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Abstract

We use Fourier analysis to study the behavior of a class of incomplete factoriza-
tion preconditioners for elliptic problems, which blends the classical ILU and MILU
preconditioners via a scalar relaxation parameter o € [0,1]. We obtain an expres-
sion for the eigenvalues of the preconditioned system from which we get information
on both the condition number K{a) and the eigen-distribution of the preconditioned
system. We derive an optimal value for o« and show that K(aopt) = O(h™1). The
Fourier results agree extremely well with numerical results for the model Poisson
problem. For example, they predict the sensitive behavior near a = 1 (MILU).
Finally, we showed that the relaxed methods are closely related (in fact identical

for periodic problems) to the classical “modified” ILU (MILU) method.
1. Introduction.

The class of incomplete factorization methods (ILU, MILU) [6,8] has been used

very successfully as preconditioners for linear systems of the form Az = b, especially

*This work was supported in part by the Dept. of Energy under contract DE-FG03-
87ER25037, the National Science Foundation under contract NSF-DMS87-14612, and the
Army Research Office under contract DAALQ3-88-K-0085.

iDept. of Mathematics, UCLA, Los Angeles, CA 90024.
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when A corresponds to discretizations of elliptic partial differential equations. The

ILU method computes an approximate LU factorization M of A based on Gaussian

Elimination in which fill-ins at the (7, 7)-th element is d

opped if (A);; = 0. In the
MILU method, the dropped fill-ins are added back to the diagonal entry plus an
additional term ch®, where ¢ is a constant and h is the mesh size. For matrices
A arising from discretizations of second order elliptic problems, it can be proved
[5,10,6,9] that the condition number K(M ~!A4) is bounded by O(h~?) and O(h™1)
for ILU and MILU(c # 0) respectively. Tests in [10] also showed that the number
of PCQG iterations for MILU varies very little with ¢. While these theoretical results
may indicate a clear superiority for the MILU method, it has been observed in some
practical problems that the MILU method (especially with ¢ = 0) does not work as
well as the ILU method [7]. This phenomenon led some researchers to consider a
relaxed version of the two methods, which is similar to the MILU method except
that only a fraction, say a € [0, 1], of the dropped fill-ins are added back to the
diagonal [2, 3, 7]. Thus, when o = 0 we get the ILU method; and when o = 1 we get
the MILU method with ¢ = 0. We shall denote this relaxed method by RILU{a)*.
Numerical experiments in [1, 2, 3, 7] indicate that the number of iterations needed to
reduce an initial residual by a fixed amount {when accelerated by the preconditioned
conjugate gradient method) typically behaves as in Fig. 1 (for a more accurate plot,
see {7]), which shows an extremely sensitive behavior near a = 1, especially for 3-
dimensional problems with badly behaved coefficients. This phenomenon has not
been well-understood. In [7], it is attributed to “an early loss of orthogonality in
the CG iteration, which spoils the convergence behavior”. A value of o = 0.95 is

recommended as a safe cure.

*If A is symmetric positive definite, the corresponding preconditioner has been called the
Relaxed Incomplete Cholesky (RIC) preconditioner in [2].
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Fig. 1. Convergence Behavior of the RILU(a) method

The main purpose of this paper is to analyze (in Sec. 2) the convergence
behavior of the RILU(«) method. The tool we shall use is Fourier analysis (following
the framework in [4]), which is similar to the von Neumann stability analysis for
finite difference schemes for time dependent problems. It is theoretically exact only
for constant coefficient problems with periodic boundary conditions, but results
in Chan-Elman [4] indicate that it can successfully predict the behavior of most
classical iterative methods and preconditioners even for more general classes of
problems with other boundary conditions. In particular, the results for the periodic
problem with a mesh size h, can be used to predict the convergence behavior of
the corresponding Dirichlet boundary condition problem with mesh size hg = 2hp.
In addition to deriving the condition number K (M ™!A), the Fourier analysis also
gives the eigenvalue distribution, which is extremely valuable in understanding the
convergence behavior of the method. Moreover, one can easily denive optimal values

for parameters of the method (such as a in the RILU(a) method).

For the RILU (a) method applied to the model Poisson problem, the Fourier
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analysis (Sec. 3) predicts an optimal value of agpy = 1 — 8sin® mh and K(oop) =
s=h~1+0(1). The estimate for I{(aqp) agrees with the result derived earlier in {10]
for the MILU method. The Fourier analysis also successfully predicts the behavior
of the spectrum of M ~1 A as « varies.. In Sec. 4, we present some numerical results
for the Dirichlet model problem which seem to verify these predictions. However,
while there is excellent general agreement, there is still some discrepancy for the
special case @ = 1. Finally in Sec. 5, we show that there is a close relationship

between the RILU(a) method and the classical MILU(¢) method.
2. Fourier Analysis of the RILU(a) Method.

We shall restrict our attention to the model problem in 2D (our technique can

be extended to more general problems):
— Ay = f

with periodic boundary conditions on the unit square (0,1) x (0,1) discretized by

the standard 2nd order 5-point stencil on a uniform n x n mesh with size h = n_—1|-T

The matrix A can then be represented by the stencil:

-1

-1

Fig. 2. Stencil for 4



The RILU(«) method computes a preconditioner M of a form represented by the

product of the following stencils: -1

i
[
L .

-1
M=1L D' L7

Fig. 3. Stencils for factors of RILU(«)

Note that due to the periodic boundary conditions, the matrix corresponding
to L is not lower triangular but circulant (this is important for the Fourier analysis
to follow). It can easily be verified that the product M is given by:

1
d -1

2
d'f‘g

-1
Fig. 4. Stencil for M of RILU(«a)

A

- The fill-ins correspond to the two 5‘3 terms, a fraction of which, «f %), when added to
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the diagonal, d + %, should match the diagonal entry of A. This gives the following

equation for d:
2 20
d+ g + - = 4 (1)

which gives
d=2+4+/2(1—a). (2)

The Fourier analysis proceeds by computing the action of the operator M4 on
the eigenvectors represented by the Fourier modes whose value at the (4, k)-th grid
point is given by:

ot = €70 et (3)

where

i=+vV-1, 0, = 2nsh, ¢ =2mth, 1 <s,t < n. (4)

(Following the framework in {4], we have excluded the indices s = 0 and ¢ = 0,
which correspond to ¢, being constant in one or both of the coordinates). For

example, the Fourier transform Ag:(A) of A is defined by:

A‘Pst = Ast(A)‘Pst

and can be computed to be:

Ast(A) =4 — elfs gm0 it it
(5)
= 4(sin® 23 + sin? - qfu

Similarly, the Fourier transform Ag(M) of M is:

Aot(M) = [d — (e-—ie_, + e“i‘é‘)](—li-[d— (ew, + it )]
(6)

b, . 2
= 4(sin? >+ sin? --23-) + S(cos(f; — ¢¢) — ).

Thus the Fourier transform pg of M~14 (i.e. the eigenvalues of M1 A) is given

by
4(sin? & + sin? £t)

4(8.:{112 %‘L —i— sin2 %‘) "§- (H;ﬁ)(cos(& — ¢t) — CE)'

pat(e) = ()
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The condition number K{a) is defined by:
K(a) = “2—— (8)

From (7), K(«) can be easily computed numerically for a given mesh size h. In
Figure 5, K(«) is plotted versus a for the case n = 40. The sensitive behavior near

a =1 is evident.

In Figs. 6a-6e, the eigenvalue distribution for 5 representative values of o are
plotted in a 3D perspective. In Fig. 7, the same eigenvalues are plotted in a linear
fashion. (Similar plots for the Dirichlet model problem are given in [2]). In Fig. 8,
the maximum and minimum eigenvalues of M ™14 are plotted as a function of a.

We can make several observations from these plots:
1. In all cases, there is a clustering of eigenvalues around 1.

2. For o = 0 (ILU) most of the eigenvalues are < 1, while for @ &~ 1 (MILU) most

are > 1.

3. The 3D plots show clearly the transition from ILU to MILU. The two “humps”
near (8,t) = (1,n) and (n,1) shoot up steeply when o rises past the optimal
value of &2 0.96, These account for the large eigenvalues of M~1A. The small
eigenvalues of A occur near (s,t) = (1,1), (n,n) and rise smoothly from = 0
to =~ 1 as a goes from 0 to 1. Thus the sensitive behavior in Figs. 1 and 5 can

be traced to the sharp rise of the large eigenvalues of M 1A as o approaches

1.

4. The condition number K(«) is substantially lower at the optimal value of a(r

0.96) than at either a =0 or a =1,



3. Optimal Relaxation Parameter.

In this section, we shall derive the optimal value for a which minimizes the
condition number I{(«). To do this, we first find the minimum and maximum
eigenvalues as a function of a.

First we show that the minimum eigenvalue occurs at (s,2) = (1,1). This

follows from the inequalities:

s,
Hat 2
ez ger+2(1—a)/(2+/2(1 = a))
> g1,1
T g1+ 2(1-a)/(2+ V21 - @)
= M1
where
o2 4’>t
Gt _4(8111 —é-—{-s
To simplify the algebra, we define
=2(1 ~ a),
with € € [0, v/2].
Thus, we obtain from (7) that:
N _ B
fmin(€) = pa1(€) = ————, (10)
B+ s
where
B = sin® 7h. (11)

Next we shall find the maximum eigenvalue. We shall treat the variables 8,

and ¢, as continuous variables # and ¢, which allows us to use differential calculus
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to find the maximum. This is justified in the sense that any maximum found this

way is achievable in the discrete case for small enough A.

Due to the symmetries

1(8, ¢) = u(¢,6)

and

#(93 ¢’) = ,U.(Zﬂ' - ¢'; 2m — 9):

we can restrict our search for the maximum to the triangular region T' defined by:
T={6,¢)l¢ 20, 6+¢<2m, 624}

By differentiating u(8,¢) in (7) with respect to the variable 6 + ¢ while keeping
g — ¢ fixed, it can be verified that p is strictly decreasing or strictly increasing along
any 0 — ¢ = constant line in T. Therefore, the maximum of i must occur on the

lines ¢ =0 or 8 + ¢ = 27.

To obtain the maximum eigenvalue on the line § 4+ ¢ = 27, we eliminate the

variable ¢ and obtain:

8sin® £
9) = . 12
#() 8sin® & + (52 )(cos20 — 1+ &) (12)
Noting that
.28 . o 0
cos26 — 1 = —8sin 5(1 — sin —2—) (13)
and defining
6
z = sin® 5 (14)
we can simplify (12) to obtain
(24 ¢)z

(15)




We find p'(z) = 0 when

2
ex + 2x% + %zz(e—f—l}cx)

which gives the value of £ where pnax occurs:

&
Tmax ™ Z (16)

Substituting the value of zp.x into (15}, we get

(1)

pu(e) = 5+ 7 (a7)

B

For the maximum on the line ¢ = 0, it can be easily verified that it occurs at

4 = 7 with

4
(2) [ .
Ju'ma.x( ) 4-%2“2}.6(%2_2)

A simple calculation show that

Hiax(€) 2 HE(e)

whenever ¢ < 2. Since ¢ < /2, it follows that ppayx = pg;x.

Therefore, from (10) and (17) we get

(3+3) _882+e)+e

_ B, i6
Grees) fe

Ke)=

To find the minimum value of K(¢), we find that K'(e) = 0 when
(88 + 2¢e)e = 8B(2 + €) + €°

which gives
Eopt = 4\/5 = 4sinwh (18)
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or equivalently

Qopt = 1 — 8sin® 7h. (19)
After some manipulations, we obtain
K ) 4(1 4 sinwh) (20)
@ = ——r,
opt 8sinnh
Therefore
1
K(agpt) = —h™~' + O(1). (21)
27
REMARKS.

1. Notice that aopt = 1 — O(R?). For h = 2, aope & 0.953, which is the value
recommended in [7}. For smaller h, the value 0.95 will be an underestimate of

the optimal value.
2. The optimal blending gives
K(agp) = O(h7H)
which is similar to that for the classical MILU method with ¢ % 0 {5].

3. From (17), we see that the value of pmax grows' like -i: near € = 0 (ie. @ = 1)
but is bounded below by 1 + % for any e. From (10}, we see that gy, grows
from O(h?) at e = v2 (e. a =0)to T at e =0 (ie. & = 1).

4. Due to the sharp rise in K(«) as  — 1, it is better in practice to underestimate

aopt than to overestimate it.

5. From (17), it may appear that pgmax becomes unbounded as e — 0. However,

this results from the assumption that in (16), 2., can take on any value in
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(0,1). However, for finite h, = must lie in [sin® 7k, 1). Therefore,

1
max =0) = . 22
Since fimin(€ = 0) = 1, this implies that:
1
K(e=0)= ——=0(r7?). (23)
sin“ nh

This agrees with the Fourier results in [4] for MILU with ¢ = 0, although for
the model problem with Dirichlet boundary conditions, it has been observed
experimentally that, for MILU, even with ¢ = 0 the condition number grow like
O(h™1). We note that the theory in [5] cannot predict this behavior either*. In
[4], a plausible explanation is given, based on the fact that the O(h™%) behavior
in the Fourier case results from a very delicate cancellation in the denominator
in (7) at ¢ = 0, which may not occur in the Dirichlet model problem. The
Fourier results, together with the experimental results reported in [7] suggest
that for practical problems the O(h~?) behavior can indeed occur (unlike for
the model problem) and therefore it is not a good idea to use ¢ = 0 in MILU

(i.e. @ = 1 in RILU} for more general problems.

4. Comparison with Dirichlet Model Problem.

We have carried out some numerical experiments to verify how well the Fourier

results predict the behavior of the RILU preconditioner as applhed to the model

Poisson problem with Dirichlet boundary conditions.

To this end, we consider the model Dirichlet problem with the forcing function:

flz,y) = z(z — Dy(y — 1)e*.

* A more detailed analysis for the model problem carried out by Beauwens [11] does explain
this phenomena.
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We solve the discrete problem by the conjugate gradient method preconditioned
by the Dirichlet RILU method (with non-constant diagonals) using zero as initial
guess. We stop the iteration when the 2-norm of the residual has been reduced by

a factor of 10~7. The results are given in Table 1.

Table 1. Model Dirichlet problem: Number of PCG iterations

Grid Size ng X ng
o 15 x15 | 31x31 | 63x63 | 127 x 127
0.0 10 19 37 74
0.3 9 17 34 67
0.6 8 15 29 58
0.8 8 13 25 50
0.9 8 12 21 42
0.95 8 12 19 36
0.98 8 12 17 30
0.99 8 12 17 26
1.0 9 13 20 | 30

Table 2. Number of PCG iterations with agp

Grid Gopt PCG iters
15 x 15 0.923 8
31 x 31 0.981 12
63 x 63 0.995 17
127 x 127 0.9988 25
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In Table 2, we give the values of
Gopt = 1 — 85in2(ﬂ-2ﬁ)

(where hg = 1—1:1:}:—{) and the corresponding number of PCG iterations using the

optimal values.
By comparing Tables 1 and 2, we see that:

1. Due to the discrete nature of the number of PCG iterations, it is difficult to
locate precisely where the optimal value of & is from Table 1. Nonetheless, the
Fourier a,p 18 consistent with the data in Table 1. We note that Axelsson and
Lindskog [2] suggested that aspe = 1 — O(h) on the basis of their experimental
results. However, on careful examination, the oy obtained from our Fourier
analysis is also consistent with the numerical results in [2], to the resolution

allowed.

—1
2. The number of PCG iterations using aopt grows like O(h ?), which is consistent

with the well-known asymptotic behavior of the number of PCG iterations

growing like \/K(aopt) with K(aepe) = O(h71).

The above results show that the Fourier analysis does predict successfully aqp

and K{a,pt) for the Dirichlet problem.

5. Relation Between RILU(a) and MILU(¢).

In this section, we show that the RILU(a) method can really be viewed as
an MILU(c) method in which the parameter ¢, which in the original method is

constrained to be independent of h, is now allowed to vary with A,
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The MILU(c) method has the same stencils as in Figs. 3 and 4. The only

differences are that
(1) the dropped terms (rather than a fraction of them) are added to the diagonal

(2) and in addition a term ch? is added to the diagonal, where ¢ is a constant

independent of h.

Thus the diagonal d for MILU(c) satisfy the relationship (see [4]):

2 2 2
-t = 24
d+ 3 + 3 4+ ch (24)
which gives
ch? 1
d=2+ - t3 8ch? 4 (ch?)?. (25)

The RILU(a) method is identical (for the periodic problem) to the MILU(c) method

if their diagonals d are the same, i.e. if

o1
24+ 21 —a)=2+ 5§- + 5/Beh? + (ch?)? (26)
or

2
€= 33_, + %\/ 8ch? + (ch?)?, (27)

or equivalently,
2
€
= RT2,
e=(3) (25)

Therefore, there is a 1 — 1 correspondence between the two methods. (This is
strictly true only for the periodic case, but the asymptotic values of the corre-
sponding Dirichlet preconditioners should also be equal). Of course, if € £ O(h),
then (28) implies that ¢ # O(1), which violates the constraint on ¢ in the original
MILU method. However, as we can see from (18), €opt = O(h) and therefore the

corresponding cqpe = O(1). In fact, from (18) and (28), we have

8sin’ 7h —g
o = (T zammn) P . 29
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giving
}Ei_{{})copt = 8n? (30)

Which agrees with the result derived in [4] for MILU{c

e

In a sense, the RILU(a) method is slightly more general than the MILU(c)
method in that the corresponding value of ¢ is not constrained to be O(1). In fact,
the results in this paper confirm that the addition of the term ch? with ¢ = 0(1)
is indeed optimal and one cannot improve on the O(h™1) bound for K within the

class of RILU{«) or MILU(¢) methods.

Finally, concerning the use of the two methods in practice, it seems better to
use MILU(c) because the behavior is much less sensitive to ¢ than that of RILU(«)
to «, as long as ¢ is bounded away from zero, One gets the RILU(«) methods by
allowing ¢ to grow with k as in (28). In some sense, ¢ is a local scaled parameter

around the region a = aqpy in Fig. 5.
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Condition Number of RILU(alpha) vs alpha, n=40
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Figure 6a. Fourier Eigenvalues for RILU, alpha=0
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Figure 6b. Fourier Eigenvalues for RILU, alpha=0.6




Figure 6c. Fourier Eigenvalues for RILU, alpha=0.96
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Fourier Eigenvalues for RILU, alpha=0.995

Figure 6d.
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Figure 6e.

Fourier Eigenvalues for RILU, alpha=1




6 Figure 7. Distribution of Fourier Eigenvalues for RILU
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Max and Min Fourier E.V. vs alpha for R ILU, n=40
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