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We present an algebraic analysis of some domain decomposition preconditioners on irregular
regions. We analyze a preconditioner proposed in [3] for the interface system and prove that, for all
L-shaped regions and some C-shaped regions, it produces a convergence rate that is independent of
the size of the discretization and the relative shape of the subdomains (aspect ratios). Specifically,
we prove that the condition number of the preconditioned capacitance system is bounded by 2.16

e —JIT abivewemnd A TATn m o oo mm e memneaPd £ b r 1t O [, I,
ALRL e LTDLLAp/TU UAIMAlLID, VYT GddU RIVE DULLIC IO ULLD 1UL ULIeD BLIILPHEE !IICBU].HJ. BUUIIICLIIUE.

Analysis of Domain Decomposition Preconditioners
on L-shaped and C-shaped Regions

Tony F, Chan { and Diana C. Resasco {

Research Report YALEU/DCS/RR-534
August 1988

The authors were supported in part by the Department of Energy under contract DE-FGO03-
87ER25037 at UCLA and DE-AC02-81ER10996 at Yale and also, by NSF under contract DMS-
8714612 at UCLA and by the Army Research Office under contract DAAL 03/88/K/0085. Aproved
for public release: distribution is unlimited.

Keywords: domain decomposition, substructuring, capacitance matriz, irregular regions, el-
liptic partial differential equations.

{Dept. of Mathematics, UCLA, Los Angeles, CA 90024

1Dept. of Computer Science, Research Center for Scientific Computing, Yale University, Box
2158, Yale Station, New Haven, Conn. 06520.



1. Introduction

We consider the problem of solving an elliptic partial diflerential equation on a domain that
is broken up into rectangular subregions. By using domain decomposition or substructuring tech-
niques, the problem is reduced to separately solving approximate problems in the subdomains and
updating the solution at the interfaces between two or more subregions, For the class of domain
decomposition methods considered in this paper, the basic idea consists of the foliowing: the differ-
ential operator is discretized on a grid imposed over the domain, which is partitioned into several
subregions. Then, by applying block elimination to the discretized equations, a system is derived
for the unknowns on the interfaces between subregions. This system is sometimes called the ca-
pacitance system. Forming the right hand side for the interface system requires the solution of
independent elliptic problems on the subdomains. For certain constant coefficient problems on reg-
wlar domains, fast direct methods can be applied to the solution of the interface system {3, 4]. Such
is not the case, however, for more general operators or irregular domains. For efficiency reasons the
systern must then be solved by iterative methods, such as the preconditioned conjugate gradient
method. Once the solution is known on the inter{aces, one more elliptic problem must be solved
on each subdomain with the computed values as boundary conditions.

In [3], an eigenvalue decomposition in terms of Fourier modes is given for the capacitance matrix
for the case of the Poisson equation on a rectangle divided into two strips. This decomposition is
described in section 2. In this paper, we are interested in the analysis of this decomposition, which
we will call M, as a preconditioner on irregular domains and in particular, we want to study
the dependency of the convergence rate on the gridsize and the shape of the domain. Many of
the preconditioners, when applied to an L-shaped region, have convergence rates that are bounded
independently of the gridsize. The bound, however, depends on the relative aspect ratios of the
subdomains. For example, all of the preconditioners, except for M¢, are known to deteriorate when
one of the subdomains becomes narrow. In section 3, we show that, if we use M¢ as preconditioner
for the capacitance matrix on any L-shaped region, the preconditioned matrix has a condition
number that is bounded by 2.16, independently of gridsize and aspect ratios. Given an L-shaped
region, there are two ways of separating it into two rectangular subregions. We prove, also in
section 3, an interesting property of the preconditioner M¢, namely that the convergence rate is
not affected by the way we choose to subdivide the domain. In section 4, we discuss the extention
of gome of the results in section 3 to C-shapes. In the proofs of sections 3 and 4, we often use a
common operator, which describes the interaction between two perpendicular interior interfaces.
This operator is analyzed in detail in the appendix.

2. The interface operator and its preconditioners

In order to illustrate the method, we will apply the process described above to a simple region
§), which can be decomposed into two rectangles {3; and {2z, with interface I's, as shown in fig.1.
Let the linear system '

Au=f (2.1)

represent the discretization of the differential operator on 2. By ordering the variables in £ and
), first and then those in I's, the system (2.1) can be written in block form as:

Aqp Ags uy f
Ay Apa uy | = | fo , (2.2)
AT, AL, Az u3 f3

where the indexes for 4 and f corespond to gridpoints in £, 22 and I's, respectively. Based on
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Figure 1: The domain  and its partition

the following block decomposition of the matrix in (2.2):

Ay I Aﬁl Aja
A= Az I AjlAz , (2.3)
A;{S A%; C I

where C is the Schur complement of Aaz in A, i.e.
C = Ags — Af3AT A1a — ARy Ag; Az (2.4)
the system (2.2) can be solved as follows:

Step 1: Compute

9= fa— AAT /L — A3 A3 f2 (2.5)
and solve
Cuz=g (2.6)
Step 2: Solve
Apuy = fi — Ajaus (2.7)
and
Aggug = fo — Agaus (2.8)

The computation of g by (2.5) and u; and uz by (2.7) and (2.8), require the solution of independent
problems on the subdomains. The matrix C given by (2.4), also called the capacitance matrix, is
dense and expensive to compute. It is possible, however, to compute the action of C on a vector
v at the cost of solving problems on the subdomains with boundary conditions on I given by w».
Therefore, the interface system (2.6) is often solved by preconditioned conjugate gradients (PCG).
Since each iteration involves solving problems on the subdomains, it is essential to keep the number
of iterations low. For this reason, much effort has been devoted recently to the construction of good
preconditioners for the capacitance matrix [6, 1, 7, 3, 4]. Many of the preconditioners proposed are
spectrally equivalent to the exact boundary operator. They therefore yield convergence rates that
are bounded independently of the gridsize. The method is particularly suited to problems for which
the subproblems can be solved efficiently, for example, when the operator has separable coefficients.
When the subdomain problems cannot be solved efficiently but they can be approximated by
separable operators, it is possible to derive block preconditioners for the original system based on
preconditioners for the interface system (8, 2, 5].



In [3], the case of a constant coefficient operator on a rectangular domain divided into two strips
is analyzed. For this simple case, it is shown that, for many of the preconditioners proposed in the
literature, while the condition number of the preconditioned system can be bounded independently .
of the gridsize h for a fixed domain, it can grow as a function of the aspect ratio of the subdomains.

Roughly speaking, the aspect ratio of a rectangle is the ratio between its height and its width (note:
for one of the nrnr‘nndthnnnrrz nrnnnqnﬂ in fﬂ the hound grows when onlv ona af the enhdamaine

O LIONEY: SRS Ak ey vt LA Y aiTan Soiiy Sadle AR ST S laliilida s

becomes narrow) A fast dlrect solver for C based on Fourler analysis can be derived from the
exact eigenvalue decomposition of the capacitance matrix. This operator takes aspect ratios into
account and solves exactly the interface problem for the case of constant coefficients on a rectangle
divided into two strips. It is therefore proposed in [3] to apply it as a preconditioner for interface
systems on irregular regions or for variable coefficient operators. We will call this preconditioner
M. For the case of a five point finite diflerences discretization of the Poisson equation:

—Ugg — Uyy = [ (2.9)

on a regular grid of size h = -ni—l, Me has a decomposition of the form:
Mc =W, AWT | (2.10)

where A is a diagonal matrix and W,, is the matrix of sine modes of dimension n, whose elements

are given by:
2, i
o= 2.11
wy; \/n+151nn+1 (2.11)
fori,j=1,...,n

Given integers n,my and mg, define

+1 +1 2
o (BELEN T
where
{2.13)
and
7; = ' L) (2.14)

The eigenvalues of M are given by

Aj = Aj(n, my,my)

for j = 1,...,n, where m; and my are the number of grid points in the y-direction in £2; and 2,
respectively.

The preconditioners proposed in [6] and [7] have the same eigenvectors as (2.10), but the
eigenvalues are those of the square root of the one-dimensional discrete Laplacian, namely , /55 in

2
[6] and 4/ o, + % in [7]. For the case of the Poisson equation (2.9), it can be proved that one of
the preconditioners given in {1} also has a decomposition of the form (2.10). The eigenvalues A; for
this operator can be obtained by setting my = my in (2.12),1.e. A;(n, m1, m;). This preconditioner
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is therefore exact for the case of a rectangle divided symmetrically into two identical rectangular
subdomains,

3. L-shaped regions

In this section, we describe the interface operator and its preconditioners for an L-shaped
domain, the simplest irregular shape that can be decomposed in rectangular subregions. Consider
the Poisson equatijon on the region 2 of fig.2. It is clear that either interface, I'y or I's, will divide the
domain into two rectangles. We might ask ourselves two questions: is a particular decomposition
better than the other? And how does the convergence rate depend on the mesh size and the aspect
ratios of the subdomains? We will show that for the particular preconditioner My we analyze,
the two decompositions produce iteration matrices with the same convergence rate. We also give

a bound for the condition number that is independent of the mesh size and the subdomain aspect
ratios. '

n
ma ﬂl
Iy n3
Mo 92 I‘s Q3

Figure 2: L-shaped domain

Let the linear system
Au=f (3.1)
represent a standard second order five point discretization of the differential equation on a regular
grid imposed on the domain . Let us first consider the domain £ as the union of two rectangles
divided by the interface I'y. An interface system of the form '
Catig = g4 (3.2)

can be derived for the variables on I'y by the process of block elimination, similarly to equations
(2.5) to (2.8).
Similarly, we can consider the domain Q as the union of two rectangles divided by the interface
I's and an interface system of the form
Csus =g , (3.3)

can be derived for the variables on T'.

On the other hand, by reordering the gridpoints on the subdomains first and then those on
the interfaces I'y and I's, A can be written in block form as:

a=(2 1) (3:4)

4



where

A1 Ass Ays
Aq = Ags 3 Ar = ( A ) and P= | Agy Aqgs
A33 55 A35

The matrix A of (3.4) can be decomposed as follows:

A:(;g 045) (I A{_}IP) ’ (3:5)

where Cys is the Schur complement of Ap in A, i.e.,

M —AT A1 A
Cis= A —PTA"IPE( 1 24,722 25) , :
45 r 9] ___A221‘5A221 Aaa M (3 6)
with
My = Agg— AL AT A1 — AL AS Ay (3.7)
and
Ms = Ass — AZg Ay Ags — AT AL Ags. (3.8)

The matrix M4 would be the capacitance matrix for I'y if the domain {3 were absent. Similarly,
M; would be the capacitance matrix for I's if the domain €y were absent. In fact, they are nothing
but the preconditioner M¢ described in the previous section. Both My and Mj have eigenvalue
decompositions of the form (2.10). According to the definition (2.12), the eigenvalues of M, are
given by Aj(n,my,m2) for j = 1,...,n and its eigenvectors, by W,,. The eigenvalues of M5 are
Ai(mg, n,na) for i = 1,...,my, with eigenvectors given by Wp,,.

The matrix Cy of (3.2) is the Schur complement of A44 in A, but it can also be written as
the Schur complement of My in Cy5. Similarly, Cs is the Schur complement of Agg in A, but it
can also be written as the Schur complement of My in Cys. Therefore, we can derive the {ollowing
expressions for Cy and Cy:

Lemma 3.1. The interface matrix for T'y in ©t can be written as

Cs= My~ BTMI'B | | (3.9)
where B = A%‘SA;,? Azq. Similarly, the interface matrix for I's in  can be written as

Cs = Ms — BM['BT . (3.10)

The preconditioner proposed in [3} for Cy in (3.2) would correspond to Mg = M, and similarly,
Mg = Mg for Cs in (3.3). Since M is positive definite, we can choose /Mg as a symmetric
preconditioner. Let us define the preconditioned matrices:

Co=MPCMIY and Gy = M7VPCsMTV? (3.11)

By (3.9}, we have

Cs=I,-BTB and Cs=1I,,-BB" |, (3.12)



where i '
B =M AL A Agu MV (3.13)
I we choose I'y as the interface, at each iteration subdomain problems will be solved on ; and

23 UTs U Q3. Similarly, if we choose I's as the interface, at each jteration subdomain problems
will be solved on §2; UT4 U 2y and 93 The work per iteration is therefore comparable for both

. PR SIS RS . AT S N T 1 1, ) TS T
ways of byuubxug the domain. We will next show uidm, uy bUiVing \o A) with pIELUILUILlOHeI‘ 1114

and (3.3) with preconditioner M5, both systems are also equivalent from the convergence point of
view. Therefore, in a general case, there is no a priori reason to prefer one way of decomposing the
domain over the other,

If n = mg, this fact is not surprising, considering that both interface systems have the same
order and it is easy to see that Cy = Cj. It is not obvious, however, whether one way of decomposing
the domain should be prefered when n # mj. As it turns out, even in this case the asymptotic
convergence rate is the same for both systems, because the ma.trix Cy5 of (3.6) satisfies the following
theorem:

Theorem 3.1. Consider the following symmetric positive definite (SPD) system, written in block

form:
(;T g) (z) =_.(£) ’ (3.14)

where the blocks A and B are square matrices., Also, define the Schur complement systems:

(A-BC'BT)z = f — BC™ g (3.15)
and

(C~BTA'B)y=g-BTA'f . (3.16)
Consider the solution of (3.15) by the following fixed-point iteration, with splitting matrix given
by A: given an initial guess z°, define the i-th iterate as the solution to:

Az' = f — BC g+ BC™1BTz-! (3.17)

fori=1,2,...
Similarly, given y°, define the i-th iterate of a fixed-point iteration for solving (3.16) with
splitting matrix given by C, as:

Cy'=g— BTA f 4+ BT A" Byt (3.18)

fori=1,2,...

Then, the two iterations are convergent. Moreover, they are equivalent in the sense that for
any given initial guess 2% for (3.17), there exists an initial guess y° for (3.18), such that for all
i=0,1,... we have: . _
' vV=g+ha (3.19)

where g, = C~'g and P, = —~C~1BT and
llest fla < lleylie < letlla (3.20)

where e}, = &' — z , €, = ¥ — y and ||ul|4 denotes the A-norm of a vector u, i.e. VuT Au.
Completely analogous results also hold for o' and ei, given an initial guess y° for (3.16).

Proof. Given z°, define y° = ¢, + P,2z° By induction, we can see that (3.19) satisfies (3.18) for
every 1 > 1,



From the classical matrix iterative analysis for the convergence of block Gauss-Seidel iteration
for SPD matrices, it can be shown that the two iterations converge. Also, since the matrix of (3.14)
is SPD, so are the blocks A and C and their corresponding Schur complements. Therefore, A~1/2
and C~ '1/2 are well defined and

|A=Y2BC 2|, <1 . (3.21)

Aeitt = BC-1 BT el

and _
e, = Pyey
Therefore, we have :
AV = (AT RC-12)CN e (3.22)
and
CY2el = —(C12 BT A1) A 2% (3.23)

Using (3.21), (3.22) and (3.23), we can prove (3.20).
1
When an iterative method such as PCG is used, the rate of convergence depends on the

condition number of the corresponding preconditioned matrix in (3.11). By applying the last
theorem to Cys and by using (3.12), we can conclude the following:

Theorem 3.2. Solving both systems (3.2) and (3.3) with preconditioners of the form Mg produce
equivalent asymptotic convergence rates. Moreover, by (3.12), we have

- 1
and ) 1
K(Cs) < TTIETEL (3.25)
[ |

Numerical computations show that the singular values §; of B decrease very quickly with the
index . Therefore, in practice, only a few eigenvalues of Cy and Cs are different from 1, which leads
to rapid convergence of the PCG method when applied to either matrix. For example, for the L-
shaped region with corners at: (0,0),(3,0), (3,0.25), (1,0.25), (1,1.25) and (0, 1. 25),for n = 31 and
63, table 1 shows the singular values of B and the eigenvalues of Cs, computed in single precision,

Our conclusion is that either way of decomposing an L-shaped region into two rectangles
produces the same convergence rate, when preconditioner M¢ is used. Moreover, we will be able to
give an analytical bound on the condition number of the preconditioned capacitance matrix. This
bound is derived from a bound on the norm of the operator 87 B,

But first, we will give an expression for the elements of a unitary transformation of B. Let
the elements of the matrix Wy, be given by (2.11) and similarly, define the elements of W,,, by
replacing n by mq in (2.11).

The operator

QNE = AzsA A24 )

which is part of the definition (3.13) of B, is the operator that takes boundary values on the
interface T'y, solving a Poisson problem on ; and then takes the values of the solution at the
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n=3l,m2=7 n=63,m2=15
svof B a(Cs) sv of B a(C5)

0.18204 0.96686 2.165F-01 0.95312
0.03868 0.99850 6.8161-02 0.99535

0.00514 0.99997 1.578E-02 0.99975
0.00045 0.99999 2,971E-03 0.99999
0.00002 1.00000 4.607E-04 0.99999
0.00000 1.00000 5.863E-05 1.00000

0.00000 1.00000 6.082E-06 1.00000
5.093E-87 1.00000
3.610E-08 1.00000

Table 1: Eigenvalues of preconditioned capacitance system
for an L-shaped region

gridpoints which are adjacent to I's. It is possible to derive the elements of Qng when it is pre
and post-multiplied, respectively, by the matrices W,,, and W,,. The elements of

Wi, QNEW,

are given by

2 sin —iZ sin 4%
matl ntl (3.26)

T VA DA ) o) 4ol

qi5

fori=1,...,mpand j=1,...,n. A proof of (3.26) can be found in the appendix (see lemma 5.2).
For any given integers n,m; and my, let A(n,my1, my) be defined by (2.12), where v; is given
by equation (2.14). By using (3.26), it is easy to prove the following lemma:

Lemma 3.2. Let

V=W, BW, . (3.27)
Then, |[V||z = || Bllz and the elements of the matrix V are given by

) sin —i% sin 42

vij = ot ntl 3.28
T VD) + 1) 3_5-4)31(-5) (0}7") + ofmz)) (3:28)

fori=1,...,my and j = 1,...,n, where 35-4) = +/|Aj(n,my, m3)| and .s§5) = /| Ai(mg, n, n3)|.
|

As equations (3.24) and (3.25) suggest, in order to find a bound for the condition number of
the preconditioned capacitance system, we need to bound the norm of B, or V. Since we have an
expression for the elements of V, we can bound ||V||; and ||[V]|e. and then use the property:

V12 < VIVl

The results are summarized in the next theorem. A proof can be found in appendix B:
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Theorem 3.3. Define the aspect ratio for the domain 3 in fig.2 as o = ™2t Then,

n+1
a) VIl < /@ 0.733 and |[V]lw < /% 0.733.

b) IIBTBlz2 < B3 = IVIIE < V1[IVl < 0.54.
¢) For all gridsizes and all L-shaped regions,

K(Ci) <216 and K(Cj) <2.16 . (3.29)
|

In our experiments on L-shaped domains with many different aspect ratios, condition numbers
larger than 1.2 have not been observed. The bound 0.54 in b), however, is fairly tight for ||V||1 ||V ||,
as was shown by numerical experiments with large values of » and mg. Therefore, if a tighter bound
is desired for the condition number, one would need to bound the 2-norm of BT B directly. '

We would also like to discuss briefly how the parameter ny (or, respectively, m;) affects the
performance of preconditioner My (M;). Clearly, as n3 tends to zero for large mg, the domain §
approaches the shape of a perfect rectangle. The preconditioner My should reflect this by becoming
the exact boundary operator. In other words, K(C‘4) should approach one. We can verify that this
is the case as follows: v;; in (3.28) depends on n3 only through Ai(mgy,n, ng) (defined in (2.12)).
When the aspect ratio -«:;32—'1_% tends to zero (i.e. )3 becomes thinner), A;(ma, n,n3) tends to infinity
and therefore v;; tends to zero. However, we can see that this dependency is very weak, because
Aj(ma,n,n3) tends rapidly to an asymptotic value independent of n3 when such aspect ratio ETrOWS,
Oaunly the fact that

Aj(ma,n,na) > 2,/0; (3.30)
is used in the proof of theorem 3.3, which is true for all n3. The discussion above implies that the
performance of My as a preconditioner for Cy is fairly independent on how irregular the region is.

Incidentally, for the other preconditioners mentioned in this paper {6, 1, 7], the preconditioned
capacitance matrix always has the form X + BT B, for some operator B to which the bounds (a) and
(b) of theorem 3.3 can also be applied, as long as (3.30) holds. The bound given in (c), however,
does not hold for other preconditioners, for which the norm of X may grow when the aspect ratio
a of the domain 2, decreases (see [3] for an example on a T-shaped region).

4. C-shaped regions

Some of the expressions and results of the previous section are more general than they appear
and they can be used as basic components for more complicated regions that are unions of rectangles,
For example, a C-shaped region can be subdivided as indicated in fig.3.

Similar to L-shaped domains, the region of fig.3 can be separated in three rectangles by either
I'¢ and I'7, or T'g and I's. By ordering the variables in €, < 5 first and then thoseon T';,6 < 7 < 9,
the matrix A that represents the discrete differential operator on £ can be written in block form
as in (3.4), where

An Ags
Aﬂ‘_‘ ‘., ’ Arz - y (41)
Ass Agg
and
Ase Ass
| Az Az
Asg



1Y) Q
my 1 r 4
I'g 8
k. Qz
I'7
my 93 rg 95
s

Figure 3: C-shaped domain

A system
Ug _
Cer ('MT) = ge7 (4.2)

can be derived by block elimination for the interfaces I's and I';, where Cg7 is the Schur complement
in A of the blocks Agg and A77. In [4], a multistrip operator Mgy is described, which solves, exactly,
the problem on a rectangle divided into three strips (94,22 and §23). We will analyze Mg7 as a
preconditioner for Cg7. The operator Mg; has the following block structure:

H S
Mgr = ( 5,6 H7) , (4.3)
where
Hg = Ags — ALgAT Ave — Al AS  Ags
Hy = Ag — A3 A5} Agy — AL A} A
and

§=—AL A7} Ay

The blocks Hg, H7 and § have eigenvalue decompositions of the form (2.10), with eigenvalues given
by )\j(n,ﬂ‘L1,mz),A_j(n,mg,m3) and

m2+1
B
§i(n,mg) = ~24/o; + vy W (4.4)
s

respectively, for j = 1,...,n. (See lemma 5.1 in appendix A).
Similarly, a system

Ug -
Cao (ug) = gso (4.5)

can be derived for the interfaces I's and T'g, where Cgg is the Schur complement in A of the blocks
Asgg and Agg. The system (4.5) can be preconditioned by a block diagonal preconditioner Mgy, with
diagonal blocks Mg and My. Mg is the exact interface system for I's with respect to the subdomains
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(11 and 4, and My is the exact interface system for I'g with respect to the subdomains §¥3 and 95
Both Mg and My have decompositions of the form (2.10).

It can be easily shown that Cr, the Schur complement of the blocks Ap in A, can be written - .
in block form as:

[ Qsg 0 ]
Mer
0 @OnE
CF: T 1)
| 0 QFg 0 My |

where Qsg = AfsAfllAlg and Qng = Ag}A;alAag. Again, by applying theorem 3.1, we have that
both ways of dividing the domain are equivalent, in the sense that initial residuals can be found such
that the same number of iterations are necessary when PCG is applied to Cg7 with preconditioner
Mgz than when PCG is applied to Cygg with preconditioner Mggq. The preconditioned interface
operator for I's and 'y,

Cer = Mé}UzCS"'Ms_;/z )

can be written in the form A o
Cer=I-BTH , (4.6)

where B € Rimi+ma)x2n 4,4
. Mg O )—1/2 (QT 0 ) -1/2
B= SE M,
( 0 M 0 Qkg 67

Similarly, the preconditioned interface operator for for I's and Ty,

(Mg o0 \"V? Mg 0 \7}/?
Cgo = ( 0 Mg) Csgo 0 M, y
can be written in the form R B
Cea=1-BEBET . (4.7)
The condition numbers of Cgr and Cgg are bounded by

1

K(Cor) € ———sor—
1—||BTBll

(4.8)

and
1

1= ||BTBllz

Define V as the following unitary tranformation of B:
_(Wg, O ~f{W. 0
V“( 0 Wma)B(O Wn)
Then ||V}]| = |B]|. The matrix V can be written as a block two by two matrix

Ves  Ver )
V= , 4.10
( Vee  Var (4.10)

K(Cgo) < (4.9)

11



I'w R Tg

I's

Figure 4: Interaction between interfaces

whose block elements have expressions similar to the matrix V for L-shaped regions, namely,
Ves = Win, My 2QEp W, Re
Ver = Wi, Mg 2 QLW R_
Vig = W, M3 2 QL oW, R
Var = WmaMg_l/zQ{rEWnR?

(4.11)

where Rg, R7 and R_ are diagonal matrices such that:

Re R_\_ (W, © g2 (Wa o 0

R_ R/ L 0 W, 67 0 W,
For the case when m; = ma < mg, a simple expression can be found for Rg, Ry and R_, namely
Re¢ = R7 = R4, with the diagonal elements of By given by

Ti—}—( ! :!:~~~~--—~—1 )
T2 \WNETET T VAEIS)

where A;j is Aj(n,my, my), given by (2.12) and &; is §;(n, m,), given by (4.4). Arguments similar to
those in theorem 3.3 can be applied to give the following:

(4.12)

Theorem 4.1. Consider a C-shaped region like fig.3, where my = m3 < m4 and & is the aspect
ratio for the domain §y or Q3 in the picture, ie. a = %{ﬁ—i Then,

a) ||Vl € v/a 0.7877 and ||V || < % 0.7877 .

b) IVTVilz < VI3 = 1813 < 1811l Bll < 0.62.
c) IC(C'm) < 2.63 and K(C’gg) < 2.63 for all gridsizes and all C-shaped regions such that
my = mgz < Mg,

Proof. In appendix B.

5. Appendix A: The interaction between interior edges

In this appendix, we define the operators that represent the interaction between two interfaces
of a given subdomain. Consider the rectangular region R of fig.4, with edges 'y, ', 's and T'yy.
This region R represents a generic rectangular subdomain in the domain Q. Let ny be the number
of gridpoints in I'y (or I's) and ng, the number of gridpoints in 'y (or T'w ). The corner points are
not included in the edges. They may or may not be interior to (.
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For the case of constant coefficients operators, it is possible to describe, in terms of Fourier
modes, an operator @ which takes boundary values on one of the edges and computes the solution
on the gridpoints adjacent to the same or other edge.

Let A be the matrix which represents the discretization of the differential operator in Q. If
the interface I'y, where k = N, S, E or W, is interior to 2, then we can define Pi, the submatrix
of A that represents the coupling between gridpoints of R and gridpoints on Ty, Also define Ap,
the diagonal block corresponding to the interior points of R, in other words, Ap is the restriction
of the differential operator to the region R, We can now define the operator Qg which represents
the interaction between the edges I'y and T; as:

Qu = PLAR'P, . (5.1)

For constant coefficients operators, when I'x and I'; are parallel, the operator Qg is diagonaliz-
able by Fourier modes. For example, for the case of the Poisson equation we can prove the following
lemma. Here, for any given n, W, is the matrix of sine modes of dimension n, with elements given

by '
2 . i
i T Tt et (5.2)

Lemma 5.1. Consider the Poisson equation on a domain Q which contains the rectangular region

R. Let Qns be the operator that represents the coupling between interfaces I'y and T'g, defined
as in (5.1). Then,

fori,j=1,...,n.

Wn,QnsWy, = Dys
where the matrix Dyg is diagonal, with diagonal entries given by

1—7;
dij = /7 (_____1 — 7,};;1) , (5.3)
1

where )
1 (1)?
_ ol () (ch )

75 1+ 5 o, + 1 (5.4)

and .
M _gan2JI7
o;’ =4sin Tt D (5.5)
A similar expression can be found for Qpw.
Also,

WleNNWm = DNN y
where the matrix Dy is diagonal, with diagonal entries given by

dis = —. /7 _}i (5.6)
i = =7 [t : :
]

Similar expressions can be derived for Qss, Qg and Qww.

Proof. Proofs for formulas (5.3} and (5.6) can be found in {3] and [4]. Here we give a different —
more general — proof using direct {or tensor) products. The matrices Py and Ps can be written as:

Pv=eder . (5.7)

13



Ps=ed @1 (5.8)

where [j, for I = 1,2, is the identity matrix of dimension n; and esf} is the i-th column of I;.
The matrix Ar is the discrete Laplacian operator on the region R and it has the following block
tridiagonal form:
(T I \
L T

Ap = 5.9
R ‘. II ’ ( )

L T
where T' = tridiag(1, —4,1). It is easy to prove that

Wn, TWm =Dyr ,
where D = diag(—2 — 05-1)). Then we have

Dr L -1

I Dr

WleNSI/Vni = (e?) @ Il) (35122) ® I]) (5.10)

By reordering the equations in (5.10), we have:

Ty -1

1

Wo, QnsWa, = (I ® )T (heel)) ,

T,

b

where T; = tridiag(1, -2 — 0§1), 1). Therefore, W,, QnsW,, is diagonal and its diagonal elements
are given by

T
63(12) Tjnlei(‘l,zg) y
which can be proved to be given by (5.3).
Similarly, we can prove that Wy, QnnW,, is diagonal and its diagonal elements are given by

Ty e

which can be proved to be given by (5.6).
[ |
Operators like Q v g, on the other hand, which represent the interaction between perpendicular
edges, are not diagonalizable by Fourier modes. Moreover, they are, in general not square, but

ny1 by nz rectangular matrices. It is possible, however, to describe the elements of the matrices
Wy, QNEW,, and W, QnwW,, for constant coefficients cases.

Lemma 5.2. Consider the Poisson equation on a domain §) which contains the rectangular region
R. The elements of

QNE = Wn1 QNEWn2
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are given by

oNF = 2 sin n:f"_l sin nf_’{_l
YVl )me+1) sy (¥

fori=1,...,n1 and j = 1,...,n3, where JJ(-’) = 4sin2m;%j, for I = 1,2. Similarly, the elements
of the matrix )
Qnw = Wn, Qnw Wy,

are given by

MW 2 sin 2U% sin S5y (5.12)
N Vim+1)(ma+1) o040
Proof. The eigenvalue decomposition of the matrix Ag is well known and it is given by

Ap=(W,, ® Wa) A (Wn, ® Wy, ) (5.13)

where A is the nyny X nyn, diagonal matrix whose diagonal elements are

A= =0 g® |

with J = (j—1)n; +4,fori=1,...,n; and j = 1,...,n;. Also, we have

Pw=Led" . (5.14)

By replacing equations (5.13) to (5.14) in (5.1) and then applying the following two properties of
tensor products:
) (XeY) =XTgvTand
1) (X1@Y1)(X20Y:) = (X1X2)® (11Y2)
we have: T
Qnw = (W) ® wi) A7 (Ws @ (W1ef))) (5.15)
and therefore,

Qnw = ((egz)TWQ) ® 11) A1 (12 ® (Wlegl))) : (5.16)
Then we can see that the j-th column of (5.16) is given by

[(2 g d™ (,@ iag(o)) " Wy o)
mtT a1 (aj I + diag(o; )) Wie,/

from which (5.11) follows.
Similarly, (5.12) can be derived by using

Pp=1I®el) (5.17)
instead of (5.7).

6. Appendix B: Proof of theorems 3.3 and 4.1

Proof of Theorem 3.3

15
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Proof.
Theorem 3.3: Let the aspect ratio for the domain €, in fig.2 be defined as o = m2t1, Then,

n+1l
a) |Vl € v 0.733 and ||V 1
1 </a 0. and |[Vilo < 4/ 0.733.
B) VIVl <IVIZ = VI < V111V ]loo < 0.54,

cj For ali gridsizes and ail L-shaped regions,
K(Cy) €216 and K(Cs) <2.16 . (6.1)

Proof. (b) follows from (a). (c) follows from (b) and from equations (3.24) and (3.25). In order to
prove (a), we will first need to prove some lemmas that give bounds for the column and row sums
of the absolute values of (3.28), the elements v;; of the matrix V. The eigenvalues (2.12) of M,
and My can be bounded by

jw

Aj(n,ml,mg) > 4sin—2-(—1-;:1—) (6.2)
forallj=1,...,n and )
. i
A"(TJ"LQ, , n3) > 4sin m (63)
foralli=1,...,m;. It is easy to show that
1 f(mi's ?}j)
.. < — L e .
lv"!-z\/a n+1 ' (6.4)
where the function f is defined by
sinz% coszf \/sinyL cosy%
f(zyy) = 2 2 : z (6.5)

e 2 T s m
sin 2z + sin 2y %

:

i = ;-7 and y; = 533, Similarly, we have

gl <« L2 Lzio2s) (©5)

me +1

The column and row sums of jv;;]| can be then bounded by expressions that involve the integrals of
F with respect to z or with respect to y. The following lemma gives an expression for the integral
of f with respect to z, for a fixed y. Since f(z,y) = f(y,2), an analogous result holds for the
integral of f with respect to y, for a fixed z.

Lemma 6.1. Giveny € (0,1) and a,b € (0,1) such that a <y < b,

b
/f(m,y) dz = \/2§7r cos y% (1r - g(sinb%,sin yg) + g(sin a—g,sinyg)) , (6.7)
where
z4+ V22wt w 22w
= - ——— t 6.8
g(z,w) 210g2_‘/22_w+w+arcanzmw (6.8)
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Proof. By replacing z = sinz ] and w = sinyZ in (6.5) and defining

F(z,w)= V2w

Zruwt (6.9)
we get
r ainhZX
v T2
2 n
/f(m,y) dz = —cosyo / F(z,w)dz
o sina ¥
7 1 z+\/2zw+w V2zw \ PrbE
= Y= - ——————— + arctan
2 2 z—\/Zzw+w W2 [ linaz
cos yg (1r g(smb ,Bin yg) + g(sin ag-,sin yg))

We will also need to describe the behiavor of f(z,y), for a fixed y € (0,1), in the interval
z € (0,1). We can easily see that, when =,y € (0,1), f(z,¥) > 0. In the next lemma we prove that
f(.,¥) has one and only one relative maximum in (0,1).

Lemma 8.2. Given y € (0,1), there exists a unique z*(y) € (0,1) such that:

max f(z,y)= f(z*,y) ,

0<z<l

J(.,y) is monotonically increasing on the interval (0,z*} and f(.,y) is monotonically decreasing on
(z*,1). Moreover, f(z*,y) is bounded by

flz*, ) < \/gcotyz . (6.10)

Proof, The partial derivative of f with respect to z is given by:
af

L g T . g T
Fol &=z, y)(smﬂmé— - z_)(smzm—z- —23) ,

where £(x,y) > 0 for all z,y € (0,1) and

3 . 9 . .
2y = 5(1 + smzyg) + \/Z(l + smz'y%)2 - sm?yg
It can be shown that
sin ?y 7
3

and z; > 1. Therefore, gi > 0for z < z* and —i < 0 for > z*, where z* is the unique solution
in (0,1) to

0<z_ <

<1 (6.11)

sin 2.1:*% =2 . (6.12)

Therefore, f has a unique maximum in (0, 1) at 2*. Moreover, since for all z € (0,1),
b

f(z,y) < F(sin mg,sinyg)
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where F' is defined by (6.9), we have

. in o™ T
f(2",y) < max F(z,sinyz) = —-= coty

4f

We can now prove (a) in theorem 3.3:

We will only prove the inequality ||[V||; £ /@ 0.733. The proof of ||V|lco < \/g 0.733 is

completely analogous, by using (6.4) instead of {6.8).
By (6.6), we have

17l = mathvejIS-‘@- L e S f(mnw) - (6.13)
=1 =1 )

1<j<n 2 myp+ 1 1€5¢<n
o

Let h = 'rig—lﬁ' = g1. Since f > 0 for z,y € (0,1) and, by lemma 6.2, f is monotonic in the intervals
(0,2*(y;)) and (2*(y;), 1), it is easy to see, by using graphical arguments, that

™ma 1
Ry f(wiys) < /f(m,yj)dw+hf(w*(yj),yj) , (6.14)
i=1 IS

when k < 2*(y;). On the other hand, when A > z*(y;), all the values of x;,7 = 1,...,m7 are on
the interval (z*, 1), where f is monotonically decreasing. Then, we have

1
B3 Joi ) = () + hZf(wny:) < ] Syt bf(hyy) . (8.5)

=1

Let us first assume that h < z*(y;). By (6.11) and (6.12), we can prove that z*(y) < y for all
¥ € (0,1). Then, by (6.7), we have:

1
2 . .
/f(m,yj) dr < —\—/—:‘2-—7; (?r + g(sin h-g,sm ng)) {6.16)
h

because g(z,w) > 0 for w < z. Define the function G(h, ) = g(sinh},sinBhZ). Then, the right
hand side of (6.16) can be written as:

= (T+G(h,p) (6.17)

with § = ¥ > 1, By differentiating G with respect to # we can see that gg < Ofor all h € (0,1)
and 4 € [1,+00). Therefore, G decreases with 3, i.e.

SIS
o

G(h,B) < G(h,1) = Tim, g(xw) = ;log =

(6.18)
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for all 2 € (0,1) and 8 € [1,+0). We can then bound (6.18) by

/ 1 242 '
.h/f(m,yj)dwgvi;(vr-i-logz“ﬂ) . (6.19)

On the other hand, by (6.10), we have

B (1)) € ggzheot BAT (6.20)
The right hand side of (6.20) can also be proven to decrease with # and A and therefore we have
hf(z*(y;), v5) < \/_h wth.2 < 2f7r . (6.21)

By replacing (6.19) and (6.21) in (6.14), we have

ma
1 242 3
h HY) S —— 1 = 1.4666 6.22
> Seow) S (wogz“ﬁ)%% (6.22)
and therefore, by (6.13), we have :
IVIl: £+ 0.7333 (6.23)
when h < 2*(y;).
When h > 2*(y;), by (6.15) we have
my 1
RY f(aius) < j f(2,4)dx + hf(h,y5) - (6.24)

=1 2*(y;)

By (6.7),
1

2 T .o T
/ flz,y)dx < —\-/—-§—7Fc05 Vig (r + g(sinz E,smyj—i))
«*(v5)
2 « Y
< "—2;(7T+G(93 ,;“;))
and, by (6.18), we have

f 1 242
/ flz,y;)dx < -\7—2“; (71’ + log im\/_-é-) . {6.25)

=*(y;)

Since f(h,y;) < f(z*(¥;),%;), by (6.21) we have

hf(h,y;) < (6.26)

3
23/511'
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By replacing (6.25) and (6.26) in (6.24), we have

ma2
h flzi,p;) < 1.4666

f=1
and therefore, by (6.13), we have _
IV]i1 £ +/a0.7333 (6.27)
when h > z*(y;). By (6.23) and (6.27), we proved that (6.23) holds for all A < 1.
|
Proof of Theorem 4.1
Proof. Define the function
_l4z—o/x
We can easily prove that
f(z) > 0.866 forall =z e[0,1) . (6.28)
By (4.4) and (2.12), we have
L4t 14t R o}
- - J A
Aj(n, my, my) — |6;(n, ma)| = - .-Y;“!H - 7?2_,_1 21 s oit o (6.29)
Since v; < 1 and mq < my, we have s
+ 7m2+1 ,,{21_2;;1 0'2-
Ai(n, my, ma) = |6;(n, m2)| 2 2 1 - ymatl ] J7m2+1 o; + '“:;‘
J i

f 6.30

=92 U_, f(’)’ 2+1) ( )
o2
> 1.734/0; + 2’—

Expressions for the elements of Qsg and Qng of (4.11) are given in appendix A. We can easily
verify that the elements of both matrices have the same absolute values. Also, both Mg and My
have eigenvalues that are bounded from below by 4 sin m

By (4.10), (4.12) and (6.30), we can see that ||V]|; is bounded by

1 1 eine % cosz; T L /sin cosy; &
Vil < (ﬁ Z i3 08Ty y” y”) . (6.31)

0866\ 2 m;+1 1<3<n sin ?x; T + sin2y; I

where z;=if(m; + 1) and y; = j/(n+ 1),fori=1,...m; and j = 1,...n. The proof of theorem
3.3 applies now to the expression in parenthesis.

|
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