i.e., the Schur complement sol
g of Asz in A) is given by bor
E an(
‘; (2.1) C = Az3 — AgiA;]lAls - A32A521A23. A
o7 3. General! five-point stencil. We consider the general second-order elliptic req
£ equations with constant coefficients "
8 u 8*u v _Ou  Ou ;
(3.1) Lu:ogz—gn+2ﬁm+vé—§5+6—a-x—+na—y+puzg on {1 wit
R with boundary condition u = 0 on 8%2, where @ is a two-dimensional rectangle. (3.
. Without loss of generality, we may assume that §=0,a > 0, and v > 0.
- We use a uniform mesh with grid size & on §2 and with n internal grid points in
r* the r-direction, i.e., h = }/{n +1). We assume that the interface I is parallel to the (3.4
o z-axis and that €1, has m; internal grid points and {I; has m. internal grid points
“ in the y-direction, i.e., the heights of ; and §}; are given by |, = {m; + 1)h and wh
i l; = (my + 1)h. Let z; = ih, y, = kh, and denote the approximation to u(z;,yx)
; ; by uix. Suppose that equation (3.1) is approximated by a discrete finite-difference k
3 scheme of the following form: | (3
2 (3.2) QUi k + Dk + Clitrk + AUkl €Uk = Gik ‘
E - with boundary conditions given by %ok = Ui = Unj1k = Uins; = 0, where we
1 assume that the coefficients a, ¢, d, and e are nonzero. The idea now is to generalize +c
:E the result in [3], {5], {7] to the more general five-point stencil formula (3.2), by deriving
an exact eigendecomposition of the corresponding capacitance matrix C. This result wit
3 i is summarized in the following theorem.
} THEOREM 3.1. Define W = DW, where D is defined by (3.
-1
«% D = diag {1,‘/?,---,\/?1 ] g
nd € ¢ ! (3.
';;E s
5
5
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and W is an orthogonal matriz whose columns are given by
w, = /3h(sin jwh,sin 2jwh, - sinnjrh)’.

=7

Then we have W—1CW = diag(A;,- -+, An), where the eigenvalues X; are given by

1+,7;ﬂ1+1 1+,.7,;ﬂ:+1 1
(3.3) ,\j=—(1"7;“+1 +1_,7;ﬂ2'+1 Z[b+ﬁ(2—oj)]2~—de,

with o; = 4sin’ (3;—"), and

(t+ vaB(z - o) + VB F VadlE= 7))~ )
A 4de '

Proof. First we will show that Ci; = Aj1;, where @, is the jth column of matrix
W,

As pointed out in [4], [5], the term —A31A'1'11A13i:j can be computed by first
solving the discrete equation (3.2) on {1, with homogeneous right-hand side and the
boundary condition u = w; on I', and homogeneous boundary conditions elsewhere,
and then taking the solution on the first row of grid point above T multiplied by d.
A similar observation applies to the term ~ Az ALY A2atdy.

Let us now consider the term -~A31A1'1‘A] aw; first. As we mentioned above, this
requires the solution of the discrete equation

(3.4) au;_1,k + bfu;,k + etk + d’u“k_;.] + ey -1 = 0 on
with boundary conditions

{3.5) up=w; on I' and wux=0 on a0 /T

Consider the solution vector of (3.4) of the form
(3.6) Uik = diV2h(\/a/c) sin jmih,

where 0<i<n+landO0<k<m+1
Substituting (3.6) into (3.4), we have

(3.7) (ddis1 + €dx-1)V2h (\/g) sin jmih

i -1
;dk\/ﬁz (\/g) [bsinjwih +a (\/%‘) sinjm(i — 1)h + c\/g sinjr(i + l)h] =0

with boundary conditions
(3.8) do =1 ﬂ-nd d'm1+l = (.
It foliows that the d, satisfy the following difference equation -

(3.9) ddisy + [b + \/G—C(2 - O'J')]dk +ediy =0
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with boundary conditions (3.8) and where o; = 4sin® -7’2'—") The roots of the corre-
sponding characteristic polynomial for (3.9) are

_ 2o+ Vac(2-0;)) + /(b + ac(2 — 5,))? — 4de
2d )

Tx

The general solution of (3.7) is then given by
(3.10} di = C;T‘_':_ + Cgrk

Boundary condition (3.8) implies ¢; +¢5 = 1 and arTit 4 epr™*! = 0, which gives

o R}

b r!:l1+1 r;"l‘i'l
i ¢y = - 1 2= -
: r)‘ T:‘1+1 - r’:l:l+1 rf’-ﬂz+1 _ ,rTl-H.
} Therefore we have

- . }

(3.11) -A31 A“ Alg w,- = ddlw_,-,

rY
I where

" my-+1

. r——7r .

; 1- T T4
P Similarly,

i -1 - -

; (313) —A32 A22 Agg wj = edIu*j,

i
g where

L)

L LAY PR .

b d = 2 —13{(2;) oy = -

R v I 1 1 J Ty
L 1= (y;)ma* s

. _ =lo+ vae(2 - o) + /b Jae2 = o,)) ~dde
T = 2e .

One can easily see that 7=
Finally, it can be verified directly:

(314) A3311)j = {b'l' \/EE(Q - O'J')]!IJJ'.
Thys (3.11}, (3.13), and (3.14) together give Cw; = Ajw;, where
(3.15) As = {b+ vace(2 - 0;)] + dd, + ed],

which after some simplifications gives (3.3). 0

4. Convection-diffusion equations. We now summarize results for a few spe-
cial cases corresponding to various finite-difference discretizations of convection-diffu-
sion equation. We use the standard five-point central and upwind differencing for the
convection term. We also consider flows normal and tangential to the interface.
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4.1. Central differencing for Au + n{du/dy) = 0. This is the pormal flow
casc. The coefficients of the stencil are given by

nh nh
= = e = = — =1—-—-_
a=1, b 4, ¢=1, d 1+2, [ 5

The eigenvalues A; depend on the value of nh. They have the following form:
1+ fl"l‘i'l 1+ 'f"-;l"i't 2 h 2
W LR S NGRS e} Y APEINZIAY
(=) T @= ) 1 T\

(1+ % —Jos+02/4+ (nh/2)? )
LA 1- (7h/2)?

where

It is interesting to note that although +y; — oc as iﬂz—’il - 1, A, remain finite in the
limit..

4.2. Central differencing for Au+ 8{du/dz} = 0. This is the tangential flow
case. The coefficients of the stencil are given by

sk 8k
a=1-7, b=—4, c=14,

The eigenvalues A, depend on the value of éh. They have the foliowing {form:

(14 (1447 a2
’\J__ (}_»};1+1)+(1,—7;“2+]) \/(2_#)”GJ+#2_j +(2-#)2_1?
§ j
where
_ (14 1- 4
m= 2 )1+
and

(,u(? —o;)— 4+ /(@ -05)—4)° - 4)2
= 3 .

We note that in this case, the Fourier transform matrix W has a singularity as
the cell Reynolds number éh/2 approaches 1 because the matrix D in the Theorem
3.1 becomes singular. This difficulty can be removed by using upwind differencing.

- 4.3. Upwind differencing for Au+ n(au/a:y) =0, n > 0. The stencil coeffi-
cients are as follows

a=1, b=—-4—-nh, ¢=1, d=14+9h e=1

The eigenvalues A; are:

14 ffu+1 1+ u:r:z+1 2
Y e NP e i o3+ =+ oymh/2+ (nh)2/4,

SR EEE I
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where -y; are given by

a 2
r1—5--—,i-l-ni’}/9—./ ..L..L..N.thfrr-/‘).l..nh/.;\ ]

[-T TR e T Ngi /e ; J
7=

An important feature about the upwind discretization is that the eigenvalues \; are
well defined for all values of the cell Reynolds number gh (n > 0). This property is
not shared by the central differencing discretization.

4.4. Upwind differencing for Au + §(6u/8z) = 0,6 > 0. The stencil coeffi-
cients are

a=1 b=-4-06kh c=1+6bh, d=1, e=1.

e Y Ty ¥R ¥ Ty T
PRRIIL Spd 358 S gL P IR By 2L T SIARNE 4 P IERD L - WAL, — VAL LI [ -t

The eigenvalues \; are:

A+ (1A o?
Aj:hl:(l_r;m1+i)+(l—'r;:+i) Uj+TJ—£j(2+O’j—(j),
J 3

where the v, and ¢; are given by

. 2 2
’YJ={“‘1—%+fj+\/‘f’j+%'fj(2+0j—fj) ]
and
& = -—%)(\/1+6h—1)—%}1.

Note that ¢; tends to zero as §h goes to zero and the eigenvalues are well defined for
all values of the cell Reynolds number 6h (6 > 0).

5. Effect of convection term on diffusion-based preconditioners. Con-
sider the equation Au + n(8u/8y) = 0 discretized using both central and upwind
differencing. Let C(n) denote the interface matrix as a function of 1. Consider
preconditioning C{n) by C(0), the interface operator corresponding to the diffusion
operator only. In Fig. 1, we plot the condition numbers K(C~*(0)C(n)} (the ratio of
the maximum eigenvalue to the minimum eigenvalue) versus the coefficient n for h =
0.02, m; = 50, my = 100. Note that the critical cell Reynolds number corresponds to
& = 100 for the central differencing case, and the eigenvalues of C~!(0)C(n) are real
in this case. We see that as § approaches the critical value, the condition number can
grow larger than 10.

Next we consider the equation Au + §(0u/8z) = 0 with the same values for h,
misand my. In this case, the eigenvalues of C~1(0)C(6) are complex. Instead of
a plot of the condition number, we show in Figs. 2 and 3 the distribution of the
eigenvalues of C~1(0)C(6) for several values of § for upwind and central differencing,
respectively. These plots show how rapidly the spectrum spreads from unity as
increases. The clustering around the value 1 can be easily seen, but even this eflect
weakens as & increases. For many nonsymmetric iterative methods, such as conjugate-
gradient-like methods and Chebychev methods, such information on the spectrum
plays a crucial role in determining the convergence rates [10)], [12]. We note that
for § > 65, the formula for the eigendecomposition of the interface operator for the
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FiG. 1. K{C(0)~Le(n)) versus n for Au + n(du/8y) = 0.
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F1G. 2. Eigenvalue distributions for upwind difference for Au 4 6(8u/8z) = 0.
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FiG. 3. Eigenvalue distributions for central difference for Au + §(8u/8z) = 0.

central differencing case becomes unstable and hence the eigenvalues are not plotted :
in Figs. 2 and 3.

These calculations show that the effectiveness of the diffusion-based precondition-
ers (as reflected in either the condition number or the spread of the spectrum of the
preconditioned interface system) can deteriorate appreciably as the size of the cell
Reynolds number increases to O(1).
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