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ABSTRACT

Tikhonov regularization is a standard method for obtaining smooth solutions to
discrete ill-posed problems. A more recent method, based on the singular value
decomposition (SVD), is the truncated SVD method. The purpose of this paper is to

- show, under mild conditions, that the success of both truncated SVD and Tikhonov
regularization depends on satisfaction of a discrete Picard condition, involving both

- the matrix and the right-hand side. When this condition is satisfied, then both
methods are guaranteed to produce smooth solutions which are very similar.
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1. Introduction

This paper is concerned with the linear least squares problem:
min |[Ax -bll,, AeR™, m>n | 1)

where the matrix A is ill-conditioned and has ill-determined numerical rank (ie., its singular values
decay gradually towards zero without any particular gap in the spectrum). Such problems typically
arise in connection with the numerical solution of Fredholm integral equations of the first kind,

[KGx) Fx)de=g(), @)

which are classical examples of ill-posed problems. The following discussion is particularly focused on
ill-conditioned least squares problems arising from discretization of (2), but we stress that the results
hold for discrete ill-posed problems in general. Throughout the paper, we shall assume for simplicity
that the matrix A has full rank,

The singular value decomposition (SVD) is an invaluable tool for analysis of problems with ifl-
conditioned matrices, and the truncated SVD (TSVD) method has been used successfully to solve a
variety of discrete ill-posed problems of the form (1). In spite of this, the method still lacks some
theoretical background. Our aim here is to develop a theory for the TSVD and thus provide insight into
its behavior. To do this, we find it useful to compare the method with another widely used method for
ili-posed problems, namely Tikhonov regularization. This method is theoretically better understood
than the TSVD, but there seems to be no general criteria by which these methods can be compared
[14]. In [9], Hansen showed that if there is a distinct gap in the singular value spectrum, then TSVD is
equivalent to Tikhonov regularization. The present work continues this investigation, with attention pri-
marily focused on matrices with ill-determined numerical rank. We show that the existence of a satis-
factory approximate solution primarily depends on satisfaction of a discrete Picard condition and in fact
{even for matrices with well-determined numerical rank) has little to do with finding the numerical rank
of a matrix. We also show that once the discrete Picard condition is satisfied, then TSVD and Tikho-
nov regularization always yield very similar solutions. The work was inspired by the ’trilogy” of papers
by Varah [22,23,24] and the paper by Aulick & Gallie [1]. '

The paper is organized as follows. In Section 2 we introduce the methods of truncated SVD and
Tikhonov regularization. In Section 3 we show that the convergence of both methods largely depends
on the behavior of the right-hand side, and we formulate the discrete Picard condition. Section 4
presents perturbation bounds for the methods, and in Section 5 we further characterize the behavior of
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the solutions under the influence of errors. Finally, in Section 6 we give two numerical examples.

2. Truncated SVD and Tikhonov regularization

Our investigation takes its basis in the singular value expansion (SVE) which is a mean conver-

gent expansion of the kernel X in the form

K(s,x)= 3 P u;(s) vi(x)
iwml
where both {1} and {v;} are sequences of orthonormal functions, and all y; > 0. In terms of the SVE,
the solution f 10 (2) can be written as
- (ll- s g)
f@y=% ‘p..- vi (x) 3

i=1

where (; ,g) denotes the usual inner product. See e.g. 8, Section 1.2] for more details. The ill-posed
nature of (2) is reflected in the facts that the sequence {1} has zero as its only limit point, and the
"smoother’ the kernel the faster the y; decay to zero [5, Theorem 3.2]. Hence, a square integrable solu-

tion f can only exist if the coefficients (u; , g) decay to zero faster than the tl; , such that

hnd (ui:g) 2
oo | 4
E{ [ W } < ®

This is the well-known Picard condition [8, Theorem 1.2.6].

Corresponding to the SVE of X, the matrix A has a singular value decomposition (SVD) in the
form [2, Section 3]

A =UEVT=f_',0'.-u,-v,-T,
iz
where the left and right singular vectors u; and v; are the orthonormal columns of the matrices
UeR™ and Ve R™, and the singular values o; are the diagonal elements of X € R***. They
satisfy ¢; 20, 2---20, and, since A is assumed to have full rank, 6, > 0. The relationship
between the ill-posedness of (2) and the large condition number o1/ 0, of the matrix A in (I) was stu-
died by Richter [18] and Wing [25]. Recently, Hansen [10] elaborated on this by showing that when-
ever (2) is discretized by an expansion method with orthonormal basis functions, the SVD of A is
closely related to the SVE of K in the sense that the o; and ulb are approximations to the it; and
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(4; ,£), respectively. This means that if g satisfies the Picard condition (4) and is unaffected by errors,
and if the order n of the discretization is sufficiently large, then the exact least-squares solution x, to
the unperturbed discretized problem (1), given by

ulb

onA*bzi—v,-, )]

i=1 3

yields an approximation to the solution f given in Eq. (3). See also [8, Theorem 4.1.6).

When g and, equivalently, b are perturbed by errors, then the solution to the perturbed problem
is very likely to be dominated by errors which are ’blown up’ by the small singular values I; or o; in
the denominators of Egs. (3) or (5), It is therefore necessary o apply some sort of regularization to
either (2) or (1) to compute a solution which is less sensitive to the perturbations and which approxi-
mates the exact solution to the unperturbed problem, f (3) or x, (5). Due to the close relationship
between the SVD and the SVE, applying a certain regularization method to (1) is equivalent to applying
the same regularization method to (2) {10}, and the convergence of the regularized algebraic solutions

to (1) carries over 1o the corresponding approximate solutions to (2) [8, Section 4.2).

A highly regarded regularization method, due to Tikhonov [21], amounts to defining the regular-

ized solution x; as the unique solution to the following least squares problem with a quadratic con-
straint:

min { |4 x - b]|7 +A*||x|IF) . (6)

Here, the regularization parameter A controls the *smoothness’ of the regularized solution, We remind

that x, can always be written in terms of the SVD as

L) 0"'2 u,Tb

Xy = ;§1 Py M
If we compare this equation with Eq. (5), we see that the role of the regularization parameter A is to
dampen or filter the terms in the sum corresponding to singular values smaller than about A. Hence, in
any practical application, A will always satisfy o, < A < 0;. An alternative method for regularization
of (1) is the truncated SVD (TSVD) method, in which one discards the smallest singular values simply
by truncating the sum in (5) at some k < n {22]. Thus, the TSVD solution x, is defined by

[

H;Tb
—_—y
[l 0“-

X i =ULVTh , Tf =diag(of,---,0:,0,++ -,0). 8)
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The integer & is called the truncation parameter, and it plays a role similar to the A in Eq. (7). Notice
that x, is identical to x, with A = 0 and x; with k = n. We stress that the TSVD solution can be com-
puted at least as efficiently as the regularized solution, without the large computational effort involved
in a complete SVD computation, cf. the survey of methods in [11]. For more details, computational
aspects, and examples of the application of these methods, see e.g. 2,3,5,6,8,22,23,24].

The use of Tikhonov regularization and TSVD is based on the following heuristic:

Heuristic 2.1. The number of oscillations in the left and right singular vectors u; and v; tends to
increase with increasing i.

When this is true (which is the case e.g. if the matrix A is totally positive), it is obvious that the TSVD
solution x, as well as the regularized solution x, tend to be smoother than the least squares solution x,.
We are aware that in some applications, Heuristic 2.1 is not satisfied, or x, is simply not the solution
one is interested in (even: without noise being present), because the sought solution f does not have a
nice representation in terms of the right singular functions v;. In these cases, one should replace the
term || x |5 in Eq. (6) by another appropriate regularization term such as e.g. ||L x[,, as pointed out in
[23]. We are also aware that this corresponds to an expansion of the solution in terms of the general-
ized SVD of the matrix pair (4, L) [12,23]. However, we feel that a fundamental understanding of the

simpler case (6), as provided in this paper, is necessary before we can proceed to perform an analysis of
the general case.

3. The convergence of the methods

Before starting our discussion, we shall make the assumption that & and A are chosen such that
the solutions x3 and x; are not too different — otherwise there will be no point in making a com-
parison between them, From the expression (7) for x; we see that this is the case when A = g, since
then the damping of the terms in (7) sets in for singular values smaller than about o,. It can actually
be proved [9, Theorem 5.2] that A chosen somewhere in the range (7 Gr)* <A < (o), O )" brings

x; and x; as close as possible. In section 5 we return to the actual choice of ¥ and A

The main goal of this section is to show how the behavior of the right-hand side & in (1)
influences the convergence of the TSVD solution x, and the regularized solution x;. For this purpose
we set up, in terms of the SVD of A, the following 'model’ of a right-hand side:

B:=ulb=0, i=1,..,n, az20 (9)

where the non-negative real constant o determines the decay of the B; relative to the o; (when o> 1,
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the f; decay faster than the o;). According to (9), we can write b = U X° f with f =[1,1,- - - ,1] .
Although Eq. (9) is a crude *model’ of the right-hand sides as they appear in practical applications, it is
sufficiently realistic to clearly illustrate the importance of the decay of the B; — rather than the particu-
lar shape of the singular values spectrum of A.

First, we investigate the convergence of the solutions x; and x,; i.e., we shall determine how well
they approximate the exact least-squares solution x, (5) to the unperturbed problem. Following [1], the
differences x, — x; and x, — x, are called the TSVD error and the regularization error, respectively.

The closeness of x; and x5 to x, is illustrated in the following theorem:

Theorem 3.1. Let x; and x,, denote the solutions (8) and (7), and let x;, denote the exact least-squares
solution (5). Further, let the right-hand side b satisfy Eq. (9). Then the norms of the TSVD error
x, — xi and the regularization error x, — x;, satisfy:

lx, — x|}z Vn , O0<fax<l (100
[EAPS Gru/o)*Vn  , 1sq

%, — xall2 WNo,)*'Vr , O0sa<l
Iz {2 = |QWop*ivn |, 1<a. (10b)

Proof. To simplify the notation, we inwoduce the quantities

E=Vix,, &=Vx, E=VTx. (11
We shall first derive a lower bound on ||x, |}.. According to (5):

%, =AY =VEWUTUZf =V =VI[el, - 62T <

1 o' , Oga<l
”%ﬂz*—““ﬁa“zzm‘?" (o7} = 0.;:—1 <o,

Concerning the norm of the TSVD error, we have

%o = xell2 = 118, ~ Bellz < ¥ |I& — &l = Vo [{(Z* - £) 27|

o , 02a<l

., 12w,

n
= max [of '} Vn = 1\5—

k+1Sisn o

These relations immediately lead to Eq. (10a). To obtain a bound on the norm of the regularization
error, we use the technique from [8, Chapter 2). Defining the vector w = V £, it follows that the
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relation & =A ATAY'w <> UX*f =U ™! f is satisfied if v = % (a~1). Thus, from [8, Theorem
2.2.2] we obtain

flx, = xalla < A {lw il =A%V .

This relation, together with the bound for ||x, |5, yields Eq. (10b). 0O

Theorem 3.1 shows that as long as o is larger than 1, and provided that o, and A are small com-
pared to O; = ||A ]|, both the TSVD solution x, and the regularized solution x, are guaranteed to
approximate x,, and the larger ¢ the better approximation. Usually, the truncation parameter £ and the
regularization parameter A are determined by the errors in (1) in such a way that larger errors lead to a
smaller k and a larger A. Hence, Theorem 3.1 shows that if errors are present in (1), then x, and X
can only yield satisfactory approximations to x, if the coefficients B; of the unperturbed right-hand side
b decay to zero somewhat faster than the singular values o;. And the larger the errors, the faster the

decay must be to ensure convergence.

Next, let us consider the similarity between the TSVD solution and the regularized solution by
considering  their difference x,—x, and also the differcnﬁe between their residuals
b-Ax)-(b~Ax)=-A (-x). We assume that 0,4 < A < 0, and that the right-hand side b
satisfies the *model’ (9). A convenient way to measure the difference between x and x,, as a function

of a, is to define the following relative difference function:

, 14l
Sfy= min |[VI(x~x2)||er ——a . 124
k( ) U*_HS’LSG! ” ( & ?u)” ”UTb”” ( )
Similarly, we can measure the difference between the residuals by means of the function
pe(@ = min [JUTA (g~ x)||/ 1UTB .. . (12b)

Ut*_lslsﬁk
The distance function 8;(ct) was briefly analyzed in [9, Theorem 6.1], and the analysis is extended in
the following theorem.

Theorem 3.2. Let xy and x, denote the solutions (8) and (7), and let the right-hand side b satisfy Eq.
(9). Then upper bounds for the functions 8, () and p,(C) defined in Egs. (12a) and (12b) are given by

(Gr/o)™ , a<3

B(e) < (Oru/oy)? , o023 (13a)
(GkH/GI)u , o<2

pr(0) < ©Orifo)? . w22 (13b)
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Proof. First, we notice that VT (x; — x) = &, — &, where &, and &, are defined in (11). From [9,
Theorem 6.1] (in particular, the third column of Table 1) it follows that

8 (0) < (Crar/01)™ (Or /0 ) < (Opufo))®! for D<as?
-1
S (o) < (Orarfoy)? [l + (cm/ck)z] < (Cppfoy)? for a=3.

For @ in the interval [2,3], a careful analysis of the norm

Hg g “ o o.lu-—l ;\.2 c.ka-l 12 Uﬁ}u G,?H
=Bl = it WA .
of+A?’ "o+ gl A2 " o242

shows that its maximum value, for 6,4 S A < 0y, is given by

%
3
Fa'laﬂi v Okst <A< [a_? ] 8]
HEe—&illa = op1A2 3—q % cre (14
ot+ a2 |am1 ] @ Ok

where Fo= %(a—1D"D3-0)%*®  Since A2/(cf+A2) increases with A, it follows that the

minimum of (14) for o, SA < 0 is

%
- 3—0
Fo ot s CraSAso [-&':'I
min {|§ -&l. = 1.2 %
Oy, SAST, o Ofn I-o <h<a
1 - = Ui
ot + 5.34-1 a-1

Inserting this result into the expression (12a) for §;(cx), and noting that ||A ||,/ [[UT || = 6}~ for all
o 2 0, we obtain '

%
Fo: (@plop)™? » CriSA<o [‘%E‘%]
S (o) =

%
—1 —
(Uk+1f01)2 [1 + (O'k+1/01)2] s O {Z—{: ] £A< O .

Here, Fy <1 and {1+ (0,/01)*1™" S 1, and since (0141/61)*! > (Op41/01)? for 2< <3, an upper

bound for &p(c) is (Op/0)™!. This establishes (13a). To prove (13b), we notice that
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lUTB |2} = o7 and that UTA (x - x3) = £ (& — &). Hence, py(0) = 8;(01), and (13b) therefore
follows from (13a) with ¢ replaced by o+ 1. a

Theorem 3.2 shows that when & is fixed by the errors present in (1) and &y, is small compared
to Oy, then there exists a A € [Gy,1,0; ] such that x, and x,, as well as the corresponding residulas,
are guaranteed 10 be close whenever o is larger than 1. And the larger o the closer the solutions and
the residuals. This means that whenever the coefficients B; of the unperturbed right-hand side & decay
to zero somewhat faster than the singular values o, then TSVD and Tikhonov regularization will pro-
duce approximately the same solutions and residuals, and according to Theorem 3.1 both of the solu-

tions will approximate the unperturbed least-squares solution x,,.

We conclude this section by giving a more rigorous definition of the requirement on b. Of
course, the decay of the B;-coefficients need not be monotonic, as long as the B; in average decay to

zero faster than the o;. We can formulate this requirement as follows:
Definition 3.3. The discrete Picard condition (DPC). Let b denote an unperturbed right-hand side in
(1). Then b satisfies the DPC if

lulb | <c tulb |

i T;

» i=1,00 -1 (15)

where C is a constant of order unity, If some ulb | o; is numerically zero, it should be replaced by the
first previous nonzero ul;b /o, ;, j =1,2,+ -+ .

We remark that if the discrete problem (1) is obtained from the integral equation (2) by means of an
expansion method with orthonormal basis functions, and if the integral equation satisfies the Picard con-

dition (4), then the DPC is also satisfied due to the relationship between the SVE and the SVD [10}.
1t should be stressed that while the convergence of x, and x, depends on the DPC, the smooth-

ness of these solutions depends on Heuristic 2.1. Thus, both vectors x, and x; may be smooth even if
the DPC is not satisfied, but in that case they will not approximate the vector x,. Although such solu-
tions may still be acceptable in certain cases, it would be more correct to use the general formulation of
regularization as mentioned in the last paragraph of Section 2.
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4, Perturbation bounds and condition numbers

In many discrete ill-posed problems, the errors are restricted to the right-hand side only. For
example, this is the case if (1) is derived from an integral equation (2) whose kemnel K is given exactly,
¢.g. from some mathematical model of a physical problem, while the right-hand side consists of meas-
ured quantities contaminated by errors. These errors transform directly into a perturbation of the right-
hand side b in (1). Examples of such problems are inverse problems in observational astronomy {3],
the inverse problem of electrocardiography [4], deconvolution problems such as inverse Radon and
inverse Laplace transforms [15,24], and inverse problems in computational physics (see [16] for an
overview and [6] for a specific example). It is therefore appropriate to derive bounds on the perturba-
tions of x; and x; solely due to a perturbation e of b.

Theorem 4.1. Let x; and x; denote the solutions (8) and (7}, and let %, and X, denote the solutions

when the right-hand side b of (1) is perturbed by e. Assuming that o, < ) < &y, the relative perturba-
tions are bounded as:

xe—%ell2 o |lell2

=6y | 16a
e [F2 o |lbellz (16a)
Hxa-~Zlla _ o1 lellz

N 16
5l - 2% Tibl, (16b)

where by = A x; and by, = A x;,

Proof. 1t is elementary to derive (16a) from the inequalities ||x,—%}lo=|VEUTe|,<
%Nz lie 2= ok llelly and [1bill= HA xell2 < 1A ll2lix |l = 01 llx, |5 Further, it follows that
llxa—2allz = {IV £ UTe|l; < ||Z]l2 || € |}2, and assuming that o, <A< o, one obiains

- G g
= — g =1/(2%) .
”&”2 1???.;{ 0"'2"1' 7L2 0:2335(61 Gz+ Kz /(2 )

These two relations, together with ||by|; S o, ||xa/l, lead directly to (16b). LI

Remark. The bound in Eq. (16a) can also be derived from Lemma 2.3.2 in [8]. Applying the same
lemma to Tikhonov regularization, we obtain a factor o /) instead of the factor oy /(24) in Eq. (16b).
If the error norms are bounded relative to ||x, ||, instead of ||x |2 and ||x3}|2, the right-hand sides sim-
ply change to 01/, le|l2/ (|5, |2 and 0,/ 2A) |[e ]2/ |[b, |2, where b, = A x,.

Theorem 4.1 confirms what has been observed experimentally and used in a number of applica-

tions, namely that it is possible to choose & and A such that the approximate perturbed solutions %, and
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X, are fairly insensitive to the perturbations in b. The theorem also shows that when A = Oy, as we
assumed in the previous section, then both methods are approximately equally sensitive to the perturba-
tions. Notice that there is always a tradeoff between Theorem 4.1 and Theorem 3.1 in the choice of k

and A: when k is small and A is large then the perturbation bounds are small while the TSVD and regu-
larization errors may be large, and vice versa.

The results in Theorem 4.1 can also be used to derive expressions for the condition numbers asso-
ciated with TSVD and Tikhonov regularization., Here, we shall use the following definitions:

Definition 4.2, The condition numbers x; and %, associated with TSVD and Tikhonoy regularization,
respectively, are defined as

X — X Xi— X
‘. = |z — Zell2 o i [lxs— %all2 an
llell, -0 x|l 2 lleliy—0 txall2

where x, and x,, are the unperturbed TSVD and regularized solutions, and X, and %, are the solutions

when the right-hand side is perturbed by e .
This definition, together with Theorem 4.1, immediately leads to:

Corollary 4.3. The condition numbers (17) associated with TSVD and Tikhonov regularization are

K =01/0,, X5 =01/(2A). (18)

Remark. Schock [19] recently considered another condition number ¥, = A/ o, associated with Tikho-
nov regularization, based on the usual condition number of the matrix A{ = (ATA +A2Iy? A7, which
is the unique matrix that produces the regularized solution x = A} b. The result A/q, is, however
not quite right. Instead it should be:

_ Gy /A » A.S'VO'{G,
“=\are, . A>+oo..

T

which is easily derived from the proof for [19, Theorem 2]. We feel that our condition number i, (18)

1s more correct than %, since the matrix A4 should not be used to compute x, numerically,

Next, we shall give the general perturbation bounds for x;, and x; when both the matrix 4 and
the right-hand side b are perturbed. The perturbation of A may ¢.g. arise from the approximations used
to derive A from the kemnel X in the numerical treatment of the integral equation (2).

Theorem 4.4. Let E and e denote the perturbations of A and b, respectively, and assume that
1Ell2 < 04— G4y and [|E ||, < A. Then the perturbations of x, and x,, are bounded by
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lx - %2 llall2 Oea | HEH2  llellz  HEW: llnlla
2+ + + 19a
el - o -TET o | TAlL "ol " "o Tibellz (1%)
Hxa— Zall2 A+ Al HEHz  llellz  [EN2 Hrall2
< 2 + + (19b)
xall2 A-EY: {7 1Al 18all2 A Bl
where ry =b—Axy, ry=b-Ax;, and Wy =0 ~ Cg41 — ”E“z
Proof. Eq. (19a) follow immediately from [9, Theorem 3.4} together with the relation
HE ||/ o _ lAlla o -llEl,: |E]l2 - f1Alls 14 e HE |la
1-iEllz/op~Grior o~ [IEfl 07 Al  oe—HEI, o | lAallz”

To prove Eq. (19b), we remind that x, is the unique least squares solution to the problem
min ||C x - d}|;, where C = [fl] and d = [g] The matrix C has full rank for all A > 0, and we
can apply the standard perturbation bound for least squares solutions {2, Thm. 5.5] to get:

lC 2 licla Pwm

lxe — #allz

e ll2 1u—meﬁ
1-{E2lICH, { C]l2 :

x + e 4 I c*

From the definitions of C and d we get ||All, < [[Clla<l|Alla+ A, [[CHla=0,(CY! < A7,

[Cllzlixall2 2 IC xall2 > [A mallz = [[Ball;  and  [[d - C xall2= || [;:;l]ilz < flrallz+ A lixall2

4

such that

ICla il A+llAl:  NEL _ JIE] el _ llells
- ENLTCT, %=L Tl “Talh " TCTllxl < Tk

lld = Cxalla _ IENz lirlla | IEN,
ICTalmls ™% ol * Tall,

NE{2]IC*I

These relations then yield Eq. (19b). ]

Although the bound in Eq. (19b) is not tight, it does illustrate our major point, namely that the
general perturbation bounds for x, and x; are very similar whenever A = x, (which we have already
assumed), provided that k and A are chosen such that ||E ||, < 6y — 6,4 and ||E ||, < A. We see from
Eq. (19a) that truncation of the sum in (8) at a nearly multiple singular value o, should be avoided; but
apart from this, the results in Theorem 4.1 do not impose any particular requirement on the singular

value spectrum. Le., one can actually truncate the expression (8) for x; at any value of &, as long as
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o} is not nearly multiple.

The main conclusion to be drawn from Theorems 3.1, 3.2, 4.1 and 4.4 is therefore that the suc-
cess of TSVD (as well as Tikhonov regularization) primarily depends on satisfaction of the DPC (15
and in fact has little to do with the existence of a gap in the singular value spectrum of A. If, for some
k, there is a large gap between o, and oy, (i.e. A has well-determined numerical rank}, then this & is
usually identical to the numerical rank of A and it is therefore often convenient to truncate the expres-
sion for x; at this £ [9]. In this case, it is natural to require the DPC satisfied for the first &
coefficients B; only, and to consider the remaining P;-coefficients associated with the residual. If, on
the other hand, A has ill-determined numerical rank then there is no point in trying to find A ’s numeri-
cal rank, Instead, one should choose k in order to suppress, as much as possible, the influence of the

perturbations while, at the same time, keeping the TSVD error as small as possible, In the next section,
we shall discuss this in more details.

5. Characterization of the solutions

In this section we are mainly interested in the TSVD solution and the regularized solution when
they are influenced by perturbations of the right-hand side. In order to understand the influence of such
perturbations and to be able to select a proper truncation parameter k and regularization parameter A,
we therefore seek to characterize the behavior of the perturbed solutions X, and %; as functions of k
and A. A convenient way to characterize any solution o the least squares problem (1) is to plot its
norm versus the norm of the comresponding residual, as suggested in [13, Chapter 26]. Since we are
only interested in that component of the residual which lies in the column space of A, we define the
residuals ry and ry, corresponding to x, and x,, by

a 2

n
reeb,~Axy=3 ubu, r,= b,—Axy=3% — >
imk+t i1 O + A

H;Tb u; . (20)

It can be proved that for regularization [{x,||, is a decreasing function of l|7all2, while for TSVD
|x.|i2 is a decreasing function of liryll, on a finite set [10, Theorem S.3), and that the points
(17ellz. 12 112, k =1,...,n—1 always lie above the curve (llrall2, llxall2) [13, Theorem (25.49)]. The
distance between these points and the curve was already analyzed in Theorem 3.2. Here, we shall give
a more detailed (although not strictly rigorous) description of the curve and the set of points,

First, let us consider the behavior of the curve (||r4|lz, || xal,), with x, and r, given by Egs. (7)

and (20). Obviously, x; — 0 and ry — b, as A — oo, while x; — x, and ry >0 as A - 0. For
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A < ¢,, we have

o?+M¥ =af = |[nl,=A [i [“in ’0‘2]2]A (Mo, Yk,
i=l

and o?/ (67 +A\) =1 = x;, = x,; ie., for small A the curve ([jr; |2, [|xall2) is approximately a hor-
izontal line at lxy |y = [|x, ]|, When M increases, we see that |lxy|l, starts to decrease while ||r]],
still grows towards [|b, [|,, and thus the curve must bend down towards the abscissa axis. The value of
A for which [|x,||, markedly starts to bend down depends on the o; as well as the u7h. If the DPC is
satisfied, such that the sum in the expression (7) for x, is dominated by its first terms, then obviously A
must be comparable with the largest singular values o; to significantly influence x,. For such values of
A, |irally will be somewhat smaller than ||b, ||, because the coefficients to the first terms in the expres-
sion (20) for r, will be less than one. — If the DPC is not satisfied, we can assume that most of the
terms in the expression for x, actually contribute to this vector, and the influence of A can be felt for
much smaller values of A than before, Thus, the curve also starts to bend down for smaller values of
|lry]|5 than before,

Next, we consider the points (f|re|l2, {|x;]i2). If the DPC is satisfied, Theorem 3.2 guarantees
that for large k there always exists a A & [044;, 0x] such that the points are close to the curve

(lirallz. |

sions (8) and (20) for x; and ry that their noms must behave quantitatively like |lxy ||z and |[rylf,.

x31]2), while for small k¥ we cannot guarantee this. However, we can see from the expres-

Le,, if the DPC is satisfied, then for large k the points will approximately be on the same horizontal
line as the curve, and as k gets smaller the points will eventually start to bend down, always lying

strictly above the curve, If the DPC iis not satisfied, the points will deviate from the curve even for
large k. '

If we make more assumptions about the case when the right-hand side does not satisfy the DPC,
we can also say more about the curve and the points. This is particularly relevant for the perturbation

e of b. An interesting case (see below) is when all the coefficients 1ufe | of the perturbation are
approximately of the same size,

lulel =¢,, i=1,-,m.
The corresponding *solution® x{¢) and ’residual’ r{*) are given by

¢) v G (e oW
xf =g v; i =g
(] l§1 Gi2+ 12 [ 3 . (13

i - 21
Lo u (21)
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The vector x§* is called the noise amplification error’ in {1]. In particular the norm of x(® = Ae
satisfies €, / 0, < ||| < Vn &, /6,. We see from (21) that for A in the range 0, SA < =, |[r{ ][,
varies in the quite small range from approximately €, to Va €,. Concerning x{*), the sum in (21) is
dominated by just a few, say p, of the terms, namely those for which o; =A and
o/ (of +3) =1/(2%) such that [|xf|l,=p-e, /@A) =g, /A Thus, as A —>eo, the curve
(e 112, 14 |2} soon becomes almost a vertical line at |[r{*’ ||, = Vr ¢,. Exactly the same concly-

sions hold for the points (||7}|, ||x*’|};) obtained when applying TSVD 10 e.

Typical examples of both curves (|irall2,||xll2), with the DPC satisfed, and
(e 112, 124 1|2, with the DPC not satisfied, are shown in Fig. 1 for the situation {|e ||; < |5, |l
Notice that the latter curve starts to bend down towards the abscissa axis before the first curve does

(e.g. for smaller A). Also notice that the level ||%, ||, = [|x ||z = Vr ¢, /o, lies over the level |ix, ||,.

We are now ready to describe the behavior of the solutions %, = x3 + x{) and % = x; + x©
under the influence of errors e in the right-hand side. We make the following assumptions in order to

be able to carry out a2 meaningful analysis:

Assumption 5.1. Let e be a perturbation of the right-hand side b in (1). We assume that
1. the unperturbed right-hand side b satisfies the DPC (15),
2. the perturbation e is a random vector of zero mean and covariance matrix o2l ,
3. the expected value of all coefficients ule is a constant ¢, independently of i, and
4. the norm of e satisfies ||e||2 < ||, |2

The first assumption is necessary for the convergence of the methods. The second assumption is very
common in least squares problems. If it is not satisfied, one should either scale the equations (if the
covariance matrix is diagonal) or use the general Gauss-Markoff linear model for a general covariance
matrix, cf. e.g. [2, Section 14] and [26]. The third assumption means that the errors are equally likely
to contribute to all the terms in the sum (5) for x,, which is also very common whenever Heuristic 2.1
is satisfied. Assumption 4 is simply a requirement that the signal-to-noise ratio in the given right-hand
side is not too large to let one retrieve a satisfactory approximate solution,

With these assumptions it then follows from the above analysis that the curve (|Fall2, ||%2il2)
and the set of points (|| {2, 1% ]2 will appear as shown in Fig, 2. For A < @,, the curve is almost
horizontal at the level [[%a]l2 = {|x ||, = Vn ¢, /a,, since the regularized solution %, is dominated by
the term x§°). Increasing A, the curve soon starts to bend down due to the influence of X in the term
x{> which still dominates X.. This part of the curve therefore resembles the dashed line in Fig. 1.

Increasing A further, the other term x; will start to dominate %, at some point such that the curve now
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stays at a new level at ||%y[|; = |{x, i, until it eventually starts to bend down again for A comparable
with the largest singular values. This part of the curve is therefore similar to the solid line in Fig, 1.
As long as Assumption 5.1 is satisfied, there will always be a more or less distinct *corner’ somewhere
in the middle of the curve, where the dominating term in %, switches from x; to x{’. The set of
points corresponding to the TSVD solution %, behaves in exactly the same way, also exhibiting a
‘corner’ when the dominating term in %, switches from x; to x{*), At this comner, and to its right, the
component x, dominates and Theorem 3.2 ensures that the points will be close to the solid curve

(except for the smallest k). To the left, x,*’ dominates, and as k increases the points will deviate from

the solid curve. We can summarize the main result as follows:

Characterization 5.2. If Assumption 5.1 is satisfied, then the curve (|[Frll2, || %2||2) as well as the set
of points (|[Fel2, || Zk1|2) exhibit a *corner’ behavior as functions of their parameters A and k. Both

‘corners’ occur approximately at (Va €, ,||x, ||2). The larger the difference between the decay rates of

lulb | and lufe |, the more distinct the "corners' will appear.

The plots in Fig. 2 provide a natural choice of the regularization parameter A and the truncation
parameter k that must be selected. It is obvious that the optimal values of A and k are those that yield
solutions near the "comers’ of the curve and the point set, respectively, since these solutions approxi-
mate x, as close as possible without being dominated by the contributions from the perturbation ¢. In
the case of the TSVD solution %;, we can also say that & should be chosen as large as possible, but
with the constraint that the k coefficients u7(b +€), i =1, - -,k in the truncated sum for X, safisfy
the DPC. The optimal solutions, produced by these optimal values of A and k, satsfy
1Zallz = [[%ell2 = |lxo ll2 and [|7a)l2 = {|7il2 = |le |l2; ie.. they are reasonable solutions in the termi-
nology of Varah [24]. We stress that whenever Assumption 5.1 is satisfied, and A and k are chosen as
described above, then both TSVD and Tikhonov regularization are guaranteed to produce very similar

reasonabie solutions that converge to x, as e — 0.

We shall not go into a detailed description of numerical methods for determining A\ and &£ accord-
ing to the above criteria. Suffice it to say that the key idea in most of these methods is actually to
locate the corners” of the curve and the point set as illustrated in Fig. 2. This is clearly the case in
methods based on the discrepancy principle [8, Section 3.3] where one increases k or decreases A until
the residual norm (or some function of this norm) is of the same size as the norm of the errors
llell2=Yn e,. Generalized cross-validation [7] is a promising alternative method which, in the case
of TSVD, simply amounts to choosing & so as to minimize the function ||7,1|2/(m —n)2 This k is

identical to the & for which ||F.||2/(m —n), as a function of k, stants to level off and become an
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estimate of the variance |[e ||#/m of the noise, and the corresponding point (||7¢ ]2, ||%¢ ||, is therefore

near the 'comer’ of the point set. The same holds for Tikhonov regularization, cf. the discussion in
[11].

6. Numerical examples

This section includes two examples of the numerical solution of first kind Fredholm integral equa-
tions (2), illustrating the discussion in the previous sections. In both examples we choose m = n, and
we discretize by means of the method of moments with simple orthonormal basis functions ¢; chosen to

give a piecewise constant approximation to f

., a+@-Dhs<xs<a+ih
%) =1y , otherwise i=l.n

where h =(b—a)/n and [a,b] is the integration interval. The clements of A and b in the least
squares problem (1) are then given by the integrals

a+ih a+jh a+ik

ay = | KGs,xydeds ,  b=h™ |,

aHi-1}h -L+U-1)A gls)ds . 22

Hi-Dh
For more details on this method see e.g. [10] where it is shown that the singular values g; of A, when
computed by Eq. (22), are O (n~*)-approximations to the ; in the SVE of K.

The first example is a classical example by Phillips [17]. The integral equation is given by the
following X and g:

1+cos[m(s—x)/31, ls—x1<3
KGs,x)= 0 , lg=x1>3

2(s) = (6—151) [1+ ‘/zcos(n:sl3)] + %sin(nlsllf&)

with [a ,b] =[-6,6]. The solution is f(x) =1+ cos(nx/3). The explicit formulas for A and b,

evaluated by means of (22), are given in [10]. We used n = 64 and perturbed the right-hand side b by
random numbers from a normal distribution with zero mean and standard deviation 10~* such that
llell2= 810 The condition number of A is 0,/0, = 2.8-10°, and we know that Assumption 5.1 is
satisfied. For i < 13 the computed quantities o;, |#7b 1 and &b ! /o; (not shown here} all decay as
expected. For { > 13 the singular values o; continue to decrease while the coefficients 1ufb | settle at

the error level about 10~*. Hence, the u4]b |/ 0; increase almost monotonically with i for i > 13. Fig.
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3 shows the curve (||7a]l2. ||Zall2) and some of the points (||, {|2, || % |]2); notice the likeness with Fig.
2. It is clear, both from these plots and from plots of {ub | /o;, that one should truncate the TSVD
solution x, at about k = 12. The approximate solution, computed from %,, agrees with the true f
within a maximum deviation of about 1072 which is largely due to the TSVD error Xy — Xi.

The second example is a real problem from observational astronomy, where the right-hand side g
is the probability density function of observed stellar parallaxes, while f is the true probability density
function of these parallaxes. Assuming that the measurement errors are normally distributed, it is casy
to show that f is related to g by a first kind Fredholm integral equation (2) with

-1 _I.E‘S_'-.E.)E
K(s,x) pmexp[/z o ]

The factor p reflects the accuracy of the measurements. As a case study we used a standard set of
observations from [20, Table 4, p. 30] defining g in the form of a piecewise constant function and with
p=0.014234, We used the interval [a,b ]=[~0.03,0.10], and the elements of A (22) were calcu-
lated using the 2-dim. 9-point Simpson'quadrature rule. The computed values of o; and lufb 1/0; are
shown in Fig, 4. Notice that the {u[b |/o; initially decay slightly with i, and that they soon start to
increase dramatically. It is evident from this figure that the TSVD should be truncated at k equal to 6
or 7. Fig. 5 shows plots of (||F1]l2,||%4l|2) and (||7;||2, ! % []2), and the similarity with the idealized
plot in Fig. 2 indicates that Assumption 5.1 is actually satisfied. We see from Fig. 5 that the error level
is about {|e |f, = 107, that there is a distinct "comer’ on the curve, and that the TSVD solutions x; with

k =5,6,7,8 are close to this "corner’. The computed solution corresponding to & = 6 turned out to
give the best resuits,
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Figure captions

Figure 1L

Figure 2.

Figure 3.

Figure 4,

Figure 5,

Typical behavior of

the regularized solution x, for a right-hand side b that satisfies
the discrete Picard condition, and — — — the regularized solution %{’ for a right-hand
side e that doesn’t.

Comparison of X TSVD solutions ¥, and
perturbed right-hand side b + e.

regularized solutions £, corresponding to a

Plot of TSVD and regularized solutions for Phillips’ example.

The computed singular values o; and coefficients lufb | /o; for the second example with
observed stellar parailaxes.

Plot of TSVD and regularized solutions for the second example with observed stellar paral-
laxes.
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