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Abstract. In the past several years, domain decomposition has been a very popular topic, motivated by the
easa of parallelization. However, the question of whether it is better than parallelizing some standard sequential
methods has never been directly addressed. ‘

In this paper we show that the answer is affirmative in the case of iterative solutions of elliptic problems by
preconditioned conjugate gradient iteration. Specifically, we show how to construct effective preconditioners
baged on the domain decomposition principle which, in addition to having all the advantages of domain
decomposition, alao result in better convergence rates than the analogous preconditioners on the whole domain.,

We show some numerical examples to illustrate our point.

1. Introduction

In the past several years, domain decomposition methods for solving elliptic partial differential equations
have attracted much attention. The main impulse for the enormous interest in these methods has come
from the arrival of parallel computers. Besides the ease of parallelization, domain decomposition allows
one to treat complex geometries or to isolate singular parts of the domain,

In the majority of domain decomposition methods, the matching of the solution on the subdomains
to an overall solution is done by an iterative process. A large class is based on the preconditioned
conjugate gradiant method for solving the reduced equations on the interfaces between the subdomains.
The efficiency of these methods is determined by the preconditioner used. This approach involves a solve
on each subdomain in each iteration step and the cost could be expensive if the number of iterations is
not kept at a minimum. Based on this observation, doubts have been raised on the efficiency of these
methods as compared to a parallelization of traditional preconditioned conjugate gradient iterations on
the whole domain. :

One aspect that has generally been ignored is the gain in sequential computational complexity that
domain decomposition can yield as a divide and conquer technique. When the work for golving a problem
grows more than linearly with its size, splitting it up in 2 subproblems of half the size will yield a faster
method provided that the subsolutions can be efficiently combined to obtain the solution of the original
problem. In this paper, we propose a method that achieves this goal. We use an approach that performs
iterations on the whole domain, not just on the interface. .

Specifically, in section 2, given a method for constructing a preconditioner M on the whole domain
(such as the ILU and MILU type methods, which have a superlinear computational complexity ), we
show how to construct a domain decomposed preconditioner based on applying the same method in
the subdomains and using an appropriately chosen preconditioner for the interface. We hereby stress the
importance of the preconditioner on the interface, for a badly chosen one can affect the overall convergence
rate adversely. One that we have found to be very successfull is the Boundary Probe preconditioner [7].
This domain decomposed preconditioner for the original domain can yield a faster convergence rate with
roughly the same operation count per iteration step, as compared to traditional preconditioners.
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In section 3 we stress the importance of an appropriate factorization of the subdomain preconditioners
in order to minimize the number of arithmetic operations per iteration step. In section 4 we show some
numerical experiments to illustrate our main points. -

"Another instance of where a parallel algorithm , when executed sequentially, turns out to be better
than the traditional sequential algorithms is the parallel method for solving the symmetric eigenvalue
problem as proposed in [12].

2. Domain Decomposed Preconditioners.

We formulate this approach for the simplest case of a domain {1 split into two subdomams £}, and {1,
sharing the interface I'. Consider the problem :

Lu=f on fl
u=1u on &5}

where L is a linear second order elliptic operator.
If we order the unknows for the internal points of the subdomains first and those on the interface I'
lagt, then the discrete solution vector u = (uy, ug, ua)T satisfies the linear system :

. An A1s uy f
(2-1) Au= Azz  Aag uz | =1{ fa )
A3y Asg Aag U3 fs

where the discrete vector f = (fy, fa, fs)T containg the contribution of the right hand side of the differ-
ential equation and of the Dirichlet boundary condition.

System (2-1) can be solved by Block Gaussian Elimination which gives the equations for the interface
variables us :

(2-2) Sus=fs ,

with
§= -433 - A31A1-11A13 - AazA:;zlAzs

and .
fs=fs— As1A[] 1 — Asadz) fa

The matrix § is the Schur complement of Ass in the matrix 4. It corresponds to the reduction of the
operator L on {1 to an operator on the internal boundary T'. Constructing the Schur complement would
require the solution on nr elliptic problems on each subdomain, where np is the number of internal points
on I'. Furthermore it is dense, so that factoring would be expensive.

Instead of solving the system (2-2) directly, iterative methods such as preconditioned conjugate gradient
{PCG) can be applied in which only matrix vector product Sy are required.This product can be computed
by one solve on each subdomain with boundary condition on I' determined by y.

Several preconditioners have been proposed in the literature. A large class of preconditioners have
been derived for the splitting of a rectangle and are intimately related to the underlying properties of
the differential operator (18], [18], 3], or are based on symmetry properties of the operator and of the
domain [1}. Therefore, these preconditioners may prove unsatisfactory for general elliptic operators on
general geometries. For a thorough discussion of these preconditioners we refer to [3] and [18].

Since each iteration involves the solution of problems on the subdomains, keeping the number of
iterations small is very important for the efficiency of the method. Even requiring only a modest number
of iterations, this can make the method slower than analogous methods on the whole domain. An obvious
remedy for easing this disadvantage is using inexact solves on the subdomains.

One point of view is to consider the PCG iteration on the Schur complement as a combination of an
outer and an inner iteration [14} [17]. Another approach is to combine preconditioners on the subdomains
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and on the interface into a preconditioner on the whole domain, and thus to iterate on the subdomains
and the interface simultanuously. We will use the latter approach in this paper.
The matrix A can be factored in block form : :

Ay {I At Ags

-8} - fif\ Agz k I AjjAgs }
Az Az S I

This is the LU factorization corresponding to the block Gaussian elimination which led to the Schur
complement. We can derive a preconditioner for A by replacing A;; in (2-3) by approximations By
.and replacing the Schur complement by a preconditioner M. For the latter, we can take any of the
preconditioners that were derived for PCG on the Schur complement. We therefore arrive at the following
preconditioner :

. B I B Ass
(2-4) M= Bzs I B} Az
A3y Aaa M ‘ I

Preconditioners of this form were first proposed in [2] and were also mentioned in [8], and [24].
Carrying out the matrix mult:phcatmn in (2-4) gives :

—~ By A1z
(2-5) M = Baz Azs
A3y Azp Aaz+ M-8
with
(2-9) _ § = Ags— Ag) Bii A1y — Ay Byl Agg

Equa.tion (2-5) shows that if M is a good approximation to § , we end up with with a preconditioner
M which approximates the problem on the subdomains but keeps the original coupling between the
subproblems as expressed by the matrices A;s and Asi, ¢ = 1,2. § incorporates all the information
on the operator, the geometry of the problem and of the approximations on the subdomains. The
preconditioner for § thus should take into account these aspects. A badly chosen preconditioner for §
can affect the overall convergence rate adversely, as will be illustrated in section 4.

In order to get a good preconditioner for A4, it is not enough that the condition numbers of B 1.A
and M~1S are close to one, but also the eigenvalues of B ! 4;; and M~1§ have to be clustered a.round
1. This possibly asks for a scaling of B;.

We have found that a good overall preconditioner for § is the Boundary Probe Preconditioner [7].
Several experlments with this preconditioner have been performed [18]. The main motivation for this
approach is the observation that, in the case of the Laplace operator, the elements of the matrix S
decay rapidly away from the main diagonal [16]. It is therefore reasonable to consider a k diagonal
approximation to S. However, it would not be efficient to calculate the elements of § in order to do this.

Instead, as proposed in {7}, a 2k + 1 dmgonal approximation to § can be constructed by multiplying
S by 2k+ 1 “probing” vectors v;,7 = 1,...,2k+ 1. The idea is motivated by sparse Jacobian evaluation
techniques [11]. For the case k = 0 and k = 1 the probing vectors are the following :

k=0:v,=(1,1,1,1,1,1,1,...)T
k=1:v1=(1,00,1,0,0,1,...)7
v2=(0,1,0,0,1,0,0,...)7
vs = (0,0,1,0,0,1,0,...)7
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The case k = 0 corresponds to a scaling of each row of the matrix § by the sum of the elements of the
row. For k = 1, if § were indeed tridiagonal, all of ita elements would be found in the vectors Sv,,
7= 1,2,8. For the more general case of k > 1, we refer to [9].

This approach for probing a matrix is valid for any matrix $ and will yield a good banded approxi-
mation, provided that the elements of S decay away from the main diagonal. In the case of the Schur
complement this is inherently related to the fact that the operator § is predominantly local. If the dis-
cretization stencil used extends over 1 gridline in each direction, the most important coupling of a grid
point on the interface will be with its immediate neighbours, and a tridiagonal approximation for § will
suffice. This idea can also be generalized for situations where the discretization stencil is wider, as for
instance in fourth order equations such as the biharmonic equation [4], or in the multidomain case [9].

The probing technique asks for 2k 4 1 products Sv;. This implies (2k 4 1) solves on each subdomain.
However, as indicated by (2-5), it suffices to have a preconditioner for S given by (2-8). Since §
approximates § it will also have the property that it is dominantly local. When the matrices A;; are
replaced by approximate fctorizations, which correspond to more local operators, the diagonals of 5 will
even decay more. So the probing technique can be applied here also. However, the product § v; now only
involves approximate solves and thus can be performed cheaply.

3. Minimizing the operation count per iteration step
In each step of a preconditioned conjugate gradient iteration, the following system has to be solved:

(3-1) Mz =¥

Straightforward implementation of this step using the block LU factorization (3-4) involves 2 solves on
each subdomain with the matrix By in each iteration step, one in the forward elimination step and one
in the backsubstitution. This implies that the work per iteration step roughly doubles as compared to a
PCG iteration with the same preconditioner on the whole domain. This is a relatively high price for a
domain decomposed method to pay in the sequential case as it would ask for a reduction of the number
of iteration steps by a factor of 2, which is not achievable for many problems. In the parallel case, to
be competitive, the gain from ease of parallelization must compensate for this factor when compared
with a straigthforward parallelization of a traditional PCG method for the whole domain [19]. A similar
situation also occurs for the domain decomposed fast Poisson solver on a rectangle {5].

Here we describe a general technique to save this factor of 2 by an appropriate factorization and an
appropriate ordering of the unknowns, The matrices B;; can generally be expressed in a LU factorization

By = L;U;
This then gives the following factored form for the preconditioner M:
L], 7 i 1 L;]’Ais
(3-2) M= L, Uz L3'Aszs
Ay Ut AUt M I

The solution of (3—1) can now be performed as follows :

Forward elimination : Solve

Liy; =rf
Lays = r§

Mys =% — A\ Uty — AU ys

Backsubstitution : Solve



k
23 =Ya
-1 k
Ulzf =y — Ly " Aiazg
-1 k
ngg = Y2 — Lg A2323

1 3 : 3 . - Py R R .o —— hmea
Written this way, the sclution of {3-1) still takes 4 solves with the matrices L; and 4 with U, or two

solves on each subdomain., However, in this form, it is easy to show how one can save the factor of 2.

Since the matrices Ag; are very sparse, the product AaU;” 1y; only involves a few components of the
vectors U~ . More specifically, for a 5 point stencil, we only need the components of U~ 1y adjacent
to the gridpoints on the internal interface. ' .

Ordering the unknowns linewise in the direction of the internal edge, with the lines ordered going
towards the interface, we obtain that the product As,-U,-"ly.- only requires the bottom right hand corner
of U~ 1. The rest of the solution in the interior is not needed. An analogous assertion holds for the
product L t Asazb. .

. For a rectangular domain, splitted into 2 rectangles with the interface in the x-direction, this ordering
of the lines corresponds to a UL factorization on the top and a LU factorization on the bottom domain
with the usual ordering on lines from bottom to top.

A similar technique was also applied in the efficient implementation of a domain decomposed fast
poisson solver on a rectangle, based on Fourier analysis of the Schur complement [6].

When the domain is split into more than two subdomains, the same technique can be applied using
“twisted factorizations” on the subdomains with two internal edges (factoring starting from the middle
of the domain towards the two edges simultanuously). However, it is not clear that these twisted fac-
torizations will give approximations to the matrices A;; that are comparable to the approximations by
traditional factorizations in LU or UL form. The effect of these factorizations on the domain decomposed
preconditioner is being investigated.

Similar techniques to save the factor of two were used by G. Meurant in the construction of domain
decomposed preconditioners based on block preconditioners ([21], [22], [28]) using alternating LU and
UL factored preconditioners on the subdomains. In the 2 subdomain case, this corresponds to the
technique we propose.

4. Numerical experiments

In this section we present some numerical experiments that will illusérate the point of view that we made
earlier, We consider second order self adjoint differential operators :

Lu= 5 (a(a:, %) g—;‘-) - 5‘5-;- (b(:c, y)-g-i‘-) + o, y)u

The equation is discretized using a standard 5 point second order discretization stencil [15] on a equidis-
tant grid. In our examples, the domain Q is the unit square and is divided in two rectangular strips

0, = [0,1] x [0,0.5]
{1 = [0, 1} X E0.5, 1]

Taking n internal gridlines in each direction with gridsize A = H’-%-"i" the system for the whole domain is
of the order n x n and for the subdomains of the order n x n/2 . The interface has n internal points.
For the preconditioner on the interface, we consider the following choices :

(1) M = Mp = §VK, where K is the square root of the discrete one dimensional Laplacian on
the interface [18] and § is a scaling factor related to the coefficients of the differential operator
(6 = a(0.5,0.5)},

(2) M = Mp(§, 1), the boundary probe preconditioner on § with k = 1 (tridiagonal approximation).
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As approximate factorizations on the subdomains we use the ILU preconditioner [20], denoted by B;; +—
ILU, or the MILU preconditioner with a = h? [15], denoted by B;; «— MILU. PCG iteration with the
ILU preconditioner has a condition number of O(h~2) and with the MILU preconditioner it is of O(h— 1.
Therefor, we can expect that the divide and conquer effect in domain decomposition will y:eld a faster
method.

Example 1 -

In this example, we illustrate the importance of using a _preconditioner for the interface that captures the
characteristics of the approximate Schur complement § . The operator, the gndsxze and the precondi-
tioners for this example are summarized in the following table.

a = 5% , h=1/18, M = Mp, Bi +~ MILU
b= e 5% , n=15 , M=Mp

1

T 1ltz+y

The rate of convergence of the PCG method is determined by the eigenvalue spectrum of M M~1A. The
eigenspectra for different blocks appearing in the product M M-14 are plotted in figure 1.
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Number Matrix

1 B 'An

2 Byl Ay
M;t§
Mp'§
Mz*A
Mzta
M-l4

-~ A U e W

M Mp and M, p are the domain decomposed preconditioners using Mp, and Mprespectively on the interface,
M is the MILU preconditioner on the whole domain {2, with the natural ordermg of the unknowns. The
numbers to the right of the eigenspectra are the condition numbers, £ = Apmas [Amin, of these matrices.
Comparing lines 3 and 4, one immediately sees that the probing preconditioner ylelds a very good
approximation to §, while Mp does not. We also notice that the exgenspectmm of M~14 is a small
perturbation of the union of the eigenspectra of Bu A, Bm Aso and M-15. In the case of M = M P
the spectrum of M, 1S is tightly clustered around 1 and lies fully within the spectra of B;' Ay, and
B3 Aga. This leads to a good spectrum for My 7' A with a condition number that is smaller than for the
sequentla.l preconditioner., As the rate of convergence of the preconditioned conjugate gradient method
is proportional to (\/E ~ 1)/ (/% + 1) [10], this gives a faster convergence In the case of M = Mp, the
spectrum of My, 15 is very wide and the cond1t1on number of M 1 A is very much larger. For a extensive

discussion of the eigenvalue spectrum of M 14 in relation to the spectra of B11 Ajq and 322 Ang, we
refer to [9].

Example 2
In this example we show that our domain decomposed preconditioner yields a faster convergence than an
analogous preconditioner applied to the whole domain for smooth problems.

The problem is the following :

a=e"¥ Ty h= 1/32, M#MP, B,';@“HJU
b=e""%¥ y, n=3l1 y By +— MILU
_ 1
T l+z+y

The right hand side of the discrete equations is taken such that the exact discrete solution u, satisfies

(ue)sy = 2
As starting guess we used ul. = 1.
In figure 2 we plot e = ]lu’“‘-w u,"2 versus the iteration count k. We compare the following cases:
(1) full Line: M — ILU
(2) dashed line : M with B;; — Ly
(3) dotted line : M «— MILU
(4) dashed-dotted line : M, with By; MILU,

where M denotes the sequential preconditioner on the whole domain.
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For both choices for the preconditioner on the subdomains, the domain decomposed preconditioner has
a slightly faster rate of convergence. Several other experiments that we have done with other operators,
" have all confirmed this point.

Example 3
In this example, we show a more dramatic gain, achieved for a problem with discontinuous coefficients.
The coefficients of the equation and the preconditioners are :

a=d(z,y), h=1/16, M =Mp, B;+— LU
b=d(z,y), n=15
e=0 »

with '

d{z, y) = 1000 y>05 ,
d(z,y) = 5005 y=05 ,
d(z,y)=1 y<05

The exact discrete solution and the starting guess are as in example 2.
Figure 3 gives ¢* = "u" — 1, “2 versus the iteration count k. We compare the following preconditioners :
(1) full line : M — ILU

(2) dashed line : M, with By; — ILU
(3) dotted line : ILU PCG on just one subdomain with the exact value of the solution on the interface.
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For this problem, the domain decomposed preconditioners yields a much better convergence than

the

analogous preconditioner on the whole domain. Comparing it with the PCG iteration on just one

subdomain we gee in the beginning of the iteration it is somewhat slower than PCQ on the subdomain.
After some iterations, the rate of convergence is about the same. This illustrates clearly how:-domain
decomposition allows us to exploit the smoother coefficients within each subdomain.
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