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l.Introduction. The problem of boundary conditions for the Navier-Stokes equations arises
when one wishes to deal with the vorticity formulations of the equations. Briefly spéaking it consists
in replé,cing one of the boundary conditions on the velocity (for instance the constraint on the
tangential component) by a boundary condition on the vorticity., The role of the later is to ensure
that one reconstructs an admissible vorticity field in the sense that the associated velocity field
satisfies a posteriori the no slip condition. Aftel_'lwards it remains to subsitute this boundary condition

in the numerical method used for solving the Navier-Stokes equations.

An attempt to solve this problem is the so-called Chorin’s algorithm. This splitting based
method consists in solving first the Euler. equation then computing the slip of the velocity at the
boundary which is further incorporated as a source term in the heat equation. This vorticity creation
algorithm has a nice interpretation when discretizing the equations by finite differences methods. If;
is also suitable for random walk methods, However the following drawbacks of the method must be
considered:

-the interpretation of this algorithm in terms of solving the proper boundary condition for the
vorticity is not clear, which makes its analysis difficult ([3],[6]). )

-to achieve its best accuracy it requires to follow the vorticity creation step by solving the heat

equation with an homogeneous Neumann boundary condition.

When using a random walk method the second point merely amounts to reflecting particles
which hit the boundary. This is however inconvenient when using deterministic vortex methods. In
such methods (see [8]) the diffusion is dealt with by using an integral representation of the Laplace
operator and using a numerical quadrature of this integral at the particles, which only move accord-
ingly to the Euler part of the equations. Those methods have proved to be particularly efficient and
accurate in absence of boundaries (see [5]) but they have difficulties in taking into account a given
boundary condition. Moreover simply implementing Chorin’s algorithm in this context probably

leads to a very poor accuracy.

As for the exact boundary conditions giving an admissible vorticity field, C. Anderson ([1]) has
derived one that involves a coupling between the kinetic and kinematic parts of the system. As an

alternative this paper presents a method that:



-provides an exact boundary cond‘ition for the vorticity both in the Dirichlet an Neﬁmann form.
-can be interprated as a vorticity creation algorithm overcoming the second drawback of Chorin’s
algorithm, making it particularly suitable when implemented along with a deterr-ninistic vortex
method.
Furthermore the way this boundary condition is derived is mostly independent of the vorticity
transport-diffusion equation which makes it easy to implement.

An outline of the .paper is as follows: in section 2 we recall Chorin’s algorithm; we sketch a
proof of its consistency showing that it is of order 1. In section 3 we derive our boundary condition

and prove its consistency. Finally in section 4 we present a vortex in cell code using this boundary

condition and a deterministic resolution of the diffusion,

2. Consistency of Chorin’s algorithm. In this section we present an analysis of the
algorithm and for simplicity we consider only the Stokeé equations {we indicate also briefly how
to modify the argument to take into accont the nonlinear terms). We consider ar—l exterior domain
{2 with smooth boundary I' whose exterior normal is de_noted by v; a vortietty formulation with

Nenmannn boundary conditions of the Stokes problem consists in the féllowingn set of equations:

Ouw .
g{—Au—O in Q (2.1)
w(0) = wy in Q (2.2)
Jw
5, =9 on r, (2.3)
where g is such that, solving
curly = w m
wer =0 on T (2.4)
U Upg at infinity,

yields alsoc  u.r=0 onT.

Sometimes we will consider the particular case of an half-space:

oF = {:B = (:L‘l,.’l.’g),ﬂ:z < 0}

2



but the crucial steps of the following analysis are mostly independent of this particular geometry. If

& denotes the even extension of w out of £*:

_ _ W((El;x?) lf B > Ox
fzy, we) = {w(m, —z4) ifzs <.

then (2.1)-(2.3) can be rewritten as

0%
o — AL = 29(z) ® §(z
ot EU@Nm) R ‘ (2.5)

@(-,0) = &g.

Therefore a natural splitting of (2.1)-2.3) or (2.5) consists in:

1% step : solve %{- - Aw =10,
2nd step solve %E;- =29 ®4.

Let us now recall the design of Chorin’s algorithm, still in the case of Q*. Given a time step At and
the vorticity field @™ at time ¢,, @"t! is computed through the following steps:"

a) if u" is the solution of (2.4) with right hand side w, = Wn|n We set
G = o7 4 2" (=) @ 8(20); (2.6)

b) then @™ is obtained as @ (-, 1,41 — 0) where:

~h
08 _ At =0
ot (2.7
Dh(ytg) = GMHE,
The step b) above also means that we are solving the heat equation in Q with homogeneous Neumann

boundary condition on T, which allows to write the algorithm no matter what the geometry is.

However in the case of the geometry Q* the following lemma is easy to prove.
Lemma 2.1. We have: (u* 7)(,#) — 0 in LXT) as t|t,.

Let us just mention that this result follows from the continuity with respect to ¢ of the solution
of the heat equation in H™(2). The interesting point here is that it is now possible to rewrite the

step a) of the algorithm as:

£

]
+
[N

=& + 2/1: nl :%(uh - THer, t) @ 6(ma)dt (2.8)

-
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where u”(-,2) denotes for ¢ €]t,—1,1,] the solution of (2.4) with w = wh{., ).
Therefore if we set

gh(ar,t) = %(uh ~r)(z,t), zel,

and if we denote by @" the solution of

—h
aait -A"=0 in Q
2.9
oo = ¢ on T 9
ENE ’

? results in w — @" plus an usual splitting error O(At).

then the error w —w
The next step consists in estimating w — & in terms of g — g* and vice-versa. Substracting (2.9) to
(2.1),(2.3), multiplying by w — @" and integrating over  give

7l = B+ 190 =) = [ (5 - ¢*)(e. 00 ~ (e, Dir(e) (2:0)

where ||-|lo means the L? norm in Q. Let us now set Gi(z) = 1/27 log(j#|) and K(z) = 8G/8r(z),z €

[. The key step is then to prove the following integral identity

Lemnfia 2.2, Forz €T and t €Jtys, 4],

(9= M)et) =2 | Ko=) (o~ oM)a, Dir(a).

Proof. Let v = Z(u — uh) ~ Ay — uh), for ¢ €ltn-1.tn], 2 € Q. From (2.1) and (2.7) we get

curlv = 0. Thus there exists ¢ such that v = grad¢. Since dive = 0 we have also A¢ = 0.

h

Moreover u-v=u" . =0 so that:

o

5_9-1/-_—mA(u—u"‘)-y:curl(w--wh)'u: wi—(w—-w“‘).

dr

Therefore the following integral representation holds:

#(z) = E/FG(a: - y)%(w — M) y)dy(y), zeT.

But
Jw 8 d¢
_h Ve Yk — — Y7
g e Br
because
a Huwh
E(U T) == E“ on T



This gives the desired result. . .

If we denote by e the difference w — &" and by R the splitting error @* — w?, the right hand

side of (2.10) can be rewritten as twice
de OR
[ [xe-0g@entei + [ [ Ke-nGi@emaen)

He de ' 8R
=~ fr fr Gl — ) z—(2) 5-(9)dy(z)dr(y) + jF /P K(z ~ y)5-(2)e(y)dv()dr(y).
Next we observe that the first integral has a distingunished sign:

Lemma 2.3. For any a in L?(T') we have

/p /r G(z - yla(z)a(y)dy(z)dy(y) > 0.

Proof. If 1 is the solution of

Ap=0 inQ, % =a onl, ¢(z)= O(%) at infinity,
then: : ' o
2 [ [ 6t - aearteine) = [ )5 @ine)
"—'[ [Vy(z) de > 0,
0 .
which proves the desired result. : .

As 3 consequence, (2.10) now yields
e 0 + 19,018 2| [ [ K6 - G ereuirtorivty)
< Cliel, llmrra oy 1Rl mrr2m
< Cllel Ol @l Rllmam

< {leC Bl ey + CN Rl ay,

which gives
el < e DI + CURC D sy
Therefore
o018 + [ 19 MBds < @) [ N neyds, €071
This finally proves that the error e in L*(0,7;L*(Q)) N L2(0, 7, H'(£2)) reduces to the splitting

error R in the same space, resulting in an order one algorithm.
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Let us now briefly describe how to modify the above argument in the case of the full Navier-
Stokes system. In this case a convection step must follow the diffusion step. Up to the additional
splitting error introduced in this process (as analyzed in [2] in the case of the whole space), the
consistency of this algorithm will result from the consistency of the algorithm consiéting in replacing
{2.6),(2.7) by

SR = O 420w r)(21) ® 8(z2);
B

ow™ R N S
pr +V(E @Y -AY =0

G tn) = GmTE,

where @* = (@}, @}) is the following extension of u” in R2:

b gh = [ (u} ud)(z1, 22), if 23 > 0;
(U]_)Uz)(ml; 332) - {(u?,_ug)(ml,—wg), if 25 <O.

#

In this situation Lemma 2.1 remains valid and we use it to rewrite (2.8) in a slightly different way:
let us denote by X(s;z,t) (resp X*(s;2,1)) the characteristic at time s associated to u (resp uh)
which was on I' at the point (,0) at time ¢. Then, since u* - v = 0 on T, X* remains on I for all

time and it is possible to write

tn
o™tE = gn + 2] ) -g%-{(uh . T)(Xh(t; ml,tﬂ),t)} ® 6(xa)dt

=" 42 /t“:{g_t(uh XM (2, 1), 1)+
+ (u® - VYt P XP (2, 1), 1)} @ () dt. (2.11)

Setting ¢"(z,t) = F{(v* - r)(X"(¢;21,14), %)} and observing that = = X(t;z,t,) (because u = 0
on I'), it is easy to prove with the same techniqués as for Lemma 2.2:
(9— "=, ) = *(X (2, t0), t) — g (X" (t;2,t0), )+
a
+ ?f K(# — 4) 5=(w — w*)(y, 1)dr().
T BT
This identity along with the enstrophy inequality (2.10), which is still valid for the Navier-Stokes

system, makes it possible to end the proof by following the same lines as in the linear case.

3. An explicit boundary condition. For simplicity let us begin with the case of a bounded

domain. Let us consider again the elliptic sysytem giving the velocity in terms of the vorticity

curlu = w in Q
divu =0 in £ . (3.1)
u-vr=>_0 on T.



Due to the second equation above the rotational of the first one gives —Au = curlw. Now if we

consider the elliptic system
—Au = curlw in ‘
(3.2)
u=1 on I,

we geb a well-posed problem in which the no slip condition on T is taken into account explicitely.
Obviously the systems (3.1) and (3.2) are not equivalent (in particular the solution of (3.2) is not
necessarily divergence free). However this becomes the case if one of the conditions curlt = w or
diva = 0 is constrained on I'. This can be done through the boundary condition needed for solving

the transport-diffusion equation on w,

A possible system including this boundary condition in the Neumann form is as follows

%Lti +V(u@w)—Aw=10 in Q ‘ ' (3.3)
w(-,0) = wp o 0 (3.4)
—Auy = curlw in Q (3.5)
u=0 on I ‘ .(3.6)

fw &, 1 a - ' - :
5 = 5(curlu) - m/}? b;(curlu)d'y on TI. (3.7)

The role of the constant -—]-Il,]- Jp &(curlu}dy appearing in the right hand side of (3.7) is

to enforce the correct circulation. More precisely we know that if (u,w) is the exact solution of the

fwdm:/u-rdqr:{].
9 r

Moreover, from the transport-diffusion equation (3.3) we easily get:

Navier-Stokes equations then:

d Ow '
awt-/ﬂ dmwjr“-é-;d'y—o, (3.8)

which means that in order to be consistent a Neumann boundary condition on w must satisfy I r g—‘fd‘y =
0. This is certainly true with (3.7). It is worth noticing that (3.8) is the only information we need
to extract from (3.3) to construct our boundary condition. Let us now prove the consistency of this

boundary condition.



Theorem. Assuming that wo and I' are smooth enough, the system (3.3)—(3.7) has a unique solu-

tion, which is the solution of the Navier-Stokes equations.

Proof. Let us first consider the solution 4™ of the Navier-Stokes equations and  w™5 = curlu™¥.

Then of conrse {w™*®, uV¥) is solution of {3.3),(3.4) and (3.6). We have also that

curlw™S = curl(curlu™%)

= —Au™S 4 grad(diva™?)
—'AUNS,

which gives (3.5). Finally

4 NS — 9uN® _d/ NS 5. _
/;‘%(cuﬂu Ydy = PTOH_E nw de = 0,

-so that (37) is trivially satisfied.

Reciprocially let (w, u) be a solution of (3.3)~(3.7). Taking the rotational of (3.5) gives along with

(3.7): ]
- —Afcurlu —w) =90 in Q
a
éﬂ;(curlu_‘— w) = constant  on T,

"This proves first that the above constant is 0 and then that curlu—~w is constant in Q. But integrating

curlu gives, due to (3.6)

f curludz = / u-rdy = 0.
113 T

On the other hand integrating (3.3) and using (3.7) yield

i/wdm:—-— 8—wd720
n r

dt v
so that
wdr = | wodr =
o o]
Therefore
w = curlu in £

It remains to prove that divu = 0. Since w =curly  we get

curlw = curl{curly) = grad(divu) — Au.
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Combined with (3.5) this implies
grad(divu) =0 in £,

and therefore

divu = constant in .

fdivudm:/u-vd7=0,
a T

dive =0 in Q.

But
so that

We have thus proved that u is solution of the original elliptic problem (3.1). Since in addition u

satisfies u-7=0 on ', this means that u is solution ‘of the original Navier-Stokes system. .

Let us now describe the first time step of a naive implementation of the proposed boundary
condition. Let At be a time step; let (W™, u2?) be the solution at time At of (3.3)-(3.6) with
boundary condition .%’f—. Let us now construct the boundary condition needed at time At to proceed.

1

Accordingly to (3.7) we compute

duw _ 0 Az
v l=at -Bj(curlu -1

where I = 1/|T'] [, 2(curlu®t)dy. But we can write

B%(curlu‘m) = curl(curku®?) . 7

= (grad(divu®?) - Audt) . 7,

At

Since 4®* is computed from w®! trough (3.5),(3.6) we have

—Au?t = curk®t . 7

- 3(-0['“ 6uo

v ov’
Finally
3 Aty _ a . At 8&){}
a(curlu )= é-?-.-(d}vu )+ ot

Therefore I =10 and the boundary condition reduces to

a ..
] 5 (divet) + %, (3.9)

v li=ar

9



Equation (3.9) describes how to correct the vorticity created from one time step to the next. It
means in particular that if divu®! = 0 then w®® is actually an admissible vorticity field and no
correction is needed at the boundary.

Here is what we consider as the main advantage of this approach: (3.9) gives a way to define a
vorticity creation algorithm even if the boundary condition used between two creation steps is not
known, provided it gives the correct global circulation.

" Let us now discuss the case of an exterior domain. For simplicity we assume that u., = 0.
In this case (3.7) is still a natural boundary dition. However the equivalence between (3.3)-(3.7)
and the Navier-Stokes equatidns is not clear because solving the system (3.2} does not tell anything
about the behaviour at infinity of u. For the solution of (3.2) to be such that u -0 at oo, w
must satisfy a compatibility condition which does not reduce to fnw = 0.

Nevertheless in practical situations this problem is naturally overcérrie since the computationdal
doma,in“Q has to be enclosed within an artificial boundary I',. On ', artificial boundary conditions
must supplement both (3.6) and (3.7) (for instance u = te, 22 =0 onTe). The resulting system

is then clearly an approximation, up to a truncature error, of the Navier-Stokes equations.

1

4. A deterministic Vortex-In-Cell code for a flow past a cylinder. We now come to
the description of a Vortex In Cell code which uses the boundary condition as defined in section 3.
2 denotes the exterior domain {# € R% |z| > 1} and I' is the circle of radius 1. The viscosity is
denoted by ¢ and Re is the Reynolds number.
First of all let us summarize the main features of the method by distingnishing between the inside
and the boundary part.

Inside ©:
a) Vorticity is carried by particles with positions X, and weights «v,; the weights e, take together
the local value of the vorticity w, and the volume of the particle w,.
b) The transport-diffusion equation {3:3) is dealt with by a purely deterministic method: particles
are convected along the velocity field u; their weigths are modified, to take into account the diffusion,
following an approach introduced in [8].
¢} In order to solve (3.5),(3.6), we use a Vortex In Cell approach, following [4]: we define an

assignment scheme from the particles to a polar grid, leading to values (w;, J;} which respectively
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represent the vorticity and the volume of the cell at the grid point 4.

On the boundary I':
@) The divergence of u is evaluated on I'. Then vorticity is created accordingly to (3.9) and dis-
tributed among source particles that are located in the immediate neighborhood of ',

Let us now give a more detailed description of the algorithm. Steps a) and b) mean that we

write
w(z, 1)~ Zap(t)é(a: = X,();  op = wpw,.

The initial distribution z, = X,(0) is defined in a rectangular grid with grid size A surrounding I'.
The width of this region is defined from a standard evaluation of the thickness p of the boundary

layer in which most of the vorticity is expected to be found, namely:

/2
zpe{zeﬂ;|m]§5 R—Z}

The parameter h must be kept proportiom;.l to p so that the initial number of particles does not
increase with the Reynolds number; in our experiments the ratio p/h is about 10.

In addition particles are generated upstream in such a way that the incoming -ﬂow maintain a grid
resolution which is roughly constant in time.

The particle positions are defined from the velocity through

%}"" = ”(Xp(t):t)
Xp{0) = z,

while the volumes of the particles w, follow the law

dw ,
E& = divu{ X, (1), t)w,
w,(0) = A2

Finally the diffusion is dealt with by modifying the weights o, according to the following equation:

de o
“dTP = 25.2..2(%%, ~ wyrap)Ay( Xy = Xp). (4.1)
pl

The function A, above is defined by A,(z) = n~?A(e/n), where A is a radially symmetric
function satisfying

/ 2iA(z)dz =1, i=1,2
R?

11



in our simulations we have choosen a positive function rapidly decaying at infinity:

16
T2(1+r8)’

A(r) =

The resulting approximation of the diffusion operator can then easily be proved to be of order 2,

assuming that there are enough particles in any boxe of size 1. This led us to choose for n a value

slightly larger that +/¢. Moreover, in order to have a fast evaluation of the right hand side of (4.1)
we have used a truncature of A at r = 2.

In step c¢) a polar grid (ér,86) is introduced in the domain 1 5 r < 6. The vorticity is assigned

from the particles onto the grid in the following way: if @ a current point of Q we denote by £ the

doublet (r,8) such that x = (rcos#, rsinf); associated to the grid in the é-space, let ¢ be a TSC

basis function (that is ¢ is zero out of a nine points box); then define

Ji= Y wp(€p — &)
. )

1

Wy = '"J""Z apd(§p —~ &)
Yoy

The above assignment scheme in particular enjoyes the following stability property
D Tilwil? <3 wplwp 2,
i P

Next, curlw is computed on the grid by finite differences and (3.5),(3.6) is solved by a second order

[y

finite difference method.

It remains now to describe the step d) involving the boundary I'. As pointed out in the
introduction, the approach leading to (4.1) has proved to be very efficient in absence of boundaries.
Moreover it enjoyes nice mathematical properties (see {7], [8]). Unfortunately so far it has not been
possible to formulate in this context a simple way to deal with a given boundary condition. In the
approach developped in section 3 this is not a drawback since the formula (3.9) makes it possible to
introduce vorticity such as to correct the effect of (4.1} at the boundary. At the end of step ¢) divu
is evaluated at the boundary nodes of the polar grid, and vorticity is created at those points with a
strength §82&-(divu). ‘

Several sheet of particles (2 in our simulations) are also considered in the neighborhood of I'. They
coincide there with the polar grid and are used to prevent a possible distortion of the particle

distribution that might occur in this region. They do not move and their volume is computed as
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the difference between the ideal volume of the corresponding cell (that is réré6) and the volume
Ji computed from the particles. As a consequence, even if particles X, are locally missing in the
neighborhood of T' (so that J; a2 0), those source particles allow to resolve the diffusion in this critical
region. We believe that he process just described gives a natural way to couple in the same domain
particle methods and more conventional methods (e.g. finite differences) and we plan to further
investigate those techniques in the future.

Finally let us mention that actually, rather than modifying the volumes of the particles, which
would be necessary because divu # 0, we have prefered to construct a second velocity field by
solving (3.1). This divergence free velocity is used to convect the particles, so that their volume
remain constant. Moreover, the value of this velocity field at the boundary gives a natural control of
the accuracy of the method. In the resulting algorithm the step ¢) consists now in solving 3 elliptic

systems on the polar grid (2 for (3.2} and 1 for (3.1)).

The results presented concern a simulation for a Reynolds number Re = 800. In this case the

width p of the boundary layer is .443. The parameters used for the discretization are:
At=01 5 h=.048 ; 6r=055 ; 60=.065

The resultant initial number of particles is 1778, while the polar grid involves 90 x 96 points. Between

time 0 and time 5.5 about 1000 particles had to be generated upstreaﬁl.

Figure 1 represents the velocity at the boundary, as computed from (3.1), in both the L™ and
L2 norm on T'. The results show that the accuracy of the method improves when time goes on in the
early stage of the flow. As a comparison, the maximum of the velocity inside Q is rougly constant,
equal to 1.7 (with v, = 1.).
Figure 2 shows the ratio between the divergence of u, as computed from (3.2), and the maximum
vorticity of in (which is about 30). This somehow indicates how far the vorticy field is from and
admissible one and thus provides an other control of the accuracy of the method. The second curve
shows the evolution of ]gﬂ:{%ml which gives a measure of the symmetry of the solution.
The divergence remains more or less constant, at .01, while the symmetry deteriorates a little bit,
indicating a possible sensitivity of the treatment of the diffusion to round-off errors.

Finally the representation of the velocity field (computed from (3.1)) at time 5.5 in figure 3 shows

the recirculation zone behind the cylinder.
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5. Conclusion. The purpose of this paper was to describe a new approach for deriving
vorticity boundary conditions both in the Dirichlet and Neumann form. Those boundary condition;s
are gimple to implemeﬁt because they are mostly decoupled from the kinematic part of the problem.
The Neumann boundary condition leads to a simple vorticity creation algorithm which can be
used together with a deterministic vortex method. Numerical simulations involving also a recently
designed‘ Vortex In Cell approach for the computation of the velocity has shown to give a qualitative
agreement with the experiments. In the future we plan to further investigate the capabilities of the
method, in particular by using a fourth order particle method. It would also be useful to implement
this method with more conventional dicretization methods for the Navier-Stokes equations in the

vorticity form, such as finite differences or spectral methods.
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