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1. Introduction

As is well known, the initial value problem for hyperbolic conservation laws is as fol-

lows:
U +f ) =0 (1.1a)
ux,t) =ugx) (1.1b)
where u = (uu,y, -+ u,)7 is a state vector and J (@), the flux, is a vector valued func-

tion of m components. The system is hyperbolic in the sense that the m xm Jacobian matrix
A(u) =9f (u)du
has m real eigenvalues
au)sau)s -+ ¢ a,, (1)

and a complete set of m linearly independent right-eigenvectors., A weak solution to (1.1)is a
bounded measurable function u (x ,t) which satisfies

oo

[ L Cuo,+7w) 0, ) duae + [T ugx) 0 @0y dx =0 (1.2)

for all § € C ¢ ((—e=,00)x[0,00)).

The main cause of the numerical difficulty in shock capturing methods is the occurrence
of discontinuities. The fluid state variables may jump across shock curves, and it may have
discontinuous derivatives across characteristics, Most currently used shock capturing schemes
allow the computation to cross discontinuities, Therefore we have difficulty in the vicinity of
the discontinuities: on one hand we adopt a scheme, which its consistency is usually based on
the assumption that the exact solution to the problem is smooth; on the other hand we do not

have the necessary smoothness there. That is why oscillations and smearing of discontinuities



often occur in the computations.

Since 1970’s many efficient finite difference approximations to (1.1) have been
developed. Particularly, the ENO schemes lately developed by Harten, Osher, Engquist, and
Chakravarthy (see [1], [2], [3], [4]) have been very successful in dealing with shocks. These
schemes use a local adaptive stencil to obtain information automatically from regions of
smoothness when the solution develops discontinuities. Obviously, the idea of picking up infor-
mation from smooth parts contains the attempt to prevent the computation from crossing
discontinuities. As a result, approximations using these methods can obtain uniformly high
order accuracy right up to discontinuities, while keeping a sharp, essentially nonoscillatory

shock transition,
Two improvements of ENO schemes should be mentioned are as follows.

In [7] and [8] Shu and Osher constructed the pointwise ENO schemes by applying the
adaptive stencil idea to the numerical flux and using a TVD Runge-Kutta type time discretiza-

tion (see [9]). This greatly eases the implementation and simplifies the programming,

In {10] Yang designed an anificial compression method for ENO schemes by
modification of the slop in the reconstruction procedure. This technique efficiently improves the

performance of the ENO schemes at contact discontinuities.

Recently, Harten introduced a concept of "subcell resolution” to the ENO schemes, The
main ingredient of it is the observation that the information in cell average of a discontinyous
function contains the location of the discontinuity within the cell. Using this observation one
can modify the ENO reconstruction to recover accurately any discontinuous function from its
cell average. The modification of the ENO reconstruction, that is to extend the reconstruction
function in each left and right adjacent cell to the recovered location of the discontinuity,
efficiently prevent the computation from crossing the discontinuity. The application of this
technique to the linearly degenerate characteristic field greatly sharpens the contact discontinui-

ties.
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Five years ago, the author began to work on a treatment of discontinuities for shock cap-
turing methods, which is based on arbitrary schemes (see [11], [12], [13]). It is somehow simi-
lar to Harten’s "subcell resolution”, although with different origin. The essence of the treatment
is that in some critical intervals which is suspécted of harboring discontinuities, we modify the
original scheme to prevent the computation from crossing discontinuities, The modification is
done by adding artificial terms to the original scheme. The accurate location of discontinuity is
obtained by adding the small artificial terms. The spurious oscillation and the smearing of
discontinuities are essentially eliminated since the computation is not done across the discon-
tinuities. We believe that the basic idea presented here also applies to the multi-dimension

cases,

The paper is organized in the following manner: In Section 2, we describe the
method in detail. In Section 3, we discuss the practical implementation of this treat-
ment. Some shock tracking idea is introduced to make the method more efficient. Sec-
tion 4 studies the effect of this treatment on variation of the numerical solution. Sec-
tion 5 gencralizes this treatment to the case of the Euler equations of gas dynamics.
Section 6 contains several numerical examples to show the performance of the treat-

ment.
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2. Treatment of Discontinuities in the Scalar Case

We begin with the scalar, convex problem, i.e both u and f in (1.1) are scalars, and

f 7 2 0. Let us consider a general conservative difference scheme:

u}‘*l--—u,'-‘—?\-(f;l -fi) @1
2 2
where f'; %%_ =f(u Wigats * 0 uf.y) is the numerical flux dependent on 2k variables, The
flux is consistent with (1.1a) in the sense that
Fau, - uy=fw), @2

A is the mesh ratio, i.e. A = t/h, where € and h are the time and space increments respec-
tively.

The key point of this paper is trying to prevent the computation from crossing the possi-
ble discontinuities. To describe the method in detail, we start with a simple and particular case.
Suppose that on the level n we have a cell, say [x iy xj1+1], which is suspected of harboring a
shock (or contact discontinuity). The numerical solution on each side of which is supposed to
be "smooth” (as shown in Fig. 2.1). The first step is to extend the numerical solution, by some
kind of extrapolation, from one side of the cell to the other side, and get a set of extrapolation
values: ufi%, ulh ., - wt uin, uln, e, ufik+1 (see Fig. 2.1). Then, on
each side of the shock, the numerical solution on the Jevel n+1 will be evaluated only with the
numerical solution on the level # and its extrapolation values from the same side. For exam-

ple, if point (x;,t,.) is on the left of the shock, then u }“"l will be computed as

uptt=ul =M -7 2.3)
A TRy
rather than (2.1), where
fﬂ'ﬁl zf(u}l—kﬂ’ T Jx’ }|+_1’ T uf'+‘2) 2.4)

J+‘2-
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Also if point (x;.t, 1) is on the right of the shock, then u }'*1 will be computed as

uptl =y — (7Y - fr @.5)
J+—2' ’_3
rather than {2.1), where
f;'i =S, o uf e ul) (2.6)

2

In doing so, the computation is completely prevented from crossing the jump of the numerical

solution, hence the oscillation and smearing are essentially eliminated.

An important problem is to obtain the correct speed of the shock. That is whether the
jump of the numerical solution should stay in the original cell or move one cell to the left or
right when it goes from the level # to the level n+1. If the Jjump moves one cell to the lefi,

then the point (x;,.t, ;1) should be on the right of the shock, and u**! should be computed as

uptl = a0 - @7
h+-5 11—5

If the jump moves one cell to the right, then the point (%j,+1:84+1) should be on the lefi of the
shock, and u?*}] should be computed as
uitl =uly =M™ -7 2.8)
]1+l j|+1 (fjl""-z' fjl“"%‘
(as shown in Fig, 2.2). In [1], Harten dealt with this problem by involving the location and the
speed of the discontinuity. In this paper we are dealing with it in a different way.

Obviously, the modified scheme is not conservative across the cell [x},%; +1). However

we can write it in a conservation-like form by introducing some artificial terms along x and

directions, i.e. we rewrite the scheme in the form

ultl=y? 0 f", - "
j § (f]%% f

L

Y+pl =Pty +aft-qp (2.9)
2 2 2



An - . .
fj%_ J £Ji
rn 4
"=, L 2.10)
f”% f;:z J2jtl
2

The introduced artificial terms are as follows. If the jump of the numerical solution on the level

n+1 remains in the the cell [le,xjﬁl]. then:

n - .

pj% =0 V;

g1 =0 Vijzj @.11)
n+l n £+ Fl Rad
" - A +x ’ - ¥ .

q]l qh (fh""';" f“_}_;_ )

If the jump moves one cell to the left, then:

n — ] .
pi,1=0 V=i
2
P, 1 =-qj, + W, —uj"l"")+l(ff""_l —f"_"’l )
Y h— L
(2.12)

gt =0 Vij#j-1

n+l _ _on .

qjl_l pj]-;'

If the jump moves one cell to the right, then:

n — s .
p1=0 V=i

2

n =q® + )\ Fn+  _ Ang-
Pk T Mt 2T

2 2
2.

q*=0 Vijej+ 2.13)
n+l n - n Fn An,~

hel =ql Wl —ul )+ A - .
9j+1 =4, (_“+1 u11+1) (fjl"‘% ffx'*% )
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Instead of u J’-", quantity u }‘-q}‘ is conservative in the modified scheme (2.9),

A very important point in our treatment is that these artificial terms given in (2.11),
(2.12), and (2.13) are regarded as the "truncation error” at the discontinuity. In fact, if multiply
(2.9) by ¢}'t, sum it with respect to j and n, and sum it by parts, we get

i i oF - ¢ "’fh+f i ¢,+1h 9F .

n={ jo—oo n=) j=—eo

f 11h+z‘, °,-°h

Z ¢J'u ¢Jn—1 q th + ¢0q0h + z Mp" Th (2.14)
n=1 T . Jotle T 'h% '

where ¢/'=0(x; sl )y @ is a twice differentiable test function, [x; X +1] contains a jump on the
level n. Comparison of (1.2) with (2.14) implies that the smaller the artificial terms are, the
closer the numerical solution is to the exact solution. Therefore we need to keep these artificial

terms small in the computation. Since p 1 is related to q J""'ll. practically it suffices only to
e

Ja
take care of the latter one, and this will automatically give us a criterion to control the jump’s
moving. We calculate for each case the corresponding q’”‘l compare them, and choose the
case which corresponds to the smallest 1q1" I. In doing so, we can get an accurate shock

location on each time level.

The above method involves artificial terms along both x and ¢ directions. Thus we refer
to it as the x—¢ version of the treatment. Another version of this treatment is the x version, in
which only artificial terms along x direction are involved, and the jump of mumerical solution
occupies at least two cells. Here we will only give a brief description of it, for further details

interested reader is refer to [11], [12].

Suppose that we have an interval [xjr_l,xj +1] on the level n, which is suspected of con-

taining a shock. First we extend the numerical solution from one side of the interval to the

other side, and get a set of extrapolation values: uh,k_l vt ﬂ'+ 2y e, Ul 4 -

Then the computation on each side of the possible shock will be implemented only with the
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solution and its extrapolaiion values from the same side (just as done by (2.3) -
(2.8)). Instead of requiring Iqj"_:1 | to be small, we require the numerical solution to have the

least variation within the interval in the x version, i.e. we require
L n n
Eujl O.S(uh_.,l + uh_l)¥

1o be small, where . is the value of the numerical solution at the middle point of the interval
(see [11]). This will also give us a criterion to control the moving of the jump, i.e. whether the

Jjump should stay in the original interval or move one cell to the left or right when it goes from

the level n to the level n+1.

Remark 2.1 Harten's subcell resolution only involves the artificial terms along x direc-
tion, so his method is an x version. If the basic scheme is the ENO scheme, we believe that

the x version of this treatment is similar to the Harten’s method.

Remark 2.2 Suppose that the basic scheme (2.1) is 714 order. This order of accuracy will
be kept in the region of smoothness for the modified scheme in both the x and the x-t ver-
sion if the extrapolation employed above is more than rth order accurate. This means that the
treatment will cause litde error even if it is applied to the region of smoothness. However,
numerical experiments show that in many cases lower order (even zero order) extrapolation

works well, especially in dealing with shocks.



3. Implementation of the Treatment

1) Formation of the Generated Intervals. The first problem is to determine the cells
which need the treatment. In this paper we refer to these cells as generated intervals (in [11]
and [12] we refer to them as gencrated sections). Generally, we choose a quantity which is
related to the numerical solution as the measure of non-smoothness. Then the criterion of selec-
tion is based on the observation of this measure. Obviously, the simplest choice of this meas-
ure is Jul, —ul'l. Correspondingly, in the candidate cell or interval, lufyy—ull should be
relatively large. In the case of £ > 0, uf,1—u < 0 is also required so that the treatment is
only applied to shocks, not rarefaction waves. This is the criterion used in [12). The main
drawback of it is that we could neglect some weak shocks and contact discontinuities, and
apply the treatment to cells or intervals which have somewhat large slops, but still should be
regarded as “smooth" according to the global structure of the numerical solution. A further
consideration along this direction is to involve some high order difference quotient of numer-

cal solution in the measure of non-smoothness.

The criterion suggested by Harten in [1] is based on the ENO reconstruction, and
involves difference quotients of high order. An important point of his criterion is that the meas-
ure of non-smoothness in the candidate cell should attain a local maximum. If Iu}‘.,_l -u j’l is
the measure of non-smoothness, his criterion is analogous to require that |u i -uftl be
greater than both luf—u/_) | and lul,-uy, |. This criterion greatly avoids neglecting weak
shocks and contact discontinuities.

Obviously, no criterion can strictly distinguish shocks and contact discontinuities from the
smooth parts of the numerical solution, especially in the case of spontaneous shocks. This
means that we can not completely avoid the "accidental effect” of this treatment to the smooth
region. However, remark 2.1 tells us that such accidental effect is tolerated in computation,

In this paper, we combine the ctiterion in [12] and [1]. It takes iu}’_,_l —u}'l as the meas-
ure of non-smoothness, and requires that this measure in candidate cells be relatively large, say
greater than a constant O, and also attain a local maximum. In the case of f7>0,

ufy1—ul® < 0 is required as well.
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Usually, the generated interval in the x~¢ version only occupies one cell. But in the x
version it occupies at least two cells. Therefore, the candidate cells obtained by the above cri-
terion in the x version should be extended to the intervals of more than one cells to become
generated intervals. We merge the adjacent candidation cells into one interval, and extend the
isolated candidate cell to its left or right adjacent cell by choice. In [12] we extend the isolated
candidate cell as follows: check the difference quotient in each left and right adjacent cell, then
extend the candidate cell to the one with greater difference quotient. In doing so we expect to

eliminate some spurious oscillation.

Finally, the cells or intervals containing the jumps coming from the level n should be
precedently accepted as the generated intervals on the level n+1. For example in x—¢ version,
suppose we have a generated interval [le,le+1] on the level n, then one of the intervals
[x; 0%5,41), [xj 415X} 42), and {xj,-1,X;,] should be accepted as generated interval on the level
n+1 according to the different case of moving, unless the corresponding jump is too weak, say

n+l o on+l I
v

n+l n+l n+l
]u.i:+1 j1 ]

luflz-ufdi 1, or 1l —ul*l | is smaller than a constant o,(< @), A
similar handling for x version is given in [11]. In doing so, we have introduced some shock
front tracking idea into the algorithm to make it more efficient. However, unlike the traditional
front tracking methods (refer to [16], [17], [18]), no lower dimensional adaptive grid is intro-
duced to fit the front of discontinuity, and the whole algorithm is much simpler,

The efforts 1o set up even more efficient and reasonable criterion are welcome.

2) Performance of the Treatment. Here we only focus our attention to the x—¢f version
For the detail of the x version see [11].

Suppose that there is a glencrated interval {.xjk,leﬂ] on the level n. At first we calculated
§ = (f Wi -f W] WUy =u), and check if it is greater than 0. The positive 5 indicates
that the shock (or contact discontinuity) should move fo the right. Therefore only two cases of
moving should be considered: either the jump on the level n+1 still stays in cell [le,x j41] or

moves one cell to the right. The case of 5 < 0 can be treated similarly.
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The treatment can be performed by adding some artificial terms to the basic scheme (2.1),
i.e, the modified scheme can be written into the form

W =uf =My ~FT )Py —py + Pt -] 3.1)
; ] 1= L1 ~P, 45 "4
J+ I3 Ay J

Suppose s > 0. If the jump remains in cell [x;,»x; +1], we take the artificial terms as follows:
for ji~k+1 £ f < ji~1

1 1 1) (3.2)
) AT
for ji S Sj+k+1
PPy =Mf" -7, 3.3)
g iy i
and
g/*' =0 Vii#i
n+l n A+ An,— (3.4)
d o i + L) — Ll
qh qh A'( ffl"‘% le""";' )
If the jump moves one cell to the right we take the artificial terms as follows:
fO[‘jl—k+1 S]l Sj1—1
Py =My =), G
J'+-2' J+"2" J+'2- .
for j = j,
pPT 1 =q +M STy ~fT ), (3.6)
Jv J'1+? J|+-2'

forj1+1 <j < jr+k-1

L L 3.7
AT AL
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and
grt=0 Vjwj+l
. on, fr- - (3.8)
qui% =Q;: +u}:~'+-1 "'uflﬂ +?\.(_f;::3 -f;-’_% )
- 2

Obviously, when the extrapolation employed in the treatment is of 7tk order, the terms

MFPE =770, and wlt —ul, A =f™73 ) that occur in the expressions of g7+
J;x'*"!' .f:"‘l Jrtl Tt jﬁ'i jﬁ'l ;1
2 2 2 2
and qj"lﬁ and the terms p”
i

are all of (r+1)th order. This justifies the statement in

ol

Remark 2.2

3) High Resolution Technique. The moving of discontinuity fully depends on the
artificial term along ¢ direction. This implies that this artificial term contains the location of the
discontinuity within the generated interval. Therefore one can use it to find out the more accu-
rate location of discontinuity within the cell. We refer to this technique as the "high resolution”
technique. As in [11], we use the following formula to compute the coordinate of the location

s™ in x—t version.
1
st = x;, +h( E(u}‘1 = Ui) - q}‘+1 Wuj, —- Ui . 3.9)

An analogous formula for the x version can be found in [11]. An example using (3.9) was
presented in [11] and [12] showing the result of the technigue. Suppose that the initial value
problem (1.1) is a Riemann problem which its solution is a nioving shock between two con-
stant states. If we use a general 3-point scheme with the treatment of this paper. then the
numerical solution is exactly the true solution. Also the shock location obtained by the high
resolution technique on each time level is exact. In fact, the early idea of this treatment was

motivated from this example.

4) Interaction of Generated Intervals. Until now we have only considered the case that
involves a single discontinuity, on each side of which the numerical solution is supposed to be

smooth. However, a general initial value problem may involve several shocks and contact
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discontinuities, which could collide with each other. Therefore, inevitably we have to deal with

the interactions of numerical discontinuities.

Without the loss of generality we only consider the interaction of two generated intervals
in the x—¢ version. Suppose that [le,xj1+1] and [xj 2,szﬂ] are two generated intervals on the
level n (as shown in Fig. 3.1). If the extrapolation in the treatment is of 7tk order, the extra-
polation values on each side are evaluated with the r+1 values of the numerical solution on
the other side. However, when the two generated intervals are close such that the number of
the space points between them is less than r+1, the rth order extrapolation is impossible.
Therefore we should reduce the order of the extrapolation. Hence, at that time the

Uil ms * 0, ulh, and Uilms ** " s Wiks1,m are evaluated by the extrapolation of the

order lower than r, where 4™ and u®-

i m oo denote the extrapolation values obtained from the

part of the numerical solution between these two generated intervals (see Fig. 3.1).
When the number of the space points betweéen the two generated intervals are less than
2k, the stencils of some these points will cross both the two generated intervals. Therefore, in

order to pick up the information only from one side, the computations at these points will use

the following terms for numerical flux,

F v+ « s vt v e [ PR "
S Uk1ms » Wfim U4 U i me UiSem) - (3.10)

The collision of generated intervals happens only when we are tracking the discontinui-

ties. A typical case is as follows: Suppose that the two generated intervals are adjacent, i.e.
J2 =Jj1+1, and the jump in the left (right) one should move to the right (left), while the jump
in the right (left) one should remain in the original cell (as shown in Fig. 3.2 a, b). Obviously,

there would be two overlapped generated intervals on the level n+1. Let q"""'1 and q""‘l

J1F

(q':i‘}, and q,"lfl ) denote the artificial terms comresponding to the left and right generated

intervals respectively. In that case, we take qj'i"“l (qj"li'%) qj"l:"l q; nil (q’:f% P+ it

and acc;:pt the two overlapped generated intervals on the level n+1 as a single generated inter-
val.



If 1 o il“l. mﬂ'} oan watad intamials olaed

the Jinm?“ r move Wowand i .

5 ¢ach others (see Fig. 3.2 ¢).
In that case we should accept [le_lyle.;.l] on the level n as a single generated interval of two
cells. The treatment of the generated interval of two cells is the naive extension of the treat-
ment of the generated interval of one cell. First we still extrapolate the numerical solution from
each side to the other side. Then the numerical solution on the next level will be computed by
(2.3) - (2.8). Unlike the case of generated interval of one cell, here we have four possible cases
of jump moving. The generated interval on the level n+1 could be one of the [xj1—2>xj,~—1]-
i 1%, ) [xj,0%5,41), and [x;41,%; 4], We calculate the corresponding artificial terms for

each case by solving the following system:

G Ay =T e -ty - j <k
2 2 M2 I
uf+1=u1?-l(f~: 1o=FT Pty P g - =k (B1D)
= ke k+=— k-
2 2 2 2
u}'“=u}"'l(ff'1 =fT)+p*y -p™ -q] J>k,
J Yy Y =3

where f" 1 is defined by (2.10), p” 3 =p 3=0, and k is taken to be J1=2, j1—1, ji, and
J+E J‘r'"i' h+"7'_'
J1+1 respectively. We compare those |gf+11"s, and then choose the case which has the smal-

lest Iqpt*l),

We can also handle the above situation in the following easy way. Treat the left gen-
erated interval as its jump does not move, and still let the jump in the right one move to the
left, or conversely. Then merge the two overlapped generated intervals on the level n+1,

The handling of collision of the generated intervals for x version (only for the zero order

extrapolation) is given in [11]. Since each generated interval in that case at least occupies two

cells, the handling of collision is more complicated than that for x—¢ version.
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4. TVD property of the treatment, uniformly boundedness of the artificial terms

In this section we study the effects of this treatment on the variation of the numerical

solution. Here we only consider the x~ version in the case f* > 0. An analogue discussion

for the X version can be founded in [11]

An important class of difference schemes are the TVD schemes. These schemes do not

increase the total variation of the numerical solution. We will show in this section that our

ignored.

treatment keeps the TVD property of the scheme if the interactions of discontinuities are

Suppose (2.1) is a TVD scheme which can be written in the form (see [5], [19D)

uPtl=ul + C"4 A" (u —ChiAN,
ppog g g
here

and

AF ;) - fj%_) + (f (vj41) —fj%)l <

V+1-—V'I

It is easy to see that (4.4) implies

CRY

4.2)

4.3

“.4)
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. V.-.:.)xf(w) {1.5}

f(Vj__'J.._,_l, wa Vi, W W,V

+2r tr Y4k ’
J

Such essentially 3-point scheme includes, beside the standard 3-point scheme, several recently
constructed second- order accurate converging schemes (refer to [19]). By the rth order treat-

ment we mean the treatment which uses the rth order extrapolation.

THEOREM 4.1 The zero order treatment keeps the TVD property in the vicinity of the

generated intervals.
We use the "vicinity” to indicate the region the treatment could affect. When the basic
scheme is (2k+1)-point scheme and [x;,%; 41] is the generated interval, this region is the

interval [x; _z.X; ,4.1]. Hence, we need to show

jr’f‘k

p IAf‘:iul SC-";L&. EAf’+k+lul +(1-—C_;__ )IAf’+k_lul
j=irk J ) I > I 2 i) 2 h )
jr‘l‘k—l

+ IA? Jul +(1=C™ | )IA®  ul+C™ [ 1A"  jul (46)
j=j§k+l it jrksg Tk ik ik

Proof: Assume that [le,leﬂ} is a generated intervai.on level n. Without loss of gen-
erality we assume s = (f (uj:ﬂ) -f (ujl))/(uj1+1 ~u; )20, ie the shock moves to the
right. When j < ji=1, or j 2 j|42, the uj’” is evaluated by (2.3) or (2.5). Since the scheme

(2.1) can be written in the form of (4.1), we have

uPt=ul+ C™4 A" (u —-C"7 A" u < j1-1 @.7
j O AT 1,801 S =0 '
J+—2-J }‘-i-z-- I 2;’ J 2
and
uMtl=ul+ C™ A" 4 —C™ A" i f 2 j1+2 4.8
j j LB L, oL S el '
1+~E.r J+—2- 1 2-’ J 3

Here



fup -7y
cry = :
fH5 A" u
i3
(4.9)
f( +1) f H
J+—
fl,—] = l 2
J*’?'I An 1U
ity
and
fwh -4
crt o=
j""l"" A" LU
2 j+_2_
4.10)
Fhy) - fm
+—
cry =2 2
j+_1" An lu ’
2 j+-2-

and both the couples (4.9) and (4.10) satisfy (4.2). Obviously, the modified scheme still has a

TVD form at these points, but with different coefficients.

When the jump on the level 7+1 remains in [x;,X; ,], the uf*! and ultl still given

by (2.3) and (2.4) respectively, Bearing in mind (4.5) and that the extrapolation is of zero

order, we have:

.II‘E-’ Jr 2
4.11)
un+l — +C o+ AP u
J;‘i‘l }l+1 +""3"".P' 11_'_1
2 2
Hence,

Ay —(1-c"'+ —C?7y JAT ju+C™ 3 A su
11-3 2.1 S 2. J:—',I ““ﬁ"' Jry
A™u=A" ju+C™; A" qu+C" A" ju (4.12)
Jl"‘? Jl+'i" Jr‘"af J’x"‘— J1= Z'I Ji—= )

A’“‘lu—C" 5 A" 5u+(1—C"* —CT"—3 )An U .
s 2 ;1+2.r Jrt 2 ""2'." S iy
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When the jump moves one cell to the right, correspondingly we have

ultl =y —Cne, AP

i1 g] J’r"l"J 11“%“

R+l _ - 4.13)
uJ1+1 uh

and

A qu=(=Crhy —CMy A" U +C7y A su

) Jr—s > S i 2 J:--2-.1 Jrie 5

Aty -C"' A" u : (4.14)
114"'5' 2’ jr—= 2 _

AL = CrY AR cu 4+ (1-C, )A” AU TAY

Jl+"2"' Jr*? h+'§' .h+'§|r 2 114—2

However, both (4.13) and (4.14) with (4.7) and (4.8) lead to (4.6), and the proof is complete.

When the order of extrapolation is higher than zero, (4.11) and (4.13) should be replaced

by
ujtz-’-l ..»u +Cn.+1 Anr LU ___Cﬂ.l A" U
h+—l J:+—.I Ja 2.1 = 2
+1 - + ; 4.15)
UfI1 = Ufq +C™% A" qu ~C™7 A" |
Jid=r = .h"- Jﬁ'—’
2 2 2 2’
and
ult =yl 1O AT |y —Cry AT yu
5 ] e [ 1 A 1 1
Ji+'2'" h‘*‘; 2'3 Ji—= 2
_ 4.16
ufil = uf + Wi - )+C"'+3 A3 u=Cly A” @10
Jd Jri—l S=d ji+=
*2 2 2
Where
n
Ah 3 4 =uln —uly
2
n o —
Ajﬁ_l_’u uin - uj, “4.17)
2!
n —
AP 1w =ufy -l
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It is possible that the appearance of the terms in (4.17) could kil the TVD property in the
vicinity of the generated interval. However, these terms are only of O () by the assumption
that the numerical solution is "smooth" on each side of the discontinuity, Hence the error
caused by them is also of O (k) on each time level. Therefore, the total variation of the numer-
ical solution will be bounded if there is only a single (or a finite number of discontinuities

without interactions) in the problem.

The cases with interactions of generated intervals remain to be studied, and it is possible

that the treatment in that cases will also not cause much damage to the TVD property.

If the difference scheme is conservative, the uniform bounded variation of the numerical
solution guarantees the existence of a subsequence of the numerical solutions which converges
to a weak solution. If the entropy condition is satisfied, the uniqueness of the weak solution
and then the convergence of the scheme will follow. In the present case, due to the introduc-
tion of qj’, which makes the scheme not conservative at some points, the boundedness of total
variation is not enough for obtaining a convergent sequence of the numerical solutions, How-
ever, according to (2.14), it suffices to require the uniform boundedness of g} in addition to
the uniform boundedness of the total variation.

According to (2.11) and (2.13), when the extrapolation is of zero order, ¢ j’:” in the first

case and ¢ j’iﬂ in the second case are given by

gyt =ql M Ula) — F D)) @.18)
and
Q}'lif =qf + W —ult;) + A( f;::g_ -fwh)) (4.19)
2

respectively. Because s = (f Wfie1) = F @] D]y — ul)), and uf, —ul,y are supposed

to be positive, 50 f (uf\11) = f (u;,) is negative. If (uP ~ ull,y) + A( fjf‘:'_g,_ -f@h))is
1
2



positive, then since our freatment picks up the gmaller one of the !qj"l'"l I'and lgf} Hiu
automatically keep this artificial term uniformly bounded with respect to n. Since
n n s n n Fngqt n
uj, =~ uj . >0, the positiveness of the term up —ulg + A f,-ﬁl S @)} always can
2

be achieved by placing 2 limitation on A. In fact

n £+
uj = i +7\-(fj1+_:_g_ =fwi))
2

=uf, = ufy + A F @) - fFWl)) - C"%A}’ZZ

4.20)

The last term in (4.20) is of O (h), so the limitation is close to the CFL-condition. If we
replace the original selection by choosing the case which corresponds to the smaller one
between g7 | and 1g] +ufy =l + A(f (ufer) = £ (2! (rather than 1g7+1 1 ),

we will have the following inequality as the criterion of selection

qh-l-l - (u]l+l qu) + x( f( 1+1) f( (4'21)

If it is true, the jump moves one cell to the right, otherwise the jump remains in the original
cell. This is the criterion suggested in [11]. The numerical experiments shows that it also

works quite well.

If the extrapolation is of the order high than zero, according to (2.11) and (2.13)

n+l — an - n + na n+
q;," =4j le+-}!-;A, ; u+A(f@lg)-fwh ))+Cj1+-;-,lAj,+%,lu (4.22)

1 _ ana

afil = qf, +uf, ~uly, +l(fj"l+_2_ -f@wh))

+ W5 uﬁ)— A" R +A(fwin) - fwh
2 Iy

(4.23)

Obviously, all the extra terms in (4.22)and (4.23) are of O (k). Therefore, the above discus-
sion still hold if uf} — uf},; is big enough.
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5. Application of the Treatment to the Euler Equations of Gas Dynamics

In this section, we describe how to apply this treatment to the Euler equations of gas

dynamics for a polytropic gas:
W +fu)=0 (5.1a)
u=(p, mEYT (5.1b)
f@)=qu+,p,q) (5.1c)
P = (FIXE - 2pg?) 6510

Here p, ¢,p, and E are the density, velocity, pressure and total energy, respectively;

m = pq is the momentum and ¥ is the ratio of specific heats.

The eigenvalues of the Jacobian matrix A () = 9f /u are:

ajwy=q -u, axu)=q, azu)=q+u (5.2)

Ry
2

where ¢ = (Y /p) “ is the sound speed.

In [1], Harten applied his "subcell resolution” only to the linear degenerate characteristic
field, i.e. he did a (linear) field-by-field decomposition and then applied the technique to the
second locally defined characteristic variable only. In this paper we are going to apply our
treatment to all the different kinds of discontinuities in a nonlinear way. However, in the
present work we only use this treatment as a tracking technique to track the discontinuities for
the system case. Correspondingly, all the numerical examples for the Euler system reported in
the next section are of the piecewise smooth solution with a finite number of discontinuities,

No spontaneous shock is involved.
Only x —t version is under concem.

We begin with a simple case that contains only one discontinuity, the numerical solution

on each side of which is smooth. As is well known there are three different kinds of
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discontinpities in the Euler system: the left shock, the right shock, and the contact discon-
tinuity. Therefore, the generated intervals should also be classified into three different kinds:
the left shock generated interval (LSGI), the right shock generated interval (RSGI), and the
contact discontinuity generated interval (CDGI). Each of them can be identified by solving the
RP (“.ﬁ ,uj”l“) (the Riemann problem which has u}‘ and uf,; as its left and right states).
Here [x_, %j+1] is the corresponding generated interval. The solution to the RP (u? uluf R.1)in
an LSGI or an RSGI should have a relatively strong left or right shock, while the solution to

the RP (4} ,uf 1) in a CDGI should have a relatively strong contact discontinuity.

Suppose [le,xj +1] is the generated interval on the level n. At first, we extrapolate the
numerical solution from one side of the generated interval to the other side. The extrapolation
values are w7, ulh .y, .., uht, uln, uln, . Pik+1. In the system case, if we use
(2.3) - (2.8) to compute the numerical solution, the treatment will affect the other fields. There-
fore, we revise our algorithm. Suppose [xj,x;.41] is an LSGI. We solve the Riemann prob-
lem RP (uj = *“.n-l) (i =0,.,k) and get a set of left middle states

J 1_‘ « (i = » k) (as shown in Fig. 5.1). Then in the computation we replace the uJ 1-1
in (2.3) - (2.8) by these left middle states. If [x; ,xh+1] is a RSGI, we solve the Riemann prob-
lem RP (uf:; il :+i) (i =1, .., k+1), and replace the u :+4 in (2.3) - (2.8) by the correspond-

ing right middle states 1}y «.

It is not difficult to see that if the original system is a linear constant coefficient system
such a handling is equivalent to applying the treatment in a field-by-field way. That is doing
the field-by-field decomposition at first, and then applying the treatment to each characterisu‘_c
variable. But in the nonlinear case (such as Euler system) they are different, especially when
strong discontinuities are involved. We believe that the present one is more precise, for it

seems as involving a "nonlinear” field-by-field decomposition.

Accordingly, the treatment to the CDGI should be as follows: Solve the Riemann prob-
lem RP (u! _,,u lw_,) and get the left middle states u_:f, « (i =0, -+, k), solve the

Riemann problems RP (uj"l;,,u““) and get the right middle states uJ Yie (=1, L, k1),
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and then in the computation we replace u_;‘l'_‘: by u J’i'_" s, and uf5 by ul'; » in (2.3) - (2.8).

However, the practical treatment used in this work is simpler than the above. For the contact
discontinuity, the density is discontinuous, but the velocity and the pressure are still continu-
ous. Therefore, in the computation we only extrapolate P, and take the original values of the
numerical solution for the velocity ¢ and the pressure p. The examples presented in Section 6
shows that such a treatment works well.

The moving of the generated interval is still controlled by keeping lg; | small, here q5,
is the artificial terms along ¢ direction. Because the q}'l is a vector with three components

now, 1gf | should be some norm of g} . For example, a natural candidate would be
Ji h

where g7 is a component of q;, - However, the three components of the system (5.1) may

‘have quite different scales, hence the presently used lg}, | in this paper is

3

Here u] @) js the component of u".
Sometimes the solution to the Riemann problem RP (u 1 4/ 41 ) may have more than one

strong discontinuity. This situation occurs very often when two generated intervals of different
kinds collide with each other, We refer to this kind of generated intervals as the nodes. A typi-

cal case is that the RP (u" 7o 1+1) contains precisely a left and a right shock with a middle
state us . The main idea in treating these cases is the consideration that we have more than one

different, overlapped generated intervals in [x; X ,+1]' and the treatment should be precisely
applied to each of them. Let’s use the above typical case to describe the algorithm,
Suppose the generated interval is [ ivXj+1]- In the vicinity of this generated interval we

introduce two auxiliary initial value problems. The initial value of the first problem has the left
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part of the u” as its left pant, and the middle state u« as its right part, with an LSGI
[xj, x[\+1]. The initial value of the second problem has the right part of the u” as its right
part, and the middle state us as its left part, with an RSGI [x;,X;.41]. However, the computa-
tion of these two problems are only run in the background, énd the results are only used as
information to direct the moving of the two generated intervals. In the numerical solution, the
computation is still performed just as only a single generated interval exists. The two different
generated intervals are located in the same cell for the first several time-steps until they
separate, and then the middle state appears between them.

It is aiso not difficult to show that if the original system is a linear constant coefficient
system, such a handling is equivalent to applying the treatment in a field-by-field way.

The more complicated cases of nodes, such as that the RP (“f: R, }‘ﬁl Y's involve three

different discontinuities, can be treated in a similar way.
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6. Numerical Experiments
In this section we present some results to show the performance of our treatment.

EXAMPLE 1. This is a repetition of the Example 2. in [11]. We solve the following ini-
tial value problem

2
u,+(-“2—),=o ~1<x<1

6.1

uix,0) = % + —;-sinn:x

.o 2 \ . o
The exact solution is smooth up to ¢ = -E then it develops a moving shock which interacts

with the rarefaction waves. We get the exact solution by using a Newton iteration. For détails.
see [4].

The Lax-Friedrichs (LF) scheme, Lax-Wendroff (LW) scheme, and Majda-Osher (MO)
scheme (see [14]) are chosen to be the basic schemes. The LF scheme only has first order
accuracy, the LW scheme produces spurious oscillations near the shocks, and the MO scheme
smear the shock too much (usually about 4 to 5 transition point).

We take A = 0.5 and the parameter o = 0.1. The latter is used in the formation of the

generated intervals. Only the results of the LW scheme is presented here. For results of the LF
and MO schemes see [11].

In Fig. 6.1-a and 6.1-b we show the numerical solution of Ax = —116 computed with the

zero order x version and x—¢ version treatment respectively, where 1t is taken to be

0.5, 0.65, and 1.1. In Fig. 6.2-a and 6.2-b we show the corresponding results for Ax = -?‘%

The results of the LW scheme have a very good resolution to the exact solution in both

smooth and nonsmooth parts. In all these examples, the numerical shock (or shocks) develops
before ¢ = —12‘:—. and in some cases the treatment of interactions of generated intervals has been

used. However, the effects of this treatment to the smooth part seem to creat little error to the

experiment.
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In the Table 6.1-a and 6.1-b we make the comparisons of the locations between the

numerical and exact shocks, The former is obtained by the high resolution technique described

in Section 2. Table 6.1-a displays the results of the x version with Ax = -1% from the 14th to

22th time-step, and Table 6.1-b displays the results of the x—t version with Ax = -4% from

the 52th to 88th time-step. Clearly, we have very accurate shock locations in both examples.
Usually, the x~¢ version has no shock transition point, but the x version has one shock transi-
tion point. Hence, the x—¢ version generally has the higher resolution for shock than the x
version does. In addition, we found in the experiment that the x—t version is easier to pro-

gram than the x version, especially in dealing with the interactions of generated intervals.

We also did the numerical experiments for higher order treatments. The results of them
are similar to that of the zero order, and occasionally the result of zero order treatment is even
a little better than that of the high order ones. According to Remark 2.2, the zero order treat-
ment causes an O (1) L™ truncation error, hence it kills the consistency at the corresponding
points. However, shock has a self-sharpening mechanism due to the converging characteristics.
It strongly prevent this O (1) error to be transported to the smooth region. That is why the zero
order treatment causes little error to the smooth part.

EXAMPLE 2. This is the example 3. in [11] revisited. We use the following linear IVP

to test our x~¢ version treatment

u +u, =0 (6.2a)
—xsin(-g-m:z) Sl<x< -7}
uox+0.5) = { Isin(nx)| x| <% (6.2b)
2x ~ 1 - sin(3nx)/6 —%—<x<1

Uglx+2) = uglx) (6.2¢c)
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Lax-Wendroff scheme is chosen to be the basic scheme, and we let Ax = -L, A=08

30
The solution to this IVP involves three contact discontinuities and one weak discontinuity (i.e.

its derivative is discontinuous). In Fig. 6.3-a we present the numerical results without treatment

at? =2 and ¢ = 8. The poor resolution is almost unacceptable.

At first the treatment is applied to the contact discontinuities only. In Fig. 6.3-b to Fig.
6.3-d we display the results with the zero order, the first order, and the second order treatment
respectively. Obviously, the higher the order of the treatment is, the better the resolution. Due
to the lack of converging characteristics, the numerical results are somewhat sensitive to the

order of the treatment.

However, the figures show that the weak discontinuities also causes trouble to the compu-
tations. Supposing that the idea of preventing the computation from crossing the discontinuity
applies to the weak discontinuity, we naively use the treatment to the weak one. The

corresponding result is displayed in Fig. 6.3-e. It is much better than any previous one. In Fig.
6.4 we display the result of the second order treatment with Ax = “6% It can be seen that the

numerical solutions at botht =2 and ¢t = 8 very close to the exact solution (the corresponding
result without the treatment, which we have omitted in order to save space, is as poor as that
displayed in Fig. 6.3-a in quality).

In order to test the long-term preformance of the treatment, we computed the numerical
solution at ¢ = 16, 32, 64 (4800 time-steps) respectively. The results are also presented in Fig,
6.4. These results show that the long-term performance of the treatment is still good. Particu-
larly at ¢t = 64, except the second one, the discontinuities have very good resolution, even

though the smooth part of the numerical solution has been seriously damped by the Lax-

Wendroff scheme,

In all the examples with the second order treatment, the second discontinuity still has
some problent. There is some "sinking” on its right side, and seemingly, it is just this "sinking"
that causes the deviation of the discontinuity location. The possible cause of this "sinking"

might be the "wrong up-wind Computation” at the right endpoint of the generated interval, An
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appropriate evaluation of u J" at each point should mainly use the information from the left side
due to the positive speed of wave propagation. But at that endpoint, the use of the extrapola-
tion values makes the computation essentially get the information from the right side. How-
ever, it seems that the " wrong up-wind computation" does not always affect the computation,
‘The numerical experiment shows that sometime it does and sometime it does not. The problem

is not clear yet and is expected to be studied.

In the following examples for the Euler system, we use the treatment as a tracking tech-
nique to track the discontinuities, and choose the Lax-Wendroff scheme as the basic scheme.

The treatment is of the second order and ¥ = 1.4 is used.

EXAMPLE 3. We apply our treatment to the Riemann problems for the Euler equations
of gas dynamics (5.1) with following two sets of initial condition known as the Sod problem

and the Lax Problem respectively:

®nq.p)=(1,0,1)
®,, g,, p,) = (0.125, 0., 0.1) (6.3)

and

P> 1, py) = (0.445, 0.698, 3.528)
®,s 9, p,) = (05,0, 0.571) (6.4)

Both problems have a left rarefaction wave, a right shock, and a contact discontinuity. The
treatment of node works in the first several ﬁme-steps. Inspired by the Example 2., in which
the treatment is also applied to the weak discontinuity, we are going to apply this treatment to
the edges of the rarefaction wave. However, the naive application is unacceptable. If we did so,
we could get a rarefaction shock. The solution is as follows: Suppose that we are now dealing
with the back edge of the left rarefaction. Because the basic scheme is a 3-point scheme, the

extrapolation values used on each side of the generated interval are only uj:'* and u/:;. In

order to expand the rarefaction wave we replace the 4/} by the original data u 41 The back

edge of the right rarefaction wave can be treated in a similar way. But the locations of the
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edge of the right rarefaction wave can be treated in a similar way. But the locations of the
back edges captured by this technique are not very accurate. Moreover, the analogue treatment
to the front edge of the rarefaction wave fails to capture the weak discontinuities (it almost
disappears after several time-steps). However, this technique still can. be used t0 expand the
rarefaction wave near its center without oscillations. The more proper treatment to the rarefac-

tion wave is under investigation.

For the Sod problem we use Ax = 0.01 and CFL = 0.4. The numerical result is
displayed in Fig. 6.5-a. There are some oscillation in the smooth region. We assume that the
oscillation is caused by the basic scheme itself and add a second order viscosity term intro-
ducéd in [4] to the smooth part, which eliminate the oscillation. The corresponding numerical
result is displayed in Fig. 6.5-b. ‘

For the Lax problem, we use Ax =0.01 and CFL = 0.8. The numerical result is

displayed in Fig. 6.6. No oscillation occurs in this experiment.

EXAMPLE 4. (The blast waves problem). Here we consider the Euler system with fol-

lowing initial condition

iy 0.<x <01
ug=14u, 01<x <09 ‘ (6.5)
u, 09<x 1.

where

pl'_'pm:pr:l'v qIEQm=Qr=O'

p=10°, p, =102 p, =10? (6.6)

and the two boundaries are assumed to be solid walls. See [15] for the details of the solution
and the comparison of the performance of various schemes.

We take Ax = 0.005, CFL = 0.7. The numerical solution at ¢ = 0.010, 0.016, 0.026,
0.028, 0.030, 0.032, 0.034 and 0.038 are presented in Fig. 6.7-a to 6.7-h. The solid lines in

these figures are the numerical solutions of 4th-order ENO scheme with 800 space points, and
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is considered here as a "converged solution”,

At the time around ¢ = 0.032 there is a rarefaction wave with two front edges (its right
edge moves to the right), which is generated from the collision of a shock and a contact
discontinuity. If we use the Lax-Wendroff scheme as the basic scheme, we will get a rarefac-
tion shock due to the failure of the treatment to the weak discontinuities. In order to expand
the rarefaction wave, we add a first order viscosity term to the basic scheme (hence it is still a
3-point schéme) and reduce the order of the treatment to the first order for 20 time-steps at that
time. It creats some error to the smooth par, especially to the velocity. "Sinking" phenomenon
is still seen in the left sides of some contact discontinuities, which is caused by the so called

"wrong up-wind computation”,
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