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"It is a most beautiful and awe-inspiring fact that all the fundamental laws of Classical Physics can be understood
in terms of one mathematical construct called the Action” (Pierre Ramond, Field Theory a modern primer).

1. Introduction.

Let us consider the motion of a perfect incompressible fluid inside a closed bounded domain X in
the Euclidian space Rd, The fluid is not necessarily homogeneous, which means that the initial
mass density po(x) may depend on the space variable x. If the external forces derive from a
potential U(t,x) (where t is the time variable), then the motion is described in terms of the density
field p(1,x), the velocity field v(t,x) and the pressure field p(t,x), by the following equadons :

(1.1) divv=0 (incompressibility condition),
(1.2) oip +v.gradp =0 (conservation of mass),
(1.3) p{ oyv + v.gradv + gradU) + gradp =0 (Newton's law).

The initial and boundary conditions are :
(1.4) v(t=0,x) = vo(x), p(t=0,x) = pp(x),
(1.5) v.n=0 along X where n = ourward normal (impermeability condition).

The pressure field is the Lagrange multplier associated with the incompressibility condition (1.1)
and needs neither boundary nor initial conditions. This system can be reformulated in terms of the
flow map g(1,x) defined on RxX, valued in X and soluticn to the ordinary differential system :

(1'6) g(O,X) =X, atg(t’x) = V(t,g(t,X)).
From (1.2-3-4), one gets :

(L7)  p(t.g(tx)) = p(t=0,x) = po(x),
(1.8)  po(x){9¢2 g(t,x) + gradU(1,g(tx))} + gradp(t,g(tx)) = 0,
(19)  g0.x) =x, 9g(0,x) = vg(x).

If the velocity and the density fields are smooth enough, as well as X and its boundary, then the
incompressibility and impermeability conditions (1.1-5) exactly mean that, for each time ¢, g(t,.) is
a smooth diffeomorphism from X into itself that preserves both orientation and volume. In other
words :

(1.10) foranyt, g(t,.) belongsto G



where G is the set of all smooth orientation and volume preserving mappings from X into X :

(1.11) G={vy:X— X, diffeomorphism s.t. det Dy(x) =1} (D¥(x) denotes the Jacobian
matrix of ¥ at x).

Then the motion is entirely described by equations (1.8-9) and condition (1.10-11). Behind these

equations, as has been known for a long time [Arnol'd], there is the Least Action Principle. Here

the Action is the sum of the kinetic energy and the potential energy and is defined at each tme t by :

(1.12) A =/ pox) {12188t x)2 - Ult,gtx)) }dx .

X
The Least Action Principle says that if 1;-tg >0 is not too large, then :
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holds for any flow map ¥ such that :
(1.14) ¥(t,.)eG, for z<t<t;, Y(1p,.)=g(tg,-)» Wt1.)=g(1y,.)-

In other words, the Action integrated from ty to t; is minimal for g.
In this paper, instead of considering the initial value problem (1.8...11), we concentrate on the
related minimization problem : given ty<ty, ggand g; in G, find a flow map g such that :

(1.15) g(1,.)e G, for tg<t<ty, g(tg.)=gg, 8(t1,)=g1
t
(1.16) and fto A(g,)dt is minimal.

This can be considered as a "shortest path problem” on G, the manifold of smooth orientation and
volume preserving mappings from X into itself. Since G is a group under the composition rule, it
is not a restriction to substitute the identity map for gq and h= g; 0 go°! for g;. In a similar way,
one can subsdtute the time interval [0,T] for [tg,ty], where T is a given swictly positive number. h
will be called the “final configuration” and T the "final time". Thus, let us consider :

The shortest path problem

o Given T>0 and he G, find a flow map t = g(t,.)e G, 0st<T,
that reaches the final configuration h at time T and minimizes the Action :

T
117 g Jo K poto {1208t - Ultg(tx))dx dt

where pg 2 0 and U are given.



From contributions by various authors TEbin & Marsden], one can solve this problem when h is
very smooth (h belongs to some high order Sobolev space, say) and lies in a small neighborhood
(related to some very stfong topology) of the identity map. However, for arbirrary data, this
minimization problem seems highty difficult since the quantity 1© be minimized does not involve
any spatial derivatives of the flow map, while the incompressibility constraint is expressed in terms
of the Jacobian determinant. Therefore, strong convergence of minimizing sequences cannot be
obtained by classical ways. Moreover, the appropriate strong topologies for G are totally vnrelated
to the metrics induced by the kinetic energy. The goal of this paper is to overcome these difficulties
in two Steps :

i) enlarge the framework with an adequate concept of generalized flows, in the spirit of L.C.
Young's ideas on the Calculus of Variations [Young], and prove the existence of a generalized
solution to the “shortest path problem” ;

i) check that classical solutions cannot be missed in this new framework.

Before defining our favorite concept of generalized flow, let us review several possible
generalizations of the shortest path problem. The first natural idea would be to substitute for the set
G a broader set of volume preserving mappings, for example :

(1.19 S={v:X— X,ifY is a measurable subset of X, then
v~1(Y) is measurable and meas( ¥"1(Y)) = meas(Y})).

"This definition is very classical in ergodic theory {Amol'd & Avez]. An equivalent definition is :

(1.19) S={v:X— X,if fis a continuous function on X, then

foy is measurable and fX f(v(x))dx = fx f(x)dx}.
These definitions make sense for any measure space (X,dx) when X is a compact set and dx a
positive Borel (Radon) measure. When X is a closed bounded domain in R4, G is obviously a
subset of S, since for any fin C(X) and vin G, foyis continuous and :

(1.20) fx f(x)dx = fX f(y(y))detDy(y)dy = fx f(y(y))dy  (change of variable : x=Y(y)).

However, S contains many more mappings than G. The one dimensional case X=[-1,1] is striking
since, then, G has a single element (the identity map) while S contains various mappings such as
Y(x)=x+1 if x<0, x-1 if x>0, which is discontinuous, Y(x)=-x which is orientation reversing, or
y(x)=2x+1 if x<0, 1-2x if x>0, which is not one-to-one, So, G and S seem very different from
each other. However the gap between G and $ is a specific property of the one-dimensional case
and it is a reasonable conjecture to state that S actually is the strong L2 closure of G if
d>2. We believe that such a result is probably available somewhere in the litterature but, since it is
not strictly necessary for our discussion, we will not try to prove it. In the shortest path problem,
the quantity to be minimized looks like a L2 norm with respect to the space variables. Therefore it



makes sense to substitute for G what we believe to be its (strong) L2 closure, that is S. Then, one
gets :

Mhn fRocd o~ n_n{: o
LIIC iDL EUillalisea

. Given T>0 and he §, find a measurable mapping (t,x)e [0,T]xX — g(tx)e X, s.t. :
(1.21) g(0x)=x, g(T,x) =h(x) ("greacheshattimeT"),

(1.22) fX fg(t,x))dx = fx f(y)dy foranyte[0,T] and fe C(X) (incompressibility),

T
123 g= Jo fx pox) {1219t - Ut.g(tx))}dx dt is minimal «

This problem seems easier to solve than the original one, since the classical incompressibility
condition : _

(1.24) detDg(tx)=1,

that involves in a very non-linear way the space derivatives of the flow map is now replaced by
condidon (1.22) which makes sense even when the flow map is not continuous ! However it is stll
a non-linear constraint. At this point of the discussion, it is highly questionable whether or nor such
a generalization is justified from a physical point of view. For example, the important property for
the flow map to be, at least, one-to-one and orientation preserving is completely missed by this
new framework. A reasonable answer to this question would be to prove, at least, that, whenever
there is a classical solution to the original shortest path problem, it is automatically the solution to
the generalized problem. Otherwise, the new framework would be worthless. Nevertheless, this is
not our main concern at the moment, since it is even not clear that the generalized shortest path
problem always has a solution ! Indeed, as has been mentioned earlier, the action to be minimized
does not involve any spatial derivative of the flow map and, therefore, there is no control of the
amount of oscillation (in the space variables) that can be produced by the minimizing sequences. In
some cases, for example :

(1.25) X=[-1,1] and h(x)=-x, or more generally : X=[-1,1]¢ and h(X)=(-x1,X2,....X4),

(that are not classical, since the final configuration h is orientation reversing) oscilladons occur and
(see section 6) solutions must be looked for in a much larger class of flowmaps. This kind of
trouble is typical in the Calculus of Variations and this is why L.C. Young [Young] introduced
illuminating probabilistic concepts , known as "Young's measures”, to describe the behaviour of
oscillating minimizing sequences. These techniques have been popularized and extended to other
fields by Tartar [Tartar] and used in Fluid Mechanics, for both compressible [DiPerna] and
incompressible [DiPerna & Majda] flows, through the concepts of "measure-valued solutions”.
Unfortunately this last concept is essentialy Eulerian and not Lagrangian, in the sense that it is



based on the description of the motion in terms of velocity fieids (through equations (1.1...4))
rather than flowmaps (through (1.6...11)). Therefore, it does not seem suitable for the shorest
path problem here considered and a different (but consistent) concept will be introduced in this
paper. Before desctibing what we believe to be the right probabilistic concept for our problem, let
us first consider an intermediate generalization that turns out to be inadequate but shows interesting
features. Indeed, it is 2 natural probabilistc idea to replace the concept of volume preserving
mappings by the one of "doubly stochastic probability measures” on the product space XxX. This
is classical in the litterature devoted to the Monge-Kantorovitch problem [Rachev] and has been
recently used by the author [Brenier] to define the rearrangement of vector fields. A doubly
stochastic probability measure on XxX is a positive Borel measure p(dx,dy) such that

(1.26) fX X f(x)u(dx,dy) = X f(y)p(dx,dy) = fx f(x)dx, for each fin C(X).

To any volume preserving mapping h in S, one can associate a unique doubly stochastic probability
measure Wy, defined by @

(1.27)  py(dx.dy) = 8(y-h{x))dx, i.e. fxxx f(x,y)uy(dx,dy) = fx f(x,h(x))dx, forfin C(XxX).

Indeed, if h belongs to §, then, for each f in C(X):
i s EORR(Ex.Ay) =/ f000dx,
'[X X f(y)up(dx.dy) = fX fth(x))dx = fX f(x)dx (since h is volume preserving).

By (1.27), S can be identified as a subset of P, the set of all doubiy stochasic probability measures .
on XxX. In the same way as S was conjectured to be the strong L2 closure of G, we believe that P

is the weak-* closure of S. Once again, since such a result is probably available somewhere in the

litterature and not strictly necessary for our discussion, there will be no attempt to prove it here. It

is now tempting to solve the shortest path problem in the class of ime parameterized families of
doubly stochastic probability measures on XxX:

(1.28) te[0,T}— u(t; dx,dy) € Prob(XxX).

(t ; dx,dy) can be interpreted as the probability for a particle to go from x at time 0 to y at ime t. It
is now easy to translate the inital and final conditions (1.21), as well as the incompressibility
condition (1.22) in termsof 1. :

(129)  p(0; dx,dy) = 8(y-x)dx , W(T ; dx,dy) = 8(y-h(x)dx



(1.30) fXxX f(y)u(t; dxdy) = fx f(x)dx for each f in C(X) and tin [0,T].

Unfortunately, at this point, it becomes extremely hard to define the Action in terms of 1 and this is
why this approach is given ep in this paper. The main tronble is the lack of dynamics in the
description of a generalized flow as a one parameter family of doubly stochastic probability
measures (similar problems have been discussed in the case of hyperbolic systems of conservation
laws [DiPernal). Indeed, the Action involves the velocity of the pardcles and it is therefore
necessary to consider not only the probability that a particle issued from x at time O reaches y at
time t, but also the probability that it goes from xg at time tg to x; at time t; when t and tg are
infinitesimaly close etc...In this paper, a richer concept is used that fully takes into account the
dynaxmcs of the particles : to each path t € [0,T]— z(t)e X one associates the probability that it is
followed by some material particle. This defines generalized flows as probability measures on the
set.  of all possible paths. Obviously this kind of idea is rather common in both statistical and
quantum physics, but, surprisingly, seems ignored in continuum mechanics. It is also closely
related to the concept of path integrals [Reed & Simon] as well as the construction of the Wiener
integral. The nicest feature of the new framework is the fact that i) initial, final and
incompressibility condidons are (w-* continuous) linear constraints on the set Prob(L2), ii) the
Action turns out to be nearly a linear functional. Therefore, one obtains what we could call
(following the terminology used for the Monge-Kantorovich problem [Rachev]) a “continuous
linear programming problem", for which it is rather easy to prove the existence of an optimal
generalized flow. Then, it is not difficult to check that classical solutions to the Euler equations
cannot be missed in our framework : in any case, under some natural resrictions on the tunc scale,
the corresponding flow is the unique solution to the generalized shortest path problem Moreover
there are examples of optimal generalized flows that are not deterministic and can be explicitly
computed. Finally, one can formally 'derive from any optimal generalized flow a corresponding
"measure-valued solution” to the Euler equations in the sense of DiPerna and Majda.

'The paper is organized as follows :

section 2 : a probabilistic concept of generalized flows ;

section 3 : the generalized shortest path problem ;

section 4 : a complete existence result in the case of the d-dimensional torus ;

section 5 : classical solutions and generalized solutions ;

section 6 : explicit examples of non deterministic generalized solutions to the Euler equations ;
appendix : a formal link with the measure-valued solutions in the sense of DiPerna and Majda.



2. A probabilistic concept of generalized flows.

Here X is a compact set in R4 and dx a probability measure on X (X can be a manifold and dx can
be differemt from the Lebesgue measure). T>0 is a fixed time. Sometimes,  will denote the set
[0,T]xX and t a generic finite subset {t;,....t;} of [0, T].

The product space : Q = XI[0.T}, which is the set of all paths z : t€{0,T]= z(t)e X, is compact
for the product topology. A function F defined on Q can be viewed as a "path functional” and,
therefore, the notation F[t— z(t)] will be sometimes used instead of F(z). Given a finite subset
t={t}.....ty} of [0,T] and a continuous function f on X0, F(z) = f(z(t;),...,2(ty)) defines a
function on Q which is always continuous for the product topology [Reed & Simon]. The
function(al)s of this kind will be called "continuous functionals of finite type”. By
Stone-Weierstrass' theorem, the set Cg,(Q2) of all such functionals is a dense subspace of the space
C(Q) of all continuous functionals on Q. C(Q) is a Banach space for the sup-norm and the dual
space C(Q)' is exactly the set of all positive Borel (Radon) measures on Q. Our first result is
elementary but essential for our purposes :

Proposition 2.1.

eLet g be an incompressible flow on X that reaches a "final configuration" h € S atdme T (in
the sense of (1.21-22)).Then there exists a unique probability measure q on £2 defined by :

@1) [ F@q(d2) =/ F [ tog0)dx, for each F in Cp, (D).

q satisfies the following properties :

22 [ fato)a€z) =/, fx)dx, foreach fin C(X) and tg in [0,T],
@3) [of@0),(T)adz) =/, fx,ym@dx.dy), foreach fin CXxX),
where Tj(dx,dy) = 8(y-h(x))dx defines a doubly stochastic probability measure on XxX, i.c.

Q@ [ o fOMAxAy) =/ _y fMAxdy) =/ f()dx, for each fin CX)e

Proof

oIf F belongs to Cﬁn(ﬂ), it can be written as :
F(z) = f(z(1y),...,2(t,)) for some finite set (ty,...,t;} and some continuous function f on X" .

Thus formula (2.1), that can be rewritten as :



2.5) [ f@(t),..2())a(dz) =f, £(g(t,X),....e(tpX))dx,

defines a unique positive linear functional on C._(£2) and therefore, by density, a unique positive
Borel measure q on 2. Since dx is a probability measure, q is also a probability measure. Property
(2.2) is a straightforward consequence of the incompressibility condition (1.22) and (2.3}
immediately follows from conditions (1.21) and definition {2.5). Since h is a volume preserving
mapping, the correponding measure 1 is necessarily a doubly stochastic probability measure, as
has been seen in section 1. Proposition 2.1 suggests the following :

Definition 2.2.

«Any probability measure g on £ is called a "generalized flow". If (2.2) holds, we say that q is
incompressible. Any doubly stochastic probability measure 1 on XxX is called a "(generalized)
final configuration”. If q satisfies {2.3), we say that q reaches the final configuration | at ime T

There is no doubt that generalized flows and final configuradons can be approximated (in the
weak-* sense) by classical flows (at least when X is a nice d- dimensional domain, with d 2 2).
Since this result is not, strictly speaking, necessary to our discussion, no proof will be provided
here.

As an obvious consequence of Proposition 2.1 and Definition 2.2, one finally gets:

Proposition 2.3.

oFor the wezk-* star topology, on C(QQ)', the set of all "generalized incompressible flows” is
compact. The same is true for the set of all generalized flows that reaches a given final
configuration at a given time T, and for the set of all such flows that are incompressibles
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3. The generalized shortest path problem.

In order to keep notations as simple as possible, integrals with respect to t (resp. x, resp. x and y,
resp. z) are implicitely performed over {0,T] (resp. X, resp. XxX, resp. L), the initial density py is
simply denoted by p.

In the previous section, it has been established that one can associate to any classical flow g a
unique generalized flow q defined as a probability measure on 2 by (2.1). A formal substitution

into (2.1) of F(z) =/1z'(t)i%dt leads to:
(3.1) [z (n2dt q(dz) = /[ 1dg(t.x)i2dt dx.
In the same way, by substituting for Finto (2.1) :

(3.2) a(z) = pO) {2 1Z'(®Ndt - fU,z(t)dr),

one gets the formal identity :

(3.3) [p@O)(12/ 1z@id - fUzw)dt)qdz) = [/ p&x){1/2 13;g(t,x12-U(tg(t,x)} dt dx.

These formulae provide formal but simple definitons of the kinetic energy and the Action as linear
functionals on the set of all generalized flows. The goal of this section is to get rigorous definitions
and, then, to show that the shortest path problem, set in the class of all generalized incompressible
flows, always has a solution provided that the final configuration can be reached by at least one
generalized incompressible flow having a finite kinetic energy . To state these results, we need :

Assumption 3.1.

«p is a lower semi-continuous mapping from X into [0,+e=[ and belongs to Lr(X) for some 1,
1€r<4o0 ; U is in LS(J0,T]xX) if r>1, and in C([0,T]xX) if r=1, where 1/r+1/s=1.

Then, we have one of our main results :

Theorem 3.2.

«For any generalized incompressible flow g, the generalized kinetic energy :
(3.4) E(q) = [ pz(0))/ 1212/ (t)12dt q(dz) is well defined in [0,+¢].
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If E(q) is finite, then one can define the generalized Action :

(3.5) A@= /[pEON/ ymz(2dt - SUGzM)d) q(d2).
»For any generalized final configuration 11, if there is one generalized incompressible flow that

can reach 1 at tme T with a finite kingtic energy, then there is such a flow that

Actione
The proof is based on several technical results :

Proposition 3.3.

oFor any z in Q, let us define :
e(z) = 0 if p(z(0)) =0,
B6) ¢(2) = p(2(0))/ 1202124t if zis in the Sobolev space H!{0,T] and e(z) = +e otherwise.

Then e is a lower semi-continuous mapping from  into [0,+e<] and the upper integral :
G717  E@=/"e@qd)

defines a (weak-*) lower semi-continuous mapping from the set of all probability measures on Q,
Prob(£2), into [0,+e<], Moreover :

(3.8) E(g) = sup { / e.(z) q(dz) ; t finite subset of [0,T]], where :
(3.9 CT(Z) = p(Z(O))Z 1/2|[Z(tk)-2(tk~1)“2 (tk°tk-l)-1 for T=(t1,.4 .,In}, OSIIS.. .Sl’.ng,
defines a lower semi-continuous mapping from £ into [0,4o[e

Proposition 3.4.

- oFor any generalized incompressible flow q such that E(q) is finite,

(3.10) V(@) = p@O)/ Ultz()dt
is well defined as a g-integrable function on Q and :

3.1 [IV(@)lgdz) < liplly ¢ UM 5.

(3.12) Ifp=cst=1,then [ V(z2)q(dz) = [/ U(tx)dt dxe

Proposition 3.5.

oIf (q;,) is a sequence of generalized incompressible flows, with uniformly bounded kineric
energy, that converges toward q in the weak-* sense, then :
E(g) < lim inf E(qy,) and / V(2)q(dz) = im / V(z)qy(dz)e



12

Proof of proposition 3.3.

» According to classical results [Bourbaki, Integration] on the integration of lower semi-continuous
(1.s.c.) functions valued in {Q,+<c], it is enough to prove that i) the family (e¢), where t={t;,....t;}
0< ty<...<t,<T are arbitrary finite subsets of [0,T], is a filtering increasing family of positive
Ls.c. functions defined on £, ii) € can be written as the supremum of the e .

i) p is a positive L.s.c. mapping from X into [0,+e{ and, thus, z->p(z(0)) 1s also positive and
L.s.c. on Q for the product topology ; z— X #z(ty)-z{ty. | H2 (-t} is a positive "functional of
finite type”, continuous on 2. Therefore, as a product of a L.s.c. function by a continuous function
that are both valued in [0,+oe], each e, is also L.s.c and valued in [0,+<[. The fact that (eg) (which
is not a countable family !) is filtering increasing follows from the Cauchy-Schwarz inequality.
Indeed, for any sequence 0< t;<...<t,<T, we have :

Nz(te)-z(t P (gt S Tyop  Mzty)-20tg DI (e-tyq)!

Therefore, given two finite sets T, 17 in [0,T], by setting T3 = T;T) , one easily deduces :

er, 2 max{eq,, erz). This precisely means that (e) is filtering increasing.

ii) Let us now prove that e=e¥, where ¢ = sup ey in two steps :

a) if z belongs to HI[0,T] , then e¥ (2) S e(z) < +eo;

b)if e (z) < 4o, then :

either p(z(0))=0 and e¥ (z) = e(z) or z belongs to HI[0,T] and e(z) € e (2).

The first statement is another trivial consequence of the Cauchy-Schwarz inequality, since, for any
z in H}0,T] and any set t={ty,...,t;}, 0< t;<...<1;<T, one has :

Tpe2.n Nzlt)-z(te 2 (-t )1 < Sz’ (O,

and, thus, e (2) S e(z):

Let us now prove the second statement. Let z be a path such that eP(z)<toa, If p(z(0)=0, then
both e(z) and ef(z) are equal to zero. Let us consider the case when p(z(0))>0. For each pair
t)<ty, we get for t={t},1}: eq (2) = pONNz(ty)-z(t N2 (tp-t1)"1 < eF(z)<+eo. Thus, z is

necessarily Hélder continuous from {0,T] into X, and it makes sense to consider its derivative z'in
the sense of distributions. For any C* compactly supported mapping £ from [0,T] into RY,

o <z>=- JE'®.z(t)dt. Since {,{' and z are continuous, for any >0, one can find a finite set

t={t},-.,tp}, O=t;<...<t,=T, such that :

-<z2.0> - Zioq g Gl )-8 2() I S 2

| 2y M2ty ) - SUG@OIdE ] <6

Since { vanishes at 0 and T, one gets :
Zge=1.0-1 Gt )-8t z(ty) = -Zieaz n (2(-2(tc. 1)) St
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S (T n N1z€ty)-2(b DI (-t 1) V2 (Zan W2 (-t 1)) 12

< (p(2(0)) 1e#@)V2 ( [uf(tynZdt +€)1/2

Thus :

1<z,0> | <& + (p(z(0N-1eF (212 ( [ul(in2dt +¢)1/2

Since € is arbitrary, it follows that z belongs to HI[0,T] and /fiz'()i2dt < p(z(0))-1e#(z). Thus
e(z)s.e#(z}, which proves statement b) and, therefore, achieves the proof of Proposition 3.3

Proof of propositions 3.4 and 3.5.

.Since p is a positive integrable l.s.c. function on X, for each integer n>0, there exists a
continuous approximation py, such that 0 <p, <p and li py-p i L1s 1/n.

Since U is’in L3([0,T]xX) if r>1, and in C({0,TIxX) if r=1, where 1/r+1/s=1, there is, for each
integer m>0, a Lipschitz continuous approximation Uy, such that : # Uy-U Nl g < 1/m.

To show that V(z) = p(z(0)) S Ut,z(H))dt can be well defined as a g-integrable function for any
generalized flow q having a finite kinetic energy E(q) = / *e(2) q(dz) <+, let us introduce, for
any integers n,mk>0, the following approximations to V (where T=1 is set for simplicity) :

(3.13)  Vamk®@ = pp(0) k1 Zing y Un(/k,z(Gk),
(3.14) V() = 0if py(z(0)=0, and p,(z(0)) [ Um('t,z(t))dt if z belongs to H.

Notice that V., is defined g-almost everywhere, since E{(q) is finite, which implies q-almost surely
either p(z(0))=0 (and therefore p,(z(0))=0) or ze H1. Also notice that, in the special case when p is
identically equal to 1, one can take p,, identically equal to 1, and, then, since q is assumed to be
incompressible :

(3.15) [ Vym(@q(d2) = k! Zpey i S U(/kx)dx G p=1).

By integrating in z over {2, we get for any n,n’,m,k :
S WV (@)-Vome@)! q(dz) < sup U} [ 1pn(z(0))-pp(z(0))! q(dz)

=sup Wyl lipg-ppll; 1 (since q is incompressible).

By using Holder inequalities (twice), we also get for any n,mm',k :
IV ok @V @1q(dz)S(/pn (200 q(dz) Ve(k 1 Ei. 1 3/ Wi (7,2G/K)- Uy (/. 2G/K))Sq(dz) ) s

= (fpa) )V (K 1Eiy g [1URG/Kx)-Upe(Gllex)is dx)V/s (since q is incompressible).
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It follows that - _
G.16) NV VameH 1 S UpH (1 UpUpll sy BN Cm+Cm))
where ¢, depends only on Uy, and 8(k) tends to 0 when k tends to+ee.
In the same way, one obtains :
G17) WVl 1 SHPI  (WURN | 54 8(K) cpp).
In the special case p=1, one also gets :
(3.18) 1/ Vpm(2)q(dz) - [/ Uptx)dtdx1 Skleg,
Let us now consider a path z such that p(z(0))>0. It belongs to H1{0,T] g-almost surely and
therefore ;
Vamk@-Vam(@! S poz(0)) ke, S+ IZ2@Dde £ 2p,(z(0)) k'ley, ([ 1+ IZ®)R)dt Y172,

I p(z(0))=0, then p,(z(0))=0, and the right-hand side is anyway equal to zero. Thus, after
integrating with respect to z over £2, one gets (by using the Schwarz inequality):

SV omk(@-Vam(2la(dz) £ 2k-leg, (/paz0)a(dz)/ paz(0)) /(1+ 1222t q(dz)) 12

Since q is incompressible, one has :

/ Pa(z(0))q(dz) = [ py(x)dx < fp(x)dx,

and it follows that :

(B.19  "WVymk-Vam ! Ll <1k cc_ {where ¢ depends only on E.(q) and lipll LD

These estimates show that, for any integer i>0, one can choose m=m;, then n=n;, k=k;, in such a
way that wi:v“imiki satisfies :

(3.20) =& Vaim- Wil L1 S,

(3:21)  WWp Wil S1i+ 1A,

(3.22) #Wil  <tipll . (nUn Ls+14),

and: :

(3.23) | fW,qdz)- [fUGx)dtdx| <14 if p=1.

It follows that (W) is a Cauchy sequence in L1 and has a unique limit V, that can be formally
defined by (3.10) :  V(2) = p(z(0)) f U(t,z(t))dt. Moreover :

(3:24) WV <uph 80U g

and:

(3.25)  [V(z)(dz) = [/ U(tx)dt dx if p=1.

This achieves the proof of proposition 3.4.

To prove proposition 3.5, let us consider a sequence (q,) of generalized incompressible flows that
weak-* converges toward q and satisfies : sup E(qy,) < +eo. Necessarily, q belongs to the set of all
generalized incompressible flows since this set is weak-* close (Proposition 2.3). Moreover, the
generalized kinetic energy E is weak-* Ls.c. Therefore, E(q) < lim inf E(qy,;) < +ee, which proves
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the first part of proposition 3.5. To prove the remainder, let us first remark that all the estimates
that have been previously obtained for the Cauchy sequence (W;) are uniform in g, as long as E{q)
stays uniformly bounded. It follows that the L1(Q,q;;) norm of V-W; uniformly goes to 0 when i
tends 10 +oeo. Since each W is a continuous functional (of finite type) and qg, converges toward q
in the weak-* sense, we get, for a fixed 1 :

I Wy(2)a(dz) = lim / Wi@)am(d2).

Then,the fact that V is uniformly (with respect to m) approximated by W; shows that V is
g-integrable and :

[V@)q(dz) = lim / V(@)gm(dz).

This achieves the proof of proposition 3.5s

Proof of Theorem 3.2.

eLet us call Py the set of all generalized incompressible flows q that reach 1) at time T with a finite
kinetic energy E(q)<+ee. By proposition 3.4, for each q in P11 , V(z) = p(z(0) S U, z(D))dt
defines a g-integrable function and, by (3.11), [V(z)iq(dz) is uniformly bounded by a constant
C that depends only on p and U. Therefore, one gets for each q in Py;:

-0 < -C S A(Q) = / (V(2)+¢(2)) q(dz) S E(Q) + C <o,

Thus, there certainly exists a minimizing sequence ( g, ) in Pp, such that :

Hm A(qy,) = AQpt = Inf{A(g), g in Pﬂ } and : C'= sup A(gy) < +e=.

By proposition (2.3), it is not a restriction to suppose that ( q, ) converges toward a generalized
incompressible flow q that reaches 7 at time T. Moreover since : sup E(qp) £ C+C' <+,
proposition 3.5 can be used. Thus : E(q) < lim inf E(qn) and / V(z) q(dz) = lim / V(z) qn(dz). It
follows that q has a finite kinetic energy and A(q) € lim A(qp) = Agp, Which shows that g is
optimal and achieves the proofe



16

4. A complete existence result in the case of the d-dimensional torus.

By theorem 3.2, we know that, for a given T>0 and a given final configuration 7}, there exists an
optimal generalized incompressible flow that minimizes the Action, provided that T can be
reached at time T by at least one generalized incompressible flow with finite kinetic energy. Thus
our main concemn is now to exhibit such a flow. A complete answer can be obtained in the case of
the d-dimensional torus X=Rd/Zd (that is the d-dimensional unit cube with periodic boundary
conditions) or, slightly more generally, in the case when X and dx satisfy :

Property 4.1.

o There exists a constant 'C and a measurable mapping (t,x,y)—7¥(t,x,y) from [0,1]xXxX into X
such that :

(4.1)  vO.xy)=x, X1.xy)=y ;

4.2) fuogy (tx,yN2dt < C, for almost every x,y in X ;

4.3y ffevx,y)dxdy =/ f(x)dx for any f in C(X) and any t in [0,1]e

This property is satisfied by X= R%/Zd and dx=Lebesgue measure, once one defines t—¥(t.X,y) to
be the geodesical path between x and y, which is uniquely defined for almost every pair of points
on the torus. Indeed, (4.1-2) are obvious and, from the straightforward translation invariance
property :

(4.4) yx,y)=x+ ¥(t,0,y-x),

one easily deduces for any f in C(X)} :

Jtauex,y)dxdy = [ffx+ ¥(1.0,y-x)dxdy = [/f(x+ ¥(t.0.y)dxdy' = [/ f(x)dxdy" -/ f(oas.

Thanks 1o property 4.1, we can prove our main result :
Theorem 4.2.

«Assume that X=R9/Z4d (or property 4.1 holds); p is a lower semi-continuous mapping from X
into [0,+co[ and belongs to LT(X) for some r, 1<r<+ee ; U is in L3([0,T]xX) if r>1, and in
C([0,T]xX) if r=1, where 1/r+1/s=1. Then, for any final configuration 1 (i.e. any doubly
stochastic probability measure on XxX) and any final time T>0, there exists a generalized
incompressible flow that reaches 1 at ime T with a finite kinetic energy and minimizes the Action :

A(Q)=/p () { firiz'(th2dt- fU(L,z(1))dt}q(dz)e

This result is a straightforward corollary of theorem 3.2 and :
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Proposition 4.3.

oI X=Rd/Zd then for any final configuration 7} and any final ime T>0, there exists a generalized

L L e ] RELLEEE pE L =7

incompressible flow q that reaches 7 at time T with a finite kinetic energy :

E(q)=/p(z(0)).fi/21z (t)12dt q(dz) < 2¢/T [ p(x)dx
where C is the constant considered in property 4.1e

Proof of proposition 4.3.

«Let us explicitely define q by :

4.5) [E@qdz) =fff F[ t—=Gtx,x,y)] n(dx,dy)dx’, for each F in Cgn(€2),

where :

(4.6) G(t,x,x.y) = yRUTx,x) if 0si<T/2, ¥(2-2¢/T.xy) if T/2<i<T.

This intuitively means that a particle issued from x at time O can reach at time T/2 any pointx'in X
with the same uniform probability and then reaches y at time T according to the probability law
1(dx.dy). During the intermediate times, 0<t<T/2 and T/2st<T, each particle follows a geodesic
on the torus.To prove proposition 4.3, it is sufficient to check that i) q is a generalized
incompressible flow, ii) q reaches | at ime T , iii) q has a finite kinetic energyv.

i) G is a measurable mapping from [0,11xXxX into X and (4.5) defines a generalized flow on X.
To check that q is incompressible, let us fix t in [0,T] and f in C(X). For 0<t<T/2, one has :
Jfz(W)q(dz) = [f/f(¥(2yT.x,x)) n(dx.dy)dx' (by definitions (4.5-6))

= [/ f(y(2y/T x,x"))dxdx’ (since 7 is doubly stochastic)

= ff(x)dx (by property (4.3)). One gets the same result when T/2<t<T, for the same reasons.

ii) For any f in C(XxX), one has : -

SEz(0),z(T)a(dz) = f/f f(G(O,x,x',y),G(T,x,x’y)) n(dx,dy)dx' (by definition (4.5))

= f// f(x.y) n(dx,dy)dx' (by definition (4.6) and property (4.1)) =/f/ f(x,y)n(dx,dy).

Thus, g reaches 1 at time T.

iii) By definition of q, one immediately gets :

E@)=/// p(G(0,x,x",y)/1/218,G(t.x,x’,y)I2dt] n(dx,dy)dx’ (definition (4.5))"

= 1T/// pCOL ¢y (T.x,xM2dT + [1dey (1,x,y)l%dt ] n(dx,dy)dx' (by definition (4.6) ; here the
dt-integrals are performed over the unit interval {0,1])

< 2071 fff p(x) n(dx,dy)dx' (by definition of C in property 4.1)

=2C/T ,/b(x)dx (since 1 is doubly stochastic).

This achieves the proof of proposition 4.3
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5. Classical solutions and generalized solutions.

In this section, it is shown that, under a natural restriction on the time scale, any classical soluton
to the Euler equations satisfies the generalized Least Action principle and is the unique solution to
the corresponding generalized shortest path problem.This is a consequence of the following result :

Theorem 5.1;

« Let g be a generalized incompressible flow and let 7] be the final configuration that it reaches a:
time T. Assume that :

(5.1) p is bounded away from zero by some constant & >0 ;

U is Lipschitz continuous on Q = [0,T]xX and there is a constant C such that :

(5.2) D2U(t,x) £C (in the sense of distributions and symmetric matrices);

there exists a Lipschitz continuous "pressure field" p(t,x) on Q such that :

(5.3) D2p(t,x) <R holds (in the same sense as above) for some real constant R;

g-almost surely, a path z in Q belongs to the Sobolev space H![0,T] and sadsfies the ordinary
differential equation :

(5.4) pz(ON{z"(®) + gradU(t,z(1))} + gradp(t,z(t)) = 0, in an appropriate sense ;

the kinetic energy E(q) is finite.

Then ( satisfies the generalized Least Action Principle in the sense that it minimizes the Action
A@=/pz0)){ firiz'()IRdt- fU(t,z(t))dt} q(dz) among all generalized incompressible flows that
reach the same final configuration 7 at time T, provided ihat inequality:

(5.5) (Ra-l+ C)T2 < 72 holds. ' ‘

If this inequality is strict, then q is the unique minimizer and has the following "determinisac”
property : g-almost surely, two paths z and 2* that satisfy z(0)= z#(0) and z(T)= z*(T) are equal.
Conversely there are cases when either g is not the unique minimizer or q is not "deterministic” and
(5.6) Rol+ OT2 =12,

Before proving theorem 5.1, let us introduce some notations and prove some technical results. For
any path z in H![0,T], let us define :

(5.7) B =/ {pEON[121z'WI2 -Ut,z()] - pt.z() }dt,

and, foranyxandyin X :

(5.8) b(x,y) = Inf {B(z), ze Q, z belongs to H![0,T], z(0)=x and z(T)=y}.

Then ,we have :
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Lemma 5.2.
«Under the same assumptions as in theorem 5.1, if inequality (5.5) holds, then g-almost every
path z satisfies :
(3.9) B(z) = bz(0),z(T)).
If the inequality is strict, then, for any path ¥ that belongs to HI[0,T],
(5.10) B(z) = B(z¥), z(0) = z#(0), z(T) = z¥(T) imply : z=z"s

Proof of lemma 5.2.

oLet us first remark that, by definitions (5.7-8) of B and b, we obviously have :
(5.11) B(z) = b(z(0),z(T)), for any path z that belongs-to HL[0,T].
Lemma 5.2 says that the corresponding equaliry holds g-almost everywhere on Q2 as soon as
inequality (5.5) is satisfied. Moreover, it says that, q-almost surely, there is only one z such that
B(z) = b(z(0),z(T)) when z(0) and z(T) are prescribed and inequality (5.5) is strict.
Let us pick up an arbitrary path z in Q. By assumption, g-almost surely, z is in H}{0,T] and is a
solution to the ordinary differential equation (5.4), which exactly means that the first variation of
B(z#) (defined by (5.7)) vanishes at z# =z, when z¥ is an arbitrary path in H![0,T] such that
7#(0)=2(0) and z#(T)=z(T). It does not a priori mean that B(z*) is minimal at Z* =z. This is why
we need inequality (5.5) to make sure that z actually is 2 minimum point (and not a maximum or a
saddle-point). The proof is an elementary application of the Poincaré inequality. Let us first
introduce some notations :
(5.12) B =p@(0)), K =BC +R (C and R are defined in (5.2-3)),
(5.13)  (t,x) = K212 - BUCLX) - p(t.x) = B(1/2 Cix42 - U(,x))+ 12 R I - pt,x).
Since both p and U are Lipschitz continuous on Q and satisfy (5.2-3), it follows that ¢(1,x)is
Lipschitz continuous and convex in x.Thus, one gets :
(5.14)  o(LZHD)2 ¢(Lz(t)) + wir).(z¥(0)-2()), for every paths z*, z in H1[0,T],
and any measurable curve te [0,T]—=w(t)e Rd such that :
(5.15) w(t)e 3d(t,z(t)) a.e.on 0<t<T, where a¢(t,.) is the subdifferential of o(t,.)
[Ekeland & Temam)]. Equation (5.4) can be rewritten more accurately as a "multivocal” o.d.e. :
(5.16) Pz"(t) + Kz(t)e 9¢(t,z(1)), a.e. on Ost<T,
which means :
5.17) [ {-Bz®.[ 2 ®)-2 O]+ [K2(0)-w()].[z#()-2(0] }dt =
for any path z# in H![0,T] such that z#(0)=2(0), z*(T)=2(T) a.nd SOme curve w that satisfies (5.15).
Because of the convexity of ¢, it follows that :

S {-BZ®.[ 2 ()-Z®+Kz(t).[2*(0)-z()] }dt < [ [9(t,z¥(1)-0(t,z())]dt,
that is :

[ { (B2 12 K22 122 + ¢(t,z(1)] - [BR1z(O2 K2 iz (12 + o(t.z#(1))] }dt

< f{- praz? -z (2 +K/2 1z (0)-z(th2 }dt .
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The left hand side is precisely B(z)-B(z¥) (by definition (5.7-12-13) of K, B, 0 and B) and the right
hand side can be estimated with the help of Poincaré's inequality :

Juz(0)-z(u2 dt < (T/m)2/ 1z#(1)-z' (1)i2dt , since z#(0)-z(0)=z#(T)-z(T)=0.
Thus, on gets :
B(z)-B(z*) < 122 ((T/m)2K-B) [ 1z¥'(1)-z'(t)i2d .
By definition (5.12-13) of K and B, (T/m)2K-P is precisely negative when inequality (5.5) holds.
Therefore B(z)-B(z*).< 0, which proves that z minimizes B among all paths z* in H!{0,T] such that
z*(0)=z(0), z*(T)=z(T). Moreover, if inequality (5.5) is strict, then z is the unique minimizer. This
achieves the proof of lemma 5.2.
The proof of theorem 5.1. uses the following result :

Lemma §.3.
o Let q be a generalized incompressible flow that reaches the final configuradon 1 at tme T with
finite kinetic energy. Assume that B(z)=b(z(0),z(T)) holds g-almost everywhere on Q2 (where b and
B are defined by (5.7-8). Then g is optimale

Proof of lemma 5.3.
«Since p is bounded away from zero and the kinetic energy E(q) is finite, Jf iz (on2de q{dz) is
also finite. It follows that g-almost every path z belongs to H[0,T] and, by proposition 3.4,
(5.18) V(2) = p(z(0))/U(t.z(t))dt
(5.19) P(z) = [p(t,z(1))dt
define g-integrable functions on Q. Moreover, (by taking p=1 in proposition 3.4) cne gets :
(5.20) [P(z)q(dz) =/ /p(tx)dt dx.
These properties also hold for any other generalized incompressible flow g* thar has a finite kinetic
energy. For such a flow, let us compute the integral of B(z) (defined by (5.7)). We have
B(z)=e(z)-V(z)-P(z) where e(z) = p(z(0)),/121z'(t)12dt. We get :
J/B@)q*(dz) = [(e(2)-V(@)q*(dz) - /P(z)q"(dz) (since e, V and P are g¥-integrable).
= [(e2)-V(2)q*(dz) - [ /p@tx)dt dx (by (5.20))
= A(g?) - / /p(tx)dt dx (by definition (3.5) of the Action). We deduce :
A(g" - A(Q) = /B(z)q*(dz) - /B(z)q(dz), since the pressure term is the same for q and g*. To
prove that q is optimal, it is therefore enough to show f B(z)q*(dz) = f B(z)q(dz). To do that, let
us consider the auxiliary function ze Q—b(z(0),z(T)). We know that B(z)=b(z((),z(T)) holds
everywhere on Q (by (5.11)), while B(z)=b(z(0),z(T)) is true q-almost everywhere, by
assumption. Thus, ze Q—b(z(0),z(T)) is g-integrable and therefore b(x,y) is n(dx,dy) integrable,
since q reaches 11 at ime T where 1] is defined by ff(z(O),z(T))q(dz) =f f(x.y)n(dx,dy) for each f
in C(XxX). It follows that ze Q—b(z(0),2(T)) is also q*-integrable, since q* also reaches i} at
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tme T. Thus :
[o(z(0),z(T)qt(dz) = /b(z(0),2(T)q(dz) = / [b(x,y)n(dx,dy),

and consequently :

frye_n o dea ot T NAR A
J B{z)q™{dz) = j 6(z(0),z! THqtdz) = fb(z(ﬂ)

which achieves the proof of lemma 3.3
Proof of Theorem 5.1

.The first statement of theorem 5.1 immediately follows from lemma 5.1 and 5.2 : under
assumptions (5.1...5), the generalized flow q is necessarily optimal. Let us now consider the case
when inequality (5.5) is strict. From lemma 5.2, it is easy to deduce that q is deterministic. Indeed,
let us consider two paths z and z# that satisfy z(0)=z*(0) and z(T)=2*(T). We obviously have
b(z*(0),2*(T))=b(z(0),2(T)) and, q-almost surely, z and z* belong to H1{0,T].Thus, by lemma 5.2

(ﬁr’ét satement), we deduce B(z)=B(z"). By lemma 5.2 (second statement) again, it follows that
z=z*, which precisely shows that q is "deterministic”.

Let us now prove that q is the unique optimal flow that reaches 1 at time T. Let us consider another
generalized incompressible flow g that has a finite kinetic energy, reaches 1 at time T and has the
same Action as q. We have seen earlier that : A(q?) - A(Q) = /B(z)q*(dz) - [B(z)q(dz)

= /B(2)q*(dz2) - /b(z(0),2(Tq(d2) = [{B(2)-b(z(0),2(T))}g*(d2).

Since B(z)-b(z(0),z(T))20 and A(q*)-A(g)=0, it follows that : B(z)=b(z(0),z(T)) holds g*-almost
everywhere on Q. We know that the same property also holds g-almost everywhere on €. From the
last statement of _lémm'a 5.2 it follows that, for g-almost every z and q¥-almost every z#,
2(0)=z*(0), 2(T)=z%(T) implies z=z*. Since q and g* reach the same final configuration, we
conclude that they must be equal.

" This achieves the proof of theorem 5.1, except for the last statement about the case when equality
(5.6) holds. There is a trivial example when (5.6) holds for which the minimizer is not unique : let
us consider the two-dimensional motion inside the unit disk of an homogeneous fluid (p(x)=cst=1)
without external forces. To reach at time T=n the "mirror” final configuration n(dx,dy) =
3(y-h(x))dx, where h(xj,x3)=(-x1,-X2), there are two different classical solutions to the Euler
equations corresponding to two rotational flows with opposite constant angular velocides :

g:(t, X1,Xg )=( X cos(ED)+ xo sin(gt), - X sin(et)+ x4 cos(et) ), Ost<w, e=*1.

In both cases the pressure field is p(tx)=1/2xi2 and thus R=1. Since a=1 and C=0, equality (5.6)
becomes RT2=nr2 and therefore is trivially satisfied.

There are also cases when (5.6) holds for which solutions to the shortest path problem are not
deterministic. This will be discussed in section 6.
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6. Explicit examples of non deterministic generalized solutions to the Euler
equations.

In this section, explicit examples of solutions to the generalized shortest path problem are obtained
in the case of homogeneous (p=1) fluids without external forces (U=0). These solutions are of the
form considered in section 5 and theorem 5.1 : the generalized incompressibility condition is
satisfied, their kinetic energy is finite and there exists a smooth pressure field p such that each
trajectory z satisfies the dynamical equation : z"=-gradp. Therefore, they satisfy the least action
principle in the sense that they are solutions to the generalized shortest path problem, provided that
the final time T is not too large. Since the trajectories are not deterministic in general, these
solutions can be considered as probabilistic generalized solutions to the Euler equations. In each
case, the corresponding velocity field is a stationnary measure-valued solution in the sense of
DiPerna and Majda. The first step to get these explicit solutions is :

Proposition 6.1.

oLet p be a "pressure” field given in W2:=(Rd) and G be the global flow map :

6.1) (tx.veRxRIxRI = (X(t,x,v),V(tx,v))e RdxRd,

corresponding to the ordinary differential system in R2d : x'=v, v'=-gradp(x).

Assume that, for some real ¢, X={xe R9 ; p(x) < ¢} defines a smooth compact subset of R4 of
Lebesgue measure equal to 1.Then K={(x,v); p(x)+122livii2 £ c}defines a compact subset of
RdxR4, invariant under G, and its x-projection is X. '
Let u(dx,dv) be a probability measure on K, invariant under G, ie.

(6.2) [/t x,v),V(tx,v)u(dx,dy) = f/f(x,v)i(dX,dv), for any time t and f in C(K)

Then p(dx,dv) always is a stationnary measure-valued solution to the Euler equations [DiPerna and
Majdz]. Given T>0, the generalized flow q defined by :

(6.3) [F@q(dz) =/ F [t=X(t,x,v)] u(dx,dv), for each F in Cgq(Q), Q=XI0.T],

is incompressible on X, if and only if :

(6.4) forany fin C(X), [/f(o)u(dx,dv) =/fx f(x)dx.

Moreover, if D2p(x) £ 72/T2 holds a.e. on X, then q solves the shortest path problem for the final
configuration 1} defined by :

(6.5) [fax fxyMdx,dy) = fF f(x,X(T,x,v)i(dx,dv) for any f in C(XxX)e

Remark.
oIt is very natral to consider p(dx,dv) as the (time independent) velocity field associated with q.
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SEz().2(tXa(dz) = ff FXt,xv),V{tx,v)i(dx,dv) (by definiton (6.3)) = [/ f(x,v)p(dx,dv)
(by property (6.2))e

Proof of proposition 6.1.

«Since p belongs to W2=(Rd), (x,v)—(v,-gradp(x)) defines a Lipschizz continuous vector field on
RdxRd and the flow map G is globally defined on R x Rdx R4. Since H(x,v) = p(x)+1221IvIiZ is
constant along each trajectory, K is invariant under G ; it is also easy to check that K is compact
and X is the x-projection of K.

Let us first prove that u(dx,dv) is a time independent solution to the Euler equations in the sense of
DiPerna and Majda. From the invariance property (6.2), one deduces for any time t and any
Smopth bounded function f defined on X :

(6.6) JIEX(txv)pdx,dv) = ff fxp(dx.dv),

6.7)  [IVExvEXaxvrdx,dv) = [/ vixpdz.dv).

Since (X(t,x,v),V(t,x,v)) is solution to x'=v, v'=-gradp(x), by expanding these equalities with
respect to t about 0, we deduce :

(6.8) [fv.gradf(xp(dx,dv) = 0, Jff[v(v.gradf(x))-gradp(x)fixilu(éx.dv) =0,

which means that L is a time independent measure valued solution o the Euler equations [DiPerna
& Majda]. Let us now consider the generalized flow q defined by (6.3). This flow is well defined -
on X since for y-almost every (x,v) in R9xRY, the curve t—X(tx.v) is valued in X (indeed G is
invariant under G and X is the x-projection of K).

The 'mcompfessibiliry conditon means f f(z(1))g(dz) = Jf(x)dx, for anv t and f in C(X). Since,
from definition (6.3) and property (6.2) [ f(z(t))q(dz) =// f{X(tx.v)pldx.dy) = [/ f(x)pdx,dv),
it follows that q is a generalized incompressible flow on X if and only if condidon (6.4) holds. The
kinetic energy of q; which is exactly equal to 1/2/f/1Ivi2ji(dx,dv), is finite. Finally, since q-almost
every path z in Q is of the form z(t) = X(t,x,v) and is solution to the ordinary differental equation :
z"=-gradp(z), it follows from theorem 4.1 that q is a solution to the generalized shortest path
problem for the final configuration 1} given by (6.5), which achieves the proofe

Among the invariant positive measures for the Hamiltonian system x'=v, v'=-gradp, there is
obviously dxdv (by Liouville's theorem) and also any measure L of the form :

(6.9) p(dx,dv) = A(H(x,v))dxdv, H(x,v) = 122IIvii2 + p(x),

where A, is an arbitrary positive function (indeed, H is constant along the trajectories).

For these measures, that are uniform on each level set of H, we have :



24

Proposition 6.2.

oIn the same conditions as in proposition 6.1, let Y be a probability measure of the form (6.9) .
Then, although y always is a measure valued solution to the Euler equations in the sense of
DiPerna and Majda, the corresponding generalized flow q defined by (6.3) is incompressible (and,
therefore, solves the generalized shortest path problem) only in the following cases :

i) A(t) = Cst. 8(t-c), when d=2 ; ii) A(t) = Cst. (c-1)"12, when d=1 ; iii) and never when d=3e

Proof of proposition 6.2. _
oIf u is of the form (6.9), and more generally if y is a measure depending only on x and livil
{which means that, at each point x, the velocity is isotropically distributed), then it is automarically
a measure solution in the sense of DiPema and Majda.
Indeed, if p(dx,dv) = o(x,livi)dxdv, one gets :
J/vfudx,dvy = ffv oxvIDE(x)dxdv= 0,
Jfvivifoptdx,dv) = ffvivjolxivinixidxdv= 8 fo()f(x)dx. where :
d(x)=Vd [V o(x,lIvidv.
Then, it is easy to check that { is a measure valued solution to the Euler equations.
Conversely, the requirement that the associated generalized flow q is incompressible (and,
therefore, satisfies the generalized least action principle, in the sense that it is a solution to the
shortest path problem when T is not too large) is considerabiy more resuictive. According to
proposition 6.1, this happens if and only if property (6.4) holds.
Since p(dx,dv) = A(12ivliZ+p(x))dxdy, this exactly means :
/ AQ121vi2+p(x))dv = 1 if x belongs to X, 0 otherwise, and, therefore, is equivalent 1o :
S AG2viz+s)dv = 1 if s<c, 0 if s>c, since X=(xe R4, p(x) < c}. Finally, by using polar
coordinates, we see that A must satisfy the following classical Voiterra equaton :
(6.10) Cy [ Mr + s)rdi2-1dr = 1 if s<c, 0 if s>c,
where C, is a numerical constant depending on the space dimension. This equation as no positive
solution when d=3. The unique solution is (up to a multiplicative constant depending on d) :
(6.11) A(r)=8(r-c) when d=2
(then X is not a function and {(6.9) is more a convenient notation than a rigorous definition).
(6.12) A(n)= (c-ry”ifr<c, 0if r2c, when d=1.
This achieves the proof of proposition 6.2

This result allows us to construct a large familly of generalized solutions to the Euler equations in
dimension 2 and...1 ! Let us consider the simplest examples, when :

(6.13) p(x)=120xI2, X=(xe R4, lxll <1}, d=1or 2.

Then the flow map G is trivially given by :
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Then the flow map G is trivially given by :

(6.14)  X(tx,v)=xcost+vsint, V(1,X,v)=-xsint+vcost,

Following proposition 6.2, after some elementary computations, one finds out a two-dimensional
generalized solution g defined by : |

(6.15)  [F(2)q(dz) =n-2[/F [t—xcost+vsint] S(IxIR2+Ilvii2 -1)dxdv, for each F in C,(Q),

that is :

(6.17)  [F(2)q(dz) = 72/ <1 focaen F [t—xcost+(1- xI2)12(cos8,sin0)sint]d0 dx

The corresponding one-dimensional solution is obtained in a similar way :

(6.18)  fF(2)q(dz) = @)1/ 11 focoen F [t—xcost+ (1-x2)12¢0s05int]dO dx.

When T=r, in both cases the final configuration 7 is deterministic and given by :

(6.19)  m(dx,dy) = 8(y-h(x))dx , where h(x)=-x.

Moreover the pressure field identically satisfies D2p(x) = n2/T2 I (where I is the identity). Since
T=n exactly corresponds to the limit case of theorem 5.1 (when equality (5.6) holds), it follows
that the generalized flows defined by (6.17) and (6.18) are solutions to the shortest path problem.
Notice that they are not deterministic, although the final configuration is deterministic ! Thus, the
last statement of theorem 5.1 is now entirely justified.

In dimension 2, the final configuration h(x)=-x is classical (it is a smooth volume and orientation
preserving map) and the shortest path problem has two trivial classical solutions, already
considered in section 4, the two rotational flows with opposite constant angular velocites :

{6.20) g:{t, X1,X2 )=( X1 cos(et)+ x5 sin(et), - X; sin(E)+ x5 cos(et) ), 0<t<w, e=£1.

Thus (6.17) defines another, highly non classical, solution to the same (generalized) shortest path
problem ! It can easily be checked that the three different solutions have the same kinetic energy
and, more surprisingly, the same pressure field p(x)=1/2lixi2. In constrast with the two classical
flows, the probabilistic one has a zero mean velocity field, while the pressure is in exact balance
with the "inertial tensor" :

(6.21) Elvi] = 0, Elv;vjl = aij (12-p(x)), where E denotes the expected value.

In the one-dimensional case, the final configuration is still deterministic but not classical (indeed
h(x)=-x is volume preserving but orientation reversing). Therefore there is no classical solution to
the shortest path problem. Furthermore, one can prove :

Proposition 6.3.

oLet X=[-1,+1]. For the final configuration h(x)=-x, and the final time T=n, the generalized
shortest path problem has a unique solution q defined by (6.18).
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Proof of proposition 6.3.

+We already know that (6.18) defines a solution g to the shortest path problem. Let us prove that
this solution is unigque. Because g-almost every path z is solution to z™=-z and therefore satisfies :
Szt = fliz()IIdt (where the integral is performed over [0,x]), it follows that :

E(q)= [fir IZ(91%dt q(dz) = [fir2 lz(t)iPdt q(dz)

= ffirz2 lxli2dt dx = = fi72 Iixll2dx {since q is incompressible).

Therefore, any optimal flow g* must satisfy :

JAr Iz(eiRdt g*(dz) = E(q) = & fi2 Ixli2dx = ffi/2 IxI2dt dx

= [fi Iz(®)i2dt q*(dz) (indeed, q* also is incompressible).

Since the final configuration at time T=x is h(x)=-x, we get z(n)=-z(0) for g*-almost every path z.
By Poincaré inequality z(x)=-z(0) implies SIzZmiikde 2 fliz(D)i2dt (where the integral is performed
over [0,x]) and the corresponding equality holds if and only if z is of the form z(t)=xcost + vsint,
for some real numbers x and v. Because z maps [0,%] into [-1,+1], (x,v) must belong to the unit
disk. Then, it is not hard to deduce that there exists a probability measure p(dx,dv) supported by
the unit disk such that g* can be defined by :

(6.22) [F(z)q*(dz) =//F [toxcost+vsint]ju(dx,dv), for each F in Cqrp(Q).

Since g* must be incompressible, p(dx,dv) must satisfy :

(6.23) [ f(xcost+vsint) p(dx,dv) =/ f(x)dx, for any fin C[-1,+1] azd t in [0,7]

(here dx denotes the Lebesgue measure multiplied by 1/2, in order 10 be a probabiliry measure on
[-1,+1]). In particular (6.23) holds for any f of the form f(x) = exg(ixZ). Then, it can be easily
seen that the Fourier transform of y(dx,dv) (which is a bounded contdnuous function defined on
R?2) is completely determined (notice that this assertion would be wrong in the 2-dimensional case
when X is the unit disk!). Thus, [t is unique and, consequently, g* aiso is unique. This achieves
the proof of proposition 6.3« '
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Appendix. A formal link with the measure-valued solutions in the sense of
DiPerna and Majda. ‘

In this appendix, it is shown that one can formally associate 10 any optimal generalized flow a
generalized velocity field that (formally) solves the Euler equations in the sense of DiPerna and
Majda. For simplicity, it is assumed that X is the closure of a smooth bounded open set in R9, the
fluid is homogeneous (p=1) and there is no external forces (U=0).
Let q be an optimal generalized incompressible flow. Let us introduce the probability measure
u(dt,dx,dv) on [0,T]xXx R4, formally defined by :
S/t xvr(ddx,dv) = T-1//fz(0,2())dt q(dz),
for any suitable f defined on [0,T]xXxRd (it is not easy, for several reasons, to justify this
definition). L can be considered as a generalized velocity field, has a finite kinetic energy : ‘
SAr Ivizp(dt,dx,dv) = E(Q) < +e,
and is solution to the Euler equations in the following generalized sense [cf. DiPerna & Majda] :
S v wx)EO+v(Dw(x). v)EB)]p(dt,dx,dv) = 0,
for any smooth real functdon f compactly supported in ]0,T[ and any smooth vector field w on X
such that : div w =0 inside X, w.n =0 along 0X (n = outward normal).
Let us give a formal proof of this claim.
Because of the properties of w, there is a smooth classical volume preserving flow map y:
tx)eRxX — ¥(t,x)e X, such that : Y(0,x)=x, o,1(t.x) = w(AL,x)).
For € small, let us consider tﬁe modified generalized flow q¢ defined by :
fQF(z}qa(dz) = fﬂ F [t—y(Ef(i),z(t)]q(dz), foreach Fin Cﬁn(Q).
It is easy to check that g is incompressible. Indeed, for each f in C(X) and t in [0,T]:
S £z(t)qe(dz) =/ Eey(ef),2)a(dz) = [HVEL).x))dx (since q is incompressible)
= fi(x)dx (since vy is volume preserving).
Let us now compare the kinetic energies of q and q¢ . A formal computation leads to :
WEL),2(1)) = z(t) + ef(B)w(z(®))+ O(E?),
3t [YEE(D2())] = 2'(1) + edy [FOW(z(t)] + 0(ED.
It follows that :
E(qo)-E(Q) = /1 172 113 [Y(ef(D), zan)]I2 -12 Iz ()1Z]dt q(dz)
=¢ ff 2(1).9; [f(Ow(z()]dt q(dz) + 0(e?)
=e [/ [2().wzm)f (@) + 2/()(Dw®).Z(t)]dt q(dz) + 0e?)
= ¢ [fflv.w(x)f () + v(Dw(x).v)E(] p(drdx.dv) + 0(e?),
which shows that f//Tv.w(x)f(t) + v(Dw(x).v)f(t)] p(dt,dx,dv) must vanish for each suitable w.
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