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ABSTRACT

This paper presents the results of the Connection Machine implementation of a number of preconditioners for the
preconditioned conjugate gradient method. The preconditioners implemented include those based on the incomplete LU factori-
zation, the modified incomplete LU factorization, the symmetric successive overrelaxation, and others such as several polyno-
mial preconditioners and the hizsrarchical basis preconditioner. ‘Results based on numerical experiments show that both the
degree of parallelism inherent in a preconditioner and its convergence rate improvement play important roles on the overall exe-
cution time performance on parallel computers, Factors that affect the performance of the preconditioners will also be discussed,
We conclude that to search for the best preconditioner on & paraliel machine, we have to consider the tradeoffs between fast con-
vergence rate and high degree of parallelism as well as the architecture of the target paralle] computer.

Key Words : Connection Machine (CM), preconditioned conjugate gradient (PCG) method, diagonal natural ordering, paralle]
red/black ordering, parallel computations.

1. Introduction

The conjugate gradient method, coupled with "good" preconditioning, has been
known as an efficient technique for solving large sparse symmetric positive definite linear
systems of equations such as those generated by the discretization of elliptic partial
differential equations in two or three dimensions. In the past, many preconditioners have
been proposed which helped to make the PCG method very competitive for computer
implementation. Some of these preconditioners offer condition number improvement of
an order of magnitude, so that the overall operation count to achieve convergence is
greatly reduced. For example, the modified incomplete LU factorization with natural
ordering was widely used on sequential computers. However, such preconditioners often

* This work was supported in part by the Department of Energy under contract DE-FGO3-
87ER25037, the National Science Foundation under contracts NSF-DMS87-14612 and BBS 87
14206, and the Army Research Office under contract DAAL(3-88-K-0085.
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have the property that they are very much sequential. For example, the maximum degree
of parallelism of the MILU preconditioner is O(+N ) where N is the number of unknowns.
Thus, these sequential preconditioners are unable to exploit efficiently the computational
resources offered by massively parallel compuiers such as the CM, as it will be shown
later from the experimental results. Other preconditioners, such as the red/black ordering
version of the MILU preconditioner, have a high degree of inherent parallelism.
Nevertheless, experiments and analyses have shown that these parallel preconditioners
often improve the condition number by a small constant, resulting in only small improve-
ment in overall execution time performance. The conflict between fast convergence rate
and high degree of parallelism in a preconditioner should prompt researchers to search
for better preconditioners based not only on the criterion of best improvement on condi-
tion number or least operation counts, but also high degree of parallelism. (Ref. 1) has
an excellent survey of the performance of many preconditioners on vector and parallel
computers. The purpose of this paper is to address the implementation of preconditioners
on one particular parallel single-instruction-multiple-data (SIMD) computer, namely, the
Connection Machine,

This paper presents the results of implementation of a number of preconditioners on
the CM. Among these preconditioners are : incomplete LU (ILU) factorization with
natural ordering and red/black ordering, Modified incomplete LU (MILU) factorization
with natural ordering and red/black ordering, symmetric successive overrelaxation
(SSOR) with natural ordering and red/black ordering, several polynomial preconditioners
and the hierarchical basis preconditioner. In section 2, the basic conjugate gradient
method, different types of orderings, as well as the detailed formulation of the precondi-
tioners are covered. In section 3, details of implementation are presented. In section 4,
the iteration counts as well as CM execution times and MFLOPS counts achieved on the
CM for different preconditioners will be presented and observations will be discussed.

2. The Preconditioned Conjugate Gradient Method
2.1 The Preconditioned Conjugate Gradient (PCG) Algorithm

The PCG algorithm for the solution of a large sparse symmetric positive definite
linear system of equations

Au=b 2.1

where A is an N X N symmetric positive definite matrix and u and b are N x 1 vectors, is
given as follow : 2



r=b-~Au ; initial residual

p=0

Repeat
z=M1r ; preconditioning
B=new <r, z> / old <r, z>
p=z+Bp ; updating direction
Q=new <r, z> /[ <p, Ap>
u=u+op ; updating solution
r=r-oAp ; updating the residual

until <r, r> < tolerance

where <, -> denotes the usual Euclidean inner product, and r and p are N x 1 residual
and search direction vectors respectively.

The matrix M is called the preconditioning matrix and the speed with which the
algorithm converges depends strongly on the choice of M. It is desirable to have M
approximate A so that the condition number x (M~! A) is smaller than that of A alone,
that M retains the sparsity feature, and that the computational overhead to solve the sys-
tem of equations

Mz=r 2.2)

is relatively small.

2.2 Model problems and orderings

Consider the Dirichlet boundary value problem
~Qu — (guy)y =rxy)  onQ=(0,1 (2.32)
uxy)=gxy) on 0Q (2.3b)

where p (x,y), g (x,y) and r (x,y) are smooth functions and p (x,y) and g (x,y) are positive
on Q. The formulation in the rest of this section assumes p (x,y)=g{&x,y)=1 and
r(x,y) = g (x,y) = 0 (Poisson equation with zero boundary condition). The 5-point finite
difference approximation of the Poisson problem is

Wit kH o1 i ka1 FU 1 —41 = b h? k=1, -, n—1 where n = -;1-; (2.4)

where h is the grid spacing in both the x and y directions and u; ; is used to approximate
the value of u (jh,kh). In terms of the shift operators, the problem can be rewritten as

h? £
4

1 - _
Ajpijp=- , Aj_k=1—-2-(Ex+Exl+Ey+Ey1), (2.5)
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where E, and E, are shift operators along the x and y directions, such that

— -1 — — -1 -
Exupp=ujir e » Ex Uie=Uje » By wje=wjuq » Ey =i .
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1LCICIVIG, d‘].k Iy a ueal p 1diul dl LIC guu PU.{I!{. Uﬂ, KAL), £ SICEIGLL IC}JI CIILAliull Ul
operator A;; can be found in (Ref. 3,4). A collection of local operators A;; at all grid
points together with the way that the grid points are ordered form the coefficient matrix
A.

The ordering of grid points on the 2-D grid determines the form of the coefficient
matrix A and also that of the preconditioners. Using the natural ordering, grid points are
ordered in row-wise (or column-wise) manner. And using the red/black ordering, grid
points are first partitioned into red and black groups such that a grid point (j,k) is red if
J + k is even and black if it is odd. Then the grid points within red group are ordered, fol-
lowed by the ordering of the grid points within the black group. In the context of parallel
computation, the natural and red/black orderings evolve into their parallel versions,
which are called diagonal and parallel red/black orderings respectively. These two (par-
tial) orderings are defined as follow

Diagonal ordering
G,kY<(m,n) if j+k<m+n,
Parallel Red/black ordering
G.kY<(m.,n) if (j,k)isred and (m ,n)is black,

where the order of updates during preconditioning is determined by the inequality condi-
tion (e.g. in ascending or descending order). The stencil representations of these two ord-
erings for the grid points on a uniform 6x6 square grid are illustrated in (Ref. 4). For the
diagonal ordering, the grid points that have the same sum j+ & can be performed in
parallel, and the same is true for the red/black ordering where the grid points are of the
same color. This means that if this problem is solved on a parallel computer, then a
sweep (or one iteration) using red/black ordering can at best be computed in constant
time (independent of the number of grid points) while a sweep using diagonal ordering
can at best be computed in O (VN) time, where N is the number of grid points. Here we
can see that the parallel red/black ordering offers higher degree of parallelism ( O (N)
operations can be performed in parallel ) than the diagonal ordering (at most O (\N)
operations can be performed in parallel). Nevertheless, the convergence rate improve-
ment of the preconditioners using diagonal ordering are usually better than those using
parallel red/black ordering.

The red/black ordering can be generalized to the multi-color ordering. The grid
points can be colored using, for example, four different colors using the same idea as the
red/black ordering with no grid points of the same color adjacent to each other. A large
number of different types of ordering and their convergence rate performance can be
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found in (Ref. 5,6). Only red/black ordering will be implemented in this experiment.

2.3 Preconditioners

The preconditioners implemented in this experiment are described in the following
sub-sections.

2.3.1 Incomplete LU (ILU) preconditioners %°
2.3.1.1 ILU with diagonal ordering

The family of ILU preconditioners has many variations. One such ILU precondi-
tioner can be defined as

My=L U such that Mi(i,j)=A(,j)forall A(i,j)#0 (2.6)

where L and U are lower and upper triangular matrices respectively and L has unit diago-
nal. The coefficients of the L and I/ matrix can be calculated by performing an LU fac-
torization on M;. On some computers when minimizing the use of memory space is an
important issue, a different formulation can be used which is called the incomplete
Cholesky factorization and the corresponding conjugate gradient method is called the
ICCG method. The preconditioning step of incomplete Cholesky factorization, however,
requires more arithmetic operations than the ILU, and since memory space is not a major
problem in this experiment, the ILU preconditioner is to be preferred. The coefficients of
the L and U matrices for problems with periodic boundary condition can be calculated in
a much simpler way as described in the following (Experimental results shows that using
this formulation for the Poisson problem with Dirichlet boundary condition gives more or
less the same iteration counts.)

=1 -1 -1 _ 1 1
Lj,k“‘z(a"Ex -E7), Uj,k—l_zEx-;Ey, (2.7a)

where @ is a constant to be determined. The product of L; ; and Uj « is thus

1 2 _ o 1 _ -
M,U,k)mz{a+;-(5x+Ey+Ex L+ E, 1)+-;—(ExEy Y+EE))  (27b)

By matching the entries of M and A according to the requirement formulated above,
the following condition is obtained

a+ 2. 4. (2.7¢)

a
The solutions of this equation are a = 2 ++2, We use a = 2+ +2 since the coefficients of
the corresponding difference operator Ry = M; — A have smaller absolute values. Thus,
the diagonally-ordered ILU preconditioning consists of a forward solve (I.™!) followed
by a backward solve (U™'). Due to the sequential nature of the diagonally-ordered ILU
preconditioning, these forward and backward solves can at best be performed in O (VN )



time on parallel computers.

2.3.1.2 ILU with parallel red/black ordering

‘The Jocal operators L, and U for the paraliel red/black ordering are

i, (.k) red
Lix= 1 . _ , (2.82)
P - 7 B +Ex' +E,+EJYY , (j.k) black
1- % (Ex +E' +E, +E5' ), (k) red
Uie= (2.8b)
Al
= (j,k) black
4
The parallel red/black ILU local operator can be formed as follows
Mpp oy =
1—-:11-(Ex+Ex‘1+Ey+E;1), (k) red
s 1 , (2.8¢)
T T EAER HEAE) + TeBx+Ex + By + E5)? (k) black

Again, this preconditioning consists of a forward solve (L) followed by a back-
ward solve (UU1). In this case, however, since all the red points can be updated in paral-
lel and so can the all the black points, the solves can at best be done in constant time. The
stencil representations of the local operators for the diagonally-ordered and parallel
red/black-ordered ILU preconditioners can be found in (Ref. 4).

2.3.2 MILU preconditioners %10
2.3.2.1 MILU with diagonal ordering

Again there are many variations within the class of MILU preconditioners.!® One
such MILU preconditioner with diagonal ordering is defined as follows

with the requirements that My(i,/) = A (i,j) for all A(i,j)#0i #j and the sum of the
entries of each row of the error matrix Ry = My, — A equals 8 = ch?, where h is the grid
spacing and ¢ is a nonnegative constant that is independent of 4. For the model Poisson
problem with Dirichlet boundary conditions, the L and U matrices can be calculated by
performing an LU decomposition of the My matrix. For the model Poisson problem



-7-
with periodic boundary conditions, the local operator can be obtained as

My o =—la+2 - (B, +E, +E~ +E) + LEE" +EE) (29

M(i,k)—'d__[a“}";_(x'i' yt &gy "+ y )+;(xy +Ex y)] (2.9b)

Again, equating the entries of M), and A according to the requirements, we have

a+i—4=8. (2.9¢)
a
By solving the above equation, we obtain
a=2+%+%\/88+82 2.9d)

The steps involved in this preconditioning are the same as those of the ILU with
diagonal ordering. Hence, this preconditioning can at best be completed in O (VN ) time
on parallel computers.

2.3.2.2 MILU with parallel rediblack ordering

The local operators L; x and U ; for the parallel red/black ordering are

1+9, (j,k) red
Ljk= 1 1 i 3 , (2.10a)
1+8——I—;—8“—I(Ex+Ex +Ey+Ey Y, (k) black
1 -1 -1 ,
11— +
Ue={' " 7(1+08) T E *ETES), Ghyred (2.10b)
1, (j,k) black
where 8 has been defined in the previous sub-section.
Again, we obtain the parallel red/black-ordered MILU preconditioner as
Muygep (k) =
1 - - .
1+6m~2-(Ex+Ex1+Ey+Ey1), (j,k) red
11 ) (2.10c)
148~ —— (B, AE +Ey+E Yo m He :
& 5 2 (ExtEy +Ey+Ey " »+ T6(155) (Ex+E;"+E\+EV ), (j,k) black

This preconditioner, as in the ILU preconditioner with parallel red/black ordering,
takes constant time independent of the number of grid points, N, on parallel computers.
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2.3.3 Symmetric Successive Overrelaxation (SSOR) precondtioners 47,1011
2.3.3.1 SSOR with diagonal ordering
The SSOR preconditioner is defined to be
Mg=(D-oL)D Y (D-wLT), (2.11a)

where D and L are diagonal and strictly lower triangular matrices respectively and and o
is the relaxation parameter such that

A=D-L-LT. (2.11b)

For the model Poisson problem with diagonal ordering and periodic boundary con-
ditions, the partitioning leads to the following local operators :

1 _ - - 1
Djx=1, Ljx=— (E Y+E™), L,-,T———I(Exw,,). @.11c)
The product Mg ; &) is thus
Ms i = 1= (BB 4B B, )+ 8 4,V E, +EE, 2.11d
S(J.k)""'""Z'(x‘i'y"'x "}’y )‘i“ig'('f“x y+xy ). (2. )

Again, as in ILU and MILU preconditioners with diagonal ordering, this precondi-
tioning also takes O (YN time on parallel computers.

2.3.3.2 SSOR with parallel red/black ordering

For the model Poisson problem with parallel red/black ordering, the partitioning
leads to the following local operators :

Djy=1, (2.12a)
0, (j,k) red
L= 2.12b
ik -i-(Ex +E;' +E,+Ey' ), (k) black (2.120)
1 -1 -1 :
Uj,k ={7 (Ex + Ey +E, +Ey ), U.k)red (2.12¢)

0, (j.k) black

Therefore, we obtain the parallel red/black-ordered SSOR preconditioner as 7



Mg, ) =

1- 7 (Bx+E; +Ey+ B ), U.k) red
4 ) (2.12d)
1= 2 (B A B B +E; o S (B AEC Y E,+ES Y, (k) black

4(x x Ty y)16(x+x y y): U, ac

.

2.34 Polynomial preconditioners >~17

2.34.1 m-step Jacobi preconditioner

The m-step Jacobi preconditioner approximates the inverse of the matrix
A =(I-B )P} by using the truncated Neumann series expansion,

AT =P(I-BYy'=P(I+B+BY+ - +B" ) =M}, . (2.13)

where, in operator form, B = E, + E;l +E,+ E;l.

2.3 4.2 Parametrized polynomial preconditioner

In general, we can consider the polynomial preconditioner as
~1 m-1 ! .
Mgpmy= X B, (2.14)
=0

so that the coefficients ¥;, 0 <7 <m, can be chosen to minimize a certain objective func-
tion. Examples of such preconditioners are the least-squares polynomial preconditioner
and the min-max polynomial preconditioner.’’ Only the least-squares preconditioners
with m=2,3 and 4 will be implemented here.
2.3.4.4 Other polynomial preconditioners 1*

The same idea for parametrized polynomial preconditioners can be applied to a
different splitting - for example, the SSOR splitting. This gives rise to the m-step SSOR
preconditioners. A variation of this is the multi-color m-step SSOR preconditioner. No
implementation for this preconditioner is included here.

The polynomial preconditioners formulated above are very good candidates for
paraliel computation. If the P matrix is the identity matrix, then the m — 1 steps for the
m-step Jacobi preconditioning amount to m ~ 1 iterations of the basic Jacobi method fol-
lowed by accumulating the results of the iterations. As the basic Jacobi method offers a
very high degree of parallelism (all grid points can be updated at the same time), so does
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this m-step Jacobi preconditioner. Thus, on massively parallel computer systems such as
the CM, the m-step Jacobi preconditioning takes O (m) time.,

O A2at ... 18,19

g
]
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Another class of preconditioners which is effective in reducing the number of itera-
tions required for convergence is based on a hierarchical basis formulation of the finite
element discretization of the problem domain. Define the preconditioner as

My, =S ST (2.15)

where S operating on a vector is equivalent to sweeping through the levels in ascending
order (fine to coarse grid) and accumulating the operations of the grid points on the fine
grid to those on the coarse grid; and ST operating on a vector is equivalent to sweeping
through the levels in descending order (coarse to fine grid) and accumulating the opera-
tions of the grid points on the coarse grid to those on the fine grid. Since the total number
of levels is O (log n) where n is the number of grid points in each of the x or y direction
and the operations performed on each level take O (1) time, this preconditioning process
can at best be done in O (log n) time.
2.4 Convergence rates*7?0

The convergence rates of the conjugate gradient method with different precondition-
ers for the model Poisson problem, which depend on both the corresponding condition
number as well as the distribution of the eigenvalues of the preconditioned system, can
be studied either by matrix iterative analysis or by Fourier anadysis.4 A summary of the
results of the Fourier analysis of the preconditioners can be found in (Ref. 4).

3. Implementation

3.1 The Connection Machine

The detailed description of the Connection Machine can be found in (Ref. 21-23).
The CM used in these experiments is a 16k-node CM-2 running at a clock frequency of
about 6.7 MHz. The language used for program development was *LISP. During the
experimental phase, it was found that if single-precision floating point numbers were
used, there was a discrepancy between the recursively computed residual and the actual
residual. Hence, it was decided to use double-precision floating point numbers
throughout the experiments.

3.2 Processor mapping

The 2-D model problem can be nicely mapped onto the 2-D NEWS grid of the Con-
nection Machine. Depending on the ratio of the number of grid points to the number of
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available physical processors, each physical processor simulates one or more grid points.
To run a 128 x 128 grid problem, the following configuration command in *LISP can be
used :

(*cold—boot :initial —dimensions ‘(128 128))

In this case, since there are altogether 128 x 128 = 16384 grid points and we have 16384
(16k) physical processors, each physical processor can perform the computations for a
single grid point, Suppose 65336 (256 x 256) grid points are to be simulated but the same
number of physical processors (16k) are available, then each physical processor has to
take the computation load of 4 grid points. By using the virtual processing capability of
the CM, this mapping (the mapping of 4 grid points to one physical processor) is tran-
sparent to the users and is performed automatically when the

(*cold—~boot :initial —dimensions '(256 256))

statement is executed.

An advantage of mapping the problem on the 2D NEWS grid is that the neighboring
grid points are mapped to neighboring processors; and since the communication over-
head between neighboring processors using the NEWS communication is extremely fast,
and that most of the communications are between local grid points in most cases, good
total execution time performance can be expected.

One major concern is that if each processor simulates one grid point and red/black
ordering is used, then only half of the processors will be active during updating the black
or the red grid points, resulting in low processor utilization, It happens that the virtnal
processing capability on the CM can handle this problem elegantly : if the number of grid
points is less than or equal to the number of physical processors available, then some pro-
cessors will be idle in any case, and there is no way to improve the utilization of the pro-
cessors. Suppose the number of grid points is 4 times as many as the number of physical
processors, then by using the *cold—boot as described above, two black and two red
points will be mapped to each physical processor. Here we can see that the physical pro-
cessors will be kept busy all of the time, computing either black or red points.

Another concern is how the boundary grid points are handled. Since no computa-
tion is needed for the boundary grid points other than providing data to their neighbors,
one way is not to map them to any processors. During computation, these processors that
simulate the grid points which are located next to the boundary grid points will be per-
forming slightly different tasks from the other interior processors. An example is the
local operation A;; which requires fetching data from four neighbors (north, south, east,
and west). Since these next-to-boundary grid points have one or two neighbors missing
(e.g. the grid points at the upper right hand corner will not have east and north neigh-
bors), they have to execute this operator a little differently. Because the CM is a SIMD
machine and cannot execute two different active operations simultaneously, the updating
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of interior and next-to-boundary grid points have to be done in two separate steps, result-
ing in longer execution time. Another way is to map boundary grid points also to actual
processors, The drawback to this scheme is that these boundary processors will be idle
most of the time. However, since the operations to be performed on all interior proces-
sors will be identical, the updating takes only one step, resulting in shorter execution time
compared to the first scheme. This latter scheme is chosen for our implementation for
reasons that it is simple to implement and it will probably give better performance.

To distinguish between the boundary grid points and the interior ones, a parallel
boolean variable, grid—interior —flag, is declared which is set to true for the interior grid
peints, and faise for the boundary grid points. Every time computation is to be per-
formed only on the interior processors (or grid points), the following *LISP statement
can be used to achieve the desired results.

(*when grid-interior-flag (do something to the grid points))

3.3 The preconditioned conjugate gradient method on the CM

3.3.1 Implementation of basic conjugate gradient iteration

One iteration of the PCG method requires 3 inner products (including the residual
calculation), 3 multiply-and-add operations, 1 matrix-vector product calculation, 2 scalar
divisions, one comparison, plus the computations required for preconditioning. Let’s
look at how each of these operations is performed on the CM.,

3.3.1.1 Multiply-and-add operation (SAXFPY)

This operation is in the form of y=ax +b where x and b are vectors and a is a scalar.
If each processor takes care of one element in the vector and the scalar a is supplied by
the host system, then the tasks performed by each processor are first to receive the a, then
multiply a by the x which is stored within the processor, and lastly add to this product the
variable b which is also stored within the processor. The *LISP version of this operation
is
(*when grid-interior-flag (*set pvar-y (+!! (*!! pvar-x (! a)) pvar-b)))

The time to perform this operation depends only on the virtual processor ratio
(number of grid points per physical processor) and this ratio depends on the total number
of grid points and the total number of available processors. For a particular virtual pro-
cessor ratio (VP ratio), this operation takes constant time.

3.3.1.2 Matrix-vector product
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The matrix in this case is A, which, when operating on a vector, is equivalent to the
parallel execution of the local operator A;; (defined previously) on each element of the
vector. For the Poisson problem, each processor adds the data fetched from the proces-
8018 to its north, south, east, and west, divides the sum by 4, and subiracis the quotient
from its own data. In *LISP code, it can be represented as

(*when grid-interior-flag
(*set pvar-ap (-!! pvar-p
(1
(news!! pvar-p 1 0)
(news!! pvar-p 0 1)
(news!! pvar-p -1 0)
(news!! pvar-p0-1)
)
(11 4.0)

where the ‘news!!” function has 3 arguments - the variable to be fetched from the desti-
nation processor, the relative distance of the destination processor in the x-direction, and
the relative distance of the destination processor in the y-direction respectively. (The
piece of code described above reflects the change in the software release 5.0. The old
version used ‘pref-relative-grid!!’ instead of ‘news!!’.) Here the parallel variables ‘pvar-
p’ and ‘pvar-ap’ are the inputs and outputs respectively.

Again, this operation can be done in constant time for a particular VP ratio.

3.3.1.3 Inner Product

The inner product has been known as a bottleneck to the performance of the PCG
method. It is important that this inner product operation can be done efficiently. It can be
observed that the hypercube configuration of the CM helps to speed up this computation.
It allows multiplication to be done in parallel in all processors, and the the partial sums
are accumulated in the form of a binary tree. The *LISP code for inner product calcula-
tion is

(*when grid-interior-flag (setq inner-product (*sum (*!! pvar-r pvar-r))))

3.3.14 Others

Other computational needs include 2 scalar divides and 1 comparison for
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convergence. These computations are performed on the front end computer and require
constant time.

In summary, without considering the preconditioning, the overall computation time
for each iteration on the CM is dominated by the inner product operation. Even though
the parallel computational complexity of the inner product computation is O(log N)
where N is the number of grid points, it can be seen later that the performance of the
inner product calculation on the CM is comparable to the other operations such as the

SAXPY operation.

3.3.2 Implementation of preconditioners

For preconditioning, depending on whether diagonal ordering or red/black ordering
1s used, the way to map the preconditioning algorithms on the CM and the order of com-
putation times can be quite different.

3.3.2.1 Implementation of preconditioners with diagonal ordering

Assuming that grid points (1,1) and (n,n) are located at the lower left and upper
right corners of the domain respectively, then the L-solve starts at the grid point (1,1) and
updates one diagonal at a time until grid point (n,n) is reached, where n is the number of
interior grid points in each dimensions. This constitutes a wavefront moving from the
lower left corner to the upper right comer and is called a forward sweep. During the for-
ward sweep, each active processor (those processors located on the wavefront) updates
its grid point value by averaging with the corresponding variables fetched from its south
and west neighbors. The *LISP code is

(*when processor-is-active
(*set pvar-destination
(-!! pvar-source
(*!! pvar-a (news!! pvar-destination -1 0))
(*!! pvar-b (news!! pvar-destination 0 -1))

where pvar-a and pvar-b are weighting factors corresponding to the entries in the unit
lower triangular L matrix (recall M = LU).

The backward sweep (or the U-solve) can be performed similarly except that now
the sweep starts at grid point (n,n) and proceeds to grid point (1,1). Also, since U does
not have unit diagonal, an additional division is needed. ’
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The way to select a diagonal of grid points to be updated and leave the other proces-
sors idle can be achieved by the use of a parallel boolean variable. This variable is ini-
tially set to false on all processors except the one corresponding to grid point (1,1). The
‘true’ value of this variable can be programmed to propagate diagonally. This technique
can be applied to the ILU, MILU and SSOR preconditioners with natural ordering. For
diagonal ordering, since there are O (YN ) diagonals in a 2-D grid, the corresponding
preconditioning takes O (WN) time.

3.3.2.2 Implementation of preconditioners with red/black ordering

The preconditioners with red/black ordering can be implemented using two parallel
boolean flags, namely the red and the black flags, which indicate whether the correspond-
ing grid point is red or black point. When selecting the red points for updating, this can
be done by

(*when red-flag (do something to the red points))

and the black points can be updated in the same way. For red/black ordering, since all
the red points can be updated in parallel, and so are the black points, the corresponding
preconditioning only takes constant time. This technique is used on the implementation
of ILU, MILU and SSOR preconditioners with red/black ordering.

3.3.2.3 Implementation of polynomial preconditioners

During each step of the m-step Jacobi preconditioning (for the Poisson problem), all
processors corresponding to the interior grid points are active and they all fetch data from
their north, south, east and west neighbors by performing

(*when grid-interior-flag
(*set pvar-destination
(/1 (+!! (news!! pvar-destination 0 1)
(news!! pvar-destination 1 0)
(news!! pvar-destination 0 -1)
(news!! pvar-destination -1 0)
)
(11 4.0
)
)
)

and this is to be performed m-1 times and the pvar-destination is is to be accumulated.
With a fixed VP ratio, the polynomial preconditioning takes O (m) time.
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3.3.2.4 Implementation of the hierarchical basis preconditioner

This preconditioning step involves sweeping upward or downward through all the
levels. At each level, the grid points belonging to the corresponding level need to com-
municate with processors which are at a relative distance of a power of 2 away in the x
and/or y direction. This can be achieved by using either the NEWS!! or the *SETF func-
tions depending on whether the active processors are receiving or sending data respec-
tively. To identify the level to which a grid point belongs, a parallel integer variable is
used to store the level number. Moreover, since three types of communication patterns
are required depending on where the grid points are located, some mechanism is needed
to distinguish them. (Refer to Ref. 19 for details.) There are several ways to achieve this,
and the way used here is to create another parallel variable to do the job. Once all these
criteria have been established, the details of implementation is straightforward; thus they
are not to be narrated.

3.4 Experiments

The PCG method was applied to the model problem described in section 2.2 with
different values of ¢ (x,y). In particular, the following sections describe the numerical
experiments that were performed.

'3 4.1 Experiment 1

The model problem was the Poisson equation with p(x,y)=q&,y)=1,
rx,y)=g&,y)=0 and initial guess #(0)=1. Various preconditioners were used as
listed below using n =33, 65, 129, 257 and 513. The stopping criterion used was
e 1/ rg 111078,

s  Conjugate gradient method without preconditioning (CG)

e PCG - ILU with diagonal ordering (ILU diagonal)

e PCG - MILU with diagonal ordering (MILU diagonal)

e PCG - SSOR with diagonal ordering and @ = 1 (SSOR diagonal)
s PCG - ILU with red/black ordering (ILU (R/B))

e PCG - MILU with red/black ordering (MILU (R/B))

e PCG - SSOR with red/black ordering and @ = 1 (SSOR (R/B))

e  PCG - m-step Jacobi preconditioner (different m were used)
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e PCG - least-squares polynomial preconditioner with m = 2 where v, =7/6 and
Y =5/6 (LS2)

e PCG - least-squares polynomial preconditioner with m = 3 where Yy =35/32,
Y =50/32 and ¥, = 35/32 (LS3)

e PCG - least-squares polynomial preconditioner with m
Y1 =49/40, v, =91/40 and 5 = 63/40 (1LS4)

4 where vy = 37/40,

e  PCG - hierarchical basis preconditioner (PCGHB)

3.4.2 Experiment 2

The same model problem was used with p (x,y) = 1, ¢ (x,y) = 10 and the rest are the
same as in experiment 1. Only the preconditioners that give relatively good performance
in experiment 1 are used in this experiment.

3.4.3 Experiment 3

The same model problem was used with p (x,y) =1, g (x,y) = 100 and the rest are
the same as in experiment 2.

For each of the experiments, the following types of data are to be obtained :
¢ the iteration counts to achieve convergence, and

¢ the execution time on the CM.

4, Results and discussion
4.1 Results
The iteration counts for experiment 1 are shown in Table 1. These iteration counts

can be used to verify the results of theoretical analyses based on Fourier analysis.* The
corresponding CM cpu times are shown in Table 2,
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Table 1 ; Iteration counts for experiment 1

Preconditioner Hteration counts

n=33| n=65| n=129{ n=257| n=513

CG 53 103 203 397 772

ILU (diagonal) 8 14 23 42 69
MILU (diagonal) 9 12 18 25 34
SSOR (diagonal) 9 13 17 25 34
ILU (R/B) 26 52 101 199 386
MILU (R/B) 34 60 113 225 421
SSOR (R/B) 26 52 101 199 386
2-step Jacobi 26 51 101 197 384
4-step Jacobi 19 37 71 139 270
6-step Jacobi 15 30 58 113 220
8-step Jacobi 13 26 50 98 191
|y 29 56 110 216 421

LS3 21 42 82 161 315

LS4 16 32 62 122 | - 238
PCGHB 31 38 44 48 53

Table 2 : CM execuation time for experiment 1

Preconditioner CM cpu time (in sec)
n=33| n=65| n=129 | n=257| n=513
CG 29 5.6 il 51 319
ILU (diagonal) 35 115 370 --- -
MILU (diagonal) 24 73 210 --- ---
SSOR (diagonal) 27 78 230 ---
ILU (R/B) 2.6 52 10.1 47 292
MILU (R/B) 4.2 7.6 13.9 63 387
SSOR (R/B) 24 4.7 9.1 43 276
2-step Jacobi 21 4.2 7.9 37 235
4-step Jacobi 2.1 4.0 74 36 228
6-step Jacobi 21 3.8 7.6 38 236
8-step Jacobi 22 43 7.8 39 249
152 3.2 6.3 12.3 51 306
1.53 3.0 6.0 it.5 49 294
154 28 3.6 10.9 45 269
PCGHB 10.8 17.7 26 78 337

The MFLOPS for the PCG procedures in experiment 1 were calculated and shown
in Table 3. To calculate the MFLOPS, only the standard floating point arithmetic opera-
tions such as addition and multiplication were counted. Operations such as data copying,
logic evaluations and data communication operations were ignored.
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Figure 2 : m-step Jacobi Preco:nditioner - T(m)/T(2) versus m

Also the iteration counts and the CM execution times for experiments 2 and 3 are
shown in the following tables.

Table 4 : Iteration counts for experiment 2

Preconditioner Iteration counts

n=33] n=65| n=129| n=257| n=313

CG 82 159 308 594 1155

ILU (R/B) 41 79 i54 297 577
SSOR (R/B) 41 79 154 297 577
2-step Jacobi 41 79 154 296 51
4-step Jacobi 29 56 109 200 404
6-step Jacobi 24 46 89 171 330
LS3 33 64 125 242 472
LS4 25 49 95 183 353

Table § : CM cpu time for experiment 2
Preconditioner CM c¢pu time (in sec)

n=33] n=65! n=129| n=257{ n=3513

CG 4.6 8.9 17.2 82 547

ILU (R/B) 5.0 9.5 184 81 507
SSOR (R/B}) 46 8.8 17.1 76 480
2-step Jacobi 37 7.2 13.9 64 363
4-step Jacobi 3.5 6.8 13.2 65 389
6-step Jacobi 3.8 7.3 14.2 69 407
LS3 49 9.5 18.5 78 475

LS54 46 9.0 174 72 431
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Table 3 : MFLOPS on CM for the preconditioners for experiment 1

Preconditioner MFLOPS

n=129| n=257§ n=>513

CG 4.5 1.7 9.5

ILUJ (diagonal) 0.079 - -

MILU {diagonal) | 0.068 - ---

SSOR (diagonal) 0.065 - -

ILU (R/B) 3.7 6.3 78

MILU (R/B) 31 53 6.6

SSOR (R/B) 4.0 6.6 8.1

Z-step Jacobi 4.6 7.7 94

4-step Jacobi 5.0 8.2 9.9

6-step Jacobi 53 8.3 10.2

8-step Jacobi 55 8.6 10.5

L.S2 35 6.6 8.7

LS3 35 6.5 8.4

LS4 34 64 8.4
PCGHB 0.65 0.95 0.97

To examine the relationship between the number of terms used, the iteration counts
and the CM execution times for the m-step Jacobi preconditioner, the iteration counts and
execution times were plotted as in Figure 1 and 2.

- . . . proen o

[N

S13x513 grid

. 2575257 grid

e -
C T 129129 grid

iteration counts

L : T T g5K6Sgrid

3x33 grid

101 i % i i A L -

number of terms used {m)

Figure 1: m-step Jacobi Preconditioner - Iicration counts versus m
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Table 6 : Iteration counts for experiment 3

Preconditioner Iteration counts
n=33 | n=65| n=129| n=257| n=513
CG 106 227 441 830 1547
oLU R/B) 53 113 220 415 773
SSOR {R/B) 53 114 220 415 773
2-step Jacobi 55 115 224 420 788
4-step Jacobi 40 83 158 297 555
6-step Jacobi 33 68 129 242 452
LSs3 46 93 180 338 673
1S4 34 71 135 256 478
Table 7 : CM cpu time for experiment 3
Preconditioner CM cpu time (in sec)

n=33| n=65| n=129| n=257| n=513

CG 6.3 134 26.2 115 725

ILU (R/B) 6.4 13.7 26.3 113 677
SSOR (R/B) 5.9 1279 243 106 640
2-step Jacobi 5.0 10.5 20.2 88 538
4-step Jacobi 49 10.1 9.2 89 532
6-step Jacobi 55 112 214 94 555
Ls3 6.9 13.8 26.6 109 639
LS4 6.3 13.0 248 101 582

two-operand addition (ADD)
data copying (COPY)

To evaluate the performance of the PCG method on the CM, the execution time
statistics were gathered on some basic operations of the PCG algorithm. These statistics
were taken by averaging the CM cpu times from a few sample runs with each run per-
forming the corresponding operations (on parallel variables) 100 times. Table 8 shows
that MFLOPS counts of the operations using double-precision floating point numbers
while Table 9 shows the MFLOPS count when single-precision floating point numbers
are used. The CM used to gather the statistics is the CM-2 with 16k nodes and with
single-precision floating point hardware. The operations to be examined are :

two-operand multiplication when both operands are parallel variables (MULT)
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e  two-operand multiplication when one operand is a scalar variable (MULTA)
e  multiply by a scalar and add to a parallel variable (SAXPY)

e two-operand division when both operands are parallel variables (DIV)

® two-operand division when one operand is a scalar variable (DIVA)

e  data communication using NEWS grid when distance = 1 (COMM)

¢  matrix-vector multiplication involving 4 neighbor processors (MVP) which consists

of 5 multiplication and a 5-operand addition

inner product calculation (INNER)

Table 8 : CM execution time for different types of operations (double-precision)

128x128 grid | 256x256 grid | 512x512 grid
operation MFLGPS MFLOPS MFLOPS
ADD 13.3 144 149
COPY 117 234 320
MULT 8.3 9.0 9.1
MULTA 2.5 5.4 3.7
SAXPY 44 8.0 112
DIV 33 i4 34
DIVA 17 2 33
COMM 3.5 64 100
MVP 1.0 11 1.2
INNER 1.9 3.3 38
Table 9 : CM execution time for different types of operations (single-precision)
128x128 grid | 256x256 grid | 512x512 grid
operation MFLOPS MELOPS MFLOPS
ADD 87 160 180
COPY 328 392 548
MULT 99 152 169
MULTA 3.6 13.7 43
SAXPY 3.5 12.8 36
DIV 78 96.4 107
DIVA 3.5 129 37
COMM 67 119 167
MVP 64 11.1 i4.1
INNER 234 74 153

It can be observed that single-precision floating point operations are much faster
than the double-precision floating point operations. The reason is that single-precision
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floating point operations are performed in the floating point hardware which is much fas-
ter than the single-bit processors. Another observation from the tables is that NEWS
communication and data copying are much faster than the arithmetic operations. Also
the inner product time is not much worse than, for example, MULTA even though the
former was expected to run in O(P) time where P is the number of processors and the
latter was expected to run in O(1) time.,

Still another observation is that the increase in VP ratio improves the MFLOPS per-
formance consistently. This behavior demonstrates the positive effect of virtual process-

ing.

4.3 Discussion

e  The execution times and MFLOPS obtained in this experiment seems to be far infe-
rior than the performances on the CRAY computers. For example, it was shown in
(Ref. 7), for example, that on the CRAY X-MP the PCG method using MILU
preconditioner on the 100x100 grid took only a fraction of a second to achieve con-
vergence, while it took about 7 seconds for the best preconditioner on the CM. This
poor relative performance is due to a few factors :

In this experiment, only one quarter (16k node) of the full machine is used. If
we assume a linear scaling factor, the full machine should perform four times
as fast.

Double-precision floating point numbers are used in these experiments. How-
ever, the CM used was only equipped with single-precision floating point
hardware. As a result, the double-precision floating point arithmetic opera-
tions have to be done on the single-bit processors which are much slower.
(Refer to Table 8 and 9.) If the CM used had double-precision floating point
hardware, significant improvement in performance would have been possible.
(The reason why double-precision floating point numbers are needed is
explained in section 3.1.)

Since the purpose of this experiment is to compare the relative performances
of the preconditioners, no effort was put to optimized the program code. The
source program was interpreted rather than compiled. Using optimized code
should help improve the performance.

It was shown that high VP ratio will improve performance a great deal. When
100x100 grid is used on a 16k node machine, the VP ratio is only 1. If the
size of the problem is increased, better performance is expected.

Based on the above factors, it is believed that if everything mentioned is

improved, the MFLLOPS performance of the CM for the PCG method will be com-
parable to that of the CRAY.
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The first observation about the running time performances is that the speedup using
the best preconditioner (4-step Jacobi, as of Table 2) attempted is not even twice
that of the case without any preconditioning. One reason is that the performance of

inner nrndnr'r calenlation i comnarahle to that of the ather aneratinanc frafar in
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Table 8 and 9) and so the inner product calculation becomes less of a major
bottleneck. Another reason is that the basic conjugate gradient method requires only
two inner product calculations as opposed to three for preconditioned CG method.

From Table 1, we can see that although the preconditioners using diagonal ordering
give much lower iteration counts than the ones with red/black ordering, their perfor-
mance on the CM is very poor. The CM execution time of the MILU preconditioner
with diagonal ordering, for example, is about 15 times that of the the same precondi-
tioner with red/black ordering (refer to Table 2) for the 129x129 grid, spending
most of the time in preconditioning step. Thus, we can conclude that such precondi-
tioners with natural ordering are not good candidates on fine-grain massively paral-
lel computers such as the CM. However, it should be mentioned that if the CM is
having mesh-connected network instead of the hypercube network, the precondi-
tioners using natural ordering may turn out to be competitive, since then the inner
product time will be quite significant.

It can be observed from Figure 1 that with increasing number of terms used in the
m-step Jacobi preconditioning, the number of iterations needed to achieve conver-
gence oscillates but continues to decrease slowly. This agrees with the theoretical
analysis, as discussed in Ref. 12. However, from Figure 2, it can be seen that the
number of terms which gives optimal running time is 4 for all the experiments
attempted. This agrees qualitatively with the results obtained by others.?*

Even though the least-squares polynomial preconditioners give close to optimal con-
vergence rate improvement, their performances on the CM are worse than the m-
step Jacobi preconditioners. Comparing the 6-step Jacobi preconditioner with the
4-step least-squares preconditioner, it can be observed that they give more or less
the same iteration count for the Poisson problem. However, the former requires
more data communication and less multiplications than the latter. (This is true for at
least the isotropic and anisotropic cases). As the NEWS communication time is
much faster than the multiplication time as shown in Table 8, it is not difficult to
explain this result. It can be predicted that if the ratio of communication time to the
arithmetic computation time is increased, there is a point when the least-squares
preconditioners will be better. This demonstrates again the impact of architectural
characteristics of a parallel computer on the choice of a good preconditioner.
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e It was shown from experimental results (Ref. 5,6) that the use of different multi-
color orderings does have some effect on convergence rate. For example, 4-color
ordering preconditioners are generally better than red/black orderings in terms of
convergence rate performance. This behavior should suggest a relationship between
VP ratio on the CM (due to the use of finer grids) on the choice of orderings. For
example, suppose the VP ratio needed on the CM for a certain problem is four and
the red/black ordering is used and 2 red and 2 black grid points are mapped to one
physical processor. We can see that even though the 2 red grid points on a proces-
sor can potentially be updated at the same time, they can only be updated in two
passes. So in this case, if 4-color ordering improves convergence rate performance,
we might as well use 4-color ordering instead in this case.

e  The hierarchical basis preconditioner performs quite well on the CM even though it
is not the optimal one. It can be observed that the growth rate of the CM execution
time is less for the hierarchical basis preconditioner than for the others, implying
that this preconditioner may turn out to be better for much finer grids when the
number of physical processors is kept the same. The requirement for heavy global
communication and the relatively slow hypercube network on the CM (compared to
the NEWS communication) may be one major reason for the lower performance. A
richer and faster interconnection network will make this preconditioner very com-
petitive. It can also be observed that the MFLOPS for this preconditioner is quite
low, as is characteristic of multigrid-type algorithms.2> This demonstrates again that
MFLOPS achieved by an algorithm is not the sole determining factor for best per-
formance on parallel computers. (Ref. 25 has demonstrated this well for the mul-
tigrid method on the CM.)

5. Conclusion

The rapid growth of parallel computing has revived many numerical algorithms
which were deemed as inefficient on sequential computers. While the sequential compu-
tational complexity of an algorithm plays a major role in determining its competitiveness,
many other factors have to be taken into consideration in the context of parallel computa-
tions. The results of the numerical experiments were able to confirm some of these fac-
tors for the PCG method. From the algorithmic point of view, both the convergence rate
improvement and degree of parallelism are important factors to achieve high efficiency
on parallel computers. As these two factors have an adverse effect on each other,
tradeoffs have to be made to balance the two to get the best performance. From the
architectural point of view, the communication structure of the computers, the ratio of
communication speed versus the arithmetic speed also have major impact on the choice
of good preconditioners. In conclusion, the experimental results seem to suggest that
both the polynomial preconditioners and the hierarchical basis preconditioner ar¢ promis-
ing candidates on the CM-like computers.
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