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A class of modified Newton’s methods are applied to difference approxima-
tions of the two-dimensional steady Burgers’ equation and the transonic small
disturbance equation. The solutions have sharp gradients which correspond to
boundary layers and shock waves in fluid dynamics. The nonlinear terms in the
differential equations are approximated by modern shock capturing schemes. The
regularity of the coefficients is analyzed theoretically and its effect on the conver-
gence on the Newton’s method is studied numerically. Computational results from
different types of gradient iterative methods and different types of preconditioners
are presented. These methods are applied to the linear systems of the Newton
iteration. The relative residuals in the Newton iterations are controlled such that
a superlinear rate of convergence is preserved.

1. Introduction. We shall consider numerical solutions of nonlinear hyperbolic
conservation laws. In two space dimensions the equation or system of equations
have the form,

ue+ f(u)s + g(u)y =0, (1.1)

with appropriate initial and boundary conditions. These equations are used as
mathematical models in many applications. In gas dynamics, for example, the un-
known vector valued function u(z,y,t) has four components representing density,
momentum (2 components) and energy.

Even with smooth initial values the solution of {1.1) generically develops
discontinuities. These discontinuities or shocks cause both theoretical and com-
putational difficulties.

1Research supported by NSF-grant No. DMS88-11863, ONR-grant No. N00014-
86-K-01691, AFOSR-grant No. AFOSR-87-0341 and NASA Consortium No. NCA2-
372.
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Weak solution must be considered and uniqueness might be a problem. For
scalar equations there are unique solutions if extra constraints (entropy conditions)
are added [Smoller, 83]. The solutionis e.g. given as the limit of vanishing viscosity
solutions,

tig [ [ 1u%(a,0,1) = u(e, v, Oldady =
uj + 6(u®), + g(u®), = eAu®. (1.2)

The numerical approximations of (1.1) must work well when u is smooth but
also at discontinuities of u. Traditionally numerical schemes mimicked the equa-
tion (1.2). The standard schemes contain such added artificial viscosity, [Rizzi,
Engquist, 87]. During the last fifteen years new classes of so called high resolution
schemes have been developed. See e.g. the survey [Colella, Woodward, 84]. These
algorithms are based more directly on the properties of (1.1) at discontinuities.
The result is often approximations with sharp shocks without numerical oscilla-
tions. These algorithms are nonlinear and change structure depending on the
solution. This adaptivity is a source of difficulties for direct steady state computa-
tions. The purpose of this paper is to study a few questions in the coupling of high
resolution schemes with modern algebraic methods for steady state computations.

A three point difference approximation of (1.1) has the form,

At “ .
”:‘,—J'H =uij— 'A“;(f(“?-ﬂ,ja ui,j) - f(ui,js Ui_l,,-))
At
- A_y(g(u::_;-l-lfu:‘,_;) - g(u:",jau?,j_l)), th = nAt. (1'3)
uf; ~u(zi,yj,t0), o0 =ide,y; = jAy.

The functions f( , ) and g(, ) are called numerical flux functions and are related
to f and ¢ in (1.1) via the consistency relation,

fluu) = fu, gluu)=gl). (1.4)

It is common to compute with (1.3) for large time in order to approximate the
steady solution of (1.1).

We shall here consider direct approximations of the steady equation,

f(u)z + 9(u)y =0, (1.5)

with boundary conditions. When direct approximations are feasible they are usu-
ally much faster than time evolution techniques. There is no time index n in the
equations and the following system of algebraic equations has to be solved

F(U) =0, (1.6)
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where F' and U are vectors with components, .

1
Fij= E(f(”ﬁl,jaui,j) — f(uij, tiz1,5))

1
+ Kg(g(“idﬂaui:‘) - g(uij uij-1))
U = (uij).
Some of the equations in F' should also contain the boundary conditions.

We mentioned earlier the adaptive feature of the high resolution schemes.
This means that f( , ) and g( , ) depends strongly on the solution and often not
in a smooth way. Thus F is not a smooth function of U which causes trouble when
solving (1.6).

In the following section we shall study the regularity of I’ and show that
very sharp shock resolution and f € C! is mutually exclusive. We have to relax
the sharpness of the discontinuities in the numerical solution in order to have an
algebraic system which is suitable for numerical methods.

Some natural algebraic methods are outlined in section 3. The linear system
resulting from a damped inexact Newton method is approximated by precondi-
tioned gradient type methods.

In section 4 we shall apply these methods to two hyperbolic conservation laws
in two space dimensions. The Burgers’ equation

(38)= + (Gu%)y = et (1.7)

and the transonic small disturbance equation,

(Kbs = 501+ Dd)e + by = 0 (18)

are studied. In (1.7) we have a conservation law plus added viscosity. As in
equation (1.2) we are interested in small values of ¢.

2. Regularity of Numerical Fluxes. Consider Newton’s method applied to the
system (1.1): F(U) = 0. In the Kantorovich convergence theorem, the mapping
F' is assumed to be continuously differentiable.

Let us consider a three point formula for the one dimensional Burgers’ equa-
tion. The nonlinear term f(u); = 0.5(u?), is discretized as follows

f(u)le = 1/Bz[f(us, vit1) = fuizg, ui)] (2.1)
where f( , ) represents the numerical flux.

3



We shall now present various numerical fluxes for the Burgers’ equation and
compare their accuracy and smoothness properties. The shock speed is given by

ug = 0.5(ue + ur), f+(u)=0.5max(y,0)?, f_(u) = 0.5min(u,0)>.

Godunov fluz (first order) [Godunov, 59]
fo(ue, uy) = max(fi(ue), f-(ur)]
Ifus=01ie. u; = —uy, then 8fg/0us =ugor0
Roe fluz (first order) [Roe, 85)
fr(ue,ur) = 0.5[f(ue) + f(ur)] — 0.5[0.5(us + ur)|(ur — ue)
If ug = 0 then fr/Oue = ug or 0
E-0 fluz (Brst order) [Engquist, Osher 80]
fE-o(ue,ur) = fi(ue) + f-(ur)
If ug = 0 then dfg—_o /Bue = us
TVD fluz (second order, with van Leer limiter) [van Leer, 74]
Frvp(ui-1,uiy is1, vite) =fe-o(ui vit1) = 0.5%(R,)
(FE-0(us, uisa) = f(ui)) + 0.5%(R,,
(f(uig1) = fe-o(ui, titr))
where
R = (f(ui) — fp—0)(%i-1,ui))/(f(is1) — fE-0 (Ui, tiz1))
R; = (fe-olui,ui+1) — f(u:))/(fe-0(vi-1,u) — fui-1))

Yvir(R) = (IR + R)/(1 +|R])

Clearly the first derivatives of fg and fg exhibit jumps while fp_o is a C?
function. The flux limiter ¥y r{R) is differentiable.

It was shown in [Engquist, Osher, 80], that the E-O scheme admits a discrete
representation of a steady shock with two interior states. Next, we shall show
that for a three points scheme admitting a steady shock profile with at most one
interior state, its numerical flux cannot be a C? function. Thus the sharpest
possible steady discrete shock profile has two interior states for schemes with C?
numerical fluxes. The Godunov and Roe schemes have discrete shock profiles with
one interior state but their corresponding numerical fluxes are not C1.

Consider a scalar hyperbolic conservation law
ur+ [f(u): =0 (2:2)
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with f'" > 0 and f'(0) = 0.

Eq. (2.2) is approximated by a three points scheme in conservation form,
utt = ol 4 A[f(uf, uipy) — fluig, uf)l, (2.3)
where A = At/h.

The regularity property of numerical flux is given in the following theorem.

THEOREM. Let the scalar hyperbolic conservation law (2.2) be approzimated by
a consistent three points scheme in conservation form. Assume that this scheme
admits the following discrete representation of a steady shock uy > 0; f(ug) =
fluy), and for any Um,us > um > tr

Then the numerical fluz f(ue,u,) cannot be a C' function.

Proof. If (2.3) is applied to the point ¢ = —1, then in terms of the states u; and
up, we have

w1 = uly + Af(uf, uf) ~ f(uf,ul)] (2.4)

Since there are multiple discrete representations of the same steady shock
profile with one interior state up, f(u1,uq) depends only on u; i.e.

flug,ur) — flur), ur <0

Uy > Ug > Uy (25)

Hence from (2.4) and (2.5)
flu,v) = f(u), u >0, u>v>uwith f(u) = fu) (2.6)
flu,v) = f(v), v <0, v>u > v with f(v) = f(u) (2.7)

From (2.6) and (2.7), it follows that f(u,v) cannot be a C? function since
Vf(, ) is discontinuous at (u,v) = (u,u) or equivalently (u,v) = (v,v).

3. Algebraic Methods. Consider the inexact Newton’s method (IN) applied to
(1.8), '

Ukt = U* 4 SF, (3.1a)
J(UKYS* = —F(U*) + rk. (3.1b)
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The method is called inexact, if there is an error (r* # 0) in the solution of
the linear system (3.1b). The error is controlled by a sequence {gx} such that
¥ 11/ AU £ gk The Jacobian matrix of F is denoted by J. Modifications in
order to improve the global convergence properties can be done at the updating
step (3.1a) as follows

UM = Uk + i S*

The method is then called damped inexact Newton (DIN). The idea of a
global method is to make sure that each step decreases the value of some norm of
F : R™ — R™. If we choose the I, norm || f(U)|], solving the system of nonlinear
equations F(U) = 0 is equivalent to minimizing g = 1/2F(U)T F(U).

Naturally one wants to choose a direction S such that in this direction

g(U* + a,S*) < g(U*) for some 0 < o < 1

It is easy to show that the vector S¥ is a descent direction V g(U*)TS§ < 0,
if ||r*]| is small enough.

Our damped inexact Newton method is based on an algorithm in [Dembo,
Steihaug, 83]. We have incorporated a very simple backtrack technique instead of
a more complicated quadratic or cubic backtrack which is described in [Dennis,

Schnabel, 83]. Starting with ax = 1, ey is reduced by a factor % until a descent
condition is satisfied.

From (3.1b) we see that at each Newton step, a large linear system of the
form

AU =b (3.2)

needs to be solved. Several iterative gradient methods have been proposed re-
cently to solve (3.2), where A is nonsymmetric and possesses a positive definite
syminetric part. In our examples, we have found the truncated GCR method
called ORTHOMIN(i) to be particularly attractive in term of computational ef-
fort and storage [Vinsome, 76]. This method, is a modification of the GCR. method
where only the last i direction vectors need to be saved. It is worth pointing out
that the truncated version of the GMRES method proposed in [Saad, Schultz, 86],
does require the positive definiteness of the symmetric part of 4 although its full
version does not.

A survey and comparison of generalized gradient methods for nonsymmetric
problems, is given by in [Saad, Schultz, 85]. We choose to adopt here the minimal
residual (MR) method and the ORTHOMIN(1) method because of their simplicity.
In particular, the MR method which is identical to ORTHOMIN(0) is a simple
two-steps algorithm.



For symmetric problems, the convergence of iterative gradient methods can
be accelerated by reducing the condition number of A. It is also well known
that the rate of convergence depends on the clustering of eigenvalues into groups.
However a similar theory does not exist in general for nonsymmetric problems. It is
therefore necessary to conduct extensive numerical experiments for nonsymmetric
matrices.

Preconditioning techniques transform the original matrix into a matrix with

better properties. If C is a preconditioning matrix, instead of solving AU = b, we
solve AC1CU = b.

All the preconditioners discussed in this paper were first constructed for sym-
metric matrices with C = LLT. We generalize them to nonsymmetric cases by
choosing C' = LU such that diag(U) = I. We also make sure that C(= LU) is
symmetric when A is symmetric.

The incomplete factorization method which was first proposed in [Dupont,
Kendall, Rachford, 68] for self-adjoint elliptic difference equations will be described
here for five points schemes approximating the linear advection-diffusion equation,
(8.3), which can be seen as a linearization of the Burgers’ equation:

eV~ up, — vy =0 (3.3)

Eq. (3.3) is written in finite difference form as
(A@)ij = 8ijdij—1 + Wijbi-1,j + Cijdi,j + €ijbitr,i + nijdijr1 = 0.

The resultant matrix A is sparse and nonsymmetric, and has five diagonals.
It is possible to approximate 4 in the form, C = A + R, where C is the product
LU and R is the defect matrix. L and U are defined to be respectively the lower
and upper triangular matrices with no more than three entries per row,

(Lo)i; = visbis + tijbi-i,j + 9ijbij—1 (3.4)
(Ud)ij = ¢ij + fisbijar + kijditr,j (3.5)

The product LU has seven diagonals

(LU@)i; = 8ijbi j—1 + wijbi—1,; + dijdi,j + €ijdit1,;

(3.6)
+ nijdi 41 + Yiibi-1,541 + Zijbitr,j-1 = 0.

The new points y;; and z;; involved in the product LU are those corresponding
to @i—1,j+1 and ¢i41,j—1 respectively.



We choose to equate the non-zero elements of A which are off the main di-
agonal with the corresponding elements of LU. We shall make one assumption
which is row-sum(A) > 0. If we impose, row-sum{A) = row-sum{C'), we can solve
uniquely for the five elements v,?, ¢, f and k in term of w, e,s,n and ¢. They are

given recursively by the following formulas
W — Preconditioner ([Wong, 78])
tij = wij, gij = Sij
vij = ¢ij — ijfij-1 — tijkioa,5 — tijfio1,5 = gigki -1

fij = nijfvig, ki = eijfvi

Here we adopt the convection that the elements ¢, g,v, f and % are set to zero
if they cannot be computed by the above algorithm. It is easy to see that the
row-sum of R is zero by construction.

DKR-Preconditioner [Dupont, Kendall, Rachford, 68] is the same as W-
preconditioner, except for the formula for v,

vi; = (1 + ah®)eij ~ gijfij—1 = tijkicy,; — tijfim1,; — Giski j—1.

We denote the preconditioning in [Meijerink, Van Der Vorst, 77] by the MV
preconditioning. It forces equality of the elements of the preconditioning matrix C
and the matrix A on the diagonals in positions defined by the non-zero diagonals
of the matrix A. The MV preconditioner is constructed by the following formulas,

MV-Preconditioner is the same as W-preconditioner, except for another for-
mula for v

vij = Cij — gijfi -1 — tijkio1j-

All the preconditioning techniques described above can be applied to sym-
metric and nonsymmetric matrices. As an example of a preconditioned gradient
method, we show the preconditioned ORTHOMIN(1) method.

X0 given, let 1 = b — AX"

Solve CZ°% = r® and set p® = Z°

For k = 0 step 1 until convergence do

Apt1 = (rks Ap')/(Apk’ Apk)

Xk+l - Xk + ak+1pk, phtl o ok Uk-HAPk

Solve CZk+1 = pkt1

Pk+1 == Zk+! + ﬂkpki Bk = ”(Azk+1vApk)/(Apk,Apk)

4. Two Nonlinear Examples. The first example is the Burgers’s equation (1.7)
in the square 0 < z,y < 1. We shall use central differences to discretize the second
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derivatives terms and the shock capturing schemes to approximate the nonlinear
terms. We obtain an equation F(U) = 0 where the unknowns u;; are ordered as
the components of the vector U,

Let us first verify directly the regularity of the E-O differencing
[f(u)]e = 1/Dz[Dy f-(ui) + A fi(ui)l.

The following estimates are valid for the Burgers’ equation:

(@) — Fa(8) — FoB)a— D] <05 (a— b Va,b (4.1)
i) = fa®) Sla=b] Vab (4.2)

Using (4.1) and (4.2), we can show that there exists constants C; and C,
which depend on the grid size h such that:

WFU)-FV)-JWV)U-VII<GIU-V|? YUVeR"  (43)
HIWU) = JVIN S GIU-V]| VU,V eR" (4.4)

Therefore the mapping F is twice Frechet differentiable, which guarantees
convergence of the Newton’s method.

Let U* be the solution of (4.1). In order to ensure convergence, the initial
guess U? ought to be chosen so that {Dennis, Schnabel, 83}

IU? — U*|i1/208,

. o (4.5)
@) < e [[JU°) = JUIE < BIT° - Ul

The relation (4.5) tells us that the radius of convergence is inversely propor-
tional to the product af. The size of a depends strongly on the structure of
the solution. If there is a boundary layer solution (out Type A below) the eigen-
values of J(U*) are well bounded away from zero. In the one dimensional case
o(J) £ —CJe, [Kreiss, Kreiss, 86]. For shock solutions (our Type B below) the

radius of convergence is much smaller. There are eigenvalues of J of the order
—-1/e
e~ l/e,

The 2-D Burgers’s equation (4.1) was solved on a square with two sets of
boundary conditions (Figs. 1 and 2).



1 12 1/4

1/2 1/4
0 1
1/4 - -1/2
0 74 172
Fig. 1. Type A. Fig. 2. Type B.

Note that in the case of type B boundary condition (Fig. 2), there is a jump
in the middle of each side of the square. These jumps will indeed trigger switching

mechanism of various upwind schemes.

The computations were done with a 31 x 31 grid if not otherwise noted. The
iterative procedure stops when the norm of the residue ||R|| is less than 1075,
At each Newton step, the linear system is solved iteratively by a minimal residue
method (MR) and the convergence criteria are fixed at 20 MR iterations or inner
residue ||r|] < 107%. In table 1 are listed the numbers of Newton iterations for
the Godunov, Roe and E-O schemes. The number of iterations are the same
for these three schemes which are identical for the type A boundary conditions.
With the type A boundary conditions there are no switchings involved because
the boundary layers are at = 1 and y = 1. The rapid convergence is indicated by
the computational results. Note that the total number of MR iterations decreases
as € becomes smaller. This is due to the fact that the Jacobian matrix reduces to
a triangular matrix for € = 0 and the LU factorization of the Jacobian matrix is
exact.

In table 2 are reported the number of Newton iterations for the type B bound-
ary conditions. The linear system at each Newton step is preconditioned by the
DKR, W and MV techniques. the MV preconditioner proves to be the most robust
while the inner iteration together with the DKR and W preconditioners fails to
converge for ¢ < 1072, In table 3, as predicted the Newton iteration together with
the E-O scheme converges for all values of £ and the number of iterations does not

vary greatly with respect to €.
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1. Number of iterations , { . ) = total number of MR iterations,
type A boundary conditions , DXR (@ = 1) preconditior_ucr
¢ 10! 10% 107 104 1075 g08

5 6 9 10 10 10
(5) (79) 7 (37 (@21 (é)

2, Number of iterations , (. ) = 1018} number of MR iterations,
type B boundary conditions , E-Q scheme

* no convergence

. 1007 107 30 0t 0% g
DKR 5 . . .
w1 (96)
v 6 L ] »
(s
v 13 s s 12 15

1
(225 (142 (121) {147) (200} {214)

3., Number of Newton iterations , { . } = to1al number of MR iterations,
type B boundary conditions , MV preconditioner

* no coRvergence

¢ T LTI BT BTSSR
Gedunoy Io ] 13 20 30 .
(182 (146) 119 (217 (368)
Roe 12 7 14 . ¢ *
(215 (140} (200}
E-0 13 ' 9 12 is 16

{22%) {142y (121) (147) (2000 (214}

4, Number of Newton iteraiions , { . } = total number of MR iterations

E-O schemes , type B boundary conditions + MV preconditioner

¢ 1007 107 10t g0t 1% o
h=1/14 4 5 ] 9 13 11
" (63) {5¢4) {55) {54) (56)
he1/30 13 ' 9 12 15 16
(225 (142) Q) (14D (200)  {254)
h=1/84 10 7 17 22

9 14
(400)  (280)  (287)  (353) (419)  (567)

Tables 1-4



Table 4 reports the number of Newton iterations for three different grid sizes.
We observe that the total work is still very modest with respect to the number of
unknowns. The TVD scheme did not converge for ¢ < 1073, For ¢ = 1072, 12

Newton iterations were needed for convergence.

To illustrate the efficiency of different preconditioners on the eigenvalues of
the matrix A in (3.2) we shall consider the linearization (3.3) of the Burgers’
equation. A linear upwind scheme [Fiadeiro, Veronis, 77] with the same character
as our earlier algorithms for the nonlinear equations is used in the discretization.
The velocities are given by u = 1 — z, v = y and the boundary conditions are

¢(0,y) = ¢(2,0) =0 ¢(1,y) = ¢(z,1}) =1 (4.6)

We choose a matrix A of order 225 and compute the eigenvalues of A and
C~'A. The matrix C is constructed by the three preconditioning algorithms
described above. Figs. 3 to 6 show plots of eigenvalues in increasing order of
magnitude for € = 1. All eigenvalues computed are real and negative. In terms
of the ratio r = Apmax/Amin for € = 1, the W and DKR preconditioners perform
better than the MV preconditioner as predicted from symmetric cases.

The coefficient matrix A resulting from a certain ordering of the finite dif-
ference equations, becomes a triangular matrix as ¢ tends to zero. Moreover if
A is a triangular matrix, the DKR, W and MV are all exact factorizations i.e.
A =C = LU. Hence the matrix C~14 is “better conditioned” for smaller ¢.

Our final examples is the transonic small disturbance equation (TSD) which
is written in conservative form

(K¢, ~ 1/2(v + 1)452]: + ¢yy =0, (4.7)

~{f(u)]lz + v, =0, (4.8)

where

f(u) =1/2(y+ 1)¢% — K 4,
u=¢s, v=¢y, K=(1-(Mx))/(6**M)

Then the E-O approximation of Equation (5.2) gives us (u; = A% ¢;;/h)

—1/R[ALf-(wi) + AZ fy(ui)] + 1/R2 AL AY ¢4 = 0 (4.9)

Let f(u)={y+1)u— K and u = K/(v+1).
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Note that u is determined from f'(u) = 0. Then

fitwy=fw)ifu>y flw)=0ifu<yu
and
flflw)y=fu)ifu<y fluy=0ifu>u

Similar to the Burgers’ equation, we can show that the numerical fluxes are
twice Frechet differentiable and this property guarantees convergence of the New-
ton iteration.

The Jacobian matrix J with respect to the linearized E-O schemes possesses
a structure of 6 diagonals. The matrices I, U and C have the same diagonal
structures as in (3.4), (3.5) and (3.6) respectively. In the derivations of the
DKR and MV preconditioners, the leftmost diagonal of J is ignored. For the
W-preconditioner, the entries of L and U are functions of all the elements of J

with rowsum{C') = rowsum(J).

For the TSD equation, ORTHOMIN(1) was used to solve the Newton equa-
tion. The computations were done for a parabolic arc airfoil with a thickness ratio
§ = 6%. Unless mentioned explicitly otherwise, all computations were done on a
grid 51 x 30. The iterative process stops when ||R]lz < 10~°. The E-O scheme
gave the smallest number of iterations and the displayed results are with this
scheme. Godunov’s and Roe's schemes did also give converging results. Table 5
shows performance of the Newton’s method with respect to the W, DKR and MV
preconditioners which are applied to the inner iterations. For My = 0.895 and
M. = 0.916, the ORTHOMIN(1) method with the W and DKR preconditioners
does not converge. As in the case of the Burgers’ equation, the MV preconditioner
proves to be the most robust.

Next the forcing sequence {g*} will be invoked to control how accurately the
Newton equation should be solved. In all the computational results presented here
we use the initial ¢° = 0.1. Recall that ¢* is given by

¢ = cflrF|/IIF(@F)], O<e<l.

Numierical results are presented in table 6.for different values of ¢. Clearly the
convergence rate is superlinear as predicted by the theory. A well balanced ad-
justment of the parameter c helps to minimize both the number of outer iterations
and the total number of inner iterations. Convergence histories of the damped
inexact and the inexact Newton’s methods are shown in figure 7 for Mo, = 0.895.
Oscillations of the IN method are more pronounced as the Mach number goes up.
The DIN method is more robust but both methods converged in most cases.
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Finally, we shall compare the performance of the DIN method and an SLOR
method. Our SLOR method is implemented as follows:

B(¢*)6¢* = —L(¢*) (4.10)
p*+! = gk + 6¢F (4.11)
L(¢) = [k — (v + 1)Pz]sz + ¢yy =0 (4.12)

sb¢ij—1 +cbdi; + nbdi jp1 = —wL(dij) — wwbig j — 26¢i-z,;  (4.13)
k Y - k
:.J.+1 = ¢f; + 665; (4.14)

In (4.13), the correction 6¢,; is solved on each successive vertical line 7. The
coefficients s,¢,n,w and z are the entries of the Jacobian matrix J. w is the re-
laxation parameter. Table 7 gives the number of iterations and computing time
of the DIN method and SLOR method. The relaxation parameter w in the SLOR
method is assumed to have optimal values which are determined by numerical ex-
periments. The convergence properties of the Newton’s method is clearly superior.
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Number of Newton iterations , E-O schemes

* no converpence

Number of Newion iterations , ( . ) = 10ta) number of

ORTHOMIN (1) iterations

Na 0.83% 0.472 0.045 6916 Ha 0.839 0472 0.8495 0.916
subzonic frarsordc f{ransoric” transonic pubsonic trarsonic tranwonic transconic
w 4 6 . . . ex1 5 ? 1 17
{68) {110} (in {237
DKR 4 [ * .
oy c» 0.5 4 é 7 10
Table 5 Table 6
Number of iterations , (. ) = CPU time , E-O scheme
Na 0.829 0.872 0.495 0.916
subsenic  trengenic trasuonic tramsonic
SLOR 142 294 408 564
(Li2e.ve)  (240.23)  (2:30.32)  (4:58.26)
DIN 5 ? 12 iy
(29.11) {34.86) {47.04) (1:02.60)
Table 7
000
1756 ] w 4
1800 4 EX I
1250 ]
30 4
0o .
. 25
150
00 | 20
250 1.5 4
T T T T T T T T 19 o T T T T t t
) 25 80 TS0 1% 10 17 300 ° o » B0 s e 5 200
INDEX § INDEX |
€21, Apg,=2028.30, imin= 18.81,  dpayfimin =102 €=, lmay = 4.8, Amin = 099, Amafimip = 443
Figure 3. A(A) Figure 4. l(CwlA), w preconditioner
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