UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Schur Complement Domain Decomposition
Algorithms for Spectral Methods

Tony F. Chan
Danny Goovaerts

August 1988
CAM Report 88-23

Depariment of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555




UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Schur Complement Domain Decomposition
Algorithms for Spectral Methods

Tony F. Chan
Danny Goovaerts

August 1988
CAM Report 88-23

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



Schur Complement Domain Decomposition Algorithms for Spectral Methods

Tony F. CHAN!
DANNY GOOVAERTS?
June 1988

Abstract. Spectral methods have been using a domain decornposition approach for handling irregular domains.
The main focus has been on appropriate matching conditions for the solutions across the subdomain boundaries.

In this paper, we propose an efficient method for solving the discrete equations based on solving the Schur
complement system for the interface variables. We consider both the Funaro-Maday-Patera weak ¢! matching
of the solutions on the interfaces and Orszags exact C' matching, Numerical results for the model problem
show that the condition number of the Schur Complement system is of order O(n?). We show how this can
be improved to nearly O(1) by a boundary probe preconditioner.

“We also point out the relationship between our method and the alternating Neumann Dirichlet method of
Funaro-QuarteroniZanolli.

1. Introduction

Spectral methods for partial differential equations are very attractive for their exponential accuracy.
However, a drawback of these methods as compared to finite difference or finite element methods is that
the matrices of the resulting algebraic equations are dense. For multi dimensional problems this has lead
to the use of tensor product polynomial basis functions. In this way, Fourier methods can be used for
solving the discrete equations. This however restricts the applications of these methods to parallelotopes
or deformed parallelotopes obtained by tensorization of 1 dimensional domains.

For more complex geometries, a domain decomposition approach is used. The computational domain is
divided into the union of non overlapping parallelotopes. The solutions on each subdomain must satisfy
appropriate matching conditions on the interfaces. In conforming methods, the gridpoints on the internal
boundaries of adjacent subdomains must coincide while in non conforming methods this restriction does
not apply. In the conforming methods, the patching method [11] imposes exact C! continuity of the
solution on the interfaces, while the spectral element method [12] forces a weak C' continuity.

A domain decomposition approach can also be used in the solution of the algebraic equations resulting
from these methods. In finite element or finite difference methods, a large class of domain decomposi-
tion methods are based on solving the Schur complement equations for the interface variables using the
preconditioned conjugate gradient method. In this paper we propose using the same technique for con-
forming spectral methods. The outline of the paper is the following. In seclion 2 we derive the discrete
equations for the model problem and show the structure of the matrix of the systemn of equations. In sec-
tion 3 we introduce the Schur complement preconditioned conjugate gradient method and we show with
numerical examples that the condition number of the Schur complement for the mode! problem, is O(n?),
with n the order of the interface system. In section 4 we introduce the boundary probe preconditioner
which improves the condition number to slowly increasing function of n. In section 5 we illustrate the
relationship of the alternating Neumann Dirichlet iteration for the patching method [8] with the iteration
on the Schur complement.
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2. Algebraic equations of the spectral element method.

We consider the 2 dimensional model problem :

(2-1) ~Au=f on {1 ,u € HY()

(2-2) u=0 on 00

As domain 2 we take a rectangle, divided in two strips sharing the interface I' :

Q =[a,b)&[c,d]
O =la,0] @ [e,d]

Q2 =[0,8]®[c, d]
The problem (2-1}, (2-2) can also be expressed in variational form :
(2-3) f / VuVy = _[ fu ue Hi(Q) Yv € HY{(Q)
a a

The integrals in (2-3) are splitted as the sum over the integrals over the 2 subdomains :

{2-1) /m Vqu-{—fn Vqu:/:/f;l fv-!-‘/‘n fv Yo € HY(Q)

Writing the double integrals as repeted single integrals and expanding the gradients, the left hand side
of {2-4) becomes :

bd

Oudv Gudv Sudv  OGudv
(2-6) /f(azaz 3y3) +f (6:8.7: a;;a)dd” '
0c
I I

Let :

ri=a , z}=0

i=0 , zi=b

Al =zb — 2}

Ayj=d-c

We transform the subdomains to the squares [—1,1]® [—1, 1] with the transformations :

z.t

Al

#=o1428

g =—1+22=

The integrals I;, t = 1,2 then are transformed into :

1 1
(2-7) Ig:cr,--//g—uggﬂrd dif +}/J;f/g¥—?7cfx di
N

—1-1



with o; the aspect ratio of the subdomains :

o= 2
AI
and u' and v* the restrictions of u, respectively v to §%;. The weak formulation of the elliptic problem
then is :

(2-5) L+ = vt dit dit + / FAtde?dy?

with f' = f(AL(Z + 1)/2 + %, A (¥ + 1)/2 + c). In what follows we always refer to these transformed
subdomains. We will drop the indices denoting the number of the subdomains when there is no danger
for confusion, and we will denote the variables again by z and y.

Spectral methods take as solution on the subdomains a polynomial approximation :

ui ~ Qnin;(z:y) )

where ann,(:c,y) is a polynomial of maximum degree n, in = and of maximum degree n, in y. In
conforming methods, nj = ni. We will use the notation ¥’ also for this polynomial approximation.

The algebraic equations in the spectral element method are obtained by replacing the integrals in (2--5)
by Gaussian quadrature rules and chosing an appropriate set of test functions v'. Let :

~l=p<p< <y <y =1

and

pj 1 j = 0) M | n )
be the Gauss Lobatto points and corresponding weights for a Gaussian quadrature rule with n+1 points
for the Legendre weight function w(z) = 1. The points ', i = 1,...,n — 1 are the zeros of P}, where

P, is the Legendre polynomial of degree n. The Gauss Lobatto points define a grid on the subdomains :

i ni n
§u = (’h: T )

We denote the Lagrangian interpolating polynomials through the points nty i=0,...,nbyL}. They

can be written as [10] :
I (1=z7)Pi(a)

n{n+ 1)Pa(ze)  (z~z4)

The set of testfunctions corresponding to the interior grid points of the subdomains, is :

B ==

v =LEELW

g nl—1,1=1,...,n -1 ,
vo =0

vy

and
vt =0

ﬂ2 T ¥
v? = L= (2)L " (y)

This then leads to a collocation method for the interior points :

k=1,...,n2-1, I=1,...,n,—1

. Sui(gi orui(el ALA
(2-6) —a,-( t(;.g”) — 1/o; ;55“) = yf(fu)

3



For the points on the interface between the subdomains, we take the following test functions :
1
vt = L (=)L) ()
x
v® = Lg*(2)Ly" (v)
This gives the following equations :

32“1(53,;1) 1/ 32“1(5,11;1) Bul(fnl,)

Il=1...,n,-1

(2*7) —aJ; 6.7'..2 — g a 2 / nl
62 2 2,2 6 2ie2
g S0 az(gor) /o2 6 6(501) Fa “a(fm)/po
Al

yf (‘5111)'{” yfz(fer)

From the equations (2-6) and {2-7) it can be seen that the spectral element method is an exact peseu-
dospectral collocation method inside each subdomain (2-6) with a weak C! continuity on the interface.
Patching methods [11] impose an exact C? matching of the subsolutions in the gridpoints on the interface :
gl
du (f.,;r) _ dut(ed) 0
0= ox

The solution on a subdomain can be expr&ssed as :

= EEUHLJ: (”)L: (v)

We then have :

au'(lf n) AN
Tor Z“kn (1) o)
k=0
82 'E:nﬂ i Y Al
Pl -5, () 08
k=0
8'!1‘(6:"“ n ton
o Z“mf (1) )
¥ =0
& ‘(Emn) AN
ayg Zumf (Ll ) (nﬂ )
I=
We define the matrices D! and D2 :
(Dn)yy = (L) (4F)
(D), = (L))" (n)
Straightforward calculus and dropping the index n, gives {10] :
Pn(m)
DY}, = DL s k£
( )H Pu(mi(m — i)
1 . Qn
(‘D )ou - _T '
(D‘)kk:(j \ E=1,... . n—1 .
oo
(I) )nn - 4 ’



with 0, = n(n+ 1), and :

o, —2)

2y
(D)oo = 24
Pa(n6)(2 + an(n — m,)/2)
D2 —_— i , l 0 ,
( )OI Pn(’]a)(’?{) - ’?J)z #
Pu(m:)
DY = %R k=1,...,n—1 k#ED
( )H Po(m)(n, — )2
I=0,...,n \
D?) =___ % k=1,....n—1 |
P =300 "
2 _ an(an ~ 2)
(D ),—;n - 24 ]
Pn(q )(2 _ an(’? - 1} )/2)
D2 S n n 1 , 1?1__ n
O o) ~ 77
Let :
T
U = (“h---“i(nv-l) 3y "‘ué(nv--l) "‘uEn}__—l)l"'u(lni-—l)(ny—-l))
T
(2-8) upy = (”3%;1 ---“rl.;(nvnz))
T
(2-9) = (ugl"'ug{nv—l))
T
Uz = (“fl . "f(n,—i) Uy ”g{n,-x) ---"(2n3-1)1 = ‘u(zni'_-—l){ny—[)) :
and

U
u = Uz
U3

The equality (2-8) (2-9) forces C® continuity of the solution on the interface. The discrete equations for
(2-6) and (2-7) then can be written as :

(2-10) Au= f

where f is a discrete vector corresponding to the right hand sides. The matrix 4 has the following
structure :

A A
A= An Az A
Azs  Aay
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The matrices A;; can be expressed as direct products of the matrices D :

A=~ DL(1:ing~L1ing = 1)@ I, -1y~ In1-n) ® D (1iny —1,1:n, ~1)/0 '
A12=—0‘1D3;(1 :ﬂ}—."la"i)@’f("rl) |
Agy = =01 D}y (n}, 1ing = 1)@ In, 1) + 05 Dhi (ng, 1 i ng = 1)/pay ® o 1)

Agp = Ay + Al
Aéz = —Jng;(n}__,n},)I(nv__l) — D,zlv(l . ny — 1, 1: ﬂy - 1)/0[ +01Drl;§(n::vn:1:)/pn}[(ny—1)

Aoy = =420, 0,1y — DA, (1 my = L1t ny = 1)/03 = 02D15(0.0) s, -1

Az = —Uzng(Oa Ling-1)® In,—1y = JzD}‘i(O’ Linz —1)/po® fny-1)

Azz = —agDﬁz(l in2-1,00® In,-1)

Azz = —~02sz=3(1 n2-1,1:n2-1)® fta -1y = ln2-1)® Di,(l tny —Llin, —1)/0 ’

with I, a unity matrix of dimension n. The matrices Ay, A2z and Azj are not symmetric. They can be
symmetrized by the similarity {ransformation :

S-1AS

Sn}__ ®Snv
S = Snv
Sn: ® S"v

S, is a diagonal matrix with entries :

with

(Sn)ex = Pn (nE) , k=1...n—1

G



3. Schur complement conjugate gradient

In finite element or finite difference methods, the discrete system of equations is of the same block
tridiagonal form as (2-10) but the blocks itself are banded. A large class of domain decomposition
methods for these methods focusses on solving this system. We propose to use the same technique for

spectral methods.
System (2-10) can be solved by Block Gaussian Elimination which gives the equations for the interface

variables usy :
(3-1) Suy=f2 ,
with
§= Ay~ A21A1_;1A12 = A23A§31A32
and )
fo=fo—AnAlh - A23A531f3

The matrix S is the Schur complement of Az, in the matrix A. It corresponds to the reduction of the
operator L on € to an operator on the internal boundary I". Constructing the Schur complement would
require the solution on n, elliptic problems on each subdomain. Furthermore it is dense, so that factoring
would be expensive.

Instead of solving the system {3-1) directly, iterative methods such as preconditioned conjugate gradient
(PCG) can be applied. The PCG algorithm is the following :

choose ug
0= f7_ Sug

Yarbitrary

o
for k£=0,1,...

solve Mzt =rF
ﬁﬁ =0

R Gl .
ﬁk—m k#0

pk — zk +ﬁkpkwl

qk — Spic

- T
{(P*)" ¢
B = b+ gt

Pl b gk

where M is the preconditioning matrix. This only requires the matrix § in the matrix vector product
Sy. This product can be compuled by one solve on each subdomain with boundary condition on the
interface determined by y.

The convergence of PCG is delermined by the cigenvalue distribution of M7TA Let :

K= Amar(""_]A)/Auu'li(ﬂ',_“/l)
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A very well known result about PCG is [5] :
(uf — )" A(wt —us) _, (\/E— 1)’”‘
AR —w) S Va1

In figure 3.1 we plot the condition number & of § of the spectral element method, versus n for the
following problem :

Q = [0,1]80,1]
Q, =[0,0.5]® [0, 1]
Q. =[0.5,1je[0,1]

and
nzl=nl= n,=n
Fig. 3.1 K(S) for Spectral Element and Patch Methods
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Numerical datafitting gives that x(S) = O(n?). The results for the patching collocation method are
very similar.

4. Boundary probe preconditioner for the Schur complement

In the finite element and finite difference case, several preconditioners have been proposed for the Schur
complement S. A large class of preconditioners have been derived for the splitting of a rectangle and are
intimately related to the underlying properties of the differential operator {7}, [9], [2], or are based on
symunetry properties of the operator and of the domain [1].

Another preconditioner is the boundary probe preconditioner [4]. The main motivation for this ap-
proach is the observation that, in the finite diflerence case for the Laplace operator, the elements of the
matrix S decay rapidly away from the main diagonal {8]. This is inherently related to the fact that
the operator S is predominantly local. In spectral element and patching methods, this operator is even
more local, In figure 4.1, 4.2, we plot the elements of S for the spectral element method, respectively the
patching collocation method, for a geometry with ¢; = oy = 2 and nl = n? = ny = 10.

Fig. 4.1. Interface Operator for Spectral Element Method




Fig. 4.2. Interface Operator for Patching Method
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Condition No. of inv(M)S

The (weak) C*! continuity imposes merely a restriction in the direction orthogonal to the interface. The
coupling along the interface is rather weak. In the patching method, A,; is diagonal and the coupling
between the unknowns of the interface only comes from the terms AglAl_llAlg and A23A§31A3-_:.

it would not be efficient to calculate the elemenis of S in order to get a diagonal approximation.
Instead, as proposed in [4), a 2k + 1 diagonal approximation to S can be constructed by multiplying S
by 2% + 1 “probing” vectors v;,j = 1,...,2k + 1. The idea is motivaied by sparse Jacobian evaluation
techniques {G]. For the case ¥ = 0 and k£ = 1 the probing vectors are the following :

k=0:v; =(1,1,1,1,1,1,1,...)7
k=1:v =(1,0,0,1,0,0,1,...)T
vz =(0,1,0,0,1,0,0,.. )T
vz = (0,0,1,0,0,1,0,...)7

The case k = 0 corresponds to a scaling of each row of the matrix S by the sum of the elements of the row.
For k = 1, if & were indeed tridiagonal, all of its elements would be found in the vectors Sv;, j = 1,2,3.
For the more general case of k > 1, we refer to [|. The probing technique asks for 2k + 1 products Sv;.
This implies (2k + 1) solves on each subdomain.

In figure 4.3, we show the condition number of M 1S for a one and a tridiagonal approximation for the
spectral element , versus n for the same problem as in section 2. The curves for the patching collocation
method coincide,

Fig. 4.3. K(inv(M)S) for Diag and Tridiag Probing
16 L T T T T 1 T
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Iterations per Accurate Digit

As can be seen, the boundary probe preconditioner yields a very good approximation to 5. These
nummerical experiments indicate that for £ = 0 the condition number is O{n} and for k = 1, it is nearly
constant. To construct the tridiagonal preconditioner, we have to make 3 matrix vector multiplications
Sy, as opposed to just 1 in the diagonal case, and in each iteration step a tridiagonal system has to be
solved. This however is amply compensated by the faster convergence. In figure 4.4, we plot the number
of iteration steps per digit accuracy (m—a—;&—,j) versus n for PCG iteration without preconditioning

1o\ 7o

and with the diagonal and tridiagonal probing preconditioner.

Fig. 4.4. No. of PCG Iterations per Accurate Digit
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Using a tridiagonal boundary probe preconditioner, the number of iteration steps to achieve a certain
accuracy is independent of the order of S. This saving compensates greatly for the extra work for
constructing the preconditioner and calculating the preconditioning step.

Since the boundary probe preconditioner senses the elements of the matrix S, it naturally adapts to

the differential operator and to the type of discretization used {3].

5. Relation between Neumann Dirichlet alternating procedures for patching methods and Schur compl

Patching methods impose exact C? continnity on the internal boundary T :

(5-1) { —Aul = f on 7

ul=0 on a5y NN

Gul  Gu?
(5‘2) E’;— = '"5; on I
—Au? = Q
(5-3) u2 f on 2
=0 on My N IR

An analogous derivation as in section 2, but replacing the discrete equations for the grid points on the
interface I' by a discrete version of (5-2) leads to the set of equations :

A Aixz Uy fl
An Al + A%, An uz | =10
Aas Aaz Ya fa
with :
A2l = GID:‘i(ni, 1 . ﬂi. - l) ® I(nv--l)
A, = UiDrl.;("}u ﬂ;)ffn,wl)
A§2 — —O'QD,I,‘Z(U,O)I(”"..H
A23 = —U‘QD}‘E_(O; 1: nz et 1) & I(n’—l)
Let :

P A A . A A
Alz 11 12) and Az_: ( 29 23)
(Azl AL, Azz  Aaz
The matrices A;; and Aj; are the discretization matrices for Dirichlet problems on the domains Qy,

respectively £, while the matrices A' describe Neumann Dirichlet problems on the subdomains, with the
Neumann boundary condition on the interface. The Schur complement § can also be written as

(5-4) S=85'+5

with :

Sl = Aég - AZlA]_llA12 ’

and

Sz = Ail - Ag;gA:-;alAg';

S% is the Schur complement of Ay in A {1].



A large class of iterative methods for solving a system of the form Az = b consists of (relaxed)
preconditioned fixed point iterations. Let A= 5+ R.

choose z0
PP =b— Az’
pO aaen S-—lrﬂ

2l =20 4 p°
for k=1,2...

r¥ = b— Az*
Pt =571(r* — R(f — 1)p* ")
Pl = gk g p*
with 8¢, & =1,2,... a series of relaxation parameters. The updating can also be written as :
SzF+l = _R(OpzF + (1 - 8)zF )+ b
Applying this method to the Schur complement system with the splitting (54}, we get :

Soubtl = — 8y (Bpuk + (1 = 0)ulY)y — An AT f ~ AgaAS) fa
(5-5) = —An AT (fi — A(Bd + (1= 0)ub 1) = Ay (Bnd + (1 = 6)us ™) — Azsdss fa

Funaro, Quarteroni and Zanolli [8] have proposed an efficient iterative technique for solving (5-1),

(5-2), (5-3) :

(u?)™'  arbitrary

choose (u2)0
6p=1
for k£=0,1...
A =5 on @
(5-6) E+1 3 k-1
@)™ =0 )|+ -0 ()T
—A (u"’)Hl =f on
-1 o)t _ o)
= - dr
r r

Using the same collocation technique o solve the differential equations {(5-6} and (5-7) we get the
following equations : '

(5-8) Anuft = fi — At + (1 — 60t !
5 ¢ Az wst'\ (= Anuf T — ALy (Ol + (1 — 0 )uyT)
{5-9} )T T

3 3
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Substituting the solution of (5-8) in (5-9) gives :
(5-10)
(44%2 Aza) (u’;*‘) _ (—AmAﬁl(fx — Ana(Oxf + (1= 0)us™") — Aby(Ouuf + (1 - 0)us™") )
Asy Ass/ \uft! fa

Solving the equations (5-10) for u5*! uing the Schur complement of A, in A? gives :
(5-11) SPub™ = —Ap A7 (fi — Ara(eul + (1 - 6)u5 ™)) — Afp(Beus + (1 - Br)us ™) — AadZs fa

Equation {5-11) is the same as equation (5-5). The alternating Neumnann Dirichiet iteration thus can be
considered a dynamically relaxed preconditioned fixed point iteration on the Schur complement S, using
5% as preconditioner.

With an appropriate choice of the relaxation parameter &, the alternating Neumann Dirichlet proce-
dure converges very {ast [8]. As it is an alternating method, such as the Schwarz iterative procedure {13],
it consists of two sequential steps. It also needs & Dirichiet and a Neumann solver. In the PCG iteration
on the Schur complement, the subdomain solves can all be done simultanuously. Furthermore, it are all

Dirichlet problems.
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