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Abstract

We devise artificial boundary conditions for small incompletely parabolic per-
turbations of hyperbolic systems, which are local, consistent with the hyperbolic
equation, well-posed, and produce weak boundary layers. The general strategy is

applied to the Navier-Stokes system.

0. Introduction. A general model for a fluid motion is the time dependent

compressible Navier-Stokes system:

dp .

E_i_ div pv =0

d

%4— div (pv - v+ pI) = pg + div pr

a
—a-;-i— div (e+plv=pg-v+ div (K grad T + pv- 1)

where p represents the density, p the pressure, T the temperature and v the ve-
locity of the fluid. 7 is the momentum flux density tensor due to friction: r =

2_ .. . .
-§I div v + grad v+ (grad v)". u and K are the coefficients of viscosity and

1This work was completed while the author was visiting UCLA, supported by ONR Grant
NO00014-86-K-0691



heat conductivity respectively. An equation of state relating p, p and T is added to
close the system. Those equations are a special case of a class of equations called

incompietely parabolic equations.

Although the mathematical analysis of these nonlinear equations is not entirely
satisfactory, and due to the increasing complexity of the physical problems involved,
the Navier-Stokes model is more and more widely used in today’s computational

fluid dynamics.

In many problems of interest, the computational domain is infinite, so that an
important task is the design and analysis of reliable numerical boundary conditions.
Very often the Euler equations have replaced the Navier-Stokes system in computa-
tions (i.e. assuming the friction and heat negligible}. In that case stable boundary
conditions are provided by prescribing the entering characteristic quantities (see for
instance [O-8]). For a better accuracy strategies were described in [E-M] and [B-T)|

which led to higher order differential operators on the boundary.

For the Navier-Stokes system, it is well-known that more boundary conditions
are needed to ensure the well-posedness. Considering the Navier-Stokes equation
as a perturbation of the Euler system, it has been suggested to add extra boundary
conditions to those derived for Euler system [O-S]. The artificial boundary is usually
set in a “smooth” region, where the equations can be linearized about a regular state
(in general it may be supposed to be constant). The derivation and analysis can
then be carried out on the linear equation. In [G-S] boundary conditions were built
by adding to the “hyperbolic” ones conditions on the normal derivatives to produce
dissipation. In [R-S1,2] “hyperbolic” boundary conditions were tested for a flow over
a flat plate to force the convergence to the steady state. More recently in [A-B-L] the

authors worked directly on the Navier-Stokes equation for the flow past an airplane.
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They decoupled the domain into the boundary layer region and the hyperbolic region
and in the former used a modal expansion and an approximation of the solution.
This approximation is made in the regime of short wavelength as suggested in [E-M]

and small viscosity, which proved to be very useful for incompressible problems as

well (see [H], [H-8]).

We develop here a general strategy for the derivation of artificial boundary con-
ditions for incompletely parabolic perturbations of hyperbolic systems. On account
of the remark above we shall consider linear systems with constant coefficients.
Using Fourier transform as an essential tool, we shall write artificial boundary con-
ditions for a half space in such a way that the well-posedness and the convergence to
the hyperbolic equation are ensured by the well-posedness of a reduced hyperbolic
problem. The strategy has been introduced in [H], [H-S] for incompressible flows
and consists of expanding the modes in terms of the small parameter, v. For the
analysis of these boundary conditions we shall rely on the results by Strikwerda in
[S] on the well-posedness of incompletely parabolic systems, and by Michelson in
[M] on the boundary layer expansion and convergence to the “inviscid” equation.
This strategy theoretically allows for a convergence up to any accuracy, but the well-
posedness is not guaranteed (notice that in the hyperbolic case, no well-posedness

proof is available for general artificial boundary condition, see [E-M]).

Consider an incomplete singular perturbation of a hyperbolic system, i.e.

A0 2 ow +u Z pk)

(0.1)
6:1:J frmil

+ F(z,t).

Il
g

Bm_., T

where the n x n matrices P(U¥) are assumed of the form:

. p(7k) 0
ooy (P
(0.2) P ( o 0)



with rgPU¥%) = r, PU¥) ig non-singular and PUR) = p(k) The matrices AU) are

partitioned in the same way:

. B c
(0.3) AP = ( pW AW )
N
We require the operator d; — Z Al )3J- to be hyperbolic, the partial operator
=1

N
o — v E P(fk)a,-k to be Petrovski parabolic, and the reduced operator
i=1
N

- E A"(ﬂa,- to be strictly hyperbolic. These assumptions ensure the well-
posedJnge;s of the Cauchy problem. In order to consider an initial boundary value
problem in a half-space £; > 0 or z; < 0, we shall assume that the boundary
I' = {z; = 0} is non-characteristic, i.e. that AWM is non-singular. Its eigenval-
ues are denoted by Ay,...,A, where A;,..., A, are negative and A,41,...,A, are

positive. The corresponding eigenvectors are A!,...,A". For convenience and sim-

plicity, we shall assume that A()) is a diagonal matrix, with p negative eigenvalues:

- A7 0
(0.4) AW = ( 0 AW )
Aty Aptrt1
where AV = <0and AW = > 0.
xp+r Xn

We furthermore assume the existence of a symmetrizer S for the full operator

(0.5) i (:)i+ EP(J") o2

a:c_,-aa:k

which implies in particular that the symbol of @

N N
(0.8) Qi¢) = ,-E ADg; — v ST PURge,

j=1 i=1



is diagonalizable through a transformation analytic in £. We shall denote by AL
and PUF the symmetrized matrices: AY) = SAW) PUk) = gpUk), Both the

Navier-Stokes and shallow water systems fulfill all the above conditions.

In Section 1 we shall recall the modal analysis for the Cauchy problem. Most
results in this section are known (see for instant [Y-S] for Navier-Stokes, [S] for the

general case), but we need to set our notations clearly.

In Section 2 we derive the local and non-local boundary conditions for a half-
space. The transparent boundary lcondition is first written in terms of generalized
eigenvalues and eigenfunctions for the system. It is then approximated with respect
to the small parameter v we shall call viscosity for obvious reasons. This yields
boundary conditions which are differential of first order in the normal direction, but
still pseudo-differential in time and the tangential derivatives (like the transparent
boundary condition for the pure hyperbolic problem). Those boundary conditions
are in turn approximated by differential operators which are of order zero in time

and one in the tangential direction, using the strategy in [E-M].

In Section 3, necessary and sufficient conditions for the well-posedness of the

corresponding initial boundary value problem are set. The same conditions ensure
the convergence to the unperturbed hyperbolic problem, with an error estimate.

These results are a direct application of the general analysis in [M].

In Section 4 the construction above is carried out explicitly for the two-dimensional

compressible Navier-Stokes system.

Finally in Section 5, we indicate how to produce more accurate boundary con-

ditions. For the sake of clarity, explicit calculations are made in the special case of
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the two dimensional linearized shallow water equation. Nevertheless, the construc-
tion carries over to any incompletely parabolic system provided the diagonability

assumption (0.8) is fulfilled.

I. The Cauchy problem.

I-1. Normal modes for the Cauchy problem. The following analysis can be
partly found in [S], but we include it here in order to set our notations, and to

study more particularly the eigenmodes as functions of the parameter v.

The normal modes are the solutions of (0.1) with F' = 0, of the type:
w= Bty Resg>0
where
z=(Z1y..+,ZN), ¥y = (T25...,ZN)

They satisfy the equation

(1.1) (Q(&in) ~ sI)@ =0,

s and tn are here the independent variables, and £ is considered as a function of
(s,1)- The equation in £ is of order n+r. By an abuse of notation but for simplicity,

we shall often refer to £ as a “generalized eigenvalue”.

LEMMA 1.1. If Re s > 0, n # 0, there 13 no purely fmaginary solution £ fo
(1.1).

Proof. We proceed by contradiction. Suppose that £ = i¢, where ¢ is a real
number, and count the eigenvalues s of Q{f¢,1n) with a positive real part. This

number M is constant as a function of . Choose n = 0. Then s is a solution to
det(—v P2 4 iA¢ — 1) =0
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M is now constant as a function of ¢. As ¢ tends to infinity, the equation above

reduces to

det(—vPN¢2 _sT) = 0.

If there is any solution s with a positive real part, it is in contradiction with the

parabolicity of 8; — v} PU*)3;,8.

LEMMA 1.2. For Re s > 0, there are precisely (r -+ p) generalized eigenvalues

£ with a negative real part, and n — p with a positive real part.

Proof. It isa straightforward consequence of Lemma 1.1; N is the number of
eigenvalues £ such that Re £ < 0, N_ the number of eigenvalues £ such that
Re £ > 0. We have Ny + N_ = r+n. Moreover Ny and N_ are constant functions

of n and s, but of A and P too.
Let us choose n = 0 and C(1) = D) = 0. The equation (1.1) for ¢ reads

det{p PUNE2 4 AE _ s =0, or

detly PON¢2 4 B —sl].  det[AM ¢ —sI) =0

As in Lemma 1, by letting £ tend to infinity, the number of generalized eigenvalues
with positive real part for vP(11)¢2 4 B¢ is the same as for vP(I1¢2, N (resp.
N_) is then the number of solutions with positive real part (resp. negative) for the

equations

det[vPUV¢2 _ 511 =0

det[ AV ¢ — sI] = 0.

The first equation is of even degree in £. Hence there are r solutions with positive

real part and r with negative real part. Moreover the second equation reduces to
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¢ = s/X;, which gives p values with a negative real part and n—r— p with a positive

real part. So

Nt=r4p

N =r4+n—-r—-p=n—p.
We now turn to the behavior of these generalized eigenvalues £ as the parameter

v tends to zero.

THEOREM 1.1. If Re s > 0, as v tends to 0, r values of ¢ tend to infinity as

%, and n values have a finite limit.

Proof. Let us write £ = o + 0(r), « is solution to

(1.2) det[AMa + > 14Uy, — s1} = 0.
i#l
By assumption this equation has n solutions, denoted by a;(s,n),..., an(s,n),
and :
: o
(1.3) 1<7<m Re-—:ﬁﬂ

m+1<j5<n Reﬂzﬂ
s

to any «; is associated an eigenvector I1’(s,n), and II1, ..., II* expand R™

(1.4) (A(l)ak + ZiA(")n_,- - .sI)Hk = 0.
J#1

If now £ = g— + O(1), @ is a solution of

(1.5) det(PUVg + 4y =0
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which is an equation of degree r in ¢, and has r roots 6; -+ 8, : 01,...,0,4pm are
such that Re 8; < 0, 8y4p—ms1,...,0r are such that Re #; > 0. The corresponding

generalized eigenvectors ®!-.-©T are defined by

(1.6) (PUYg. + AE7 =0

In summary, every solution (£, ®) of (Q(£,in) — sI)® = 0 for Re s > 0 is such

that
either £(s,n,v) = afs,n) + O(v)

®(s,n,v) =1{s,n) + O(v)

where
[AMa+ ) in;AW) — s =0
J#1
or
1

E(s,q,u) = ;0 +O(1)

&(s,n,v) =0 + Ofv)
where

(P4 4+ Ao =0,

We shall denote by £; - - - £, the values of £ of the first form with negative real part,
i.e. corresponding to “propagating modes”, and €m41 -+ &r4p the values of £ of the

second form with negative real parts. We define ¢;(s,7) and v;(s,n) as follows:

(1.7) 1<ji<m  &ls,n,v) =¢(s,n) +O)

. 1
m+1$JSf+P fg‘(S,'?,V):;fj(sa’?)+0(1)

(¢; does not actually depend on s and 5 if § > m + 1).
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and

(1.8) 1<j<r+p &(s,n,v)= W(is,n) +0(v)
so that
(1-9) 1< J <m fj(sa 77) - a,-(s, 7])’ ‘I;j(ssn) - Hj(ss ??)

m+1<j<r+p  ¢ls,n) =0i_pm, ¥(s,n)=0"""

I-2. The transmission conditions. Let us first write a weak formulation of
(0.1) in a domain 2 with smooth boundary 911. For any v sufficiently smooth, we

multiply (1.1) by v and integrate on 1. Using the Green’s formulas:

dw dv -y
fn ( amJ ol 3-‘5: an( ) !

Z/ e Z[ p(:k) ow 3”)
dz;0zy’

Jik=1 J,k 1 9z’ Oz
Z [ plik) 9 s .,,)nk
1 k=1

where n is the normal exterior to {1, we get

fn(s——v +v Z f p(:k)gT";_,;T”k)Jr% L[(‘i(j);—;’w)“(ﬁ("’

We define two bilinear forms a and p, by:

a(v,w) —-—/ Z A(J) ) (A(f)gTw,v)]dx

(1.10) 4




a is antisymmetric and p is symmetric.

S being symmetric definite positive, defines a scalar product

(1.11) s(w,v) =/Q(Sw,v)da:

and we can write
ow )
(1.1.2) s(wa—,v) + vp(v,w) + a(v, w) —/ (s€w,v)dy= ] Fv
t a9 0

where £w is the normal constraint

- oy o0w 1
(1.13) Ew = vy PUR L 4 Z 4Ry ) n,

22;( j?: axj 2 )

Suppose now that 1 =~ U N+

o0

the orientation of n being from 1~ to N1, We define a—,a*,p~,p*,s7,s as we
did for a, p, s, but the integral being taken over 1~ and N7 respectively. Let v be
compactly supported in 1. We thus have:

(1.14) s(?;{,v) +vp(v,w) +a(v,w) = /‘; Fv

but
p(v,w) = p* (v,w) + p” (v, w)

a(v,w) = at(v,w) + a” (v,w)
(5r0) = (G00) + o (55v)
and we can write

dw*E
ot

(1.15)* sd’( ,v) + vt (wt, v) + aF(wF,v) - (SEwE,v)dy = / FEy

an* a+
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where F¥ = F/QF and w® = w/0%, so that adding (1.15)* and (1.15)~, and
subtracting from (1.14) we get:
/ (SEw,v)d'y+[ (S€w,v}dy=0
aqa+ an-
Since v is compactly supported in 2, 0% reduces to I and (fw)™ = (fw™)/r if
w is defined in 0, (fw)t = (Ew™)/p if w is defined in %, and the normal on T

is exterior to 2~ (thus interior to %). The transmission conditions then read:

(Ew)™ = (Ew)t
(1.16) onT
w =wt
or
N _
-y Ow 1
( k)_ —_ (k) - s
Z(VZP ’ 3z, + 2A w )nk
k=1 b
(1.17)

N
g(,,zptm 3'"’_ +3 1,400, +)nk

Z;

In particular if 0 =R", 0~ = {z; <0}, 0OF = {z; > 0}, sothat I' = {z; = 0},
the transmission conditions are:

N

VEP(JI)BW =vY P anaw

j=1 =1
(1.18) onT

(1.18) is equivalent to (1.16). The Green’s formula with the constraints is more
useful when one wants to prove the well-posedness through energy estimates, and

it is the reason why we included it here. Again (1.18) can be written as well:

(1.19) w” =wt
dw T Bwt!
dzxy 9z

12



where {w!, w!T) corresponds to the decomposition of the matrices PU¥) j.e.
(1.20) wli=(w,...,w) w’=(wygy,...,w)

but we prefer to use the form (1.18) which seems more fitted to the multi-dimensional

case,

IL. Derivation of the artificial boundary conditions. We shall use the
transmission conditions we wrote above to derive the transparent boundary condi-

tion. Let F and w® be compa.ctly supported in ﬂ_, consider the Cauchy problem:

dw
A(J)——-}-V P(Jk) + F z,t
(2.1) Z ,,;1 Bm Tk (1)
w(0) = w°
It is equivalent to the transmission problem
ow™
- _ - - F i -
(2.2) 3 Qu (z,t) in 0N
w(0) = w°
owt + +
(2.3) 3 Quw™ =0 in
w¥(0) =0

with the transmission conditions

(2.4) on T

II-1. The transparent boundary condition. We introduce the initial boundary

value problem in 0%

(2.5a) v Quw=0 inQ*
(2.5b) w(t=0)=0
wy
{2.5¢) =g onT
Wrtp

13



THEOREM 2.1. The boundary value problem (2.5) ¢s strongly well-posed. The

solution is given in Fourier variables (n,s) by:

' r+p o
(2.6) B(21,m,8) = ) Ae&i™ &°
f=1

where (£;,®%) are defined in (1.1) and the coefficients A; are determined by the

boundary conditions.

Proof. According to Strikwerda [S], the problem is strongly well-posed if and

only if the two initial boundary value problems:

I n T
dw’ _ 3 pun *w

ot Pyl Oz;0xy
wl = ¢! on T.
and
' _ g~ 20w
ot = Oz
Wri1 dr+1
= onT
Wrtp gr+p

are strongly well-posed. The first problem is a strongly parabolic problem with
a Dirichlet boundary condition, and hence is strongly well-posed. As for the sec-
ond one, since AY) is diagonal, the boundary condition resumes to specifying the

entering characteristics which is, again, a strongly well-posed problem.

Let us now Fourier-Laplace transform (2.5a) with respect to t and y. The
corresponding variables are {s,n), with Re s > 0. We then get a second order

ordinary differential equation, whose solution is

=) Al gf
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where (£;,®%} are given in (1.1), since we supposed that Q(i¢) was diagonalizable.
In order for @ to be in L?, the coefficients A; must vanish when Re £; > 0. We thus

are led to (2.6).

'REMARK. We have assume that @ was diagonalizable, so the (Q Ji<i k<r+p

is a nonsingular matrix and thus the boundary condition determines the A;’s.

THEOREM 2.2. The transparent boundary condition at T' for the half-space

Q7 s
(2.72) P =y P &M @’w,-{—v ine PLEVHT
j=1 ij i=1 ££1
r+p r+p )
(270) D =) ZM,-;%J@; k=r+p+1,--,n
=1 j=1

where (M;;) is the (r + p) X (r + p) matriz defined by

(2.8) M;; = ‘I’f, and M~ is the inverse of M.

Proof. w™ is the solution in 01+ of the initial boundary problem (2.5) with

gr = wg, 1 < k < r+ p. Theorem 2.1 then enables us to calculate explicitly

+1
wi, r+p+1 <k <nand — - The transmission conditions then give the
3
result:
N ow’
‘ 3:1:,- 6$1
j=1 J#1
From (2.6) we deduce that
r4p
i
3:1:1 = ZA £:® onT
1=1
so that
N a +T r+p r+p
p(15) 9% p(11) 4 p(1i); 3
vy P o— =vP D OXig87 +v Yy PUin; Y )8
J=1 J j=1 J#1 i=1
r4-p )
Wy = A0, k=r+p+1,--n
=1
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The coefficients A; are determined by:

r+p )
doABi=07  j=1,..,r+p.
1=1

So, if the matrix M is defined by (2.8), we have

r+p
} : —1
=1

and finally ¥~ satisfies (2.7a), (2.7b): (2.7a,b) is actually the transparent boundary

condition.

REMARK. If A1) were not diagonal, the same study could be carried over, by

choosing an admissible boundary condition (2.5¢}.

REMARK. If n = r + p, the transparent boundary condition reduces to (2.7a):
the “hyperbolic” part does not require any boundary conditions. (It is the case for
instance for Navier Stokes equation when the flow is supersonic and the boundary

is on the outﬁow).

I1-2. Nonlocal approzimate boundary condition. Since we are seeking boundary
conditions which are consistent with the hyperbolic problem (i.e. v = 0), we shall
approximate the transparent boundary condition (2.7) with respect to the parame-
ter v. We thus shall obtain boundary condition relating w and % , whose kernel
is a non rational function of s and n, and thus integral in the time variable and
the boundary variables. This boundary condition will eventually be approximated

by local boundary conditions in II-3, using the techniques in [E-M] for hyperbolic

problems.

Let us consider the limits as v tends to O of the various terms in the right-hand

side of {2.7). By (1.8) the vectors & tend to the corresponding ¥¢, and hence the
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matrix M tends to N, where
(2.9) Nij=®¥  1<i,j<r+p

As for the coefficients 1/, by (1.9} if 1 < ¢ < m, v tends to zero,and if m 41 <
i < n, v§; tends to a finite limit ¢;(s,n) (which actually does not depend on s,n).
Taking the limits in the right-hand side of (2.7) as described we are led to the

boundary condition:

n _ LY r+p N r+p T
(2.10a) p) POo— = 50 PUDY aNGlUa
‘ i=1 1=m+1 =1
r+pri+p
(2.10b) k=Y N'o;¥, r+p+1<k<n
i=1 j=1

We shall see in the next section how this boundary condition leads to a well-
posed problem in the left half-space 12—, whose solution converges as v tends to
0 toward the restriction to 2~ of the solution of the full hyperbolic problem in
R™. The latter will be done using a boundary layer expansion and the criterion in
[M]. Before carrying over the analysis we shall write local boundary conditions. In
order to make the mechanisms clear, and since we shall need it later, we shall first
recall the derivation of transparent and approximate boundary conditions for the

hyperbolic problem.

II-3. Absorbing boundary conditions for the hyperbolic problem. We shall follow
here the lines drawn in {[EM]. We keep the notations and assumptions set in the

first section. The hyperbolic system is:

N ow
(2.11) E A 3 + F



By Laplace-Fourier transform in ¢ and y, the solutions of this equation in the full

space when F = 0 are given by:
N .
(2.12) B=) Ae%nT
p=1
where (a;,IT') are the eigenvalues and eigenvectors defined in Section I

(2.13) (A(‘)ak + Y iaDy; — sI)IT* =,
J#1
If (Re s Re a;) < 0 (resp(Re s Re a;) > 0), the corresponding mode in (2.12)

propagates in the z; > 0 - direction (resp z; < 0).

The transparent boundary condition at 2, = O for the half-space {1~ expresses

that no wave can propagate from the boundary toward the interior of 17, i.e.
(2.14} t=m+1,...,n X=0

Let us define T' as the matrix of the eigenvectors:

(2.15) Ti;(s,m) = I (s,n).

By (2.15), (2.14) can be rewritten as:

(2.16) Vi=m+1,...,n (T7'd); =0,

This is the transparent boundary condition at x; = 0 for the half-space {17, i.e. the
equivalent of (2.7} for v = 0. We shall see in the next section that (2.7) (or (2.10))
actually resumes to (2.16) when v tends to zero, so that the solution of (0.1) coupled
with (2.7) {or (2.10)) tends to the solution of (2.11) with the boundary condition
(2.16). This boundary condition is non-local, in time and space. Following [E-M],

we shall make an approximation with respect to the angle of incidence of the wave

18



on the boundary. This is easily achieved by letting n = 0 in (2.13), so that oy is

nothing else but 2 wWhere Ak is an eigenvalue of A and TT* = AF,

Ak

So the first absorbing boundary condition for (2.11) in 7 is

(2.17) Vi=m+1,...,n (T7'w)i=0

where

-~

Ti;=Al, 1<i,j<n

Which is simply writing that the entering characteristics of the system are pre-

scribed the value 0 on the boundary.

1I-4. Local boundary conditions for the full problem. We thus want to make the
same kind of approximation on (2.10}, and it is now clearer: form+1<j<r+p,
neither ¢; nor ¥/ depends on (s, ) and therefore remain unchanged. For1 < j < m,

¢; and U7 are approximated by % and A7 respectively.
7

We then define the vector W7 , 1<j<r+pby:
WW=A  1<j<m
(2.18) o
W = g m+1<3<r+p
and the matrix N by

(2.19) Nij=%  1<ij<r+p

The approximate boundary conditions takes the form:

N o Bw 1 r+p ~ r+p . .
(2.20) I/ZP(LJ)E—;’: = Z P(ll) ZS‘:’N{?I‘I" wy
i=1 J i=m+1 i=1
r+p r+p . .
wkzz ZN,-}I\I'}ij r+p+1<k<n,
i=1 j=1
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This is our local boundary condition. It is of first order in z, and zero order in time.
Like for (2.7) and (2.16), we shall see that it converges to {2.17) when v tends to
zero, so that the solution of (0.1) coupled with (2.20) tends to the solution of (2.11)

coupled with the first absorbing boundary condition (2.17).

We shall discuss in Section 5 further approximations of these boundary condi-
tions, with respect to either parameters v or the angle of incidence on the boundary.
These boundary conditions will be of higher order derivative in time and the tan-

gential variables.
III. Analysis of the approximate boundary conditions.

We shall use here the analysis by Michelson [M] of the well-posedness and
boundary layer for initial boundary value problems related to parabolic perturba-

tions of hyperbolic equations.

III-1. Well-posedness of the boundary value problems. As already pointed out
by Strikwerda [S], the well-posedness of the initial boundary value problem for
(0.1) is equivalent to the well-posedness of the purely parabolic problem for P and
purely hyperbolic problem for A, provided the boundary conditions satisfy certain
decoupling conditions, which are automatically satisfied for boundary conditions of
the form (2.7). Furthermore if the problem satisfies a uniform Lopatinski condition
stated by Michelson in [M], then one can get estimates uniform in v. Let us define

in N~ the weighted norms:

_nt
(3.1) lelmiman = 2 |wD,vn)*(xDa,, Dy, Diyn)Pe"ul}

181€my
lel+]flsm,

where x = x(z;) is a fixed smooth non-decreasing function of z; such that x(z;) =

zy for zy < 1, and x(z;) = 1 for z; > 1. Denote by |u(z;,") 221,mq,n the obvious

20



restriction of the above norm to the hyperplane z; = ¢st. Let ¢ be the pseudo-

differential operator with symbol Re{1+vs+|vn|?) ¥ (s = iw+n). If w is partitioned
I
in the natural way mentioned before w = (:)I I), we define v by:

I —1 D I
. v r_ II I g v zlw
(3.2) v = (v”)’ vii=w, v = ( ow! .

We start by writing the decoupled problems:

The parabolic problem is:

dwl! N 9w
= (7k) P!
(3.32) = jéglP sarom T
N ) I
(3.3b) 3 ‘(13?%"37 -0 on T
i=1 %
wi(t=0)=0

I N I
(3.4a) Y- ZJ(J’)?-'-”".— + F1

ot ¢ ax?
j=1
r+p r+p )
(34b) D= Y Nj'w;¥% k=r+p+l,...,n on T
1=1 j=r+1

for the boundary conditions (2.10). For the boundary conditions (2.20) N and ¥

must be replaced by N and ¥ respectively.
Then we have

THEOREM 3.1. The boundary value problem (0.1} coupled with either bound-
ary condition (2.10) or {2.20} is well-posed if and only if the reduced hyperbolic prob-

lem (3.4) is well-posed. Furthermore, if (3.4) ¢s well-posed in the sense of Kreiss,
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let integers my > mo > 0 be such that my — mg > 1. Then there exist positive
constants k,vg, 1o such that for all 3 > ng and 0 < v < vy the followsng a prior:.

estimate holds:

1
n"wll'lz’ﬂl,m:;,ﬂ + uHDzwI“?'nx,MQ,ﬂ + 1”(0’ .) ?n;,mg,n + [0‘201(0, ‘) ?n;,mg,n

(3'3) + S:‘p”w(xl’ ')llzfn;—l,mg—-l,n + |VmeI($1, ')lgnl—l,mg—l,n)
1

< kn™1|| FJ2

my,miaz,n

Proof. The first assertion is a mere consequence of the result by Strikwerda in
[S]. As for the second a priori estimate, it follows directly from the general theory

on parabolic perturbations for hyperbolic systems by Michelson in [M].

The a priori estimate justifies the boundary layer expansion and proves the
convergence of the initial boundary value problems (0.1) coupled with either of the

boundary conditions (2.10) or (2.11):

I1I-2. Boundary layer; convergence results. A physical phenomenon related to
incompletely parabolic approximations of hyperbolic equations with a small param-
eter v, is the formation of a boundary layer. It is mathematically represented by a

formal expansion

(3.6) wlz, t,v) = Y v (z,1) + wl (z1/v,9,1).
i>0 '
(1)

The functions w;

wf?

represent the smooth part of the solution, while the functions
represent the boundary layer: they are exponentially decreasing in z;/v.
Michelson proved in [M] that under the same hypothesis as in Theorem 3.1, the

expansion (3.6) was actually valid. We shall apply this result to our particular case.

THEOREM 3.2. Let w(x,t,v) be the solution of (0.1) (2.10) (resp. (2.20)) with

a sufficiently smooth F. Suppose, as sn Theorern 8.2 that the reduced hyperbolic
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problem (3.4) is well-posed. Then, as v tends to zero, w converges to the soluiton
u of the hyperbolic problem (2.11) (2.16) (resp. (2.17)). More precisely, if m; >

mq > mg > 0 and my — mg > 1, one has

(3.7 lw(z, t, v} — u(z,t) ||m1,m2.ma.n <elv+ V%“m‘%)

where the norm above is defined by:

M3
(3'8) lluﬁiz’nl,mg,ma,ﬂ = Z HD;lqunl —i,m:;-—-i,ﬂ'
(=0

REMARKS. 1) This result tells even more about the boundary layer: it says
that in expansion (3.6) the first term wél) is indeed the solution of the associated

hyperbolic problem, and the first term wc(,z) vanishes: the boundary layer is “weak”.

2) Boundary condition (2.16) is actually the transparent boundary condition
for the hyperbolic problem, so that the solution of (0.1) (2.10) converges to the

solution of the Cauchy problem for (2.1).

Proof of Theorem 3.2. According to Michelson [M], the following estimate
holds:

(3.3) lw(z,t,v) - w(()l) (z,¢) - wéﬂ (z1/v, 4 ) lmy yma,msm S (v + V%_ma).

We merely need to check that w{()l) is u and w(g2) is zero. These terms are
obtained by substituting the expansion (3.6) into the equation and the boundary
condition, separating the scales z; and z;/v, and equaling to zero the successive

coefficients of the resulting series:

From the equation we deduce that w{gl) and wéz) are solutions of the following
equations:

awgz)

(1g® 4 pan)
(3.10) AWy 4 p 3022 /7)

=0
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(3.11)

(1)

and w;

(3.12)

(3.13)

and w;

owf? fi LN

(2)

are solutions of:

aw( ) N Bw N 0 w( )
_ €} (k) Ti-1
ZA +J§ P szamk

A =
(:cl/v) a(zy/v)? ot A oz
9@ 3 w( )
_oSpu)_ Wiy N pin 9 Wi
; 8(z1/v)8z; j’%; 31'33%

with the convention that w( } = 0if + = 1. We shall assume here the boundary

conditions {2.10} are imposed. The calculations are the same for (2.20). For z; =0

we have:

(3.14)

(3.15)
£>1;

(3.16)

(3.17)

o (2)1 r+p r+p (2)
NG U (@ -i- iy
3(121/11) t=m+1 Jzzl ’ J)
r4p
,B(()z ’1’(()1); ZN Ay (1)-{-12:(()2)) r+p+1<k<n.
i,j=1
_ a2 =2 X
pl11) e Z Z g,N“I‘If' (1) w?))
{a :E1 U i=m+1 j=1 ’ ]
anl)  gpl® ) Bw(l)
J; ( oz; dz; ) DS
r+p
ol +02 = ¥ NFwL(ol) + o) rtptri<k<n
£ =1

Let us start with equation (3.10). From this form, we deduce that w(z) is a linear

combination of the “exponential modes” defined in (1.6). Here w( ) is supposed to

be exponentially decreasing in {1, so that

r
wéz) = Z )\j@jeejxl 1 <0
J=r+4p-m+1
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We substitute into (3.14), remembering that for ¢+ = m +1,...,r +p, (G, ) is
actually (0;-m, ©7~™). We thus get:

r . r+p—m r4p ey (2) T
Do 00T = Y ) 0N (o] + )@
J=r+4p-m-+1 j=1 v=1

r
This amounts to stating that there exist coeflicients & such that Zak(-)kf = Q.
’ k=1

, ,
It implies that Eak(-)k = 0, for equation (1.6) can be written:
k=1

Pug o + Bk L cWer =g

DWer + AMeF’ —o.
And if 3 ax@F =0, then Y_ a DM =0, s0 that 3 ax AVOF" = 0, and since
A is nonsingular, the result follows., From the assumptions (0.5) on the operator

Q, the ©%’s are independent, and hence the a;’s vanish for any k.

Then A; =0forr+p—m+1< 35 <r, and thus wéz)va.nishes identically in
1~. We substitute into {3.14) and {3.15), which indicates that wé’“) is a solution of

the following problem in ~.

o~ ,(p Ou
—=Y AU __— 4+ F 0-
at ; Oz; + z€
with the boundary conditions:
r+p
(3.18a) Y ONG'4;=0 di=m+1,...,r+p
i=1
r+p )
(3.18b) gr= Y Nj'Wii; k=r+p+1,..,n
$,5=1

We are now going to prove that (3.18) implies the transparent boundary condition
(2.16) (I"'4);=0,m+1<i<m.

r+p

n n
(T =) Ti'ey =) T5'4;+ D, Ti'ey

k=r+p+1
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In the second term of the right hand side we substitute (3.19a):

r+p r+p

1 1
Z Tk = Z T Y. D Ni' Ui,
k=r4pt1 k=r4p+1 £=1 g=1
n n r+p rtp
--1» 1 1
S TRa=Y Y O NpTR
k=r+p+1 k=1 =1 j=1

r+p r+p ri+p

-2 X 2NGTE

k=1 £=1 j=1

but
r4p
ZNE}I\Pi = 0k, and
=1
r+p r+p rip r+p
Y2 DN IR =) TG
k=1 f=1 j=1 i=1
so that
n r+p rt+p
(T7'a)i= ) D ) Ni'Tx'¥id;.
k=1 =1 j=1

On account of {3.18), the latter reduces to

m
£=1

r+p

—1 €
Nty Z ik V-
i=1

For 1 < € < m, W¢ corresponds to the hyperbolic part of @, so that
7
ZT&I\I’i = §;¢ and

(T-'4);=0 for m+1<i<n.
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IV. Application to Navier-Stokes equations.

We consider here the two dimensional compressible Navier-Stokes equations:

du,- 6uj 2 . .
. -t - E N =1,2
(4.12) » dt 3..":, Bn:J 6.7:_., g 37 divu)] i=1
2
dc.,T 3u, duy a oT
4.1b = —p div u+ E -—6--d1vu E s ( fp e
(4.1b)p P 5o 62:, i Y ) L 3:1:,'( 6:1:_-;)

(4.1c) % = —p div u.

Here p is the density, u; is the velocity component, p is the pressure, T' is the
temperature, p and k are the coefficients of viscosity and heat conductivity respec-
tively, and ¢, is the specific heat at constant volume. The pressure p is related to
p and T by p = pRT where R is the gas constant. We shall introduce y as the
ratio of specific heats, i.e. ¥ = cp/cy, (recall that R = ¢, — ¢,), and the Prandtl
number of the gas P, = pcy/k. P, is supposed to be constant here. As usual

d = 2— + u 9 + ugi We shall assume that the artificial boundary is suffi-

dt 18z, oz

clently far from a.lny turbulint regime, so that we can consider {(u,p,T,p) as a small
perturbation of a smooth regime (u,p,T,p). Since in our analysis the lower order
derivatives are not of much importance, and the results of Michelson carry over to
variable coefficients as well by freezing the coefficients, we shall concentrate here on

the case where the regime reference is constant as a function of time and space. Let

us call (&, 5.7, p) the perturbation. It is a solution of the problem:

[ AN
. _ LA L e e
(420 p‘%H ~ 1)o7 div &= 4P usT

(4.2d) j—t +pdivi=0
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We shall normalize these equations by redefining p as p/p and introducing the
undisturbed kinematic viscosity v = u/p. So that the equations can be written on-

the form {0.1):

aUu au au
. - AW A(2) (Jk) F(z,t
(4:3) at 6:1:1 +VJ§ F éh:J + (=z,2)
where U = (ﬁl,ﬁg,f‘, ?)
~uy ¢ -—-R —-RT —ug 0 0 0
A4 = 0 ~~1y 0 0 A® — 0 —1g —R —RT
—{(y-1)T ©0 ~u; O 0 —(vy-1)T -uz O
—3 0 0 -1 0 -1 0 —1g
4
3 . 0 1 ) 0
P 0 4Pt P 0 v Pt
0 0
0 1/6 0
P2 =|1/6 0 0O
0 0 0O

They satisfy all the assumptions we made in Section 0. We shall write here the pre-
cise formulation for the local boundary conditions (2.20). We shall start by studying
the eigenvalues for A(), and recalling the corresponding boundary conditions for

the Euler equations {cf. for instance [E-M]J).

V-1. The Euler system. It is well-known that the eigenvalues of A(}) are

(4.4) Ay = —ug —¢
Az = Az = —uy
Ay =—ui +¢

The corresponding eigenvectors are

[on B o B o e ]
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So that A(V) is diagonable and the matrix T in (2.17) is

c 0 0 c
-~ 0 1 0 0
(46) T=l(y-01 0 T —(y-1r
1 o ~1 -1
and
A1
(1) _ Az O %1
A T 0 As T
A4

The number of boundary conditions required by the system at z; = 0in 1~ depends
on whether the flow is super or subsonic, the boundary is inflow or outflow, as

summarized on the following table:
The subsonic case: |uy| < ¢
e inflow: u; < 0.
A1 <0, Az, 23,44 > 0, m = 1: 3 boundary conditions.
(T-1u); =0 i=2,3,4.
e outflow: u; >0
A1, A2, A3 <0, Ay >0, m=3:1boundary condition.
(T—u)s = 0.
The supersonic case |ug| > ¢
e inflow: u; <0
A1, Az, 23,44 > 0 m = 0: 4 boundary conditions.

u; =0 i=1,2,3,4
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¢ outflow: u; >0
A1,A2,A3,A4 >0 m = 4: 0 boundary condition

The matrix 7! is given by

(L, L 1)
2¢ 2~T 27
0 1 0 0
(4.7) 71 = _
0O O _1_ — ”'_1_
t g
1 1 1
\ 2¢ 0 = 2~4T B 2_'7_ J

So that the boundary conditions are:

e subsonic inflow

(i 1T 15 _
¢ AT ~p
(4.8a) 3 g =0
.._.]_”
1T _a-12_,

s subsonic cutflow

@y, 1T 1p
4.8b ot Sy g
(4.8b) c T ~4p
¢ supersonic inflow
(4.8¢) fy=fy=T=p=0

¢ supersonic outflow

no boundary condition.
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We reintroduced here the density p for the sake of consistency. These boundary

conditions are stable in the sense of Kreiss (see [E-M]}.

IV-2. The Navier-Stokes system. Here the number of boundary conditions is
n — p, where p is the number of negative eigenvalues of A(*). A(') reduces to —uy,

so that we must distinguish only betwegn the inflow and the outflow cases:
e inflow boundary, u; <0
p= 0 4 boundary conditions
+ outflow boundary u; > 0
p=1 3 boundary conditions.

We have to determine the other part of the family (IIJJ'), i.e. the §; and ©;

solutions of

[PV + 4o =0

The cubic equation for # has an immediate root we shall call 83:
(4.9) 93 = Uj.
The two other roots are solutions of the quadratic equation:
4
(4.10) ~—u1(§-8 ~uy)(af —uy) — RT(af ~ yuy) =0

where, for implicity, we set:

a=~ P!
we have
2 2 4.2
3 alu; — =) + su
01 0, = —(ui — %), 91+92=§{ ( 7) t U
o 4 auy



with ¢? = yRT.

Recalling that v > 1, we can determine the signs of the roots. We order #; and

6, so that #; < 8z (#; can not be equal to 8;).
Subsonic case: §; < 0 < 6.

e inflow case: 83 <0

e outfiow case: 63 > 0.
Supersonic case.

o inflow case: §; < 0; <0, 83<0

o outflow case: 0 < 8; <82 63 >0

The corresponding generalized eigenvalues are

L 31 0
) 1=1,2 03= 1
4.11 o' =
(1 (= 1)Tws .
00{ adh /3 |
-1 0

We now have all the elements to (2.20)

o Subsonic inflow;: m =1, p=20, r +p=3.

¢1 = Ar, ‘ijl :Ala ¢ =6 \'I}2=91, ¢s = 03, @3—:@3

and
. c Ui 0 . 1 —Ul 0 2]
N= 0 00 1|N 1= | (-1)T o0 —c
(v—-1)T U; 0 det N 0 det N 0
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-1 .
‘where U; = w, det N = {y— 1)Tuy — Usc
aﬂ,- — Uz
3'&1 1 3&2 . 01 ~ [ ] f‘
TR L P b
'YP,._Iﬂl — W1
dis 1 Ous .
Ve— + =l = U1Us
33:1 6 3232
(412a) { % .
T  (v—-1)T4 (g — ¢ z)
8zy AP0 —u; —c . ~—1T
P -1 [ ~vP 10, Z u; +¢
rF_ " e L~
P e e—— ) P~y 7—1
\ UI( 'yP;“iﬂl—u;)
This system reduces to (4.8a) when v =0
e Subsonic outflow: m =3, p=1, r+p=14
G=X, =A% i=1,2,3 =60, ¥ =06"
c 0 0 Uy
= 0 1 0 0
N= (—1)T 0o T U
1 0o -1 -1
T-U,; 0 U uT
fio L 0 TZ 0 0
TZ\T-Uy—~«T 0 wuy+c¢ T(ui+¢)—2T
+~T 0 —c —cT

where Z = v uy — c(% —1).

(2.20) reduces to

or

(4.12b)

2
,,Zp(lz‘)
=1

Iy

33

dw p(11) ~ 1!
5 =Py Nilw)er,

i=1
8 1 Oy _ ehius 7, _g_é)
dr; 8 Jdz2 Z ‘e T p
< JBip 1 By _
d0z; 6 8zs
af e Uy . T 5
Vam 7 M TT

T
T

]



Again, these equations reduce to (4.8b) when v = 0.

o Supersonic inflow: m =0, p=0, r+p=3.
=0, ¥=0 i=1,...,3.
and
- L3} /3] 0 . ‘ 1 “Uz 0
N = 0 0 1 N_l — —mmﬁ—'—U +U1 0
U1 U2 0 ul( i 2) 0 ul(Ul “Uz)
The boundary conditions are:
- ~ 2 2
oty 1 Qg 3 5 €. 3e* T
Yoo T80 s T BT 5T
Oty 1Uaa1 i
33:1 6 3:!:2 o
(4.12¢) y
8 (v-1),. ., 1 T
dz;  « Tul(a—i_qmif
p__ %
. P uy
= f‘ = ﬁ — 0.

if v = 0, the system reduces to #; = ty

¢ Supersonic outflow: m =4, p=1, r+p=4.

/ -~ -~
6u1 i a'u,z _

¢ = Ag, £ =1,...,4 so that the boundary condition is:
6$1 8 3.7:2

GAL: la_l:i'_‘_«-o
9z, 69zy

A

(4.12d)

of _
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The results in Section III apply to these equations:

THEOREM 4.1. The initial boundary value problem for (4.2) and the zero order
boundary conditions (4.12) is well-posed in ™. As the viscosily v tends to zero,
the solution converges to the solution of the Euler equation with the corresponding

boundary conditions (4.8), the L% norm of the error decreases linearly in v.

Proof. We merely need to check that the reduced hyperbolic problem is well-
posed, which is extremely simple here since A(!) = —u;. The boundary condition

then resumes to § = 0 (when there is a boundary condition for p) and the problem:

for uy < 0 is obviously well-posed.

REMARK. In [G-8] the authors introduced for the Navier-Stokes compressible
equation artificial boundary conditions by requiring them to be dissipative. Fur-
thermore these boundary conditions produce a weak boundary layer. Therefore
Theorem 4.1 also holds in that case. We have not been able to decide whether our
boundary conditions where dissipative or not. However for more general systems
or higher dimensions, it seems difficult to extend their techniques which consists of
studying the boundary form (£ w, w) and matching coefficients of the boundary con-
dition to get the right sign. It does not allow for higher order boundary conditions

either.
V. Higher order boundary conditions.

We discussed earlier the goals of our work: provide boundary conditions which

would be 1) local and 2) consistent with the Euler equation. A first step was made in
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Section 3 by an approximation of order zero of the right-hand side in (2.10). We now
want to increase the accuracy of our boundary conditions. This means, from our
point of view, expand first the transparent boundary condition {2.10) up to higher
order in v. By doing this, we shall keep terms like e4(s,n), for 1 < ¢ < m, where
a; is the traveling mode defined in (1.3). It will correspond to pseudo-differential
operators of order 1 on the boundary, which are of course far from being local.
We thus shall in turn approximate tﬁese modes with the techniques described in
[E-M]. The first realistic approximation is similar to (2.17): we shall set n =0, and

approximate the quantities in {2.7) to first order in 7.

We shall restrict ourselves here to the particular case of the viscous linearized
shallow-water system, though the procedure carries over without modification to
more general systems, provided they possess a symmetrizer. This property ensures
that the eigenvalues £; for the system have an expansion
Ei(s,mv) = ¢i(s,n) +vxi(s,n) +0(v?), 1 < i< m,and
&i(s,m,v) = (¢ +vxi +0(v?)), m+1 <1 < r+p, with a corresponding expansion

for the eigenvectors W,.

Let us consider the shallow-water equations, linearized about the steady state

(U,0):

ow Jw Jw w 9w
= AMZE 4 4270 (11) + (22)
(5.1) Bt =4 oz, 4 63:2 +u(P P oz 2)

where w = (u;,t3,¢).

-U 0 -1 0 0 0
(5.2) A= o -U o0 |4A®={0 o0 -1
-2 0 U 0 -2 o

1 00

(5.4) PO P {0 1 0

0 0 0
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with ¢ > 0.

In our notations of section 0, r = 2, PU§) = 6513 and A1) = _U. The

eigenvalues of A1) are:
(5.5&.) AM=-U=-¢, Ay=-U, Az=-U-+e

and the corresponding eigenvectors are

0 1
(5.5b) Ai=|0],Ae=1}|1],A3= 0
. c 0 —C

The solutions of (B('1¢ + A(1)@ = 0 are

[y

(5.6&) 91 = 92 = U,

and the corresponding generalized eigenvectors are:

U 0
(5.6b) O;={ 0 |,0,=1{1
2

The signs of the A’s and &’s depend on whether the flow is sub or supersonic, ingoing

or outgoing, as in the case of the full Navier-Stokes equations.

We shall approximate the generalized eigenvalues and eigenvectors ¢;{s,0, )

and ®*(s,0,v) up to first order in v

fori<i<m
(5.72) ¢i(s,v) = ¢(s) + vyis® + 0(v?)
s
Gi(s) = X
(5.7b) ®(s,v) = U* + vE's + 0(v?)
\I,i — A_i
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form+1<i<r+p

‘ . 1
(5.8a) 7 ¢ (s,v) = ;g,- + Xiwms + 0(¥)
G =bim
(5.8b) ®'(s,v) = ¥ + vE*"™s + O(v'?)
\Ili — ei—m .

(in the formulas above, the variable 7, being zero, has been omitted).

The x;’s and E;’s are obtained by substitution of the expressions above in

formula (11} for n = O:

(AW 4+ p2P0Y _sN)® =0

To A1, Az, Az are associated three values of £ and vectors ®:

82

-~ 8 e
GL=5- e 0(*)
2
i 8 VS
5.9 — vs_ 2
(5.9a) §2 = N % + 0(r*)
2
2 s Vs 2
=5 o o)
1 vs
(5.9b) ' =A 4 us 231': +0(v%) = 02’\1° + 0(¢?)
c c
0
@, =AZ+0(v?) = | 1| +0(?
0
1 - Vs
®3 = A3 + vs 2336 ) + 0(112) = g)\;gc -+ 0(1/2)
0 —c
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and to 6,0 are associated two values of £ and &:

- U2 — ¢? U? + ¢2
. = 0
(5.102) |€; = —5—+ stmr—en t ¥)
1 { 0 v
¢ =0'+us| & |+op)=[ | . 0 +0(v?)
\ 77 _ &2 e Uzwcz)
% U s
%2 0
& =02+00%=|1}]+0@?

o

We cannot go any further without dividing the analysis into four cases: subsonic or

supersonic, inflow or outfiow.

~ Subsonic inflow case: —e < U < 0, p=0.
A1 <0, A, A3>0: m=1

8, >0 f, <0
p is equal to zero, we have three boundary conditions
bi=6, o' =9

~2 ~2
b=E o2=3

By a zero-order approximation of the £;’s and ®%’s, we get the first set of

approximated boundary conditions:

6u1
5.11 i == )
( )0 v oz,
BU2
E - ng =0
w—cup =0

By a first order approximation in v, we obtain a new set of boundary conditions,

which contains differentiation in time:

Vaul _ v 31.&1
8z, U-+ec Bt
Ouz v dug
(5.11), U-{?E_Uuz—i_ TS
= cu; — v aﬂ
P T U T
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— Subsonic outflow case: 0 < U <¢, p=1

A, A2 <0, Az > 0: m=2
8, <0, 6, >0

the generalized eigenvalues and eigenvectors with negative real parts (when
Re s > 0) are: )
=&, =& &G=§
2 =8, $2=8, =8

the analogous to (5.11)g becomes

du c~U
(5.12)0 Ua_:z:i =— (—eu1 + )
a'l.LQ .
I/'a—:z*; =0

and the first order boundary condition is:

duy c¢—U v o
(5.12), V'é";: = — (—ecus + ) + mé—g(—czul + Up)
’ 31.',2 v 6u2

Yoz, U ot

In the supersonic case, the calculations are much easier.

- Supersonic inflow case: U < —¢, p=0

Al,Az,A3>0: m

0
0,8, <0

we have three boundary conditions

3u1 U2 - 02
(5.13)0 V6$1 S i7 s
3u2
e 2 [
Vazl U
p= U‘ul




and

(5.13) Vaul _ Uz——czu e U2 +¢2 Ouy
h 8z, U T UUT—¢?) ot
a!L2 v 61&2
—t_yU 772
Yom T T e
. c2u 4 vet Ouy
PETTU T T ) ot

— Supersonic outflow case: U > ¢, p=1

)\j,kz,}ts <0: m=3

01,32 >0

we have here two boundary conditions

6u1
P
(5.14)0 !
u%. frsd G
3.’51
3'&1 v 0
(5.14)1 Tl i ﬁ(—Uul + )
youa _ _vouz
3:1:1 - U ot

We shall not repeat here the calculations for the inviscid case, i.e. v = 0.
They are identical to those for the full Euler equations. The local boundary

condition (2.17) is in this case:

subsonic inflow case:

(5.15) uy =0

pw—eur =0

subsonic outflow case:

(5.16) w—cuy; =0
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supersonic inflow case:

(5.17) Uy =ty =p =20

supersonic outflow case:

(5.18) no boundary conditions

The analogous of Theorem 4.1 holds:

THEOREM 5.1. The snitial boundary value problem for (5.1) and any of the
boundary conditions (5.11 + i)o, 1 =0,...,3 15 well-posed in O~ . As the viscosity v
tends to zero, the solution converges to the solution of the invisesd equation with the

corresponding boundary condition (5.14 + i), and the L?-norm of the error decreases

as O(v).
The proof is exactly the same as for Theorem 4.1.

REMARK. In this case, the well-posedness in the classical sense can be ex-
pressed by energy estimates, using the variational formula (1.14). Let us denote by

E(t) the quantity defined by:

(5.19) B() = / f (2l + ud) + p?da
and the analogous on I':

(5.20) Br(t) = 3 [ [0} +4) + )iz
The energy equality then reads:

(5.21) cfi—f + I// o (Vu? + Vul)dz = ~UEp(t) + c? / (vu - — — uyp)dz

r dzy
+f/ Fudzx
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It can be easily checked in each case that the quantity integrated on T’ is negative.

Unfortunately, the decoupling conditions prescribed in [M] to obtain the well-
posedness and the error estimates do not apply to our higher order boundary condi-
tions (5.11 + i)1. We have not been able to establish a priori estimates in this case
either. However, the formal expansion (3.6) is still available. It is an easy matter
to check that for the higher order bouﬂdary conditions (5.11 + i);, the next term

in the expa.nsion va.nishes For instance in the subsonic inflow case, it is due to the
1

U+ec Bt)

former case, and the solution of the corresponding initial boundary value problem

fact that (—--- + —=)}{w (1)) = 0. So the boundary layer is weaker than in the

converges formally to the solution of the tnviscid equation with boundary condition

(5.14 + i), the error being O(v?).

REMARK. Consider the boundary conditions derived from (5.11 + i); in the

four cases:
duy v Ou;
5.22 —
(5.22) Yoz, U+c ot
a'UIQ v 6u2
V*é;;-l— = UU2 4 EW
p =cuy
8u1 ce—U
5.23 = -
(5.29) Vot = 2= o + )
yOua v ouz
6.'31 U ot
duy U?—¢2 U2 +¢2 Ouy
5.24 =
(5.24) Yoz, v M tTmT- o)
Uaﬂ u v Ouq
dz; U ot
__¢
= Uul
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au,;

. =1 _0
(5.25) Yo
V3u2 _ v Juy
6:::1 - U at

by neglecting certain terms. These boundary conditions are well-posed in the classi-
cal sense: we havg neglected the terms which could prevent the energy from decreas-
ing in time. Furthermore they still give an approximation to the inviscid problem
with boundary conditions (5.14 + i} in O(uz): the relevant equations are unchanged.

However, the last statement remains formal, since the decoupling conditions still

don’t hold.

We have considered so far approximations to the inviscid equations with the
“zero-order” boundary conditions (2.17), which are those used in practice. It could
be tempting to try to better approximate the Euler problem. It adds new important
difficulties: as pointed out in {E-M] the choice of the “good” boundary condition in
the hyperbolic case is not canonical, and furthermore it is not clear whether or not
it is well-posed in the sense of Kreiss. A third reason to be reluctant to study this
problem {beyond the tediousness of the calculations) is the fact that it increases the
order of the derivations involved in the boundary condition, and hence the volume

of storage in a real computation.
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