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1 Introduction

The physics of three-dimensional incompressible fluid flow, as is well known, is an
extremely difficult and not well understood subject. The mathematical theory of
the Navier-Stokes and the Euler equations is incomplete and a detailed qualitative
understanding of the dynamics is, for the most part, lacking.

One focus of recent research which aims at an understanding of key features of
turbulence and of the possible breakdown in regularity of solutions of the fluid equa-
tions has been on the motion of vortex filaments [10], [19]. Motivations for the study
of vortex filaments are the prevalence of thin vortex tubes in experimentally observed
flows, the fact that the Euler equations can be thought of as an evolution equation
for a continuum of iziteracting vortex filaments, and a view of turbulence as being
characterizéd by wildly stretching and dissipating vortex filaments.

A vortex flow problem which has been the subject of interesting laboratory and
numerical experiments is the vortex ring merger problem. In this problem the evolution

over a short interval of time of two initially parallel (or slightly inclined) co-rotating
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vortex rings of the same strength is studied. The rings are obse-ed to come together
and “reconnect,” in the sense that much of the voft‘icity field becomes composed of
vortex lines which join the two initially distinct vortex rings. This merger occurs on a
timescale which is much shorter than that expected from a simple dimensional analysis
based on the magnitude of viscosity and on the vortex ring radius [3].

The numerical computations which are reported in this paper give approxiinafcions
to the vortex ring merger flow in an inviscid (infinite Reynolds number) fluid. Since
vortex lines are preserved in time for inviscid, incompressible flow, there can be no
ring merger in our calculations. However, much insight can be gained into the nature

_of ring merger from properties of the solution of the inviscid problem. In particular, it
can be seen from our calculations why reconnection occurs as rapidly as is observed,
and why reconnection can be expected at even extremely high values of the Reynolds
number.

Of perhaps more fundamental interest is the light these calculations shed on con-
jectures about the possible development of singularities in Navier-Stokes and in Euler
flow, and on models of energy cascades and the generation of small spatial scales in
turbulence theory. As we observe in our calculations, the vortex rings approach each
other very closely, and the vortex cores which form the adjacent edges of the two rings
undergo severe strain imposed by the vorticity which forms the outer portions of the
rings. This strain consists of an extremely rapid axial flow along the vortex cores and
of a severe contraction in one, but not the other, direction orthogonal to the axis of
the vortex tube. The result is two very close, very thin, vortex sheets.

As we argue in the concluding section of this paper, the evolution of the voftex

cores into vortex sheets suggests that the vortex stretching will be bounded and that



flows such as that examined here do not provide a mechanism for the breakdown of
smooth solutions of the Euler equations. The transformation of cylindrical cores into
vortex sheeté which we have observed may be of interest in connection with theories
of the inertial range of turbulence, for this evolution suggests a new scenario for the
transfer to small spatial scales of parts of the vorticity field and for the possibility of
rapid removal of this vorticity by the action of viscosity. This issue is also discussed

-

at greater length below.

The numerical scheme we have employed is a vortex filament method. We are
tackling an inviscid problem with an inviscid scheme. The scheme is inviscid in the
sense that there is no accumulation of numerical diffusion and extremely small spatial
scales can be resolved since the computational elements are Lagrangian and are not tied
to fixed, regular positions in space. These two properties, which permit the calculation
of very thin structures in the flow, are crucial for the success of this investigation.

In the remainder of this paper, we introduce the vortex method we have imple-
mented and show that it gives a proper discretization of the Euler equations (in Section
2). In Section 3, we discuss the results of some of the numerical experiments we carried

out, Section 4 contains our conclusions.

2 The Numerical Method

Ideal fluid motion preserves vortex filaments and their circulations. Moreover, the
velocity field is uniquely determined by the distribution of vorticity (because of in-
compressibility). Consequently, the evolution of an ideal fluid can be described in
terms of the evolution of its vortex filaments alone.

The algorithm used in the computations described in this paper involves the dis-



cretization of vortex rings into finite numbers of vortex filaments and the discretization
of each filament into a finite number of particles. {See [15] for a general discussion
of three-dimensional vortex methods.}) The vorticity is represented by a finite set of
vectors of vorticity located at the midpoints of the segments which join neighbor-
ing particle pairs and of length and orientation determined by the separation of the
neighboring particles [9]. ’I‘hg velocity contributions at the particle positions due the
discrete vorticity field are added to give the velocity of each particle, and the evolution
in time of the collection of vortex filaments is thus computed.

Before describing in more detail the vortex method we have implemented, we pause
to present the equations of motion for a vortex ring in terms of the vortex filaments.
QOur algorithm is a straightforward numerical approxiination of this system of equa-
tions. We assume for the present discussion that the initial distribution of vorticity
consists of a single vortex ring; the extension to the case of several vortex rings is
obvious. Let B be a two-dimensional disk, which we identify with a ring cross-section,
and let {: B — R give the vortex strength in each cross section. We assume that ¢
has only radial dependence and is zero at the boundary of B. We parameterize the

- vortex ring A C R? of radius R by the map X : B x [0,27] — A, given by setting
X(b,¢) = ((B + b1) cos(g), (B + by) sin(¢), bs),
where b = (by, b;), and assume that the initial vorticity distribution w(:,0) is given by
w(X(b,4),0) = {(b)(cos(¢),sin(¢),0).

In this way, the images under X of the “circles” {(b,4):0 < ¢ < 27}, with beB fixed,
are vortex filaments in the ring.

We denote positions within the initial ring configuration by aeAd (these are our
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Lagrangian coordinates) and describe trajectories of fluid particles by letting &,(¢)
denote the position at time ¢ of the fluid particle which at time O was located at the
spatial position a. The conservation of circulation implies that the vorticity wa(t) =

w(®,(t),t) is determined from its initial value and the deformation of the fluid through

the relation (setting (b,4) = X~!(a))

8(2 o X) BoX
———(b,4) 4—53—1
wa(t) = f(b) aagé b E(b)R b } (21)
155 (6:9)] T

(see [12]). The velocity u(z,t) at spatial position z and time ¢ is given from the

| Biot-Savart formula by
u(z,t) = [A K(z — ®a(t))wa(t)da, (2.2)

where K is the operator ﬁg‘ X. Making use of (2.1)-(2.2), we can write the equations

of motion of the ring in the form
2.(0) = (2.3)
Z8alt) = [ K(8a(t) ~ 2a(t))w(2)ds. (24)
The system (2.1),(2.3)-(2.4) is equivalent to Euler’s equations.

We discretize the equations of motion (2.1),(2.3)-(2.4) by approximating the vor-
ticity by Lagrangian finite differences and the integral in (2.4) by the trapezoidal rule.
Let m > 0 be an integer and set & = 27/m. We will refer to two grids on B x [0, 2] of
mesh width h. These are the grids {(ky, k2, ks)h} and {(k, kz, ks +1/2)k)} raﬁging over
the three-tuples of integers (ki, k3, ks) sucl:L that (ky,k;)heB and 0 < k3 < m. We de-
note by {&} and {&]}, respectively, the two sets of grid points, and by {&; = X(64)}
and {af" = X(&;)} the corresponding sets of curvilinear grid points in the initial

vortex ring. (See Figure 1.)



Let z(t) denote our computational approximation to ®,,(t). Assume that ¢; and

@;41 are adjacent grid points along one of the initial discrete filaments and call o]

v

the shifted grid point between these two. Then my(t) = (zi1(t) + zi(t))/2 and

- 1) — it . . . .
(t) = z "&g_)[_ bl:)nh( ) £(b) (where b is the cross-sectional coordinate of the filament in

question) are approximations to ®_+(t) and W, (t) (see (2.1)), respectively. Denote

| by & the cross-sectional coordinate of o;. A velocity field & which approximates u can

now be defined by the following discretization of (2.2):
i(z,t) = 3 Kelz — mi(t))@:()h°(R + 8) , (2.5)

with the summation including all of the grid points. K, is an approximation to K
obtained by the convolution of K with a cutoff function K, = K * ¢,, where ¢.(z) =

€~ 3¢(z/€) and where we use the function

3
— if |z] <1
¢($) - 4T
0 ifjz[>1

for which the convolution can be carried out explicitly {without need for a n‘umericall
integration). The final factor in (2.5) is due to the transformation from the cubic to
the curvilinear grid and is needed to make the summation a correct approximation
to the integral over A. Observe that, setting wi(t) = £(b)(zi41(t) — zi(t))/k, we can

rewrite (2.5) in the form
i(z,t) = ZKe(x — mi(t))wi(t)R® . (2.6)

With the above approximation to the velocity assumed, the system of ordinary differ-

ential equations governing the evolution of discrete filaments is given by
T (0) = a1 (2.7)
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i%'(t) = 3 Kolailt) — my(t))ws (RS, . (2:8)

with ¢ and 7 ranging over all the grid points. The m; and w; are determined by the z;
as above. The discretization in time of this ordinary differential equation constitutes
our algorithm. This algorithm is a lower order version of the one whose convergence
was proved in [12], following the works [2] and {7], [8].

In all but the simplest flows, a great amount of vortex stretching occurs, and in
order to resolve the flow adequately, it is necessary to add computational elements as
the calculation proceeds. At each time step, we check the distances between neighbor-
ing particles on the discrete filaments. When a threshold value is exceeded, we include

‘a new particle between the original pair. This néw particle is placed at the midpoint
of the two particles. The nature of the algorithm is such that the vorticity used in
the computation of the velocity can be evaluated as before. In generé.l, in regions of
significant stretching, many new particles are added between two originally neighbor-
ing particles. It is in order to obtain a reasonably accurate interpolation procedure
that we have used the algorithm described above, rather than the hig}ier order one
described in [12].

Numerical resolution is improved as the number of particles tends to infinity (A —
0), the smoothing parameter ¢ tends to zero, and the timestep in the discretization
of the ordinary differential equations tends to zero. The order in which the limiting
procedures, € — 0, A — 0, are carried out is important. If onelﬁxes h and lets ¢ tend
to zero, the calculations easily become unstable because of the singularity of the Biot-
Savart kernel. The convergence theory requires that the smoothing parameter should
be of higher order than the original interparticle mesh spacing. If one sets £ = h7, with
7 < 1, then one can obtain convergence as h decreases to zero. However, in practice



are investigating would be destroyed by even tiny amounts of diffusion, this non-diffuse
feature of the approximation is crucial to the success of our calculations. Furthermore,
the non-diffusive character is present for all ¢, and the method should provide reliable
insight as to the qualitative features of the solutions of Euler equations, even for
relatively large values of the smoothing parameter.

Some final comments we would like to make about the numerical algorithm concern
the objections which are sometimes raised that the computational vorticity field is
not divergence-free in the vortex method. First and foremost, one can answer such
objections by observing that numerical algorithms should give good approximations to
the continuous problem; they need not provide exact solutions of discretized forms of
physical laws. CaIcuIa.tiéns of fluid flows by the finite element ﬁ:ethod ére not faulted
because velocity fields in real fluids are not éfﬁne functions on triangles in space.
Secondly, as has been observed by Beale [4], the curl of the velocity field induced by a
collection of vortex elements of the type considered in this paper is the projection of this
vorticity field onto the space of divergence-free vector fields. Thus, the velocity field
induced by our vortex elements is identical to that induced by a vortex distribution

which is divergence-free.

3 The Numerical Results

As initial conditions, we took two identical, axisymmetric vortex rings. We studied
the evolution of these rings over a short interval of time, though one long enough for
the rings to come together, for the vortex cores to become severely distorted, and for
the rings to begin to pull apart in the direction orthogonal to that joining the two

rings.



The initial distribution of vorticity is determined by the radius pg of the rings,
the cross-sectional radius pc, the vorticity distribution function & (see Section 2}, the
separation ps of the ring centers, and the initial mgie of inclination of the rings to the
(z,y)-plane. We choose the coordinate axes so that the ring centers are equidistant
from the origin on the z-axis, at the positions ¢, = (p,/2,0,0) and ¢_ = —c,. The
rings were taken to be inclined toward one another by 20°. Qualitatively similar
evolution results from initially coplanar rings, but the interesting interaction occurs
sooner when the rings are inclined from the Beginning, and so a higher proportion
. of the computational labor can be used to resolve the interaction process. Figure 2
illustrates the initial configuration of the vortex rings.

We chose the initial cross-section to be uniform, with & the (scaled) characteristic
function of the ring. The scaling was chosen so that the circulation of each ring is 20.
In all of the computations reported here the vortex ring parameters were taken to be
pr = .1, pe = .02 a.pd s = .25. Again, qualitatively similar evolution is observed
when the uniform cores of vorticity are replaced by a more smoothly varying vorticity
distribution.

Some of the features of the evolution of the vortex rings, starting from the given
initial conditions, can be seen in the perspective views of Figures 3(a)-3(d). These
figures show the positions of a few of the 61 filaments which make up each ring at
steps 16,32,48 and 64 (the vortex rings would be solid black if all of the filaments were
plotted.) The plots are in a frame of reference moving with the center of mass of
the vorticity; one should keep in mind that the rings are translating downward, even
tl'lough the rings remain in the center of each frame. These figures were obtained with

the parameter § = .012 and the number of computational particles N = 5490 initially
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and N = 6148 at the final time.

For those readers who are not well acquainted with the ring merger problem, even
the basic features of the flow can be obscure and not easily discernibie from the pic-
tures. A very helpful description can be found in [18]. For the benefit of the reader,
we attempt a brief description of the movement of the rings in the next paragraph.

For an individual ring, the velocity field which it indﬁces upon itself is close to
being a sum of a uniformly downward velocity and a rotation about the core. Thus,
as the rings in our computation are initially inclined, each one has a component of
velocity which induces a translation downward and toward the other. The effect of
one ring is to retard the downward motion of the other, especially at the nearby side.
As the tilt of the rings is increased, the component of the self-induced velocity in
the direction joining the rings is increased, and the rings approach each other and
press together. The velocity field due to the vorticity in the near edges of the two
rings (which are almost tangent to one another and contain vorticity of opposite sign}
is negligible except very near these edges. The motion induced by the edges upon
one another, however, is non-negligible—each edge imparts an upward component of
velocity to the other. In pressing against one another, the portion of each ring which
is nearest to the other becomes stretched and flattened. This is seen in Figure 3(d)
which is the ring at the final time of the computation.

Of primary interest, as we discuss in the next section, is the structure of the core
of the rings in the region where the rings come closest together. In figures 4(a) -
4(d) cross-sectional views of the rings at the times corresponding to those in Figures
3(a)-3(d) are presented. Here the intersections of the computational filaments with

the (z, z)-plane are plotted. As is clear from these plots there is significant flattening
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of the vortex cores as they come close together. The incompres.sibiiity of the flow and
the diminishment of the core sizes implies that a great amount of stretching qf the
forticity, in the directional normal to the cross-sections, is taking place.

In order to quantify the flattening we computed the average of the z-coordinate
separation of the points which make up Figure 4. This gives an ‘estimate of how
close the two cross-sections are pushed together. The ratio of this average distance of
separation with the original average separation is plot-ted as the solid line in Figure
5(a). The cross-sectional area was measured, and the dashed line Figure 5(a) is the
ratio of the cross-sectional area of the tube to the original cross-sectional area. The

_ decrease in cross-sectional area indicates that a large amount of stretching of the tube
has occurred. The magnitude of this stretching is indicated In Figure 5(b) were we
plot the ﬁlaximum stretching and the average stretching for the vorticity on the cross-
sectional slice. The implications of these results will be discussed iﬁ Ithe next section,
but we now address the establishment of the reliability of the computed results.

In our computations we choose h sufficiently small so that for the given § the
changes in the solution were negligible. Of more importance are the changes in the so-
lution with respeclt to the smoothing parameter §. In order to assess this we computed
the evolution of the rings with several different values of the smoothing parameter and
compared the results.

We focus our attention now on three different values, § = .015, .012, and .010.
Our first observation was that the overall development of the rings was essentially
independent of 6, i.e. views of the type in Figures 3(a)~3(d) do not differ substantially
among the different values of §. Significant differences, however, are found in the

behavior of the core cross-section at the points where the two rings come closest
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together. In Figure 6 we plot the cross-sections of the filaments with the x-z plane at
steps 16, 32, 48 and 64 for the three different values of §. The number of particles N

" at the beginning of the computation was the same — 3904‘_. The results for a givex'l
value of § are in a single column, and the size of § decreases as one goes left to right.
It is clear from these pictures that the solutions have not converged with respect to 6 R
but a trend can be clearly seen. Notably, there is tremendous flattening at all values

| of 6 and the major difference is in the structure at the top‘of the cross-section. As §
decreases, this structure appears to become more flattened.

The behavior of the average cross-sectional separation is plotted in Figure 7. For
the early part of the computation, the results agree rather well, while near the end they
differ. For the three values shown, the figures indicate that the separation distance are
decreasing as § is decreased. A similar trend is observed in the cross-sectional area.

In our computational results we see that there is tremendous deformation of the

“core in the region in which the two rings press together. We have not computed
solutions whicha are completely independent of 4, but the results suggest that we have
captured the essential features of the solutions. In fact, the deformation which we

observe appears to be more pronounced as the smoothing parameter is reduced.

4 Implications for Fluid Mechanics

The vortex ring interaction which we have investigated, and described in this paper,
is a particular example of an important class of vortex flows. Although the initial
conditions appear to be very special, the striking core deformations which we have
observed are relevant to other investigations of vortex dynamics. In this section we

discuss the implications of our results concerning questions about the appearance of
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singularities in finite time, the vortex dynamics of the inertial range, and the nature
of ring merger or réconnection in viscous flows.

Three-dimensional vortex dynamics seems to be characterized, in part, by the
pairing of anti-parallel pieces of vortex tubes. This phenomenon haé been observed in
numerical experiments [19] and can be expected in the presence of substantial vortex
stretching from the invariance of the energy [w(x) - w(y)/[x — y|dxdy (here w is the
vorticity and the integration is over all space). In the pairing process, substantial
stretching and very close a.ppfoach of the pair of tubes occurs.

The authors of [19] and [20] presented evidence which, they argued, suggests that
the stretching which takes place when pairs of vortex tubes come together may become
infinite after a short time, leading to singularities in solutions of the Euler equations (or
even the Navier-Stokes equations). In the calculations presented by these authors; two
oppositely signed vortex filaments come together, “pair”, and translate rapidly. This
translation induces local stretching which further enhances the velocity of translation
and consequent stretching, and the stretching becomes infinite after a short time.
However,ﬂ the vortex cores are resolved by single filaments and so by necessity these
cores are always circular. As we see from our numerical results, notably Figures
4(c)-4(d), the core shapes differ dramatically from circles. This fact has important
consequences for the possible development of singularities.

To understand the relevance of the cores shapes, imagine a meodel in which two
identical tubes of vorticity (by which we mean a bundle of filaments), of opposite

| circul'ation, traveling towards each other, each being moved by an externally imposed
velocity (which in the case of our problem is due to the vortex ring configurations). As

they begin to approach one another, each acts on the other as well. Take the tubes to
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be orthogonal to the (z, z)-plane at the point where they come closest together, with
the cross-sectional centers of each on opposite sides of the origin along the z-axis. The
amplification of the vorticity due to stretching has minimal immediate effect on the
dynamics of the cores, because the circulation in the (z, z)-plane is independent of the
stretching., However, the compression in the plane, which of necessity accompanies
stretching (because of incompressibility), has a major effect on the velocities induced
by the_ cores. If there is compression in the z-direction as well as in the z-direction,
then as the cores approach each other, the induced velocities increase rapidly, being
. of order |z|™!, and one could expect catastrophic behavior. This is the beginning
of the approach to singularity seen in [19]. However, if there is contraction only in
the z-direction, then the cores begin to resemble vortex sheets, and t}l;e greater the
flattening, the weaker are the sheet strengths. The velocities induced by vortex sheets
on each other remain bounded. Our results show that, indeed, a severe flattening takes
place — the cores a.ré smashed into sheets and in effect lose a dimension. Thus, the
capability of the vortex tubes to feed on each other nonlinearly until blow-up seems
not to be present in our problem. A necessary condition for a singularity to occur is
an infinite stretching of a part of a vortex line [5]. Of course, we do not claim that the
flow is nonsingular for all time, only that the kind of singularity described earlier does
not seem to occur here. (The description of the tubes coming together we have given
assumes that they are of identical strength and symmetrically placed with respect
to one another, which is also the assumption made in the numerical calculations of
others to which we have referred. It is imiportant to observe that, although we have
pfesumably excluded the generic cases in this way, we have considered a more singular

situation, for if the cores are not of the same strength, then the weaker one will begin to .
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wrap around the stronger one, resulting in even more two-dimensional core distortion
as well as increased vorticity cancellation, and thus less wild stretching. Also, as
indicated by the numerical calculations of Melander and Zabusky [16] on the muotion
of anti-parallel vortex tubes, significant core distortion and rapid cancellation can be
expected if the rings are not in a symmetric configuration.)

It should be mentioned that Pumir and Kerr [17] have previously shown (at finite
Reynolds number) that some deforma.tion_ of the cores takes place in the flow, raising
questions about the blow-up picture, but the deformation was sufficiently mild as to
leave open the question of how singular the induce velocities may be becoming.

The core deformation which we have observed may also be of considerable interest
in connection with certain aspects of turbulence theory. Chorin [11] has pointed out
that folding and pairing of vortex lines is necessary, in the presence of stretching,
in order that energy be conserved, and has suggested that a study of the kinds of
folding and pairing which may occur is of great value ﬁo the understanding of three-
dimensional vortex dynamics and the inertial range of turbulence. The passage to
smaller scales in this picture is brought about by the stretching of the vortex lines.
Our work reveals another, contemporaneous, process for generation of small spatial
scales — vortex tubes can squash into vortex sheets as they stretch, and in this way
bring about much smaller spatial scales of vorticity than would be predicted by the
value of the rate of stretching of the vortex filaments alone.

In order to study vortex dynamics and the passagé to small scales, without having
to carry out the impossible task of doing accurate, very high Reynolds number, fa.iﬂy
long time three-dimensional calculations, Chorin [11] has made a lattice model (or

“cartoon,” to use Chorin’s term) of vortex dynamics in order to study energy cascades
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and the inertial range of turbulence. It appears to us that a model of vortex core
flattening could be reasonably incor'porated. infu Chorin’s lattice model.

- The final issue we address is the nature of the vortex ring interaction in the presence
of a small amount of viscosity. The viscous flow is of great current interest, principally
because of the beautiful experiments which have been carried out showing what is
called vortex ring reconnection or merger (beginning with Kambe and Takao {13] and
most recently by Schatzle [18]). Our calculations have been carried out at infinite
Reynolds number and the question of the relation between our results and those of
slightly viscous flows is of interest.

As long as the inviscid flow is smooi:h (as appears to be the case here), solutions of
the Navier-Stokes equations converge to the inviscid flow as the viscésity tends to zero
(6]. It is clear that while the two vortex rings are well apart from one another, the effect
of a small amount of viscosity will be negligible. If one considers a cylindrical tube of
vorticity with the same circulation and diameter as the tubes which make up the rings
in our computation, then above Reynolds number 6,500 the vorticity diffuses a mean
distance less than one percent of the core diameter by time step 64 (the final time in
our computation). What is of more interest is when the rings are close together. As
our calculations reveal (most notably in Figure 4(d)), portions of oppositely signed
vorticity get flattened together and even quite small amounts of viscosity will lead to
a cancellation of the vorticity. This explains why reconnection occurs at a rapid rate
for the viscous problem, even at high Reynolds numbers. The tendency for flattening
has been observed in the viscous calculations in [17].

Also related to the issue of the approximation of the inviscid flow by a viscous

one is the nature of the merger process. Since vortex lines are not broken for the
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inviscid flows merger cannot occur. In the viscous case it does occur and therefore,
there has been some controversy about the nature of the inviscid limit. Abqve some
Reynolds number is there no reconnection? Or'is the limit discontinuous (in the sense
of vortex reconnection) as the Reynolds number tends to infinity? One source of this
controversy has been the fact that reconnection has not been well defined. For all
arbitrarily small positive times and values of viscosity, there exist vortex loops which
cross the plane of symmetry (the (y-z) plane in our calculation). A proper definition
of reconnection should specify some further condition on such loops. Let us denote
by x(e,t) the position at time ¢ of the fluid particle which at time 0 was located at
position a. One could define the time of reconnection to be the first time ¢ such that
for some o which lies in one of the initial vortex rings, the vortex line through x(a, t)
crosses the plane of symmetry. One could also ask for the first time T when, say, one
half of the original vorticity-carrying part of the fluid lies on such vortex lines. With
these definitions, it is clear that there exists a critical Reynolds number Ry such that
in [0,T], solutions for Reynolds numbers R > Ry experience no reconnection, while
those corresponding to R < Ry do. Thus reconnection does not occur above a finite
Reynolds number, and the limit is nonsingular.

In summary, we have presented the results of a computation of the interaction of
two vortex rings. This problem appears to be a good model of more general interactions
of vortex tubes. We have investigated the solution of the inviscid equations, a problem
which to our knowledge has not previously been attempted with fully three-dimensional
vortex cores. We have seen that the cores flatten severely as they smash into each
other. Although a tremendous increase in the magnitude of vorticity is observed, the

computational evidence shows that due to the evolution of the vorticity into sheets, this
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‘does not lead to large velocities and hence a catastrophic intensification of vorticity.
In fact, the evidence suggests that the velocity remains bounded and the magnitude
of the vorticity oﬁiy grows linearly with time. There is also evidence 6f a new process
for the generation of small spatial scales which may be of importance in the inertial

range of turbulence.
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Figure 2

Initial Vortex Ring Configuration
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Figure 3

Perspective Views of Vortex Rings

Rows (A) - (D) are the: results for steps 16, 32, 48 and 64. The first column is
a top view of the rings. The view is along the z axis. The second column is a
cornet view of the rings along the vector (1, 1, %) The third column is an end
view. The view is along the z axis and the ring on the far side is deleted for
clarity. In this computation § = .012.
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Vortex Core Cross-Sections
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Figure 6

Vortex Core Cross-Sections

: ¢=.015, Steps 16,32,48,64
: €=.012, Steps 16,32,48,64
. €=.010, Steps 16,32,48,64
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