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OBSERVATIONS ON VORTICITY CREATION BOUNDARY
CONDITIONS

CHRISTOPHER R. ANDERSON*

Abstract. In this paper we discuss some issues related to the problem of vorticity boundary conditions.
We outline the origination of the problem and briefly discuss three solution procedures which have been used
to overcome it. We primarily focus on one method - that which employs boundary vorticity creation. We
give an example which shows the equivalence between creation type boundary conditions and those which
exploit the relationship between the vorticity and the stream function on the boundary. We also show how
one can obtain greater than first order accuracy in time for methods employing creation type boundary
conditions. Lastly, we show by example the problems which arise when the boundary conditions on the
vorticity are such that the no-slip condition on the velocity is satisfied only to truncation error rather than
to roundoff error.

1. Introduction. There are several different ways of "solving” the problem of vorticity
boundary conditions and it is the authors belief that they are all generally equivalent. The
ease of implementation of each is different, and, depending on the discretization, certain
methods are favored over others. However, there is often value in considering the application
of particular techniques in situations in which they have not been previously used and we
intend to do this here,

The focus in this paper will be on the vorticity creation approach and we use this
approach in the construction of finite difference schemes. The reason for selecting finite
differences as the underlying approximation procedure is to demonstrate certain proper-
ties of the methods incorporating vorticity creation. The first is that one can implement
creation boundary conditions in the context of finite differences methods. The approach
therefore offers an alternative viewpoint to the methods which are customarily used. Sec-
ondly, because of the Lagrangian discretization and the use of a random walk to simulate
diffusion, the vortex-blob and vortex-sheet methods [2], [3] are sufficiently complicated that
the properties of the creation methods we wish to show would be difficult to demonstrate
within that framework.

The problem of vorticity boundary conditions is as follows - consider the two-dimensional
Navier-Stokes equations in vorticity form for flow in a domain {2 with solid boundary 9%,

(1) | 2t Vo =vaw
8w .,  -9U
(2) , ‘ U = -55 v = a.'B
where
3 AY = ~w
ow
(4) =0 = 0 on &f.

The requirement that ¥ = 0 at the boundary ensures the no-flow boundary condition

(&7 = 0) and the other condition — = 0 ensures the no-slip condition (&7 = 0). If one

n
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wants to keep within the vorticity stream-function framework then there is a fundamental
difficulty in computing the solution to (1) - (4). One needs boundary conditions for the
vorticity to implement (1), and they are not given, while in (3) - (4) there appear to be too
many boundary conditions for the stream function.
Actually, these two difficulties are related. As observed by Quartapelle and Valz-Gris
- [4] there is a global constraint on the vorticity which will ensure that a solution to (3) - (4)
exists. This constraint is that the vorticity must have a certain projection with respect to
all harmonic functions defined in the domain, i.e. one must have

(5) f (&, )n(F)dE = 0

Q

for all 7 where 7 is a function such that Ap =0 in  and t > 0. One can therefore view the
problem of solving equations (1) - (4) as evolving the vorticity subject to this constraint.
In appropriate discretizations it just so happens that the number conditions furnished by
(5) is equal to the number of unknown boundary values and thus (5) can be used to close
the equations. This observation can be used to construct numerical methods. For example
in [5] the vorticity is advanced one time step using arbitrary boundary values, and then
this approximate solution is projected onto the subspace of vorticity which satisfies (5). We
shall refer to this method as the projection method. While this manner of time-stepping
guarantees that a discrete version of (1) - (4) is satisfied, the manner in which the boundary
values of vorticity are determined is not immediately obvious.

In order to see how the values of vorticity on the boundary are determined, one considers
a different procedure for satisfying the constraint. As discussed in [1], if one assuimes the
initial vorticity satisfies {5) and then asks what are the conditions which ensure that the
time derivative of the constraint vanish - then (after incorporating the equations of motion
and integration by parts) one can derive boundary conditions of an integral-differential
nature. The boundary conditions, suitably interpreted, show that vorticity is created at the
boundary in response to slip induced by Euler flow. Thus, this is a way of understanding the
boundary conditions which were introduced by Chorin and have been used in conjunction
with vortex-blob and vortex-sheet methods [2], [3]. Simply, the methods based on vorticity
creation are boundary conditions which guarantee that the time derivative of the constraint
(5) vanish as the vorticity evolves subject to (1).

Another method which is used to solve the problem of vorticity boundary conditions
which is different than a projection method or a creation type method, is that which we call
the “boundary vorticity-stream function method”. (See for example [6].) In this technique
the relationship between the stream function and the vorticity.(3) and the boundary values
(4) are exploited to determine values of the vorticity. If one thinks of defermining the
stream function given the vorticity as running (3) forward, then this procedure is running
(3) backwards to get the vorticity. This method is popular with those using finite difference
techniques. '

It is not clear at the outset that the three methods are all identical. They certainly have
the same flavor - manipulating the vorticity in order to satisfy the boundary conditions on
the velocity, but they differ in their method of manipulation. As is explained in (1], the
goal of the projection methods and creation methods is to ensure (5) is satisfied, so, in
principle, if one assumes an appropriate choice of implementation, both approaches should
lead to equivalent schemes. {However, an appropriate discretization may not be easy to
find, as for example in the case of designing a projection method when using a vortex-blob
discretization.) The relationship between the boundary vorticity-stream function method
and the projection or creation methods is still a bit of a puzzle. However, in light of the
fact that both the creation schemes and the boundary vorticity-stream function methods
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introduce vorticity on the boundary, it seems possible that the techniques are related. In
some instances we can see this, and in the first section of this paper we will, for a model
problem, show the exact equivalence between a creation type method and a boundary
vorticity-stream function method. This is a very simple model problem - Stokes flow in the
upper half plane - and so this is not a proof of general equivalence. I am presenting this
- example primarily to convince those who use the boundary vorticity-stream function method
that there may be some merit to considering the problem of vorticity boundary conditions
within the framework of the vorticity creation approach or the projection approach (since,
after all, one obtains the same answer). The reason for considering other viewpoints is that
it may allow one to resolve certain difficulties which one encounters with the boundary-
vorticity stream function method, i.e. the determination of explict methods which have
high order spatial accuracy. Alternatively, I present the example to help convince those
who use the creation or projection approach that the boundary vorticity-stream function
method may also be worth considering.

Originally the vortex creation type boundary conditions were derived by considering
a fractional step scheme for solving the Navier-Stokes or Prandtl equations. One step
consists of advancing the inviscid component of the equations and the second step consists
of advancing the viscous component. The second step is accompanied by vorticity creation
which is introduced in order to satisfy the no-slip condition on the velocity at the boundary.
However, this viewpoint is encumbering, in that it appears there is a limitation on the time
accuracy which can be achieved because of the fractional-step nature of the scheme. If
one considers such creation boundary conditions as being derived from the principle that
they are ensuring that the time derivative of the constraint (5) vanish, then this difficulty
disappears and one can easily see how to derive high-order accurate methods in time. In
section 2 we present the formal argument, and then demonstrate the feasibility of the
approach by showing the computational results of a higher order (in time) finite difference
method for the Prandtl equations. -

Lastly, in the implementation of vorticity boundary conditions of the creation type
one can devise methods which have the property that they satisfy the no-slip condition on
the velocity only to truncation error rather than to round-off error. This difference, while
seemingly small, may have important implications for the use of the schemes. In particular,
we find that one is suitable for finding steady-state solutions and the other not. We show
the results of a computational method for the Prandt]l equations which’ demonstrate the
effect of not satisfying the no-slip condition exactly.

2. Presentation of Equivalent Schemes. In this section we shall show by way of
example the equivalence between two different methods of implementing vorticity boundary
conditions. The first scheme, described to the author by H.O. Kreiss, is of the boundary
vorticity-stream function type. The second is a vorticity creation type, and could be consid-
ered a finite difference implementation of boundary conditions which are used for vortex-blob
methods. What we find interesting about this example is that although the methods differ
greatly in their derivation and implementation they are indeed algebraically equivalent and
give identical results.

The equations to be solved concern Stokes flow in the upper half-plane in which the
vorticity is a function independent of z. Thus if w(z,y,t) is the vorticity, then we are
assuming that w(z,y,t) = w(y,t). The equations to be solved are

fw 2w
(6) T u-a—y—z for y>0
) .
(7) gT‘f = —w for y>0



' ' ¥=0 —_—= t y=0
(8) , 3y 0 at y
‘?,—‘I’ =0 at y=oo
0y
The velocity field corresponding to the vorticity is given by
: ov o
® “=%% "o

We assume that the initial vorticity distribution induces a velocity field which satisfies both
the no-slip and no-flow condition on the boundary y = 0, i.e. if we solve

(10) ‘%%‘gzuw(y,t) U=0 at y=0 %‘3-30 at y= o0
at t = 0, then
(11) ﬂ%ﬂ =0 at y=0
at t = 0 also.
It can be verified that if we solve (6) with the boundary condition on the vorticity
g—: = 0 then (10) and (11) will hold for all £ > 0 as well. The manner in which we show the

two different methods to be equivalent is to show they both implement a finite difference
procedure for solving (6) with this Neumann boundary condition.

For the computational methods to be described, consider the finite difference grid as
in Figure 1. We assume a uniform mesh width h in each direction and that the index j in
the y-direction extends from 0 to M where M is large. {The fact that M is finite is not
particularly important for this discussion and could be eliminated, but this would make the
discussion a little more difficult to present.)
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Since the solution is independent of the z- coordinate, we will only subscript the com-
putational variables with the index j, and we will use superscripts to denote the time level.

Figure 1
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We assume the standard second order 3-point difference approximation is used for the dis-
cretization of the Laplacian and that the integration method in time is forward Euler. We
designate the discrete Laplacian by A. In the boundary vorticity-stream function imple-
mentation;, one uses the boundary conditions on the stream function ¥ = 0 and o =0 to
conclude that ¥ = 0 and ¥7 = 0 for all n > 0, i.e. the stream function vanishes at y = 0
and one mesh width in (j = 1). If the vorticity at time nét, w™, is known for j = 2,3,4, ...
we show how to obtain the vorticity at time (n + 1)6t, w™t1.

{1) Solve

2, — Wy
AU" = " 1=0 and M—hM:_l_:g
to obtain U" for j = 1,2,3,....
(i1) Set
Yo - 20% + U
h2

(iii) Obtain w™*! by computing an approximate solution to {6) using
w?“ = w} + StvAw? for 7=23,4,...
with the Laplacian computed using boundary values w? from (ii).

The complete algorithm begins with a specification of the initial distribution of vorticity
followed with a repetition of steps (i)-(iil) to determine the vorticity at all later times. We
note that steps (1)-(ii) are essentially done in order to evaluate w} - a quantity necessary to
evolve the approximation to (6). We now show how steps (i)-(iii) are equivalent to solving
(6) with Neumann boundary conditions applied at j = 1.

Assuming w" is given for § = 1,2, 3,... we find an expression for w{""l. We have

_ W;H-l - 21311%-‘}-1 + wg%—l
he
(A—lwn-i-l)z
h?
(A"’"1 [wJ" -+ 6tqu;”])g
h2
(A"lw}‘)g + Etv(A"lAw}")g
hZ
_ 9 (wf —~ wP)

W3 — 20T + U5 (wi —wl)
SR il
(w§ —wl)

2

Wt

= wi + ftw

Here we have used extensively that ¥§ = 0 and U] = 0 for all n. There is some tricky
business in the evaluation of A'lAw;‘, since the Laplacian being inverted has homogeneous
values (because it corresponds to the equation for the stream function), and the Laplacian
of the vorticity involves the boundary values of vorticity. To be a bit more explicit we have
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F Wl ] - %} -
w3y 0
‘ Wi 0
A“lAw;-” = A 4 A <+

where
' 1 1-2 =% *
-k &
REOR N
R TR OR?

From this last expression, one can deduce that the component for j = 2 will be wj — W}

The equation which governs the values of wy,

Wi -
w;&+1:wil+6tu( 2h2 1)

is the approximate solution of (6) with the boundary condition kg 0 incorporated by
Y

setting wj = w7.
We now discuss a vorticity creation type scheme for computing the solution to these

-same equations. Assume that the vorticity at time nét induces a stream function which

satisfies all boundary conditions, i.e. if we solve '

Ui — Uiy

AY" = - U3 =0 and T

=0

T — 47

then 5 O — ( as well. We now describe how to advance the solution one timestep.

(i) Advance the vorticity with a finite difference approximation to (6) using
G = " 4 vt A"

with homogeneous boundary values in the evaluation of the discrete Laplacian for points
next to the boundary.

(i1) Calculate the slip on the boundary induced by &"t?. First solve
o+l g+l

‘pnM - ‘I’?J—-l

AU = _gn Iptt =0 and -

=0

and then set the boundary values of vorticity to be proportional to the ship,

oy == (L) (B,
vt h
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(1i1) Diffuse the “created” vorticity and construct the solution at (n + 1)6t by combining

this vorticity with cﬁﬁ+1,

n+l __ {0
= a1 . Wan -« . -
wi”‘ -+ 0tv— 1lfor 3 = 1.

h2

Jan’rl for j=2,3,4...
N

It will be shown for this method, like the one presented previously, that the vorticity
satisfies a discrete heat equation with Neumann boundary conditions. We have

SIS st
, 1 - 1 h2
§tv prtl
(12) = W+ (-l +ep) - #

Now using the formula for ¥"*! we find

gt = LAl (wn + StrAG™)
= U" - fvATH(AWY)
(13) = U™ — ftvw™.

Here it is understood that in the term Aw™ the Laplacian considered is one which uses
homogeneous boundary values. By assumption U7 = 0 so the first component of the above
equation in conjunction with (12) yields

o = W+ rz—;(—Qw? + wh) + tvw?
otv . . o, '
(14) = Wi+ oy (wy —wp)

Thus, the vorticity evolves in accordance with a discrete heat equation with Neumann
boundary conditions applied at § = 1.

This demonstration depended on the fact that the vorticity w™ induced a stream func-
tion such that ¥y == 0 and ¥ == 0. In order to continue the argument by induction we must
show that \I';H"l = ( holds. This fact follows from the definition of ¥™+! and the relation
{(14). Specifically,

= (AT,
‘ _ bty
= (A l[wn + ?l?Aan])l
5t
= U7 + (A7 [(6trA") + Tz wilh

(15) = $tww] — ftrw] =0

In this last demonstration we have used the notation Ay to represent the discrete second
derivative approximation which uses homogeneous Neumann boundary conditions.

The fact that each method satisfies the same algebraic equations, an approximation to
(6) with Neumann boundary conditions establish that the two methods are equivalent. It
is interesting to note that the creation scheme provides values of vorticity on the boundary
wq while the other method doesn’t. This suggests that the vorticity creation methods may
be particularly useful if one is interested in knowing the values of the vorticity on the
boundary. Work is in progress to exploit this property of vorticity creation methods to
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obtain reliable estimates of the forces acting on solid boundaries. Also, the implementation
of the boundary conditions of the vorticity-stream function type depended on being able

to invert the boundary conditions ¥ =0 and. (;39_\1! = { to obtain ¥g = 0 and ¥y = 0. This

y
inversion is easy with first order differences, but is difficult when higher order differences
- are used which incorporate more interior points than just ¥;.

3. Higher Order Accuracy In Time. As mentioned in the introduction, viewing
the vorticity creation boundary conditions as arising from a fractional step procedure is
limiting in that it appears the methods in which they are incorporated can only be first
order accurate in time. If one considers these creation type schemes from a viewpoint of
ensuring that the time derivative of the integral constraint on the vorticity is satisfied, then
the technique for deriving higher order methods is easily seen. In order to demonstrate
this fact we use the setting of the Prandtl equations. These equations, used to describe
flow close to flat boundaries, form a reasonable model problem because when written in the
vorticity form the difficulty with the boundary conditions is of the same type as that for the
full Navier-Stokes equations. We now present the Prandtl equations and show how one can
derive higher order methods in time for their solution. We then discuss a finite difference
implementation of this approach and present some computational results.

Let @ = (u, v) represent the velocity field above a half-infinite flat plate which extends

from z = 0 to z = co. In the Prandtl equations the vorticity is given by w = —uz, and the
equation of evolution for the vorticity is
Gw 2w

(16) E"‘FU'V&):Uc—,}y—z
(17) ' u=v=0 at y=0
(18) u=1Up at y=o0

o0 P Y
(19) u="Up +[ w(z,s,t)ds v = -a—mf u(z, s, t)ds

v 0

If w is arbitrary then it follows from (19) that u = Up at y = occ and v = 0 at y = 0.
What is not antomatically satisfied is the no-slip condition on the plate u = 0 at y = 0.
Thus, as is the case in the Navier-Stokes equations the game is to evolve the vorticity in
stich a way that this latter no-slip condition at y = 0 is satisfied as well. We now derive
boundary conditions for the vorticity which will guarantee the no-slip condition.

The integral condition which the vorticity must satisfy in order that the no-slip condition
is satisfied is

(20} / w(z,s,t)ds = —Up.
0

This is a condition analogous to (5) for the full Navier-Stokes equation. To ensure that this
hold for all time, we assume that the initial vorticity w(z, y,0) satisfies (20) and evolve the
vorticity such that the time derivative of (20) is zero. Taking the time derivative under
the integral sign and using the equations of motion followed by integration by parts, one



obtains

°°aw i Pw
_d = —”‘- —"d
Of(at)s ~0/( 1 Vw+uay2)s
= /(—&’-Vw)ds+ug—w o
4 Y

Setting this time derivative to zero gives the boundary condition
(21) —ly_e = / (=i - Vw)ds.

Thus, the equations one solves if one is using boundary conditions of the vorticity creation

_type are
2
(22) %% = il Vo + yg—;;’w
with boundary condifions
fw i

(23) By ly=0 = f(—ﬁ- Vw)ds.

Reference [1] gives some of the details for understanding the correspondence between meth-
ods which incerporate these conditions and the boundary conditions introduced by Chorin
in (3].

To derive higher order methods, it is useful to consider the equations written in a more
general form. If we denote by w the values of vorticity in the interior of the domain and
the normal derivative of vorticity at y = 0 by wy, then formally we write (22)-(23) as

J

6:: = F(w,wn) wy = Hw
or
(24) % = F{w, Hw).

Here H is a non-linear operator which determines the boundary values in terms of the
interior vorticity.

We now just consider (24) as an ordinary differential equation and choose whatever
scheme we like. Of course the implementation may not be so simple because of the presence
of H, but we at least have a procedure for suggesting methods. One time-stepping scheme
which does work out are Runge-Kutta schemes. If we consider time discrete and the spatial
derivatives continuous one such method is the following,

(25) w* = w" 4+ §F{Ww", Hw™))

26) W = " 4 ZIFW", H™) + P, Hw")))

In this scheme we would use the following expression for F(w™, H(w™)),
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2,.n
Flw™, Hw")) = —i" . V" + U%—;-;—

with the boundary condition
B T om
T lumo = [(=T* - 9u")as
0

used to close the second derivative operator. Similarly for F{w™, H(w")),

%™

Flw*, H{w*)) = =8 - V" + v o

with boundary condition
ou* T ur
w Iy:O = (_u : Vw )dS
0

and @* is the velocity field constructed from w*.

If one considers finite difference schemes to approximate the spatial operators then the
implementation of the higher order method is straight forward - one just forms approxi-
mation of the terms in the equations in the natural way. The implementation within the
context of the vortex blob method or vortex sheet methods is a bit more difficult. One
immediate problem is the fact that the approximation of diffusion is typically done using
a random walk technique and this is of relatively low order accuracy in time. If one has
a more accurate approximation of the diffusion process then it is-still not clear how to
implement the method - the Lagrangian approximation used makes it difficult to evaluate
the term @ - Vw. One possible way to obtain the pieces necessary to form the second order
approximation without having to resort to evaluating % - Vw explicitly is the following: we
express the solution at time (n + 1)6¢ as

@7) W = %w" + % W* + 67 (w*, H(w"))]

w* is computed via one step of forward Euler starting with w™,
2

Jw

By)

n

w' =w" 4 5 (—T" - V" + v

with a Neumann boundary condition

?f.)....., Iyzﬂ = (---ﬁ% . Vw”)ds.
Jy /

The second term on the right of (27) is the vorticity distribution after one forward Euler step
approximation to (22)—(23) starting from w* with a similar Neumann boundary condition
based on w*. The solution at time (n + 1)t is therefore the sum of w" and a vorticity
distribution which can be obtained by performing two Euler steps in succession. Since each
of these can be carried out within a Lagrangian framework, in principle a higher order
method (in time) could be obtained.

In order to test our procedure for developing higher order methods we incorporated
these ideas in a finite difference scheme for (16) -(19). The discretization scheme is sirmilar

i0



to that described in [1]. The advection term is discretized using a second order centered
difference scheme (for simplicity and accuracy) of the form

1 ) 1
(28) g Vw & 5[ & (uw) + uDfw] + §[Dg(vw) + vDiw] = A; ;{w)

" where Dg is the central difference operator and the superscript refers to the direction the
difference is taken. The second difference operator is discretized using the standard 3-point
second order approximation. The following approximations are used for the reconstruction
of the velocity from the veorticity,

M
h
(29). uij =Uo+ ) (wik + Wik+1)g
k=3
i o
(30) vij = ,;(Dgui,j + Djui )5

The boundary condition was approximated by

M h
(31) — & ’gj —(Aig + Aipi1)

where A; j is the approximation to the advection term.

5t w(.25,0) Rate | w(.25,.25) | Rate
25 x 107 | -5.97395 x 10-T | —7.04753 *
1.25 x 1077 | —5.802190 x 1077 | = —7.19023 *
6.25 x 10=% | —5.84495 x 10~1 | .8654 | —7.26641 | .9366
3.125 x 107 | —5.82107 x 107 | 9801 | —7.30585 | .9658

Table 1
Rate Of Convergence for First Order Scheme

bt w(.25,0) Rate | w{.25,.25) | Rate
1 25x107% | -5.86852x 1071 | & | —7.39724 | «
1.25 x 1072 | —5.88144 x 1071 * —7.73545 *

8.25 x 107° | —5.88013 x 10~ | 2.074 | —7.73408 | 3.315
3.125 x 1073 [ —=5.79827 x 10~ | 2.080 | —7.73466 | 2.283

Table 1
Rate Of Convergence for Second Order Scheme

The computational domain was aregion z = htozx = l.0and y = 0 to y = 1.0. We
used £ = .0, v = .025, Uy = 1.0. Euler’s method and the second order Runge-Kutta
method described above were used to advance the solution in time. To verify the accuracy
of the schemes, the values of the vorticity at (.25,0.0) (on the plate) and (.25,.25) (in the
boundary layer) were monitored. These quantities were evaluated for different time steps
and by using Aitken extrapolation a rate of convergence was estimated. In Table 1 and
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Table 2 we give the values of the vorticity at these two locations at time t=0.25. In the
column just to'the right of the values of vorticity is the estimate of the rate of convergence
corresponding to those values.

- These résults demonstrate that it is possible to implement higher order methods and

niea wardieitu nreut‘in‘n tvne houndarv r'nnr“tinnq Ona n]nnnani‘ fnr'f' ig that tha haundarv
UsSe VOILICILY <¢reatleon iype boungary concuuiens., LUne pieasanti iact 18 113t The pounqary

" values of the vorticity are also be determined with second order accuracy in time.

4. Satisfaction of Boundary Conditions. In this section we discuss some of the -
problems which arise when one does not satisfy the boundary conditions on the velocity
to the precision of roundoff error, but only to the precision of the truncation error of the
underlying numerical scheme. The manner in which the problem arises is well described
in the setting of the model problem from the last section - the Prandtl boundary layer
equations. In these equations we have the evolution equations for the vorticity in the
interior of the domain

Jw 9%w
(32) ?a""t"-l-u'Vw:UEy—z"
and a constraint
(33) fw(m,s,t)ds = 0.
0

If we assume that the initial vorticity satisfies this constraint then a boundary condition
which, if incorporated in {32), will guarantee (33) for ¢t > 0 is

| Ow T .
(34) -5?;]1,:0 = Df(-u - Vw)ds.

This boundary condition works because it ensures that the time derivative of the constraint
vanishes.

Given a discretization procedure for the evolution of the vorticity in the interior and a
method for reconstructing the velocity from the vorticity, there is a discrete equivalent to
the constraint (33). If this discrete constraint is satisfied, then the discrete vorticity will
induce a discrete velocity which satisfies the boundary conditions exactly (i.e. to roundoff).
In the design of boundary conditions of the vorticity creation type, one has a choice of
approximating (34) using any convenient consistant discretization, or approximating (34)
using a discretization which is based on the other approximations made in the problem and
one which ensures that the discrete constraint (33) is satisfied exactly. In the first case
the implementation will most likely only ensure that the discrete constraint is satisfied to
the order of the truncation error of the approximations used in the boundary condition.
This will cause velocities on the order of the truncation error to occur on the boundary.
On the other hand, the boundary conditions which ensure that the discrete constraint is
satisfied to roundoff at every time step will provide vorticity distributions which induce
velocities on the order of roundoff at the boundary. (These vorticity boundary conditions
are derived by following arguments similar to those used to derive the continuous ones, but
using the discrete operators associated with the approximations of the interior equations
and the reconstruction of the velocity from the vorticity.) The difference between ”exact”
and ”truncation error” boundary conditions seems minor but it can lead to methods with
very different behavior.

It is clear that if one is integrating the equations up to a fixed time and the solution
of the equations is smooth then using “exact” boundary conditions or “truncation error”

12



boundary conditions should lead to the same solution. Differences in the methods may
occur when the solution is not smooth or when one is interested in the long time behavior
of the solutions.

- In order to gain some insight into these questions we considered two finite difference
schemes for the Prandtl] ]-\nnnr]nr}r 3n}ror eanatione. The firet wasg that bazed on the finite

DULITIEICD AL uias piieva A s alun aluy i Guouiliiles, 2010 LB Was Loiah Lastts LA Lo

" difference approximations given in the last section. As discussed in [1} it can be shown
that the discrete equivalent of (33) is satisfied at every time-step. The second scheme we
used differed from the one just mentioned in that Simpson’s (as opposed to the trapezoidal
rule in (29)) was used in the construction of the u velocity from the vorticity. Simpson’s
rule is fourth order accurate and the change should yield a method of comparable accuracy,
and possibly one which is more accurate. However, in this modified scheme the vorticity
boundary condition (31), while being a natural discretization of the continous boundary
condition (34), did not guarantee that the discrete constraint (now based on Simpson’s
rule) was satisfied to roundoff.
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Figure 2

L? Error in U Velocity Profile at X=1.0 vs. Time
(A) : Satisfaction of Discrete Boundary Conditions to Roundoff

(B) : Satisfaction of Discrete Boundary Conditions to Trunc. Error

ch=01 _—__ :h=005 _... - : h=10.025

In the first experiment we started close to a steady state profile (furnished by the Blasius
solution) and observed the capability of each of the schemes to latch onto the steady state
solution and remain there. To avoid the problem with the singularity of the solution near
the leading edge of the plate we used a domain which did not include the point z = 0.
The computational domain was from ¢ = S5toz = 1.5 and y = 0.0 to y = 1.0. We used
v = 0.025 and Up = 1.0. In Figure 1{A) and 1(B) we plot the discrete L? error in the u
velocity profile at the station £ = 1.0 for three different mesh widths, A = 0.1, A = .05 and
h = 0.025. The time steps for all of the solutions was 6t = 0.0025 and the solution was
advanced using forward Euler. Figure 1{A) corresponds to the original method in which the
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discrete constraint is satisfied at every time step. As can be seen, after an initial transient
period the method converges to a steady solution and the errors do not increase in time.
During the complete run the magnitude of the velocity at the boundary was on the order of
roundoff (10~%). In Figure 1(B) we see the method based on Simpson’s rule does not latch
onto a steady state solution. Although the error in the profiles is less for this method up to a
" time between t = 3.0 and t = 4.0, the errors definitely grow in time. Further computational
results showed the errors didn’t stop growing. Typically the errors grew until the velocities
in the computed solution caused the advection scheme to go unstable. In figure 2 we show
the L? error in the slip velocity along the plate from « = 0.5 to z = 1.5 for the method which
used Simpson’s rule. As expect the errors grew. in time with the rate which diminished as
the truncation error of the spatial discretization diminished.
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Figure 3
L? Norm of U Velocity Along Plate (y=0) vs. Time

Satisfaction of Discrete Boundary Conditions to Trunc. Error

ch=01 ____ +h=005 .._._:h=0.025

In the second experiment we wanted to test if both methods were capable of finding
the Blasius profile beginning from an impulsively started plate. The computational domain
was fromaz = htoxr =1.0and y = 0.0 to y = 1.0. As before v = 0.025 and [y = 1.0. In
Figure 3 we plot the L2 error in the u velocity profile at = .5 as a function of time. The
lower curves correspond to different mesh sizes used in the original scheme and the upper
curves correspond to different mesh sizes with the scheme which employed Simpson’s rule.
The original method, that in which the constraint was satisfied exactly, had no difficulty
in computing a steady solution. The other method did not work at all. The solution never
converged to a steady state. The solutions obtained with the two methods did agree for a
very short time, but it is not clear that interval of time would increase as the mesh size was
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{6]° M. Israeli and S.A. Orszag, Numerical Simulation of Viscous Incompressible Flows, Ann. Rev. of Fluid
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