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DOMAIN DECOMPOSITION ALGORITHMS AND
COMPUTATIONAL FLUID DYNAMICS*

TONY F. CHAN{

Abstract. In the past several years, domain decomposition has been a very populer topic,
partly motivated by the potential of parallelization. While & large body of theory and algorithms
have heen developed for model elliptic problems, they are only recently starting to be tested on
realistic applications. In this paper, after a brief introduction and survey of the literature, we shall
investigate the application of some of these metheds to two model problems in computational fuid
dynamics: two dimensional convection-diffusion problems and the incompressible driven cavity flow
problem. Qur approach is the construction and analysis of eficient preconditioners for the interface
operator to be used in the iterative solution of the interface solution. For the convection-diffusion
problems, we shall discuss the effect of the convection term and its discretization on the performance
of some of the preconditioners. For the driven cavity problem, we shall discuss the effectiveness of a
class of boundary probe preconditioners. :

Key Words. Parallel algorithms, domain decomposition, partisl differential equations, pre-
conditioned conjugate gradient, computational luid dynemics, convection-diffusion problems, driven
cavity problem.

1. Introduction. In the past several years, domain decomposition methods for
solving elliptic partial differential equations have attracted much attention {19,5]. The
main impulse for the enormous interest in these methods has come from the arrival of
patallel computers, Besides the ease of parallelization, domain decomposition allows
one to treat complex geometries or to isolate singular parts of the domain through
adaptive mesh refinement. One of the goals of this paper is to give a very brief
introduction to the subject.

The idea of domain decomposition has been used for quite some time in several
scientific computing areas, such as computational structural mechanics {CSM) and
‘computational fluid dynamics (CFD). However, in most of these applications, the
coupling of the subdomains are handled in a rather primitive way, For example, in
substructuring algorithms in CSM, the reduced interface equations are formed explic-
itly and solved by direct methods. Thus for problems where the degree of freedom
on the interfaces is large, the solution of this reduced problem can actually dominate
the overall solution process. On the other hand, in CFD domain decomposition ideas
have been used primarily in adaptive generation of computational grids for compli-
cated geometries. In these applications, the interface coupling is usually quite simple,
such as using the most recent boundary values from a neighboring subdomain,

The more recent theoretical works have been mostly concerned with more sophis-
ticated treatment of the coupling of the subdomain solutions. For second order elliptic
problems, the theory and algorithms are quite well developed. However, applications
of these newly developed algorithms to real physical problems are still rare. More-
over, extensions to more complicated operators, such as the Navier-Stokes equation,
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are only beginning to be studied. Much more work in this direction remains to be
done. In this paper, we shali take a small step in this direction by presenting some
results on the applications of some of these new domain decomposition algerithms to
two model problems in computational fluid dynamics (CFD).

The first problem we shall investigate is the class of convection-diffusion problems
in two dimensions. Most of the existing domain decomposition techniques have been
derived with only the diffusion part of the operator in mind. Here we shall study the
effect of the convection term (magnitude and direction} and the form of its discretiza-
tion (central and upwind) on the effectiveness of the performance of these techniques.
As we shall demonstrate, it is benefitial in practice to take into account the par-
ticular attributes of the convection term in comsiructing the domain decomposition
algorithms.

The second problem we shall study is the steady two dimensional driven cavity
problem. Specifically, we shall use the fourth order stream function formulation {33].
As mentioned earlier, most of the domain decomposition techniques have been devel-
oped for second order elliptic problems. It is therefore not immediately obvious how
to apply these technigques to fourth order problems. Of course, for the driven cavity
problem there are many solution algorithms which at each step require the solution
of only second order problems and to which the appropriate domain decomposition
algorithms cau be applied. But true to the spirit of domain decomposition as a coarse
granularity parallel algorithm, it is interesting to study algorithms which treaf the
original problem (rather than parts of a solution algorithm) by the domain decom-
position approach. Such algorithms may be more flexible because the subdomain
solves can be handled by ary appropriate Navier Stokes solver. In this paper, we
shall present some preliminary results on the use of boundary probing as a method
for treating the coupling of the subdomain problems. The boandary probe technique,
which was first introduced in [12] for second order problems, requires only solving
the original problem on the subdomains with a few appropriately chosen "probing”
boundary conditions. We shall discuss how to generalize these probing techniques
to fourth order problems and present some numerical results for the driven cavity
problem with Reynold’s number 200. For work on domain decomposition algorithms
for the Navier-Stokes equations in the velocity-pressure formulation, see {29,30,17].

The outline of the paper is as follows. In Section 2, we shall give a brief introduc-
tion to the various approaches of domain decomposition. In Section 3, we shall give
a survey of domain decomposition preconditioners for the operator on the interface
separating the subdomains, which is the main approach in this paper. The convection-
diffusion problem will be treated in Section 4 and the driven cavity problem in Section
5.

2. Domain Decomposition Approaches. The main idea of domain decom-
position algorithms is to decompose the original domain into smaller subdomains,
solve the original problem on the subdomains, and somehow ”patch” the subdomain
solutions to form the solution to the original problem. In general, the above process
has to be repeated through an iterative process until some convergence criteria is
satisfied. There are two main approaches, characterized by the way the subdomains
are constructed, namely overlapping and nonoverlapping,.

The overlapping approach decomposes the original domain into two or more par-
tially overlapping subdomains. A Schwarz alternating procedure [34] or a variant is
then applied. Starting with an initial guess in a subdomain, a problem on a neighbor-
ing (overlapped) subdomain is solved, using the initial guess as part of the required
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boundary conditions. This process is then repeated until a problem on the first
subdomain is solved, giving an update on the initial guess. The overall iteration is
then repeated until convergence. There are many variants. For example, the sub-
domains can he ordered in a such a way (e.g. in red/black fashion) that more than
one subdomain solve can be performed in paraliel. Also, relaxation parameters can
be introduced to form weighted averages of the new guess with the old one. The
iterates can be accelerated, say by the conjugate gradient method. Finally, the type
of boundary conditions (e.g. Neumann versus Dirichlet) in the overlapped region
could be chosen appropriately to speed up the rate of convergence. There are also
a wealth of theory available for the Schwarz procedure, ranging from the conditions
required for convergence (usually that the operator satisfies the maximum principle)
to actual estimates of the rate of convergence as a function of the amount of overlap
[34,25,27,28,35,22,11].

The nonoverlapping approach Gecomposes the domain into nonoverlapping sub-
domains by lower dimensional intecfaces. The original problem is then reduced to an
equivalent one posed on these interfaces. The reduced interface operator is usually not
a local differential operator and is more nonlocal in nature, making it more difficult
to solve efficiently by a direct method. Instead, it is most often solved iteratively.
At each iteration, the action of the interface operator on an interface solution value
has to be calculated, which turns out to require solves on the subdomains. Just like
the overlapping approach, this iteration can also be accelerated, for examplie by the
conjugate gradient method. A key factor in the iteration is the construction of effec-
tive preconditioners, which is assential to keep the number of iterations small. The
technigue can be extended to cases in which an exact subdomain solve is either not
available or too expensive and only an approximate solution procedure is to be used.
Since this is the main approach iaken in this paper, we shall postpone a more detailed
description to the next section.

It is natural to ask which of the two approaches is to be preferred in a given
application. First, lef us mention that it has been recently discovered that the two
approaches are related; in fact they are identical under certain conditions {6]. Specif-
ically, given a Schwarz overlapped iteration, there corresponds a nonoverlapped it-
eration, with a particular interface preconditioner, which produces exacily the same
iterates on the interface. The appropriate preconditioners are precisely the exact
reduced interface operator for the subdomains. For large class of second order ellip-
tic operators (essentially separable ones) on rectangles, such preconditioners can be
derived and implemented via Fast Fourier Transforms on the interfaces [14,13].

An issue that has often been raised concerning the efficiency of domain decom-
position algorithms in a parallel implementation is whether they are actually more
efficient than parallelizing a standard sequential algorithm. Part of the doubt arises
because in the Schwarz procedure, a certain overhead is incurred due to the repeated
solves on the overlapped regioms. In fact, since the rate of convergence usually de-
creases exponentially when the amount of overlap is reduced, this overhead seems to be
unavoidable. Ilowever, the nonoverlapped approach has no such overhead. Therefore,
for problems for which such preconditioners can be used, the nonoverlapping approach
is more efficient. The overlapped approach is, however, more generally applicable and
rather robust. It will remain a main tool in this area.

One aspect that has generally been ignored is the gain in sequential computational
complexity that domain decomposition can yield as a divide and conquer technique.
When the work for solving a problem grows more than linearly with its size, splitiing



it up in 2 subproblems of half the size will yield a faster method provided that the
subsolutions can be efficiently combined to the solution of the original problem. Using
the nonoverlapped approach with the boundary probing technique, we have been able
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tage of ease of parallelization, are actually faster than the corresponding sequential
algorithms [71.

3. Interface Preconditioners. In this section, we shall briefly review some
preconditioners which have been proposed for use in the nonoverlapped approach.
For a more thorough survey, we refer the readers to [14,24].

We formulate this approach for the simplest case of a domain 2 split inte two
subdomains ; and )2 sharing the interface T'. Consider the problem Lz = f on
2 with boundary conditions % = u; on 812, where L is a linear second order elliptic
operator. If we order the unknows for the internal points of the subdomains first
and those on the interface T' last, then the discrete solution vector u = (ul,ug,ua)T
satisfies the linear system :

A Az 31 f 1
Au = ‘4.22 Azs Uy = fz 1 (21)
Az Asz  Ass U3 fa

where the discrete vector f = (f1, fa, _f;;)T contains the contribution of the right hand
side of the differential eguation and of the Dirichlet boundary condition.

System (2.1) can be solved by block Gaussian elimination which gives the equa-
tions for the interface variables ua : ’

Suz=f3 (2.2)
with
S = Agy — A31A1_11A13 - A32A;21A23
and
fo=fa— AstALF — As2AG) fa

The matrix S is the Schur complement of A3z in the matrix A. Tt corresponds to
the reduction of the operator L on € to an operator on the internal boundary I
Constructing the Schur complement would require the solution of nr eiliptic problems
on each subdomain, where nr is the number of internal points on I'. Furthermore it
is dense, so that factoring would be expensive.

Instead of solving the system (2.2) directly, iterative methods such as precondi-
tioned conjugate gradient (PCG) can be applied in which only matrix vector product
Sy are required. This product can be computed by one solve on each dubdomain with
boundary condition on I' determined by w. Since each iteration is rather expensive,
it is important to precondition this iteration with a good preconditioner in order to
keep the number of iterations small.

Several preconditioners have been proposed in the literature. The first precon-
ditioner was derived from the underlying properties of the "trace” of the differential
operator on the interface. It is known that for a large class of second order elliptic
operators, the reduced interface operator {the trace operator) is spectrally equivalent
to the operator Mp = VK, where K denotes the Laplace operator defined on the
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interface and the square root is taken in the Fourier space [26]. This is true also
for the discretized operator. Therefore Mp should make a reasonably good precon-
ditioner for S, as first proposed by Dryja [18]. An improvement was made later by
Golub-Mayers [20], who proposed as preconditioner the operator Mg = /K -+ K2/4.
They arrived at this operator by considering the limiting case of the Laplace operator
on semi-infinite planes. In numerical experiments in [20], Mg performs consistantly
better than Mp in reducing the number of iterations.

A different class of preconditioner, called the Neumann-Dirichlet precondition-
ers, was proposed by Bjorstad-Widlund [1] following an earlier suggestion by Dryja.
The main feature of these preconditioners is that they require alternatively solving
problems on the subdomains with Neumann and Dirichlet boundary conditions on
the interface. It may be easiest to understand these preconditioners from the point
of view of symmetry. For if both the operator and the subdomains are symmetric
about the interface, then the original problem can be reduced to one on one of the
subdomains with a homogeneons (symmetric) Neumann boundary condition on the
interface. Thus, the more symmetry there is about the interface, the better the pre-
conditioner will perform. These preconditioners have also been recently extended
to domain decomposed spectral methods {31]. We note that this preconditioner re-
quires two different kinds of solvers on the subdomains, corresponding to Neumann
ard Dirichlet boundary conditions, which may be natural in some situations (such as
finite element methods) but an inconvenience in other situations.

Another class of preconditioners was proposed by Chan [4]. The key idea is the
observation that for many elliptic operators (essentially separable ones including alil
piecewise constant coefficient operators) on rectangular domains decomposed by an
interface parallel to one of its sides, the exact interface operator can be derived analyt-
ically using Fourier transforms {10]. For nonrectangular domains, one can then use as
preconditioner the exact interface operator of the nearest reclangular approzimation
sharing the same interface. Thus this class of preconditioners, which we shall denote
by M¢, is based on the idea of geometric approximation and therefore can be shown
to be less sensitive to the aspect ratios (i.e. the relative shape) of the adjoining sab-
domains [4]. In fact, for certain geometrical shapes such as L-shaped and C-shaped
domains, it can be proven that using this preconditioner, the condition number of
the preconditioned interface operator can be bounded by a small constant (around 2)
independent of the grid size and the particular shape of the domain [15,11].

One of the problems with preconditioners derived from general properties of the
differential operators, such as Mp and Mg, is that they cannot be expected to per-
form uniformly well for any particular operator. In particular, they could be sensitive
to both the shape of the domain and the variability of the coefficients. A precondi-
tioner that is designed to adapt well to these effects is the class of Boundary Probe
Preconditioners [12]. Additional extensive experiments with this preconditioner have
been performed in [24], where it was called the Modified Schur Complement method.
The main motivation for this approach is the observation that, for many elliptic op-
erators, the magnitude of elements of the matrix S decay rapidly away from the main
diagonal [20], reflecting a weak global coupling among the interface unknowns. It is
therefore reasonable to consider a k diagonal approximatiorn to 5. However, it would
not be efficient to calculate the elements of S in order to do this. Instead, as proposed
in [12], a 2k + ! diagonal approximation to § can be constructed by computing the
action of S on 2k+ 1 “probing” vectors v;,j = 1,...,2k+ 1. The idea is motivated by
sparse Jacobian evaluation techniques [16]. For the case k = 0 and k = 1 the probing



vectors are the following :

wo=(1,1,1,1,1,1,1,.. )%

m. = f1.0.0.1. 00 1 VT
v; ={1,0,0,1,0,0,1,...)

vy = (0,1,0,0,1,0,0,.. )7
vz = (0,0,1,0,0,1,0,..)F.

L
I
=

I
[y

The case k = 0 corresponds to a scaling of each row of the matrix S by the sum of
the elements of the row. For k = 1, i § were indeed tridiagonal, all of its elements
would be recovered in the vectors Sv;, 3 = 1,2,3. The idea can be generalized to
cases with k& > 1 and multiple domains [23,9] and to wider discretization stencils, as
for instance in fourth order equatioms such as the biharmonic equation [3} and the
steady Navier Stokes equation (see Section 5). Applizations to coupled systems such
as reaction-convection-diffusion problems are also possible [23].

Finally, we consider cases where the subdomain solves are too expensive to per-
form exactly (e.g. a fast direct solver is not available). One approach is to consider
the PCG iteration on the Schur complement as a combination of an outer and an
inner iteration {21]. Another approach is to combine preconditioners on the subdo-
mains and on the interface to form a preconditioner on the whole domain, and then to
iterate on the subdomains and the inferface simultanuously. A simple way to achieve
this is through the following block factorization of A :

Ay I Al_ll Az
A= Agy I AtAs . (2.3)
Az Axm S I

A preconditioner for A can be derived by replacing A;; in (2.3) by approximations
By and replacing the Schur complement by a preconditioner M. For the latter, we
can take any of the preconditioners that were mentioned earlier. We therfore arrive
at the following preconditioner for 4 :

- By I B4
M= Ba I By Azs . (2.4)
Agr Az M I

Preconditioners of this form were first proposed in [2] and were also mentioned in [14],
[1].

4. Convection-Diffusion Problems. In this section, we shall consider two di-
mensional convection-diffusion operators of the form:

Lw = Au%—a?g- +ﬁ§3ﬁ,

dax oy
with Dirichlet boundary conditions. In particular, we are concerned with construct-
ing efficient domain decomposition preconditioners for the reduced interface operator
derived from L. As we have seen from the previous section, there are many precon-
ditioners available for the Laplacian operator and in fact two of these can be directly
derived from it (Mp and Mg.} In theory, these preconditioners for the Laplacian
should work well in the presence of the convection terms as well. Specifically, the
first order convection terms do not affect the spectral equivalence properties. In the
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discrete case, this means that if the coeflicients o and 3 are kept fixed while we let a
mesh size parameter h go to zero, the condition number (in the spectral norm) can
be bounded by a constant independent of . In practical computations, however, h is
bounded from below hy hoth memory and time limitations and the relevant parameter
to consider are the cell Reynold’s numbers r, = ah and vy, = Bh. It is well known
that for central differencing the discrete solution exhibits oscillatory behaviour when
the cell Reynold’s numbers exceed the critical value of 2. Moreover, the direction of
the flow (determined by « and ) relative to the interfaces may have an effect on the
¢holce of preconditioners because the coupling between the subdomains is affected by
the amount of information carried by the flow from one subdomain into the other. Re-
lated to this is the effect of the form of discretization, in particular central difference
versus upwind difference, on the performance of preconditioners.

To test the effect of the first order term, we compute the condition numbers {in
the I;-norm) in the case when we use only the diffusion operator to construct precon-
ditioners. In Figures 1 and 2, we plot the condition numbers versus the coeflicient a
in the following two model equations:

(4.1) Au+ a-g% =0

and

(4.2) Autad® 0.
dr

We use C(a) to represent the Schur complement corresponding to equation (4.1) or
(4.2) and C(0) represent the Schur complement for the Poisson equation. In Figure
1, we plot the condition number K(C~*{0)C(a)) for equation {4.1) using both central
and upwind differencing, for the rectangular (0,1) x (9,3) with an interface joining
the points (0,2) and (1,2) and with a grid size of h = 0.02. Figure 2 displays the
same computation for equation (4.2). Note that for this value of h, the critical cell
Reynold’s number corresponds to a = 100 for the central differencing case.

These calculations show that the condition number can grow appreciably above 1
as @ increases, implying that the preconditioner based on only the diffusion operator
may give very slow convergence when the cell Reynolds number is of order O{1).
By comparing Figures 1 and 2, we see that the growth is more rapid for (4.1) than
for {4.2). In other words, it is more eruncial to have a good preconditioner when
the flow direction is perpendicular to the interface than when it is parallel to if.
Intuitively, in the former case there is a stronger coupling of the subdomains due to
information carried by the flow from one domain into the other. Moreover, in both
cases, the condition number for central differencing grows faster than that for upwind
differencing for cell Reynold’s number close to the critical value. These results seem to
indicate that upwind differencing is less affected by the lack of a good preconditioner
than central differencing.

In addition to the condition number, the eigenvalue distribution of the precondi-
tioned system also plays an important role in the effectiveness of the preconditioner.
In Figures 3 to 6, these eigenvalues are plotfed for several values of & for the same
computation described eailier. Note that the corresponding eigenvalues for (4.2) are
complex because the eorresponding capacitance matrix is nonsymmetric. These plots
show how rapidly the spectrum spreads from unity as a increases. It is interesting to
note that the plots for upwind differencing in Figures 3, 5 and for central differencing
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in Figures 4, 6 are quite different qualitatively; in the former the clustering of the
spectrum shifts to the right when o increases whereas in the latter the clustering re-
mains around unity. In all cases, clustering around the value 1 can be seen, but even
this effect weakens as o grows. :

From the above numerical results, it is clear that for problems with a sizable cell
Reynold’s number, the information carried in the convection terms should be taken
into account when constructing preconditioners for the interface operator. We shall
discuss two ways of achieving this.

The first is to generalize the preconditioner M¢ to convection-diffusion operators.
It turns out that for rectangular domains, the effects of the convection terms can be
incorporated ezactly. In [10], exact eigen-decompositions (which can be inverted ef-
ficiently using FFTs) for the interface operator S are derived for general constant
coefficient five point discrete elliptic difference equations, including in particular the
convection-diffusion operators of the form I, posed on rectangular domains decom-
posed into two smaller rectangles. For rectangular domains decomposed into mutiple
smaller rectangles, the technique can be easily extended to derive fast direct solvers.
For non-rectangular domains or variable coefficient problems, they can be adapted
to construct efficient preconditioners which incorporate the effects of the convection
terms.

Another approach is to use the boundary probe preconditioners, which automat-
ically captures the effects of the convection terms. Some success has been reported
in the nmumerical experiments in [23] for convection-diffusion problems and also in the
experiments to be presented later in Section 5 for the driven cavity problem. The
key to the success of the boundary probing technique is a weak global coupling of the
interfacial anknowns. The numerical experiments scem to indicate that this property
holds at least for the moderate cell Reynold’s numbers used. Further analysis to de-
termine the effect of the convection term on this property is needed. An important
factor could be the direction of the flow relaiive to the interface.

5. The Driven Cavity Problem. In this section, we consider the two dimen-
sional driven cavity problem of incompressible flow. We shall use the fourth order
stream function formulation:

L{¢) = Azfﬁ — RG(¢) =0,

where

G(8) = dy(Adz) ~ ¢a(Ady). (5.1)

The classical driven cavity problem is posed on Q = (0,1) x (0,1) with boundary
conditions : ¢ =0on 80, ¢, =0ifaz =0, ¢y =0ify=0and p, =1if y=1. We
shall follow [33] and use a 13-point central difference discretization of {5.1) on a n by
n uniform mesh. Consider the use of the nonoverlapping Schur complement approach
of Section 3 in a domain decomposition algorithm for solving the discrete problem.
For simplicity, we shall consider only two subdomains, separated by an interface at
y = 0.5. We are interested in the use of the boundary probing technique described
in Section 3 for constructing efficient preconditioners for the interface operator for
the discrete problem. There are several modifications necessary in order to extend
the boundary probing technique developed for second order problems. Some of these
techniques were considered for the biharmonic equation in [3]. Here we comsider
extending them to the Navier-Stokes problem.
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First, since the difference stencil is wider than the corresponding 5-point dis-
cretization for second order problems, the interface must consists of two rows of grid
points, say T'y and I's, in order to completely decouple the subdomain problems. The
Schur eaomnlement system r'nrrpqnnn_r“n_g to (22} ean he written asg a hlock 2 by 2

QIlpRealiciit LEIN Colicaolliiil =il D L0

system:
1 1 1
s(5)=(3 ) (%) -(F), 6

where ¢! and ¢? denote the unknowns on 'y and T'; respectively.

We now consider a second meodification of the boundary probing technique in
order to construct an efficient preconditioner for S. The basic idea is still to capture
the strong local coupling and weak global coupling of the intefacial unknowns. To see
how this can be achieved, note that the blocks S1; and Sa3 account for the coupling
of the anknowns on I'; and I'; respectively among themselves and the blocks Si5 and
541 account for the coupling between the unknowns on the two interfaces. Thus, if we
number the unknowns on the two interfaces in a spatially consistent manner, we can
still expect the individual subblocks of S to exhibit the property that the magnitude of
their elements decay rapidly away from the respectively main diagonals. For example,
Figure 7 shows a plot of the elements of the matrix S for the case n = 36, where the
unknowns on both interfaces are ordered from left to right. The decay property can
be seen clearly in the figure. Moreover, the elements of the main diagonal blocks 514
and Sp» are negligible except for the 5 main diagonals. Similarly, the off diagonal
blocks 513 and S3; have only 3 non-negligible main diagonals.

A simple way to construct an-interface preconditioner is therefore to use the
boundary probing technique on the individual blocks of S. For example, suppose we
want to compute a preconditioner My, consisting of k-dingonal approximations for
the diagonal blocks S;; and Saz, and I-diagonal approximations for the off-diagonal
blocks Sy3 and Sa1. Let Vi be a n by & matrix consisting of k probing vectors for
either one of the two interfaces as deseribed in Section 3. Then Mj; can be obtained
by probing S by the columns of the following matrix:

V. i 0 0

00 W W)
This requires solving subdomain problems with boundary conditions comsisting of
probing vectors from V; or Vi on one grid line and zero on the other grid line. Moze
efficient probing techniques, with fewer probing vectors and hence subdomain solves
for given values of k and I, can be constructed but for simplicity we shall not present
them here.

Finally, the block matrix Mz can be permuted into a narrow banded matrix
by reordering the unknowns to preserve their physical proximity. For example, if
we starl from the left and alternatively order the unknowns on the two grid lines,
then Mj, is teordered into a banded matrix with bandwidth 2k — 1, assuming I < k
for simplicity. Therefore, the product Mk_,lw for a given interfacial vector w can be
compited efficiently by banded Gaussian elimination.

We now present some numerical results for the performance of the above bound-
ary probing techniques on the driven cavity problem for Reynold’s number R = 200
and n = 30. Figures 8 and 9 show the eigenvalue distribution of the unpreconditioned

interface mairix S and the preconditioned matrix Mﬁ'_.,lS respectively, where 5 cor-
responds to the interface operator for the Jacobian matrix 4 of L at the solution.
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Note that the matrices A, S and M are all nonsymmetric and hence the eigenvalues
are complex in general. The figures show that the preconditioner My produces a
dramatic improvement in the conditioning of the interface operator, As a sample

measure, the renl parfc af the sigenvalues of § Le in the intarval { N0R2 AE) while
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those of the preconditioned system lie in (0.2, 1.8}). Moreover, many eigenvalues of
the preconditioned system are clustered around the point {0,1). Figure 10 shows the
condition number M;;'5 in the spectral norm as a function of n for several values of
k and l. These results show that not only are the condition numbers of the precondi-
tioned matrix much lower than 5 itself, but also that they grow at a slower rate. The
plots also show that M3z is in some sense optimal because the more expensive Meys
produces negligible improvement in the condition numbers, Finally, to show that the
improvement in the condition number and the eigenvalue distribution of the precondi-
tioned matrix does improve the performance in an iterative solution of the interfacial
unknowns, we solve the interfacial system by the GMRES algorithm {32]. Figure 11
shows the history of an iteration, with the norm of the residual plotted against the
iteration step. It is clear that Mss produces a much faster convergence rate.

The above are only preliminary evidence that the boundary probing technique
can be applied successfully to Navier-Stokes problems. Much further work needs to
be done, especially concerning the decay rates of the elements of 5 and the properties
of the preconditioners derived from it.
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K(inv(C(0))C(2))

K@inv(C(0)C(a))

Figure 1. K(inv(C(0))C(a)) vs a for Uxx + Uyy + a Uy = 0, h=.02
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Figure 3. Eigenvalue distributions for upwind difference for Uxx + Uyy + Q.Ux = 0; h=0.02
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Figure 4, Eigenvalue distributions for central difference for Uxx + Uyy + D.Ux = 0, h=0.02
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Figure 5. Eigenvalues for upwind diff. for Uxx+Uyy+a Uy=0, h=0.02
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Figure 6. Eigenvalues for central diff. for Uxx+Uyy+a Uy=0, h=0.02
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FIGURE 7. 7
Plot of S, n= 30, R=200 ‘
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Eigenvalue Distribution of S, n=30
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k(inv(m)*c)

Norm of Residual

FIGURE 10
Condition Number K(M_IS) vs n, R=200
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