UCLA COMPUTATIONAL AND APPLIED MATHEMATICS

Artificial Boundary Conditions for Incompletely Parabolic Perturbations of Hyperbolic Systems

Laurence Halpern

June 1988
CAM Report 88-20

Department of Mathematics University of California, Los Angeles Los Angeles, CA. 90024-1555

Artificial Boundary Conditions for Incompletely Parabolic Perturbations of Hyperbolic Systems

Laurence Halpern
Ecole Polytechnique
CMAP
91128 Palaiseau Cedex, France

and

Mathematics Department¹
University of California
Los Angeles, California 90024

Abstract

We devise artificial boundary conditions for small incompletely parabolic perturbations of hyperbolic systems, which are local, consistent with the hyperbolic equation, well-posed, and produce weak boundary layers. The general strategy is applied to the Navier-Stokes system.

0. Introduction. A general model for a fluid motion is the time dependent compressible Navier-Stokes system:

$$rac{\partial
ho}{\partial t} + \operatorname{div}
ho v = 0$$
 $rac{\partial
ho v}{\partial t} + \operatorname{div} (
ho v \cdot v + pI) =
ho g + \operatorname{div} \mu \tau$
 $rac{\partial e}{\partial t} + \operatorname{div} (e + p)v =
ho g \cdot v + \operatorname{div} (K \operatorname{grad} T + \mu v \cdot \tau)$

where ρ represents the density, p the pressure, T the temperature and v the velocity of the fluid. τ is the momentum flux density tensor due to friction: $\tau = -\frac{2}{3}I$ div $v + \text{grad } v + (\text{grad } v)^{\tau}$. μ and K are the coefficients of viscosity and

 $^{^1}$ This work was completed while the author was visiting UCLA, supported by ONR Grant N00014-86-K-0691

heat conductivity respectively. An equation of state relating ρ , p and T is added to close the system. Those equations are a special case of a class of equations called incompletely parabolic equations.

Although the mathematical analysis of these nonlinear equations is not entirely satisfactory, and due to the increasing complexity of the physical problems involved, the Navier-Stokes model is more and more widely used in today's computational fluid dynamics.

In many problems of interest, the computational domain is infinite, so that an important task is the design and analysis of reliable numerical boundary conditions. Very often the Euler equations have replaced the Navier-Stokes system in computations (i.e. assuming the friction and heat negligible). In that case stable boundary conditions are provided by prescribing the entering characteristic quantities (see for instance [O-S]). For a better accuracy strategies were described in [E-M] and [B-T] which led to higher order differential operators on the boundary.

For the Navier-Stokes system, it is well-known that more boundary conditions are needed to ensure the well-posedness. Considering the Navier-Stokes equation as a perturbation of the Euler system, it has been suggested to add extra boundary conditions to those derived for Euler system [O-S]. The artificial boundary is usually set in a "smooth" region, where the equations can be linearized about a regular state (in general it may be supposed to be constant). The derivation and analysis can then be carried out on the linear equation. In [G-S] boundary conditions were built by adding to the "hyperbolic" ones conditions on the normal derivatives to produce dissipation. In [R-S1,2] "hyperbolic" boundary conditions were tested for a flow over a flat plate to force the convergence to the steady state. More recently in [A-B-L] the authors worked directly on the Navier-Stokes equation for the flow past an airplane.

They decoupled the domain into the boundary layer region and the hyperbolic region and in the former used a modal expansion and an approximation of the solution. This approximation is made in the regime of short wavelength as suggested in [E-M] and small viscosity, which proved to be very useful for incompressible problems as well (see [H], [H-S]).

We develop here a general strategy for the derivation of artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. On account of the remark above we shall consider linear systems with constant coefficients. Using Fourier transform as an essential tool, we shall write artificial boundary conditions for a half space in such a way that the well-posedness and the convergence to the hyperbolic equation are ensured by the well-posedness of a reduced hyperbolic problem. The strategy has been introduced in [H], [H-S] for incompressible flows and consists of expanding the modes in terms of the small parameter, ν . For the analysis of these boundary conditions we shall rely on the results by Strikwerda in [S] on the well-posedness of incompletely parabolic systems, and by Michelson in [M] on the boundary layer expansion and convergence to the "inviscid" equation. This strategy theoretically allows for a convergence up to any accuracy, but the well-posedness is not guaranteed (notice that in the hyperbolic case, no well-posedness proof is available for general artificial boundary condition, see [E-M]).

Consider an incomplete singular perturbation of a hyperbolic system, i.e.

(0.1)
$$\frac{\partial w}{\partial t} = \sum_{j=1}^{N} A^{(j)} \frac{\partial w}{\partial x_{j}} + \nu \sum_{j,k=1}^{N} P^{(jk)} \frac{\partial^{2} w}{\partial x_{j} \partial x_{k}} + F(x,t).$$

where the $n \times n$ matrices $P^{(jk)}$ are assumed of the form:

$$(0.2) P^{(jk)} = \begin{pmatrix} \bar{P}^{(jk)} & 0 \\ 0 & 0 \end{pmatrix}$$

with $rg\bar{P}^{(jk)} = r$, $\bar{P}^{(jk)}$ is non-singular and $P^{(jk)} = P^{(kj)}$. The matrices $A^{(j)}$ are partitioned in the same way:

(0.3)
$$A^{(j)} = \begin{pmatrix} B^{(j)} & C^{(j)} \\ D^{(j)} & \bar{A}^{(j)} \end{pmatrix}.$$

We require the operator $\partial_t - \sum_{j=1}^N A^{(j)} \partial_j$ to be hyperbolic, the partial operator

$$\partial_t - \nu \sum_{j=1}^N \bar{P}^{(jk)} \partial_{jk}$$
 to be Petrovski parabolic, and the reduced operator

 $\partial_t - \sum_{j=1}^N \bar{A}^{(j)} \partial_j$ to be strictly hyperbolic. These assumptions ensure the well-posedness of the Cauchy problem. In order to consider an initial boundary value problem in a half-space $x_1 > 0$ or $x_1 < 0$, we shall assume that the boundary $\Gamma = \{x_1 = 0\}$ is non-characteristic, i.e. that $A^{(1)}$ is non-singular. Its eigenvalues are denoted by $\lambda_1, \ldots, \lambda_n$ where $\lambda_1, \ldots, \lambda_m$ are negative and $\lambda_{m+1}, \ldots, \lambda_n$ are positive. The corresponding eigenvectors are $\Lambda^1, \ldots, \Lambda^n$. For convenience and simplicity, we shall assume that $\bar{A}^{(1)}$ is a diagonal matrix, with p negative eigenvalues:

(0.4)
$$\bar{A}^{(1)} = \begin{pmatrix} \bar{A}^{(1)^{-}} & 0\\ 0 & \bar{A}^{(1)^{+}} \end{pmatrix}$$

where
$$\bar{A}^{(1)^-}=egin{pmatrix} \bar{\lambda}_{1+r} & & & \\ & \ddots & & \\ & & \bar{\lambda}_{p+r} \end{pmatrix}<0 \text{ and } \bar{A}^{(1)^+}=egin{pmatrix} \bar{\lambda}_{p+r+1} & & & \\ & & \ddots & \\ & & \bar{\lambda}_n \end{pmatrix}>0.$$

We furthermore assume the existence of a symmetrizer S for the full operator

(0.5)
$$Q = \sum_{j=1}^{N} A^{(j)} \frac{\partial}{\partial x_j} + \nu \sum_{j=1}^{N} P^{(jk)} \frac{\partial^2}{\partial x_j \partial x_k}$$

which implies in particular that the symbol of Q

(0.6)
$$Q(i\xi) = i \sum_{j=1}^{N} A^{(j)} \xi_j - \nu \sum_{j=1}^{N} P^{(jk)} \xi_j \xi_k$$

is diagonalizable through a transformation analytic in ξ . We shall denote by $\tilde{A}^{(j)}$ and $\tilde{P}^{(jk)}$ the symmetrized matrices: $\tilde{A}^{(j)} = SA^{(j)}$, $\tilde{P}^{(jk)} = SP^{(jk)}$. Both the Navier-Stokes and shallow water systems fulfill all the above conditions.

In Section 1 we shall recall the modal analysis for the Cauchy problem. Most results in this section are known (see for instant [Y-S] for Navier-Stokes, [S] for the general case), but we need to set our notations clearly.

In Section 2 we derive the local and non-local boundary conditions for a half-space. The transparent boundary condition is first written in terms of generalized eigenvalues and eigenfunctions for the system. It is then approximated with respect to the small parameter ν we shall call viscosity for obvious reasons. This yields boundary conditions which are differential of first order in the normal direction, but still pseudo-differential in time and the tangential derivatives (like the transparent boundary condition for the pure hyperbolic problem). Those boundary conditions are in turn approximated by differential operators which are of order zero in time and one in the tangential direction, using the strategy in [E-M].

In Section 3, necessary and sufficient conditions for the well-posedness of the corresponding initial boundary value problem are set. The same conditions ensure the convergence to the unperturbed hyperbolic problem, with an error estimate. These results are a direct application of the general analysis in [M].

In Section 4 the construction above is carried out explicitly for the two-dimensional compressible Navier-Stokes system.

Finally in Section 5, we indicate how to produce more accurate boundary conditions. For the sake of clarity, explicit calculations are made in the special case of

the two dimensional linearized shallow water equation. Nevertheless, the construction carries over to any incompletely parabolic system provided the diagonability assumption (0.6) is fulfilled.

I. The Cauchy problem.

I-1. Normal modes for the Cauchy problem. The following analysis can be partly found in [S], but we include it here in order to set our notations, and to study more particularly the eigenmodes as functions of the parameter ν .

The normal modes are the solutions of (0.1) with $F \equiv 0$, of the type:

$$w = e^{st + \xi x_1 + i\eta \cdot y}$$
, Re $s \ge 0$

where

$$x=(x_1,\ldots,x_N), \qquad y=(x_2,\ldots,x_N)$$

They satisfy the equation

$$(Q(\xi,i\eta)-sI)\Phi=0,$$

s and $i\eta$ are here the independent variables, and ξ is considered as a function of (s,η) . The equation in ξ is of order n+r. By an abuse of notation but for simplicity, we shall often refer to ξ as a "generalized eigenvalue".

LEMMA 1.1. If Re s > 0, $\eta \neq 0$, there is no purely imaginary solution ξ to (1.1).

Proof. We proceed by contradiction. Suppose that $\xi = i\zeta$, where ζ is a real number, and count the eigenvalues s of $Q(i\zeta, i\eta)$ with a positive real part. This number M is constant as a function of η . Choose $\eta = 0$. Then s is a solution to

$$\det(-\nu \bar{P}^{(11)}\zeta^2 + iA^{(1)}\zeta - sI) = 0$$

M is now constant as a function of ζ . As ζ tends to infinity, the equation above reduces to

$$\det(-\nu \bar{P}^{(11)}\zeta^2 - sI) = 0.$$

If there is any solution s with a positive real part, it is in contradiction with the parabolicity of $\partial_t - \nu \sum \bar{P}^{(jk)} \partial_j \partial_k$.

LEMMA 1.2. For Re s > 0, there are precisely (r + p) generalized eigenvalues ξ with a negative real part, and n - p with a positive real part.

Proof. It is a straightforward consequence of Lemma 1.1: N_+ is the number of eigenvalues ξ such that Re $\xi < 0$, N_- the number of eigenvalues ξ such that Re $\xi > 0$. We have $N_+ + N_- = r + n$. Moreover N_+ and N_- are constant functions of η and s, but of A and P too.

Let us choose $\eta = 0$ and $C^{(1)} = D^{(1)} = 0$. The equation (1.1) for ξ reads

$$\det[\nu P^{(11)}\xi^2 + A^{(1)}\xi - sI] = 0$$
, or $\det[\nu \bar{P}^{(11)}\xi^2 + B\xi - sI] \cdot \det[\bar{A}^{(1)}\xi - sI] = 0$

As in Lemma 1, by letting ξ tend to infinity, the number of generalized eigenvalues with positive real part for $\nu \bar{P}^{(11)}\xi^2 + B\xi$ is the same as for $\nu \bar{P}^{(11)}\xi^2$. N_+ (resp. N_-) is then the number of solutions with positive real part (resp. negative) for the equations

$$\det[\nu \bar{P}^{(11)}\xi^2 - sI] = 0$$

 $\det[\bar{A}^{(1)}\xi - sI] = 0.$

The first equation is of even degree in ξ . Hence there are r solutions with positive real part and r with negative real part. Moreover the second equation reduces to

 $\xi = s/\bar{\lambda}_i$, which gives p values with a negative real part and n-r-p with a positive real part. So

$$N^+ = r + p$$

$$N^- = r + n - r - p = n - p.$$

We now turn to the behavior of these generalized eigenvalues ξ as the parameter ν tends to zero.

THEOREM 1.1. If Re s > 0, as ν tends to 0, r values of ξ tend to infinity as $\frac{1}{\nu}$, and n values have a finite limit.

Proof. Let us write $\xi = \alpha + 0(\nu)$, α is solution to

(1.2)
$$\det[A^{(1)}\alpha + \sum_{j \neq 1} iA^{(j)}\eta_j - sI] = 0.$$

By assumption this equation has n solutions, denoted by $\alpha_1(s,\eta), \ldots, \alpha_n(s,\eta)$, and :

(1.3)
$$1 \le j \le m \qquad \text{Re } \frac{\alpha_j}{s} \le 0$$

$$m+1 \le j \le n \qquad \text{Re } \frac{\alpha_j}{s} \ge 0$$

to any α_j is associated an eigenvector $\Pi^j(s,\eta)$, and Π^1,\ldots,Π^n expand \mathbf{R}^n

$$\left(A^{(1)}\alpha_k + \sum_{j\neq 1} iA^{(j)}\eta_j - sI\right)\Pi^k = 0.$$

If now $\xi = \frac{\theta}{\nu} + O(1)$, θ is a solution of

(1.5)
$$\det(P^{(11)}\theta + A^{(1)}) = 0$$

which is an equation of degree r in ζ , and has r roots $\theta_1 \cdots \theta_r : \theta_1, \dots, \theta_{r+p-m}$ are such that Re $\theta_j < 0$, $\theta_{r+p-m+1}, \dots, \theta_r$ are such that Re $\theta_j > 0$. The corresponding generalized eigenvectors $\Theta^1 \cdots \Theta^r$ are defined by

$$(P^{(11)}\theta_j + A^{(1)})\Theta^j = 0.$$

In summary, every solution (ξ, Φ) of $(Q(\xi, i\eta) - sI)\Phi = 0$ for Re s>0 is such that

either
$$\xi(s,\eta,
u)=lpha(s,\eta)+O(
u)$$
 $\Phi(s,\eta,
u)=\Pi(s,\eta)+O(
u)$

where

$$[A^{(1)}\alpha + \sum_{j \neq 1} i\eta_j A^{(j)} - sI]\Pi = 0$$

or

$$\xi(s,\eta,\nu) = \frac{1}{\nu}\theta + O(1)$$

$$\Phi(s,\eta,
u) = \Theta + O(
u)$$

where

$$(P^{(11)}\theta + A^{(1)})\Theta = 0.$$

We shall denote by $\xi_1 \cdots \xi_m$ the values of ξ of the first form with negative real part, i.e. corresponding to "propagating modes", and $\xi_{m+1} \cdots \xi_{r+p}$ the values of ξ of the second form with negative real parts. We define $\zeta_j(s,\eta)$ and $\psi_j(s,\eta)$ as follows:

(1.7)
$$1 \leq j \leq m \qquad \xi_j(s,\eta,\nu) = \zeta_j(s,\eta) + O(\nu)$$

$$m+1 \leq j \leq r+p \qquad \xi_j(s,\eta,\nu) = \frac{1}{\nu} \zeta_j(s,\eta) + O(1)$$

 $(\zeta_j \text{ does not actually depend on } s \text{ and } \eta \text{ if } j \geq m+1).$

and

(1.8)
$$1 \le j \le r + p \quad \Phi^{j}(s, \eta, \nu) = \Psi^{j}(s, \eta) + O(\nu)$$

so that

(1.9)
$$1 \leq j \leq m \qquad \zeta_j(s,\eta) = \alpha_j(s,\eta), \ \Psi^j(s,\eta) = \Pi^j(s,\eta)$$
$$m+1 \leq j \leq r+p \qquad \zeta_j(s,\eta) = \theta_{j-m}, \ \Psi^j(s,\eta) = \Theta^{j-m}$$

I-2. The transmission conditions. Let us first write a weak formulation of (0.1) in a domain Ω with smooth boundary $\partial\Omega$. For any v sufficiently smooth, we multiply (1.1) by v and integrate on Ω . Using the Green's formulas:

$$\int_{\Omega} \ \left(ilde{A}^{(j)} \ rac{\partial w}{\partial x_j}, v
ight) + \int_{\Omega} \ \left(ilde{A}^{(j)}w, rac{\partial v}{\partial x_j}
ight) = \int_{\partial\Omega} \ \left(ilde{A}^{(j)}w, v
ight) n_j$$

$$\begin{split} \sum_{j,k=1}^{N} \; \int_{\Omega} \; \left(\tilde{P}^{(j,k)} \; \frac{\partial^{2} w}{\partial x_{j} \partial x_{k}}, v \right) + \sum_{j,k=1}^{N} \; \int_{\Omega} \left(\tilde{P}^{(j,k)} \; \frac{\partial w}{\partial x_{j}}, \frac{\partial v}{\partial x_{k}} \right) \\ = \sum_{j,k=1}^{N} \; \int_{\partial \Omega} \left(\tilde{P}^{(j,k)} \; \frac{\partial w}{\partial x_{j}}, v \right) n_{k} \end{split}$$

where n is the normal exterior to $\partial \Omega$, we get

$$\begin{split} \int_{\Omega} \left(S \frac{\partial w}{\partial t}, v \right) + \nu & \sum_{j,k=1}^{N} \int_{\Omega} \left(\tilde{P}^{(j,k)} \frac{\partial w}{\partial x_{j}}, \frac{\partial v}{\partial x_{k}} \right) + \frac{1}{2} \sum_{j=1}^{N} \int_{\Omega} \left[\left(\tilde{A}^{(j)} \frac{\partial v}{\partial x_{j}}, w \right) - \left(\tilde{A}^{(j)} \frac{\partial w}{\partial x_{j}}, v \right) \right] \\ &= \nu \int_{\Gamma} \sum_{j,k=1}^{N} \left(\tilde{P}^{(jk)} \frac{\partial w}{\partial x_{j}}, v \right) n_{k} + \frac{1}{2} \int_{\Gamma} \sum_{j=1}^{N} (A^{(j)} w, v) n_{j} + \int_{\Omega} Fv \right] \end{split}$$

We define two bilinear forms a and p, by:

(1.10)
$$\begin{cases} a(v,w) = \frac{1}{2} \int_{\Omega} \sum_{j=1}^{N} \left[\left(\tilde{A}^{(j)} \frac{\partial v}{\partial x_{j}}, w \right) - \left(\tilde{A}^{(j)} \frac{\partial w}{\partial x_{j}}, v \right) \right] dx \\ p(v,w) = \int_{\Omega} \sum_{j,k=1}^{N} \left(\tilde{P}^{(j,k)} \frac{\partial w}{\partial x_{j}}, \frac{\partial v}{\partial x_{k}} \right) \end{cases}$$

a is antisymmetric and p is symmetric.

S being symmetric definite positive, defines a scalar product

$$(1.11) s(w,v) = \int_{\Omega} (Sw,v)dx$$

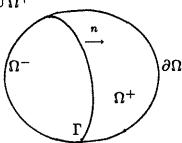
and we can write

$$(1.1.2) s\left(\frac{\partial w}{\partial t},v\right) + \nu p(v,w) + a(v,w) - \int_{\partial\Omega} (s\mathcal{E}w,v)d\gamma = \int_{\Omega} Fv$$

where $\mathcal{E}w$ is the normal constraint

(1.13)
$$\mathcal{E}w = \sum_{k=1}^{n} \left(\nu \sum_{j} P^{(jk)} \frac{\partial w}{\partial x_{j}} + \frac{1}{2} A^{(k)} w\right) n_{k}$$

Suppose now that $\Omega = \Omega^- \cup \Omega^+$



the orientation of n being from Ω^- to Ω^+ . We define $a^-, a^+, p^-, p^+, s^-, s^+$ as we did for a, p, s, but the integral being taken over Ω^- and Ω^+ respectively. Let v be compactly supported in Ω . We thus have:

$$(1.14) s\left(\frac{\partial w}{\partial t},v\right) + \nu p(v,w) + a(v,w) = \int_{\Omega} Fv$$

but

$$p(v,w) = p^+(v,w) + p^-(v,w)$$
 $a(v,w) = a^+(v,w) + a^-(v,w)$ $s\left(\frac{\partial w}{\partial t},v\right) = s^+\left(\frac{\partial w}{\partial t},v\right) + s^-\left(\frac{\partial w}{\partial t},v\right)$

and we can write

$$(1.15)^{\pm} \ \ s^{\pm} \Big(rac{\partial w^{\pm}}{\partial t},v\Big) +
u p^{\pm}(w^{\pm},v) + a^{\pm}(w^{\pm},v) - \int_{\partial\Omega^{\pm}} (S\mathcal{E}\,w^{\pm},v) d\gamma = \int_{\Omega^{\pm}} F^{\pm}v$$

where $F^{\pm} = F/\Omega^{\pm}$ and $w^{\pm} = w/\Omega^{\pm}$, so that adding (1.15)⁺ and (1.15)⁻, and subtracting from (1.14) we get:

$$\int_{\partial\Omega^+}(S\mathcal{E}w,v)d\gamma+\int_{\partial\Omega^-}^{\cdot}(S\mathcal{E}w,v)d\gamma=0$$

Since v is compactly supported in Ω , $\partial \Omega^{\pm}$ reduces to Γ and $(\mathcal{E}w)^{-} = (\mathcal{E}w^{-})/_{\Gamma}$ if w is defined in Ω^{-} , $(\mathcal{E}w)^{+} = (\mathcal{E}w^{+})/_{\Gamma}$ if w is defined in Ω^{+} , and the normal on Γ is exterior to Ω^{-} (thus interior to Ω^{+}). The transmission conditions then read:

(1.16)
$$(\mathcal{E}w)^- = (\mathcal{E}w)^+$$
 on Γ
$$w^- = w^+$$

OT

(1.17)
$$\sum_{k=1}^{N} \left(\nu \sum_{j} P^{(jk)} \frac{\partial w}{\partial x_{j}}^{-} + \frac{1}{2} A^{(k)} w^{-} \right) n_{k} =$$

$$\sum_{k=1}^{N} \left(\nu \sum_{j} P^{(jk)} \frac{\partial w}{\partial x_{j}}^{+} + \frac{1}{2} A^{(k)} w^{+} \right) n_{k}$$

In particular if $\Omega = \mathbb{R}^n$, $\Omega^- = \{x_1 < 0\}$, $\Omega^+ = \{x_1 > 0\}$, so that $\Gamma = \{x_1 = 0\}$, the transmission conditions are:

(1.18) is equivalent to (1.16). The Green's formula with the constraints is more useful when one wants to prove the well-posedness through energy estimates, and it is the reason why we included it here. Again (1.18) can be written as well:

(1.19)
$$\begin{vmatrix} w^{-} = w^{+} \\ \frac{\partial w}{\partial x_{1}}^{-I} = \frac{\partial w}{\partial x_{1}}^{+I} \end{vmatrix}$$

where (w^I, w^{II}) corresponds to the decomposition of the matrices $P^{(jk)}$, i.e.

$$(1.20) w^I = (w_1, \dots, w_r) w^{II} = (w_{r+1}, \dots, w_r)$$

but we prefer to use the form (1.18) which seems more fitted to the multi-dimensional case.

II. Derivation of the artificial boundary conditions. We shall use the transmission conditions we wrote above to derive the transparent boundary condition. Let F and w^0 be compactly supported in Ω^- , consider the Cauchy problem:

(2.1)
$$\begin{cases} \frac{\partial w}{\partial t} = \sum_{j=1}^{n} A^{(j)} \frac{\partial w}{\partial x_j} + \nu \sum_{j,k=1}^{n} P^{(jk)} \frac{\partial^2 w}{\partial x_j \partial x_k} + F(x,t) \\ w(0) = w^0 \end{cases}$$

It is equivalent to the transmission problem

(2.2)
$$\begin{cases} \frac{\partial w}{\partial t} - Qw^- = F(x,t) & \text{in } \Omega^- \\ w^-(0) = w^0 \end{cases}$$

(2.3)
$$\begin{cases} \frac{\partial w}{\partial t}^+ - Qw^+ = 0 & \text{in } \Omega^+ \\ w^+(0) = 0 \end{cases}$$

with the transmission conditions

II-1. The transparent boundary condition. We introduce the initial boundary value problem in Ω^+

(2.5a)
$$\frac{\partial w}{\partial t} - Qw = 0 \quad \text{in } \Omega^+$$

$$(2.5b) w(t=0)=0$$

(2.5c)
$$\begin{pmatrix} w_1 \\ \vdots \\ w_{r+r} \end{pmatrix} = g \quad \text{on } \Gamma$$

THEOREM 2.1. The boundary value problem (2.5) is strongly well-posed. The solution is given in Fourier variables (η, s) by:

(2.6)
$$\hat{w}(x_1, \eta, s) = \sum_{i=1}^{r+p} \lambda_i e^{\xi_i x_1} \Phi^i$$

where (ξ_i, Φ^i) are defined in (1.1) and the coefficients λ_i are determined by the boundary conditions.

Proof. According to Strikwerda [S], the problem is strongly well-posed if and only if the two initial boundary value problems:

$$\begin{vmatrix} \frac{\partial w}{\partial t}^I = \nu \sum_{j,k=1}^n \bar{P}^{(jk)} \frac{\partial^2 w^x}{\partial x_j \partial x_k} \\ w^I = g^I & \text{on } \Gamma. \end{vmatrix}$$

and

$$egin{aligned} &\left| rac{\partial w}{\partial t}^{II} = \sum_{j=1}^{n} ar{A}^{(j)} rac{\partial w}{\partial x_{j}}^{II} \\ &\left(egin{aligned} w_{r+1} \ dots \ w_{r+p} \end{aligned}
ight) = \left(egin{aligned} g_{r+1} \ dots \ g_{r+p} \end{aligned}
ight) \end{aligned} \qquad ext{on } \Gamma$$

are strongly well-posed. The first problem is a strongly parabolic problem with a Dirichlet boundary condition, and hence is strongly well-posed. As for the second one, since $\bar{A}^{(j)}$ is diagonal, the boundary condition resumes to specifying the entering characteristics which is, again, a strongly well-posed problem.

Let us now Fourier-Laplace transform (2.5a) with respect to t and y. The corresponding variables are (s, η) , with Re s > 0. We then get a second order ordinary differential equation, whose solution is

$$\hat{w} = \sum \lambda_i e^{\xi_i x_1} \Phi^i$$

where (ξ_i, Φ^i) are given in (1.1), since we supposed that $Q(i\xi)$ was diagonalizable. In order for \hat{w} to be in L^2 , the coefficients λ_i must vanish when Re $\xi_i \geq 0$. We thus are led to (2.6).

REMARK. We have assume that Q was diagonalizable, so the $(\Phi_k^i)_{1 \leq i,k \leq r+p}$ is a nonsingular matrix and thus the boundary condition determines the λ_i 's.

THEOREM 2.2. The transparent boundary condition at Γ for the half-space Ω^- is

(2.7a)
$$\nu \sum_{j=1}^{N} \bar{P}^{(1j)} \frac{\partial \hat{w}}{\partial x_{j}}^{I} = \nu \sum_{j=1}^{r+p} \bar{P}^{(11)} \sum_{i=1}^{r+p} \xi_{i} M_{ij}^{-1} \Phi^{i^{I}} \hat{w}_{j} + \nu \sum_{\ell \neq 1} i \eta_{e} \bar{P}^{(\ell 1)} \hat{w}^{I}$$

(2.7b)
$$\hat{w}_k = \sum_{i=1}^{r+p} \sum_{j=1}^{r+p} M_{ij}^{-1} \hat{w}_j \Phi_k^i \quad k = r+p+1, \cdots, n$$

where (M_{ij}) is the $(r+p) \times (r+p)$ matrix defined by

(2.8)
$$M_{ij} = \Phi_i^j$$
, and M^{-1} is the inverse of M .

Proof. w^+ is the solution in Ω^+ of the initial boundary problem (2.5) with $g_k=w_k^-,\ 1\leq k\leq r+p$. Theorem 2.1 then enables us to calculate explicitly $w_k^+,\ r+p+1\leq k\leq n$ and $\frac{\partial w^+}{\partial x_j}^I$. The transmission conditions then give the result:

$$u \sum_{j=1}^N ar{P}^{(1j)} rac{\partial w}{\partial x_j}^I =
u ar{P}^{(11)} rac{\partial \hat{w}}{\partial x_1}^I +
u \sum_{j
eq 1} ar{P}^{(1j)} i \eta_j \hat{w}^I.$$

From (2.6) we deduce that

$$\frac{\partial \hat{w}}{\partial x_1}^+ = \sum_{i=1}^{r+p} \lambda_i \xi_i \Phi^i$$
 on Γ

so that

$$\nu \sum_{j=1}^{N} \bar{P}^{(1j)} \frac{\partial \hat{w}}{\partial x_{j}}^{+I} = \nu \bar{P}^{(11)} \sum_{j=1}^{r+p} \lambda_{j} \xi_{j} \Phi^{jI} + \nu \sum_{j \neq 1} \bar{P}^{(1j)} i \eta_{j} \sum_{i=1}^{r+p} \lambda_{i} \Phi^{iI}$$

$$\hat{w}_{k}^{+} = \sum_{i=1}^{r+p} \lambda_{i} \Phi_{k}^{i} \quad k = r+p+1, \cdots, n.$$

The coefficients λ_j are determined by:

$$\sum_{i=1}^{r+p} \lambda_i \Phi_j^i = \hat{w}_j^- \qquad j = 1, \ldots, r+p.$$

So, if the matrix M is defined by (2.8), we have

$$\lambda_i = \sum_{i=1}^{r+p} M_{ij}^{-1} \hat{w}_j^-$$

and finally \hat{w}^- satisfies (2.7a), (2.7b): (2.7a,b) is actually the transparent boundary condition.

REMARK. If $\bar{A}^{(1)}$ were not diagonal, the same study could be carried over, by choosing an admissible boundary condition (2.5c).

REMARK. If n = r + p, the transparent boundary condition reduces to (2.7a): the "hyperbolic" part does not require any boundary conditions. (It is the case for instance for Navier Stokes equation when the flow is supersonic and the boundary is on the outflow).

II-2. Nonlocal approximate boundary condition. Since we are seeking boundary conditions which are consistent with the hyperbolic problem (i.e. $\nu = 0$), we shall approximate the transparent boundary condition (2.7) with respect to the parameter ν . We thus shall obtain boundary condition relating w and $\frac{\partial w}{\partial x_1}^I$, whose kernel is a non rational function of s and η , and thus integral in the time variable and the boundary variables. This boundary condition will eventually be approximated by local boundary conditions in II-3, using the techniques in [E-M] for hyperbolic problems.

Let us consider the limits as ν tends to 0 of the various terms in the right-hand side of (2.7). By (1.8) the vectors Φ^i tend to the corresponding Ψ^i , and hence the

matrix M tends to N, where

$$(2.9) N_{ij} = \Psi_i^j 1 \leq i, j \leq r+p$$

As for the coefficients $\nu \xi_i$, by (1.9) if $1 \le i \le m$, $\nu \xi_i$ tends to zero, and if $m+1 \le i \le n$, $\nu \xi_i$ tends to a finite limit $\zeta_i(s,\eta)$ (which actually does not depend on s,η). Taking the limits in the right-hand side of (2.7) as described we are led to the boundary condition:

(2.10a)
$$\nu \sum_{i=1}^{n} \bar{P}^{(1,j)} \frac{\partial \hat{w}}{\partial x_{j}}^{I} = \sum_{i=m+1}^{r+p} \bar{P}^{(11)} \sum_{i=1}^{r+p} \xi_{i} N_{ij}^{-1} \Psi^{i^{I}} \hat{w}_{j}$$

$$\hat{w}_k = \sum_{i=1}^{r+p} \sum_{j=1}^{r+p} N_{ij}^{-1} \hat{w}_j \Psi_k^i, \quad r+p+1 \le k \le n$$

We shall see in the next section how this boundary condition leads to a well-posed problem in the left half-space Ω^- , whose solution converges as ν tends to 0 toward the restriction to Ω^- of the solution of the full hyperbolic problem in \mathbb{R}^n . The latter will be done using a boundary layer expansion and the criterion in [M]. Before carrying over the analysis we shall write local boundary conditions. In order to make the mechanisms clear, and since we shall need it later, we shall first recall the derivation of transparent and approximate boundary conditions for the hyperbolic problem.

II-3. Absorbing boundary conditions for the hyperbolic problem. We shall follow here the lines drawn in [EM]. We keep the notations and assumptions set in the first section. The hyperbolic system is:

(2.11)
$$\frac{\partial w}{\partial t} = \sum_{j=1}^{N} A^{(j)} \frac{\partial w}{\partial x_j} + F$$

By Laplace-Fourier transform in t and y, the solutions of this equation in the full space when F = 0 are given by:

(2.12)
$$\hat{w} = \sum_{i=1}^{N} \lambda_i e^{\alpha_i x_1} \Pi^i$$

where (α_i, Π^i) are the eigenvalues and eigenvectors defined in Section I

(2.13)
$$\left(A^{(1)}\alpha_k + \sum_{j\neq 1} iA^{(j)}\eta_j - sI\right)\Pi^k = 0.$$

If $(\text{Re } s \text{ Re } \alpha_j) \leq 0$ (resp(Re $s \text{ Re } \alpha_j) \geq 0$), the corresponding mode in (2.12) propagates in the $x_1 > 0$ - direction (resp $x_1 < 0$).

The transparent boundary condition at $x_1 = 0$ for the half-space Ω^- expresses that no wave can propagate from the boundary toward the interior of Ω^- , i.e.

$$(2.14) i=m+1,\ldots,n \lambda_i=0$$

Let us define T as the matrix of the eigenvectors:

$$(2.15) T_{ij}(s,\eta) = \Pi_i^j(s,\eta).$$

By (2.15), (2.14) can be rewritten as:

(2.16)
$$\forall i = m+1, \ldots, n \qquad (T^{-1}\hat{w})_i = 0.$$

This is the transparent boundary condition at $x_1 = 0$ for the half-space Ω^- , i.e. the equivalent of (2.7) for $\nu = 0$. We shall see in the next section that (2.7) (or (2.10)) actually resumes to (2.16) when ν tends to zero, so that the solution of (0.1) coupled with (2.7) (or (2.10)) tends to the solution of (2.11) with the boundary condition (2.16). This boundary condition is non-local, in time and space. Following [E-M], we shall make an approximation with respect to the angle of incidence of the wave

on the boundary. This is easily achieved by letting $\eta = 0$ in (2.13), so that α_k is nothing else but $\frac{s}{\lambda_k}$ where λ_k is an eigenvalue of $A^{(1)}$, and $\Pi^k = \Lambda^k$.

So the first absorbing boundary condition for (2.11) in Ω^- is

(2.17)
$$\forall i = m+1, \ldots, n \quad (\tilde{T}^{-1}w)_i = 0$$

where

$$\tilde{T}_{ij} = \Lambda_i^j, \quad 1 \leq i, j \leq n$$

Which is simply writing that the entering characteristics of the system are prescribed the value 0 on the boundary.

II-4. Local boundary conditions for the full problem. We thus want to make the same kind of approximation on (2.10), and it is now clearer: for $m+1 \leq j \leq r+p$, neither ζ_j nor Ψ^j depends on (s,η) and therefore remain unchanged. For $1 \leq j \leq m$, ζ_j and Ψ^j are approximated by $\frac{s}{\lambda_j}$ and Λ^j respectively.

We then define the vector $\tilde{\Psi}^j$, $1 \leq j \leq r + p$ by:

(2.18)
$$egin{array}{cccc} ilde{\Psi}^j &= \Lambda^j && 1 \leq j \leq m \ ilde{\Psi}^j &= \Psi^j && m+1 \leq j \leq r+p \end{array}$$

and the matrix \tilde{N} by

(2.19)
$$\tilde{N}_{ij} = \tilde{\Psi}_i^j \qquad 1 \leq i, j \leq r + p$$

The approximate boundary conditions takes the form:

(2.20)
$$v \sum_{j=1}^{N} \bar{P}^{(1,j)} \frac{\partial w}{\partial x_{j}}^{I} = \sum_{i=m+1}^{r+p} \bar{P}^{(11)} \sum_{j=1}^{r+p} \zeta_{i} \tilde{N}_{ij}^{-1} \Psi^{i^{I}} w_{j}$$

$$w_{k} = \sum_{i=1}^{r+p} \sum_{j=1}^{r+p} \tilde{N}_{ij}^{-1} \tilde{\Psi}_{k}^{i} w_{j} \quad r+p+1 \leq k \leq n.$$

This is our local boundary condition. It is of first order in x, and zero order in time. Like for (2.7) and (2.16), we shall see that it converges to (2.17) when ν tends to zero, so that the solution of (0.1) coupled with (2.20) tends to the solution of (2.11) coupled with the first absorbing boundary condition (2.17).

We shall discuss in Section 5 further approximations of these boundary conditions, with respect to either parameters ν or the angle of incidence on the boundary. These boundary conditions will be of higher order derivative in time and the tangential variables.

III. Analysis of the approximate boundary conditions.

We shall use here the analysis by Michelson [M] of the well-posedness and boundary layer for initial boundary value problems related to parabolic perturbations of hyperbolic equations.

III-1. Well-posedness of the boundary value problems. As already pointed out by Strikwerda [S], the well-posedness of the initial boundary value problem for (0.1) is equivalent to the well-posedness of the purely parabolic problem for \bar{P} and purely hyperbolic problem for \bar{A} , provided the boundary conditions satisfy certain decoupling conditions, which are automatically satisfied for boundary conditions of the form (2.7). Furthermore if the problem satisfies a uniform Lopatinski condition stated by Michelson in [M], then one can get estimates uniform in ν . Let us define in Ω^- the weighted norms:

$$(3.1) ||u||_{m_1,m_2,\eta}^2 = \sum_{\substack{|\beta| \le m_2 \\ |\alpha| + |\beta| \le m_1}} ||(\nu D, \nu \eta)^{\alpha} (\chi D_{x_1}, D_y, D_t, \eta)^{\beta} e^{-\eta t} u||_{L^2}^2$$

where $\chi = \chi(x_1)$ is a fixed smooth non-decreasing function of x_1 such that $\chi(x_1) = x_1$ for $x_1 < \frac{1}{2}$, and $\chi(x_1) = 1$ for $x_1 > 1$. Denote by $|u(x_1, \cdot)|^2_{m_1, m_2, \eta}$ the obvious

restriction of the above norm to the hyperplane $x_1 = cst$. Let σ be the pseudo-differential operator with symbol $\text{Re}(1+\nu s+|\nu\eta|^2)^{\frac{1}{2}}(s=i\omega+\eta)$. If w is partitioned in the natural way mentioned before $w=\binom{w^I}{w^{II}}$, we define v by:

(3.2)
$$v = \begin{pmatrix} v^I \\ v^{II} \end{pmatrix}, \ v^{II} = w^{II}, \ v^I = \begin{pmatrix} \sigma^{-1} \nu D_{x_1} w^I \\ \sigma w^I \end{pmatrix}.$$

We start by writing the decoupled problems:

The parabolic problem is:

(3.3a)
$$\frac{\partial w^I}{\partial t} = \sum_{j,k=1}^{N} \bar{P}^{(jk)} \frac{\partial^2 w^I}{\partial x_j \partial x_k} + F^I$$

(3.3b)
$$\sum_{j=1}^{N} \bar{P}^{(1j)} \frac{\partial w^{I}}{\partial x_{j}} = 0 \quad \text{on} \quad \Gamma$$

$$w^{I}(t=0) = 0$$

and the hyperbolic problem is:

$$(3.4a) \qquad \frac{\partial w^{II}}{\partial t} = \sum_{i=1}^{N} \bar{A}^{(j)} \frac{\partial w^{II}}{\partial x^{j}} + F^{II}$$

(3.4b)
$$\hat{w}_k = \sum_{i=1}^{r+p} \sum_{j=r+1}^{r+p} N_{ij}^{-1} \hat{w}_j \Psi_k^i \qquad k = r+p+1, \ldots, n \quad \text{on} \quad \Gamma$$

$$w^{II}(t=0) = 0$$

for the boundary conditions (2.10). For the boundary conditions (2.20) N and Ψ must be replaced by \tilde{N} and $\tilde{\Psi}$ respectively.

Then we have

THEOREM 3.1. The boundary value problem (0.1) coupled with either boundary condition (2.10) or (2.20) is well-posed if and only if the reduced hyperbolic problem (3.4) is well-posed. Furthermore, if (3.4) is well-posed in the sense of Kreiss,

let integers $m_1 \geq m_2 \geq 0$ be such that $m_1 - m_2 \geq 1$. Then there exist positive constants k, ν_0, η_0 such that for all $\eta > \eta_0$ and $0 \leq \nu < \nu_0$ the following a priori estimate holds:

(3.3)
$$\begin{vmatrix} \eta \|w\|_{m_{1},m_{2},\eta}^{2} + \nu \|D_{x}w^{I}\|_{m_{1},m_{2},\eta}^{2} + |v(0,\cdot)|_{m_{1},m_{2},\eta}^{2} + |\sigma^{\frac{1}{2}}v^{I}(0,\cdot)|_{m_{1},m_{2},\eta}^{2} \\ + \sup_{x_{1}} (|w(x_{1},\cdot)|_{m_{1}-1,m_{2}-1,\eta}^{2} + |\nu D_{x}w^{I}(x_{1},\cdot)|_{m_{1}-1,m_{2}-1,\eta}^{2}) \\ \leq k\eta^{-1} \|F\|_{m_{1},m_{2},\eta}^{2}$$

Proof. The first assertion is a mere consequence of the result by Strikwerda in [S]. As for the second a priori estimate, it follows directly from the general theory on parabolic perturbations for hyperbolic systems by Michelson in [M].

The a priori estimate justifies the boundary layer expansion and proves the convergence of the initial boundary value problems (0.1) coupled with either of the boundary conditions (2.10) or (2.11):

III-2. Boundary layer; convergence results. A physical phenomenon related to incompletely parabolic approximations of hyperbolic equations with a small parameter ν , is the formation of a boundary layer. It is mathematically represented by a formal expansion

(3.6)
$$w(x,t,\nu) = \sum_{i>0} \nu^{i}(w_{i}^{(1)}(x,t) + w_{i}^{(2)}(x_{1}/\nu,y,t)).$$

The functions $w_i^{(1)}$ represent the smooth part of the solution, while the functions $w_i^{(2)}$ represent the boundary layer: they are exponentially decreasing in x_1/ν . Michelson proved in [M] that under the same hypothesis as in Theorem 3.1, the expansion (3.6) was actually valid. We shall apply this result to our particular case.

THEOREM 3.2. Let $w(x,t,\nu)$ be the solution of (0.1) (2.10) (resp. (2.20)) with a sufficiently smooth F. Suppose, as in Theorem 3.2 that the reduced hyperbolic

problem (3.4) is well-posed. Then, as ν tends to zero, w converges to the solution u of the hyperbolic problem (2.11) (2.16) (resp. (2.17)). More precisely, if $m_1 \ge m_2 \ge m_3 \ge 0$ and $m_1 - m_2 \ge 1$, one has

$$||w(x,t,\nu)-u(x,t)||_{m_1,m_2,m_3,\eta}\leq c(\nu+\nu^{\frac{3}{2}-m_3})$$

where the norm above is defined by:

(3.8)
$$||u||_{m_1,m_2,m_3,\eta}^2 = \sum_{i=0}^{m_3} ||D_{x_1}^i u||_{m_1-i,m_2-i,\eta}^2.$$

REMARKS. 1) This result tells even more about the boundary layer: it says that in expansion (3.6) the first term $w_0^{(1)}$ is indeed the solution of the associated hyperbolic problem, and the first term $w_0^{(2)}$ vanishes: the boundary layer is "weak".

2) Boundary condition (2.16) is actually the transparent boundary condition for the hyperbolic problem, so that the solution of (0.1) (2.10) converges to the solution of the Cauchy problem for (2.1).

Proof of Theorem 3.2. According to Michelson [M], the following estimate holds:

$$||w(x,t,\nu)-w_0^{(1)}(x,t)-w_0^{(2)}(x_1/\nu,y,t)||_{m_1,m_2,m_3,\eta}\leq c(\nu+\nu^{\frac{3}{2}-m_3}).$$

We merely need to check that $w_0^{(1)}$ is u and $w_0^{(2)}$ is zero. These terms are obtained by substituting the expansion (3.6) into the equation and the boundary condition, separating the scales x_1 and x_1/ν , and equaling to zero the successive coefficients of the resulting series:

From the equation we deduce that $w_0^{(1)}$ and $w_0^{(2)}$ are solutions of the following equations:

(3.10)
$$A^{(1)}w_0^{(2)} + P^{(11)}\frac{\partial w_0^{(2)}}{\partial (x_1/\nu)} = 0$$

(3.11)
$$\frac{\partial w_0^{(1)}}{\partial t} = \sum_{j=1}^{N} A^{(j)} \frac{\partial w_0^{(1)}}{\partial x_j} + F$$

and $w_i^{(1)}$ and $w_i^{(2)}$ are solutions of:

(3.12)
$$\frac{\partial w_{i}^{(1)}}{\partial t} = \sum_{j=1}^{N} A^{(j)} \frac{\partial w_{i}^{(1)}}{\partial x_{j}} + \sum_{j,k=1}^{N} P^{(jk)} \frac{\partial^{2} w_{i-1}^{(1)}}{\partial x_{j} \partial x_{k}}$$

$$(3.13) A^{(1)} \frac{\partial w_{i}^{(2)}}{\partial (x_{1}/\nu)} + P^{(11)} \frac{\partial^{2} w_{i}^{(2)}}{\partial (x_{1}/\nu)^{2}} = \frac{\partial w_{i-1}^{(2)}}{\partial t} - \sum_{j \neq 1} A^{(j)} \frac{\partial w_{i-1}^{(2)}}{\partial x_{j}} - \sum_{j \neq 1} P^{(jk)} \frac{\partial^{2} w_{i-1}^{(2)}}{\partial (x_{1}/\nu)\partial x_{j}} - \sum_{j,k \neq 1} P^{(jk)} \frac{\partial^{2} w_{i-2}^{(2)}}{\partial x_{j}\partial x_{k}}$$

with the convention that $w_{i-2}^{(2)} \equiv 0$ if i = 1. We shall assume here the boundary conditions (2.10) are imposed. The calculations are the same for (2.20). For $x_1 = 0$ we have:

(3.14)
$$\frac{\partial \hat{w}_{0}^{(2)I}}{\partial (x_{1}/\nu)} = \sum_{i=m+1}^{r+p} \sum_{j=1}^{r+p} \zeta_{i} N_{ij}^{-1} \Psi^{iI}(\hat{w}_{0,j}^{(1)} + \hat{w}_{0,j}^{(2)})$$

$$(3.15) \qquad \hat{w}_{0,k}^{(1)} + \hat{w}_{0,k}^{(2)} = \sum_{i,j=1}^{r+p} N_{ij}^{-1} \Psi_k^i (\hat{w}_{0,j}^{(1)} + \hat{w}_{0,j}^{(2)}) \quad r+p+1 \leq k \leq n.$$

 $\ell \ge 1$

(3.16)
$$\bar{P}^{(11)} \left[\frac{\partial \hat{w}_{\ell}^{(2)^{I}}}{\partial (x_{1}/\nu)} - \sum_{i=m+1}^{r+p} \sum_{j=1}^{r+p} \zeta_{i} N_{ij}^{-1} \Psi^{i}(\hat{w}_{\ell j}^{(1)} + \hat{w}_{\ell j}^{(2)}) \right]$$

$$+ \sum_{j \neq 1} \bar{P}^{(1j)} \left(\frac{\partial \hat{w}_{\ell-1}^{(1)}}{\partial x_{j}} + \frac{\partial \hat{w}_{\ell-1}^{(2)}}{\partial x_{j}} \right) + \bar{P}^{(11)} \frac{\partial \hat{w}_{\ell-1}^{(1)}}{\partial x_{1}} = 0$$

$$\hat{w}_{\ell,k}^{(1)} + \hat{w}_{\ell,k}^{(2)} = \sum_{i,j=1}^{r+p} N_{ij}^{-1} \Psi_{k}^{i} \left(\hat{w}_{\ell,j}^{(1)} + \hat{w}_{\ell,j}^{(2)} \right) \quad r+p+1 \leq k \leq n.$$

Let us start with equation (3.10). From this form, we deduce that $w_0^{(2)}$ is a linear combination of the "exponential modes" defined in (1.6). Here $w_0^{(2)}$ is supposed to be exponentially decreasing in Ω^- , so that

$$w_0^{(2)} = \sum_{j=r+p-m+1}^r \lambda_j \Theta^j e^{\theta_j x_1} \qquad x_1 \le 0$$

We substitute into (3.14), remembering that for i = m + 1, ..., r + p, (ς_i, Ψ^i) is actually $(\theta_{i-m}, \Theta^{j-m})$. We thus get:

$$\sum_{j=r+p-m+1}^{r} \theta_{j} \lambda_{j} \Theta^{j^{I}} = \sum_{j=1}^{r+p-m} \sum_{i=1}^{r+p} \theta_{j} N_{j+m,i}^{-1} (\hat{w}_{0,1}^{(1)} + \hat{w}_{0,i}^{(2)}) \Theta^{j^{I}}$$

This amounts to stating that there exist coefficients α_k such that $\sum_{k=1}^r \alpha_k \Theta^{k^r} = 0$.

It implies that $\sum_{k=1}^{r} \alpha_k \Theta^k = 0$, for equation (1.6) can be written:

$$\bar{P}^{(11)}\theta_k \Theta^{k^I} + B^{(1)}\Theta^{k^I} + \mathbf{C}^{(1)}\Theta^{k^{II}} = 0$$
$$D^{(1)}\Theta^{k^I} + \bar{A}^{(1)}\Theta^{k^{II}} = 0.$$

And if $\sum \alpha_k \Theta^{k^I} = 0$, then $\sum \alpha_k D^{(1)} \Theta^{k^I} = 0$, so that $\sum \alpha_k \bar{A}^{(1)} \Theta^{k^{II}} = 0$, and since $\bar{A}^{(1)}$ is nonsingular, the result follows. From the assumptions (0.5) on the operator Q, the Θ^k 's are independent, and hence the α_k 's vanish for any k.

Then $\lambda_j = 0$ for $r + p - m + 1 \le j \le r$, and thus $w_0^{(2)}$ vanishes identically in Ω^- . We substitute into (3.14) and (3.15), which indicates that $w_0^{(1)}$ is a solution of the following problem in Ω^- .

$$\frac{\partial u}{\partial t} = \sum_{j=1}^{n} A^{(j)} \frac{\partial u}{\partial x_j} + F$$
 $x \in \Omega^{-}$

with the boundary conditions:

(3.18a)
$$\sum_{j=1}^{r+p} N_{ij}^{-1} \hat{u}_j = 0 \qquad i = m+1, \ldots, r+p$$

(3.18b)
$$\hat{u}_k = \sum_{i,i=1}^{r+p} N_{ij}^{-1} \Psi_k^i \hat{u}_j \qquad k = r+p+1,\ldots,n.$$

We are now going to prove that (3.18) implies the transparent boundary condition (2.16) $(T^{-1}\hat{u})_i = 0, m+1 \le i \le n$.

$$(T^{-1}\hat{u})_{i} = \sum_{k=1}^{n} T_{ij}^{-1} \hat{u}_{j} = \sum_{k=1}^{r+p} T_{ij}^{-1} \hat{u}_{j} + \sum_{k=r+p+1}^{n} T_{ij}^{-1} \hat{u}_{j}.$$

In the second term of the right hand side we substitute (3.19a):

$$\sum_{k=r+p+1}^{n} T_{ik}^{-1} \hat{u}_{k} = \sum_{k=r+p+1}^{n} T_{ik}^{-1} \sum_{\ell=1}^{r+p} \sum_{j=1}^{r+p} N_{\ell j}^{-1} \Psi_{k}^{\ell} \hat{u}_{j}$$

$$\sum_{k=r+p+1}^{n} T_{ik}^{-1} \hat{u}_{k} = \sum_{k=1}^{n} \sum_{\ell=1}^{r+p} \sum_{j=1}^{r+p} N_{\ell j}^{-1} T_{ik}^{-1} \Psi_{k}^{\ell} \hat{u}_{j}$$
$$- \sum_{k=1}^{r+p} \sum_{\ell=1}^{r+p} \sum_{j=1}^{r+p} N_{\ell j}^{-1} T_{ik}^{-1} \Psi_{k}^{\ell} \hat{u}_{j}$$

but

$$\begin{split} &\sum_{\ell=1}^{r+p} N_{\ell j}^{-1} \Psi_k^{\ell} = \delta_{kj}, \text{ and} \\ &\sum_{k=1}^{r+p} \sum_{\ell=1}^{r+p} \sum_{j=1}^{r+p} N_{\ell j}^{-1} \Psi_k^{\ell} T_{ik}^{-1} \hat{u}_j = \sum_{j=1}^{r+p} T_{ij}^{-1} \hat{u}_j \end{split}$$

so that

$$(T^{-1}\hat{u})_i = \sum_{k=1}^n \sum_{\ell=1}^{r+p} \sum_{j=1}^{r+p} N_{\ell j}^{-1} T_{ik}^{-1} \Psi_k^{\ell} \hat{u}_j.$$

On account of (3.18), the latter reduces to

$$(T^{-1}\hat{u})_i = \sum_{\ell=1}^m \sum_{j=1}^{r+p} N_{\ell j}^{-1} \hat{u}_j \sum_{k=1}^n T_{ik}^{-1} \Psi_k^{\ell}.$$

For $1 \le \ell \le m$, Ψ^{ℓ} corresponds to the hyperbolic part of Q, so that $\sum_{k=1}^{n} T_{ik}^{-1} \Psi_{k}^{\ell} = \delta_{i\ell} \text{ and }$

$$(T^{-1}\hat{u})_i = 0$$
 for $m+1 \le i \le n$.

IV. Application to Navier-Stokes equations.

We consider here the two dimensional compressible Navier-Stokes equations:

(4.1a)
$$\rho \frac{du_i}{dt} = -\frac{\partial p}{\partial x_i} + \sum_{j=1}^2 \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \operatorname{div} u \right) \right] \quad i = 1, 2$$

$$(4.1b)\rho \frac{dc_v T}{dt} = -p \operatorname{div} u + \sum_{i,j=1}^{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \operatorname{div} u \right) \frac{\partial u_i}{\partial x_j} + \sum_{j=1}^{2} \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right)$$

(4.1c)
$$\frac{d\rho}{dt} = -\rho \text{ div } u.$$

Here ρ is the density, u_i is the velocity component, p is the pressure, T is the temperature, μ and k are the coefficients of viscosity and heat conductivity respectively, and c_v is the specific heat at constant volume. The pressure p is related to ρ and T by $p = \rho RT$ where R is the gas constant. We shall introduce γ as the ratio of specific heats, i.e. $\gamma = c_p/c_v$, (recall that $R = c_p - c_v$), and the Prandtl number of the gas $P_r = \mu c_p/k$. P_r is supposed to be constant here. As usual $\frac{d}{dt} = \frac{\partial}{\partial t} + u_1 \frac{\partial}{\partial x_1} + u_2 \frac{\partial}{\partial x_2}$. We shall assume that the artificial boundary is sufficiently far from any turbulent regime, so that we can consider (u, ρ, T, p) as a small perturbation of a smooth regime (u, ρ, T, p) . Since in our analysis the lower order derivatives are not of much importance, and the results of Michelson carry over to variable coefficients as well by freezing the coefficients, we shall concentrate here on the case where the regime reference is constant as a function of time and space. Let us call $(\tilde{u}, \tilde{\rho}, \tilde{T}, \tilde{p})$ the perturbation. It is a solution of the problem:

$$(4.2a) \qquad \rho \frac{d\tilde{u}_1}{dt} + RT \frac{\partial \tilde{\rho}}{\partial x_1} + \rho R \frac{\partial \tilde{T}}{\partial x_1} = \mu \left[\frac{4}{3} \frac{\partial^2 \tilde{u}_1}{\partial x_1^2} + \frac{\partial^2 \tilde{u}_1}{\partial x_2^2} + \frac{1}{3} \frac{\partial^2 \tilde{u}_2}{\partial x_1 \partial x_2} \right]$$

$$(4.2b) \rho \frac{d\tilde{u}_2}{dt} + RT \frac{\partial \tilde{\rho}}{\partial x_2} + \rho R \frac{\partial \tilde{T}}{\partial x_2} = \mu \left[\frac{\partial^2 \tilde{u}_2}{\partial x_1^2} + \frac{4}{3} \frac{\partial^2 \tilde{u}_2}{\partial x_2^2} + \frac{1}{3} \frac{\partial^2 \tilde{u}_1}{\partial x_1 \partial x_2} \right]$$

(4.2c)
$$\rho \frac{d\tilde{T}}{dt} + (\gamma - 1)\rho T \text{ div } \tilde{u} = \gamma P_r^{-1} \mu \Delta \tilde{T}$$

(4.2d)
$$\frac{d\tilde{\rho}}{dt} + \rho \operatorname{div} \, \tilde{u} = 0$$

We shall normalize these equations by redefining $\tilde{\rho}$ as $\tilde{\rho}/\rho$ and introducing the undisturbed kinematic viscosity $\nu = \mu/\rho$. So that the equations can be written on the form (0.1):

(4.3)
$$\frac{\partial U}{\partial t} = A^{(1)} \frac{\partial U}{\partial x_1} + A^{(2)} \frac{\partial U}{\partial x_2} + \nu \sum_{j,k=1}^{2} P^{(jk)} \frac{\partial^2 u}{\partial x_j \partial x_k} + F(x,t)$$

where $U = (\tilde{u}_1, \tilde{u}_2, \tilde{T}, \tilde{\rho})$

$$A^{(1)} = \begin{pmatrix} -u_1 & 0 & -R & -RT \\ 0 & -u_1 & 0 & 0 \\ -(\gamma - 1)T & 0 & -u_1 & 0 \\ -1 & 0 & 0 & -u_1 \end{pmatrix} A^{(2)} = \begin{pmatrix} -u_2 & 0 & 0 & 0 \\ 0 & -u_2 & -R & -RT \\ 0 & -(\gamma - 1)T & -u_2 & 0 \\ 0 & -1 & 0 & -u_2 \end{pmatrix}$$

$$P^{(11)} = \begin{pmatrix} \frac{4}{3} & 0 \\ 0 & \gamma P_r^{-1} \\ 0 & 0 \end{pmatrix} P^{(22)} = \begin{pmatrix} 1 & 0 \\ 0 & \gamma P_r^{-1} \\ 0 & 0 \end{pmatrix}$$

$$P^{(12)} = \begin{pmatrix} 0 & 1/6 & 0 \\ 1/6 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

They satisfy all the assumptions we made in Section 0. We shall write here the precise formulation for the local boundary conditions (2.20). We shall start by studying the eigenvalues for $A^{(1)}$, and recalling the corresponding boundary conditions for the Euler equations (cf. for instance [E-M]).

V-1. The Euler system. It is well-known that the eigenvalues of $A^{(1)}$ are

$$\begin{vmatrix} \lambda_1 = -u_1 - c \\ \lambda_2 = \lambda_3 = -u_1 \\ \lambda_4 = -u_1 + c \end{vmatrix}$$

The corresponding eigenvectors are

(4.5)
$$\Lambda^1 = \begin{pmatrix} c \\ 0 \\ (\gamma - 1)T \end{pmatrix} \Lambda^2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \Lambda^3 = \begin{pmatrix} 0 \\ 0 \\ T \\ -1 \end{pmatrix} \Lambda^4 = \begin{pmatrix} c \\ 0 \\ -(\gamma - 1)T \\ -1 \end{pmatrix}$$

So that $A^{(1)}$ is diagonable and the matrix \tilde{T} in (2.17) is

(4.6)
$$\tilde{T} = \begin{pmatrix} c & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ (\gamma - 1)T & 0 & T & -(\gamma - 1)T \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

and

$$A^{(1)}= ilde{T}egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & 0 & \ 0 & & \lambda_3 & \ & & & \lambda_4 \end{pmatrix} ilde{T}^{-1}$$

The number of boundary conditions required by the system at $x_1 = 0$ in Ω^- depends on whether the flow is super or subsonic, the boundary is inflow or outflow, as summarized on the following table:

The subsonic case: $|u_1| < c$

• inflow: $u_1 < 0$.

 $\lambda_1 < 0, \ \lambda_2, \lambda_3, \lambda_4 > 0, \ m = 1$: 3 boundary conditions.

$$(\tilde{T}^{-1}u)_i = 0$$
 $i = 2, 3, 4.$

• outflow: $u_1 > 0$

 $\lambda_1, \lambda_2, \lambda_3 < 0, \quad \lambda_4 > 0, \quad m = 3$: 1 boundary condition.

$$(\tilde{T}^{-1}u)_4=0.$$

The supersonic case $|u_1| > c$

• inflow: $u_1 < 0$

 $\lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0$ m = 0: 4 boundary conditions.

$$u_i = 0$$
 $i = 1, 2, 3, 4$

• outflow: $u_1 > 0$

 $\lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0$ m = 4: 0 boundary condition

The matrix \tilde{T}^{-1} is given by

(4.7)
$$\tilde{T}^{-1} = \begin{pmatrix} \frac{1}{2c} & 0 & \frac{1}{2\gamma T} & \frac{1}{2\gamma} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\gamma t} & -\frac{\gamma - 1}{\gamma} \\ \frac{1}{2c} & 0 & -\frac{1}{2\gamma T} & -\frac{1}{2\gamma} \end{pmatrix}$$

So that the boundary conditions are:

• subsonic inflow

(4.8a)
$$\begin{cases} \frac{\tilde{u}_1}{c} - \frac{1}{\gamma} \frac{\tilde{T}}{T} - \frac{1}{\gamma} \frac{\tilde{\rho}}{\rho} = 0 \\ \tilde{u}_2 = 0 \\ \frac{1}{\gamma} \frac{\tilde{T}}{T} - \frac{\gamma - 1}{\gamma} \frac{\tilde{\rho}}{\rho} = 0 \end{cases}$$

• subsonic outflow

(4.8b)
$$\frac{\tilde{u}_1}{c} - \frac{1}{\gamma} \frac{\tilde{T}}{T} - \frac{1}{\gamma} \frac{\tilde{\rho}}{\rho} = 0$$

• supersonic inflow

$$\tilde{u}_1 = \tilde{u}_2 = \tilde{T} = \tilde{\rho} = 0$$

• supersonic outflow

no boundary condition.

We reintroduced here the density ρ for the sake of consistency. These boundary conditions are stable in the sense of Kreiss (see [E-M]).

IV-2. The Navier-Stokes system. Here the number of boundary conditions is n-p, where p is the number of negative eigenvalues of $\bar{A}^{(1)}$. $\bar{A}^{(1)}$ reduces to $-u_1$, so that we must distinguish only between the inflow and the outflow cases:

• inflow boundary, $u_1 < 0$

$$p = 0$$
 4 boundary conditions

• outflow boundary $u_1 > 0$

$$p=1$$
 3 boundary conditions.

We have to determine the other part of the family (Ψ^j) , i.e. the θ_j and Θ_j solutions of

$$[P^{(1,1)}\theta + A^{(1)}]\Theta = 0$$

The cubic equation for θ has an immediate root we shall call θ_3 :

$$\theta_3=u_1.$$

The two other roots are solutions of the quadratic equation:

(4.10)
$$-u_1(\frac{4}{3}\theta - u_1)(\alpha\theta - u_1) - RT(\alpha\theta - \gamma u_1) = 0$$

where, for implicity, we set:

$$\alpha = \gamma \; P_r^{-1}$$

we have

$$\theta_1 \,\, \theta_2 = rac{3}{4lpha}(u_1^2 - c^2), \,\, heta_1 + heta_2 = rac{3}{4}rac{[lpha(u_1^2 - rac{c^2}{\gamma}) + rac{4}{3}u_1^2]}{lpha u_1}$$

with $c^2 = \gamma RT$.

Recalling that $\gamma > 1$, we can determine the signs of the roots. We order θ_1 and θ_2 so that $\theta_1 < \theta_2$ (θ_1 can not be equal to θ_2).

Subsonic case: $\theta_1 < 0 < \theta_2$.

• inflow case: $\theta_3 < 0$

• outflow case: $\theta_3 > 0$.

Supersonic case.

• inflow case: $\theta_1 < \theta_2 < 0$, $\theta_3 < 0$

• outflow case: $0 < \theta_1 < \theta_2 - \theta_3 > 0$

The corresponding generalized eigenvalues are

(4.11)
$$\Theta^{i} = \begin{vmatrix} u_{1} \\ 0 & i = 1, 2 & \Theta^{3} = \\ \frac{(\gamma - 1)Tu_{1}}{\alpha\theta_{i} - u_{1}} & 0 \\ -1 & 0 \end{vmatrix}$$

We now have all the elements to (2.20)

• Subsonic inflow: m = 1, p = 0, r + p = 3.

$$\zeta_1=\lambda_1,\ ilde{\Psi}^1=\Lambda^1,\ \zeta_2= heta_1\ ilde{\Psi}^2=\Theta^1,\ \zeta_3= heta_3,\ ilde{\Psi}^3=\Theta^3$$

and

$$ilde{N} = egin{pmatrix} c & u_1 & 0 \ 0 & 0 & 1 \ (\gamma-1)T & U_1 & 0 \end{pmatrix} ilde{N}^{-1} = rac{1}{\det ilde{N}} egin{pmatrix} -U_1 & 0 & u_1 \ (\gamma-1)T & 0 & -c \ 0 & \det ilde{N} & 0 \end{pmatrix}$$

where
$$U_{i} = \frac{(\gamma - 1)Tu_{1}}{\alpha\theta_{i} - u_{1}}, \quad \det \tilde{N} = (\gamma - 1)Tu_{1} - U_{1}c$$

$$\begin{cases}
\nu \frac{\partial \tilde{u}_{1}}{\partial x_{1}} + \frac{1}{8}\nu \frac{\partial \tilde{u}_{2}}{\partial x_{2}} = \frac{\theta_{1}}{1 - \frac{c}{\gamma P_{r}^{-1}\theta_{1} - u_{1}}} (\tilde{u}_{1} - \frac{c}{\gamma - 1}\frac{\tilde{T}}{T}) \\
\nu \frac{\partial \tilde{u}_{2}}{\partial x_{1}} + \frac{1}{6}\nu \frac{\partial \tilde{u}_{1}}{\partial x_{2}} = u_{1}\tilde{u}_{2} \\
\nu \frac{\partial \tilde{T}}{\partial x_{1}} = \frac{(\gamma - 1)T\theta_{1}}{\gamma P_{r}^{-1}\theta_{1} - u_{1} - c} (\tilde{u}_{1} - \frac{c}{\gamma - 1}\frac{\tilde{T}}{T}) \\
\frac{\tilde{\rho}}{\rho} = \frac{-1}{u_{1}(1 - \frac{c}{\gamma P_{r}^{-1}\theta_{1} - u_{1}})} \left[\frac{\gamma P_{r}^{-1}\theta_{1}}{\gamma P_{r}^{-1}\theta_{1} - u_{1}} \tilde{u}_{1} - \frac{u_{1} + c}{\gamma - 1}\frac{\tilde{T}}{T} \right]$$

This system reduces to (4.8a) when $\nu = 0$

• Subsonic outflow: m = 3, p = 1, r + p = 4

$$\zeta_i = \lambda_i, \ \tilde{\Psi}^i = \Lambda^i, \ i = 1, 2, 3 \quad \zeta_4 = \theta_1 \ \tilde{\Psi}^4 = \Theta^1$$

$$\tilde{N} = \begin{pmatrix} c & 0 & 0 & u_1 \\ 0 & 1 & 0 & 0 \\ (\gamma - 1)T & 0 & T & U_1 \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

$$ilde{N}^{-1} = rac{1}{TZ} \left(egin{array}{cccc} T - U_1 & 0 & u_1 & u_1 T \ 0 & TZ & 0 & 0 \ T - U_1 - \gamma T & 0 & u_1 + c & T(u_1 + c) - ZT \ + \gamma T & 0 & -c & -cT \end{array}
ight)$$

where $Z=\gamma\;u_1-c(rac{U_1}{T}-1).$

(2.20) reduces to

$$u \sum_{j=1}^{2} \bar{P}^{(1j)} \frac{\partial w}{\partial x_{j}}^{I} = \bar{P}^{(11)} \theta_{1} (\sum_{j=1}^{4} \tilde{N}_{4j}^{-1} w_{j}) \Theta^{1},$$

OI

$$(4.12b) \begin{cases} \nu \frac{\partial \tilde{u}_1}{\partial x_1} + \frac{1}{8} \nu \frac{\partial \tilde{u}_2}{\partial x_2} = \frac{c\theta_1 u_1}{Z} (\frac{\gamma}{c} \tilde{u}_1 - \frac{\tilde{T}}{T} - \frac{\tilde{\rho}}{\rho}) \\ \nu \frac{\partial \tilde{u}_2}{\partial x_1} + \frac{1}{6} \nu \frac{\partial \tilde{u}_1}{\partial x_2} = 0 \\ \nu \frac{\partial \tilde{T}}{\partial x_1} = \frac{c\theta_1 U_1}{Z} (\frac{\gamma}{c} \tilde{u}_1 - \frac{\tilde{T}}{T} - \frac{\tilde{\rho}}{\rho}) \end{cases}$$

Again, these equations reduce to (4.8b) when $\nu = 0$.

• Supersonic inflow: m = 0, p = 0, r + p = 3.

$$\zeta_i = \theta_i \quad \tilde{\Psi}^i = \Theta^i \quad i = 1, \dots, 3.$$

and

$$ilde{N} = egin{pmatrix} u_1 & u_1 & 0 \ 0 & 0 & 1 \ U_1 & U_2 & 0 \end{pmatrix} ilde{N}^{-1} = rac{1}{u_1(U_1 - U_2)} egin{pmatrix} -U_2 & 0 & u_1 \ +U_1 & 0 & -u_1 \ 0 & u_1(U_1 - U_2) & 0 \end{pmatrix}$$

The boundary conditions are:

$$\left\{ \begin{array}{l} \displaystyle \nu\frac{\partial \tilde{u}_1}{\partial x_1} + \frac{1}{8}\nu\frac{\partial \tilde{u}_2}{\partial x_2} = \frac{3}{4u_1}(u_1^2 - \frac{c^2}{\gamma})\tilde{u}_1 + \frac{3c^2}{4\gamma}\frac{\tilde{T}}{T} \\ \\ \displaystyle \nu\frac{\partial \tilde{u}_2}{\partial x_1} + \frac{1}{6}\nu\frac{\partial \tilde{u}_1}{\partial x_2} = u_1\tilde{u}_2 \\ \\ \displaystyle \nu\frac{\partial \tilde{T}}{\partial x_1} = \frac{(\gamma - 1)}{\alpha}Tu_1(\frac{\tilde{u}_1}{u_1} + \frac{1}{\gamma - 1}\frac{\tilde{T}}{T}) \\ \\ \\ \displaystyle \frac{\tilde{\rho}}{\rho} = -\frac{\tilde{u}_1}{u_1}. \end{array} \right.$$

if $\nu=0$, the system reduces to $\tilde{u}_1=\tilde{u}_2=\tilde{T}=\tilde{\rho}=0$.

• Supersonic outflow: m = 4, p = 1, r + p = 4.

 $\zeta_i = \lambda_i, \ i = 1, \dots, 4$ so that the boundary condition is:

$$\begin{cases} \frac{\partial \tilde{u}_1}{\partial x_1} + \frac{1}{8} \frac{\partial \tilde{u}_2}{\partial x_2} = 0 \\ \\ \frac{\partial \tilde{u}_2}{\partial x_1} + \frac{1}{6} \frac{\partial \tilde{u}_1}{\partial x_2} = 0 \\ \\ \frac{\partial \tilde{T}}{\partial x_1} = 0 \end{cases}$$

The results in Section III apply to these equations:

THEOREM 4.1. The initial boundary value problem for (4.2) and the zero order boundary conditions (4.12) is well-posed in Ω^- . As the viscosity v tends to zero, the solution converges to the solution of the Euler equation with the corresponding boundary conditions (4.8), the L^2 norm of the error decreases linearly in ν .

Proof. We merely need to check that the reduced hyperbolic problem is well-posed, which is extremely simple here since $\bar{A}^{(1)} = -u_1$. The boundary condition then resumes to $\tilde{\rho} = 0$ (when there is a boundary condition for $\tilde{\rho}$) and the problem:

$$rac{\partial ilde{
ho}}{\partial t} = -u_1 rac{\partial ilde{
ho}}{\partial x_1} - u_2 rac{\partial ilde{
ho}}{\partial x_2} \hspace{1cm} x_1 \leq 0$$
 $ilde{
ho} = 0 \hspace{1cm} x_1 = 0$

for $u_1 < 0$ is obviously well-posed.

REMARK. In [G-S] the authors introduced for the Navier-Stokes compressible equation artificial boundary conditions by requiring them to be dissipative. Furthermore these boundary conditions produce a weak boundary layer. Therefore Theorem 4.1 also holds in that case. We have not been able to decide whether our boundary conditions where dissipative or not. However for more general systems or higher dimensions, it seems difficult to extend their techniques which consists of studying the boundary form $(\mathcal{E} w, w)$ and matching coefficients of the boundary condition to get the right sign. It does not allow for higher order boundary conditions either.

V. Higher order boundary conditions.

We discussed earlier the goals of our work: provide boundary conditions which would be 1) local and 2) consistent with the Euler equation. A first step was made in

Section 3 by an approximation of order zero of the right-hand side in (2.10). We now want to increase the accuracy of our boundary conditions. This means, from our point of view, expand first the transparent boundary condition (2.10) up to higher order in ν . By doing this, we shall keep terms like $\alpha_i(s,\eta)$, for $1 \leq i \leq m$, where α_i is the traveling mode defined in (1.3). It will correspond to pseudo-differential operators of order 1 on the boundary, which are of course far from being local. We thus shall in turn approximate these modes with the techniques described in [E-M]. The first realistic approximation is similar to (2.17): we shall set $\eta = 0$, and approximate the quantities in (2.7) to first order in η .

We shall restrict ourselves here to the particular case of the viscous linearized shallow-water system, though the procedure carries over without modification to more general systems, provided they possess a symmetrizer. This property ensures that the eigenvalues ξ_i for the system have an expansion

$$\xi_i(s,\eta,\nu) = \zeta_i(s,\eta) + \nu \chi_i(s,\eta) + 0(\nu^2), \ 1 \leq i \leq m,$$
 and $\xi_i(s,\eta,\nu) = \frac{1}{\nu}(\zeta_i + \nu \chi_i + 0(\nu^2)), \ m+1 \leq i \leq r+p,$ with a corresponding expansion for the eigenvectors Ψ_j .

Let us consider the shallow-water equations, linearized about the steady state (U,0):

(5.1)
$$\frac{\partial w}{\partial t} = A^{(1)} \frac{\partial w}{\partial x_1} + A^{(2)} \frac{\partial w}{\partial x_2} + \nu \left(P^{(11)} \frac{\partial^2 w}{\partial x_1^2} + P^{(22)} \frac{\partial^2 w}{\partial x_2^2}\right)$$

where $w = (u_1, u_2, \varphi)$.

(5.2)
$$A^{(1)} = \begin{pmatrix} -U & 0 & -1 \\ 0 & -U & 0 \\ -c^2 & 0 & -U \end{pmatrix} A^{(2)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -c^2 & 0 \end{pmatrix}$$

(5.4)
$$P^{(11)} = P^{(22)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

with c > 0.

In our notations of section 0, r=2, $\bar{P}^{(ij)}=\delta_{ij}I_2$ and $\bar{A}^{(1)}=-U$. The eigenvalues of $A^{(1)}$ are:

(5.5a)
$$\lambda_1 = -U - c, \quad \lambda_2 = -U, \quad \lambda_3 = -U + c$$

and the corresponding eigenvectors are

(5.5b)
$$\Lambda_1 = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}, \Lambda_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \Lambda_3 = \begin{pmatrix} 1 \\ 0 \\ -c \end{pmatrix}.$$

The solutions of $(B^{(1,1)}\theta + A^{(1)})\Theta = 0$ are

and the corresponding generalized eigenvectors are:

(5.6b)
$$\Theta_1 = \begin{pmatrix} U \\ 0 \\ -c^2 \end{pmatrix}, \Theta_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

The signs of the λ 's and θ 's depend on whether the flow is sub or supersonic, ingoing or outgoing, as in the case of the full Navier-Stokes equations.

We shall approximate the generalized eigenvalues and eigenvectors $\xi_i(s,0,\nu)$ and $\Phi^i(s,0,\nu)$ up to first order in ν for $1 \leq i \leq m$

(5.7a)
$$\begin{cases} \xi_i(s,\nu) = \zeta_i(s) + \nu \chi_i s^2 + 0(\nu^2) \\ \zeta_i(s) = \frac{s}{\lambda_i} \end{cases}$$

(5.7b)
$$\begin{aligned} \Phi^i(s,\nu) &= \Psi^i + \nu \Xi^i s + 0(\nu^2) \\ \Psi^i &= \Lambda^i \end{aligned}$$

for $m+1 \leq i \leq r+p$

(5.8a)
$$\begin{cases} \xi^{i}(s,\nu) = \frac{1}{\nu} \varsigma_{i} + \chi_{i-m} s + 0(\nu) \\ \varsigma_{i} = \theta_{i-m} \end{cases}$$

(5.8b)
$$\Phi^{i}(s,\nu) = \Psi^{i} + \nu \Xi^{i-m} s + 0(\nu^{2})$$

$$\Psi^{i} = \Theta^{i-m}$$

(in the formulas above, the variable η , being zero, has been omitted).

The χ_i 's and Ξ_i 's are obtained by substitution of the expressions above in formula (11) for $\eta = 0$:

$$(\xi A^{(1)} + \nu \xi^2 P^{(11)} - sI)\Phi = 0$$

To $\lambda_1, \lambda_2, \lambda_3$ are associated three values of ξ and vectors Φ :

(5.9a)
$$\begin{vmatrix} \tilde{\xi}_1 = \frac{s}{\lambda_1} - \frac{\nu s^2}{2\lambda_1^3} + 0(\nu^2) \\ \tilde{\xi}_2 = \frac{s}{\lambda_2} - \frac{\nu s^2}{\lambda_2^3} + 0(\nu^2) \\ \tilde{\xi}_3 = \frac{s}{\lambda_3} - \frac{\nu s^2}{2\lambda_2^3} + 0(\nu^2) \end{vmatrix}$$

(5.9b)
$$\tilde{\Phi}^{1} = \Lambda^{1} + \nu s \begin{pmatrix} -\frac{1}{2\lambda_{1}c} \\ 0 \\ 0 \end{pmatrix} + 0(\nu^{2}) = \begin{pmatrix} 1 - \frac{\nu s}{2\lambda_{1}c} \\ 0 \\ c \end{pmatrix} + 0(\nu^{2})$$
$$\tilde{\Phi}_{2} = \Lambda^{2} + 0(\nu^{2}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0(\nu^{2})$$
$$\tilde{\Phi}_{3} = \Lambda^{3} + \nu s \begin{pmatrix} -\frac{1}{2\lambda_{3}c} \\ 0 \\ 0 \end{pmatrix} + 0(\nu^{2}) = \begin{pmatrix} 1 - \frac{\nu s}{2\lambda_{3}c} \\ 0 \\ -c \end{pmatrix} + 0(\nu^{2})$$

and to θ_1, θ_2 are associated two values of ξ and Φ :

$$(5.10a) \begin{vmatrix} \tilde{\xi}_1 = \frac{U^2 - c^2}{\nu U} + s \frac{U^2 + c^2}{U(U^2 - c^2)} + 0(\nu) \\ \tilde{\Phi}^1 = \Theta^1 + \nu s \begin{pmatrix} 0 \\ 0 \\ c^2 \\ \overline{U^2 - c^2} \end{pmatrix} + 0(\nu^2) = \begin{pmatrix} U \\ -c^2 (1 - \frac{\nu s}{U^2 - c^2}) \end{pmatrix} + 0(\nu^2)$$

$$(5.10b) \qquad \qquad \begin{vmatrix} \tilde{\xi}_2 = \frac{U}{\nu} + \frac{s}{U} + O(\nu) \\ \tilde{\Phi}^2 = \Theta^2 + O(\nu^2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + O(\nu^2)$$

We cannot go any further without dividing the analysis into four cases: subsonic or supersonic, inflow or outflow.

$$-$$
 Subsonic inflow case: $-c < U < 0, \; p=0.$ $\lambda_1 < 0, \quad \lambda_2, \lambda_3 > 0: \quad m=1$ $heta_1 > 0 \qquad heta_2 < 0$

p is equal to zero, we have three boundary conditions

$$\xi_1 = \tilde{\xi}_1, \quad \Phi^1 = \tilde{\Phi}^1$$

$$\xi_2 = \tilde{\tilde{\xi}}^2 \quad \Phi^2 = \tilde{\tilde{\Phi}}^2$$

By a zero-order approximation of the ξ_i 's and Φ^i 's, we get the first set of approximated boundary conditions:

$$\begin{vmatrix}
\nu & \frac{\partial u_1}{\partial x_1} = 0 \\
\nu & \frac{\partial u_2}{\partial x_1} - Uu_2 = 0 \\
\varphi - cu_1 = 0
\end{vmatrix}$$

By a first order approximation in ν , we obtain a new set of boundary conditions, which contains differentiation in time:

$$(5.11)_{1} \qquad \begin{vmatrix} \nu \frac{\partial u_{1}}{\partial x_{1}} = -\frac{\nu}{U+c} \frac{\partial u_{1}}{\partial t} \\ \nu \frac{\partial u_{2}}{\partial x_{1}} = Uu_{2} + \frac{\nu}{U} \frac{\partial u_{2}}{\partial t} \\ \varphi = cu_{1} - \frac{\nu}{2(U+c)} \frac{\partial u_{1}}{\partial t} \end{vmatrix}$$

- Subsonic outflow case: 0 < U < c, p = 1

$$\lambda_1,\lambda_2<0, \qquad \lambda_3>0: \qquad m=2$$
 $heta_1<0, \qquad heta_2>0$

the generalized eigenvalues and eigenvectors with negative real parts (when Re s>0) are:

$$\xi_1 = \tilde{\xi}_1, \quad \xi_2 = \tilde{\xi}_2, \quad \xi_3 = \tilde{\tilde{\xi}}_1$$

$$\Phi^1 = \tilde{\Phi}^1, \quad \Phi^2 = \tilde{\Phi}^2, \quad \Phi^3 = \tilde{\tilde{\Phi}}^1$$

the analogous to $(5.11)_0$ becomes

$$\begin{vmatrix}
\nu \frac{\partial u_1}{\partial x_1} = \frac{c - U}{c} (-cu_1 + \varphi) \\
\nu \frac{\partial u_2}{\partial x_1} = 0
\end{vmatrix}$$

and the first order boundary condition is:

$$(5.12)_{1} \quad \left| \nu \frac{\partial u_{1}}{\partial x_{1}} = \frac{c - U}{c} (-cu_{1} + \varphi) + \frac{\nu}{2c^{2}(c - U)} \frac{\partial}{\partial t} (-c^{2}u_{1} + U\varphi) \right| \left| \nu \frac{\partial u_{2}}{\partial x_{1}} = -\frac{\nu}{U} \frac{\partial u_{2}}{\partial t} \right|.$$

In the supersonic case, the calculations are much easier.

- Supersonic inflow case:
$$U < -c, p = 0$$

$$\lambda_1, \lambda_2, \lambda_3 > 0: \quad m = 0$$

$$\theta_1, \theta_2 < 0$$

we have three boundary conditions

$$(5.13)_0 \qquad \qquad \begin{vmatrix} \nu \frac{\partial u_1}{\partial x_1} = \frac{U^2 - c^2}{U} u_1 \\ \nu \frac{\partial u_2}{\partial x_1} = U u_2 \\ \varphi = -\frac{c^2}{U} u_1 \end{vmatrix}$$

and

$$(5.13)_{1} \qquad \qquad \frac{\partial u_{1}}{\partial x_{1}} = \frac{U^{2} - c^{2}}{U} u_{1} + \nu \frac{U^{2} + c^{2}}{U(U^{2} - c^{2})} \frac{\partial u_{1}}{\partial t}$$

$$\nu \frac{\partial u_{2}}{\partial x_{1}} = U u_{2} + \frac{\nu}{U} \frac{\partial u_{2}}{\partial t}$$

$$\varphi = -\frac{c^{2}}{U} u_{1} + \frac{\nu c^{2}}{U(U^{2} - c^{2})} \frac{\partial u_{1}}{\partial t}$$

- Supersonic outflow case: U > c, p = 1

$$\lambda_1, \lambda_2, \lambda_3 < 0: \quad m = 3$$

$$\theta_1, \theta_2 > 0$$

we have here two boundary conditions

$$egin{aligned} \left(5.14
ight)_0 & \left| egin{aligned}
u rac{\partial u_1}{\partial x_1} &= 0 \
u rac{\partial u_2}{\partial x_1} &= 0 \end{aligned} \end{aligned} \end{aligned}$$

$$egin{aligned} \left(5.14
ight)_1 & \qquad \left| egin{aligned}
u rac{\partial u_1}{\partial x_1} &= rac{
u}{U^2 - c^2} rac{\partial}{\partial t} (-U u_1 + arphi) \
u rac{\partial u_2}{\partial x_1} &= -rac{
u}{U} rac{\partial u_2}{\partial t} \end{aligned} \end{aligned}$$

We shall not repeat here the calculations for the inviscid case, i.e. $\nu=0$. They are identical to those for the full Euler equations. The local boundary condition (2.17) is in this case:

subsonic inflow case:

$$u_2 = 0$$

$$\varphi - cu_1 = 0$$

subsonic outflow case:

$$(5.16) \varphi - cu_1 = 0$$

supersonic inflow case:

$$(5.17) u_1 = u_2 = \varphi = 0$$

supersonic outflow case:

The analogous of Theorem 4.1 holds:

THEOREM 5.1. The initial boundary value problem for (5.1) and any of the boundary conditions $(5.11 + i)_0$, i = 0, ..., 3 is well-posed in Ω^- . As the viscosity ν tends to zero, the solution converges to the solution of the inviscid equation with the corresponding boundary condition (5.14 + i), and the L^2 -norm of the error decreases as $O(\nu)$.

The proof is exactly the same as for Theorem 4.1.

REMARK. In this case, the well-posedness in the classical sense can be expressed by energy estimates, using the variational formula (1.14). Let us denote by E(t) the quantity defined by:

(5.19)
$$E(t) = \frac{1}{2} \int \int_{\Omega^{-}} [c^{2}(u_{1}^{2} + u_{2}^{2}) + \varphi^{2}] dx$$

and the analogous on Γ :

(5.20)
$$E_{\Gamma}(t) = \frac{1}{2} \int_{\Gamma} [c^2(u_1^2 + u_2^2) + \varphi^2] dx_2$$

The energy equality then reads:

$$(5.21) \ \frac{dE}{dt} + \nu \int\!\!\int_{\Omega^{-}} (\nabla u_{1}^{2} + \nabla u_{2}^{2}) dx = -UE_{\Gamma}(t) + c^{2} \int_{\Gamma} (\nu u \cdot \frac{\partial u}{\partial x_{1}} - u_{1}\varphi) dx \\ + \int\!\!\int_{\Omega^{-}} Fu dx$$

It can be easily checked in each case that the quantity integrated on Γ is negative.

Unfortunately, the decoupling conditions prescribed in [M] to obtain the well-posedness and the error estimates do not apply to our higher order boundary conditions $(5.11 + i)_1$. We have not been able to establish a priori estimates in this case either. However, the formal expansion (3.6) is still available. It is an easy matter to check that for the higher order boundary conditions $(5.11 + i)_1$, the next term in the expansion vanishes. For instance in the subsonic inflow case, it is due to the fact that $(\frac{\partial}{\partial x_1} + \frac{1}{U+c} \frac{\partial}{\partial t})(w_0^{(1)}) = 0$. So the boundary layer is weaker than in the former case, and the solution of the corresponding initial boundary value problem converges formally to the solution of the inviscid equation with boundary condition (5.14 + i), the error being $O(\nu^2)$.

REMARK. Consider the boundary conditions derived from $(5.11 + i)_1$ in the four cases:

by neglecting certain terms. These boundary conditions are well-posed in the classical sense: we have neglected the terms which could prevent the energy from decreasing in time. Furthermore they still give an approximation to the inviscid problem with boundary conditions (5.14 + i) in $O(\nu^2)$: the relevant equations are unchanged. However, the last statement remains formal, since the decoupling conditions still don't hold.

We have considered so far approximations to the inviscid equations with the "zero-order" boundary conditions (2.17), which are those used in practice. It could be tempting to try to better approximate the Euler problem. It adds new important difficulties: as pointed out in [E-M] the choice of the "good" boundary condition in the hyperbolic case is not canonical, and furthermore it is not clear whether or not it is well-posed in the sense of Kreiss. A third reason to be reluctant to study this problem (beyond the tediousness of the calculations) is the fact that it increases the order of the derivations involved in the boundary condition, and hence the volume of storage in a real computation.

References

- [A-B-L] S. Abarbanel, A. Bayliss, L. Lustman, Non-reflecting boundary conditions for the compressible Navier-Stokes equations. ICASE Report n°86.9.
- [B-T1] A. Bayliss & E. Turkel, Radiation boundary conditions for wave-like equations. C.P.A.M. vol XXXIII, 1980, pp. 707-727.
- [B-T2] A. Bayliss & E. Turkel, Outflow boundary conditions for fluid dynamics. SIAM Journal of Stat. Comp., vol. 3, n°2, June 1982, pp 250-259.
- [B-T3] A. Bayliss & E. Turkel, Far field boundary conditions for compressible flows J.C.P. vol. 48, n°2, nov. 1982, pp 182-199.

- [E-M1] B. Engquist & A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math of Comp, vol 31, n°139, July 1977, pp 629-651.
- [E-M2] B. Engquist & A. Majda, Radiation boundary conditions for acoustic and elastic wave calculation. C.P.A.M., vol XXXII, 1979, pp 313-357.
 - [G-S] B. Gustafsson & A. Sundstrom, Incompletely parabolic problems in fluid dynamics. SIAM Journal of Applied Math., vol. 35 n° 174, April 1986, pp 425-439.
 - [H] L. Halpern, Artificial boundary conditions for the linear advection diffusion equation. Math of Comp., vol. 46, n°174, April 1986, pp 425-439.
 - [HS] L. Halpern & M. Schatzman, Artificial boundary conditions for incompressible viscous flows. To appear in SIAM.
 - [K] H.O. Kreiss, Initial boundary value problems for hyperbolic systems. C.P.A.M. vol. XXIII, pp 277-298 (1970).
 - [M] D. Michelson, Initial-boundary value problems for incomplete singular perturbations of hyperbolic systems. Lectures in Applied Mathematics, vol. 22, 1985.
 - [O-S] J. Oliger & A. Sundstrom, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM Journal of Appl. Math., vol. 35, n°3, Nov. 1978, pp 419-447.
- [R-S1] D.H. Rudy & J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations. J.C.P. vol. 36, 1980, pp 55-70
- [R-S2] D.H. Rudy & J.C. Strikwerda, Boundary conditions for subsonic compressible Navier-Stokes calculations. Computers and Fluids, vol. 9, 1981, pp 327-338.
 - [S] R. Strikwerda, Initial boundary value problems for incompletely parabolic systems. C.P.A.M. vol. XXX, pp 797-822 (1977).
- [Y-S] T. Ytrehus & J. Smolderen, Structure of linearized Navier-Stokes equations for compressible flows. Phys. Fluids vol. 25 (3), March 1982.