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Abstract

We present simple inequalities for the Riemann problem for a Hamilton-Jacobi
equation in N space dimension when neither the initial data nor the Hamiltonian
need be convex (or concave). The initial data is globally continuous, affine in each
orthant, with a possible jump in normal derivative across each coordinate plane,
zi = 0. The inequalities become equalities wherever a “maxmin” equals a “minmax”

and thus an exact closed form solution to this problem is then obtained.
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We shall be concerned with solutions to the following differential equation
(H-T) w0+ H(Dyp) =0 in RN x(0,00)
where HeC(RY) and Dy = (¢4,,...,9z, ) is the spatial gradient of ¢.

We shall take special (Riemann) initial data. Let u;},u] be constants and

define

u,(m) =ul if z; >0

(1) "

ui(z) =u; if z;<0

fori=1,...,N. Then take:

N
(2) po(z) = A+ z; ui(z) = A+ - u(x)

=1

We wish to solve H-J with initial data (2) in the class of viscosity solutions
as defined in [2]. The four properties of viscosity solutions that we shall need here

(apart from existence, uniqueness derived in [2]) are:
(P1) The solution ¢(z,t) is a non-decreasing function of the initial data.

(P2) The partial derivatives ¢, satisfy a maximum principle at points of continuity,
ie fori=1,...,N:

[
- .+

min(u;', u:'-) Ls; £ ma.x(u, y Uy )

(P3) The speed of propagation is finite.
(P4) If Y(z2,...,zN,1t) is a viscosity solution of

Yo+ H(v1, ¥rpy .oy Pzpy ) =0
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for a constant v; then

(P(ma t) =wvz; + 7/)(:321' . mest)

is a viscosity solution to (H-J).

Let
\Qﬂﬂl XQQX"'XQN

wherefor¢:=1,...,N:

Q;, = {‘U/ mln(u;_,uj-) <v< ma.x(u,_,u;")}

Finally we let, fori=1,...,N:
xi = sign (vf — ;)

For convenience only, we order the indices so that

Xi =1, Z=1,2,,]

xi = —1, i=3+1,...,N
(7 might be 0 or N + 1),

We now state:

THEOREM 1. The viscosity solution to (H-J) with initial data (2) satisfies:

A+ max max---max min -+ min [z-v - tH(v)]
vieldy vas(ls vjeld; vip1efljg vnelly
(3) S¢(z,t) <
A4+ min -+ min max---max[z-v—tH(v)]
vip1eQ 4 vwelly vielly v;£8;

We note that if all the x; = 1, then this solution is just mahx[:c ~v—tH(v)), if all
ve

the x; = —1 it is m161[a: v—tH{v)]. Otherwise we have a pointwise inequality which
vE
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gives the exact solution whenever the first and last terms in (3) are equal. This
occurs e.g. if H(v) = Hy(vi,...,v;) + H2(vj41,...,vN), Le., if the Hamiltonian

separates, and in many other cases.

The rest of this paper consists of the proof of this theorem, and some remarks

about both conservation laws and numerical approximations to H-J.

It is easy to see that the solution to the Cauchy problem satisfies
T
(4) pla,t) = tg(3)+ A=1g(() + 4
where ¢ satisfies:

(5) g=¢ Deg—H(Dcg) = —H'(6:(€), 92(¢),- .., gn({))

where D.g is continuous.

In H-J, we let 7 = t,y; = z; — (;t for { fixed. H-J becomes
¢r + H(Dyp) — (Dyep
(H-J1)
=®r +H1(Dy‘P) =0
with the same initial data (2).

Thus, by (5), to evaluate g(¢) we need only evaluate ~H!(D,g) at y = 0, for
any ¢ > 0. From (P1) above we know that (D,¢),=0 lies in Q2 for # > 0. Moreover,
if we integrate (H-J)! from ¢ =0 to ¢ = At we have

@(0,At) = A — AtH'((Dyg)y=0)
(6) = 0(0) — AtH* (D3 p0(0), D= 00(0); D3 00(0), D**20(0); - -
-1 D3V 00(0), DZ¥ o (0))
Here:

(7) DZipy(0) = i(‘PO(iheii)l“ vo(0)) — uft




where ¢; = {0,0,...,1,0,..., }, the {*® unit vector, and H'(u, ul;uf, uy;...;uf, uy)

is determined by (6).

This formula can be interpreted as a numerical algorithm. Suppose we are
given a grid
gt =fihi=1,...,N; 7i =0,%1,...
and values of a discrete function %; = v, j,.. ;5. Then for each j, we construct the
piecewise affine function which, in each of the 2V orthants centered at j, interpolates
3, and its N nearest neighbors, ¥;4., for i =1,...,N. From (P3) above, if
(8) (CFL) &t max |HL|< Tvlg

rk u
ve(d)
f=1,..., N

where Q9 is the same as Q with each u;, uf' replaced by DZ'+;, D315, then the
solution to the initial value problem (H-J)! with the above affine initial data in the
diamond centered at j when evaluated at z = z; and ¢ = At is independent of the

values of the initial data outside of this diamond.

Thus (6) (with ¢o(0) replaced by 7 and ¢(0, At) by ¥7*!), gives us a mono-
tone finite difference scheme approximating (H-J)* which is in differenced form with
numerical Hamiltonian A'. These concepts were introduced in [3]. The scheme is
monotone, which means that the right side of (6) is an increasing function of all the
Pjite;s beca}use of property (P1). The function H?! is called Godunov’s Hamiltonian
by analogy with the definition of Godunov’s scheme for conservation laws in one

space dimension [5]. The scheme is consistent, which means

ﬁl(ul,ul;U2,u2;...;uN,UN) =H1(u11u27---5u1\r)

Monotonicity implies that
7l =. -. . -
H (uf-aul ,u;',uz 1!"'?“?\}51“‘]\()
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is a nonincreasing function of all the u} and a non-decreasing function of all the

u; . In particular, for N = 1, this means for any v,e) = Q;:

9) sga (uf — oD EN T, ul) - HY(w1))]
= sgn (uf — v1)[B'(uf, u7) — B (01, u7)]
+sgn (v — u])H (o1, u7) — B (v1,v1)]

<0

But, by (P2), H'(uf,u]) = H*(&,) for some #; in . Thus we have

(10) H'(uf,u7) = x1 vllfféli X1H(vy)

(This formula was obtained earlier in [6]). Now we proceed inductively. Suppose,

for N < M — 1, we have

max --- max min .- min H'(vy,vg,...,0n)
vigp1685 41 vnelly viefl; vjed;
Lt = o= o
(11) SH(u1:u1:u2au2;-“;uN1uN)
< min --- min  max --- max H!(v;,vs,...,0N8)
vleﬂl v;‘&ﬂj vj+1€ﬂj+1 'IJ'NEQN

where

xi=-1, i=j+1,...,N
Next we have, N = M and for any v,e€;:

(12) xal B (uf uysuf, ug's. . uly, ug,)
— Yy, v;uf,ug;.. Gudp,ug)]
<0

using the same argument as in (9).



Now, for any fixed vy, H Yoy, vy udug,...;ulp, upy) is Godunov's Hamiltonian
when the initial data for (H-J)! has a constant z; derivative,

B{ﬂn

—(z)=wn

62,'1
Then it follows from (P4} that

Tz I3 TM

=2 522 28
g(t)— tvl-’_g(t’t,-" _t

(where § also depends on ;).

By the induction hypothesis, this means we have

(13) XI.fIl(u'f',u;;u;,u{;...;u}},u}})
< Xlﬁl(v1,U1;U;,u;;---W}q,';pﬂg\_/;)
= —-x14(0,0,...,0)
= XaXz2 M0 Xz-- Xy min Xy H'(v1, 05 0m)

= X}Hl(’vl,'ﬁz, ,’Z’M)

where the extrema is taken on at s,...,05, which depends on v;. The vector
(v1, P2, ..., 0n )t where v1£8; is arbitrary. We next take Irrﬂn of the expression
in (13); If all the x; = 1 or all the x; = —1 we have equality by (P2). Otherwise
xi=1,1<5:<y, xi=-1, j+1< 1< M and we have the right hand inequality

in (11). Next we have, for any v;416Q;41, following the argument above:

(14)

Lt =ty et =
H (u],uy5ug,Ug 5.5 Upp, Upy)
fric..+ .,—. . . e
2 H (U], U] e 01, Vg1 -3 Uy, Upy)

. . . . 1
Z Xj+2 min Xj4occ-xM min xumx: min xp---x; min x; H (v, vs,...0p)
vi4288lj 42 vareQag v1£82 viefd;

We next take the max of the expression in (P4) which gives us the left hand in-
Vj+1

equality in (11).



We have now obtained formula (11) for any N; using (4) and (5) give us

Theorem 1.

We note that (11) validates the conjecture about Godunov’s Hamiltonian in [7]
when the inequalities in (13) and 14) become equalities. That paper also discusses

the high-order accurate non-oscillatory numerical solution of (H-J) in some detail.

If we take the space gradient of (H-J) and call u; = ¢,,,uz = ¢@.,, etc., we
arrive at the system of conservation laws

(14 '(u;)t+~é‘-3--H(u1,...,uN)zo, i=1,...,N

with intial data:
u,-(:c,O) = uj' ifz; >0

=y; ifz; <0
t=1...,n
Then taking the space gradient of (3) gives us information about the solution to

this special Riemann problem for a special system of conservation laws.

We finally remark that if the initial data is convex (coneave) orif H(uy,...,un)
is convex (concave) then the Hopf formulas [1] for this problem apply. In the case
N=1i was shown in {1] that these formulas give the solution (3) originally derived
in [6]. (In the one dimensional case the Riemann initial data is automatically convex
or concave). The same must be true in the multi-dimensional convex or concave
case. Our general nonconvex results presumably follow from the rather complicated
formulas in [4], although the connection seems to be unclear. P. Sougandis has
verified for us (private communication) that the left and right sides of (3) are always

viscosity sub and super solutions for (H-J).
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