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Abstract

In an earlier paper, an O(N) method for the compu-
tation of stationary solutions fo the Euler equations
of inviscid compressible gas dynamics has been de-
scribed. The method is a variant of the multigrid tech-
nigue and is able to provide good convergence rates for
first-order upwind discretisations even in the case of
alignment, the flow being aligned with the grid. Here
we discuss the application of this scheme to higher-
order discretisations. Two-level analysis for the lin-
ear constant-coeflicient case has shown that it is dif
ficult or impossible to obtain uniformly good conver-
gence rates for a higher-order scheme, due to waves
perpendicular to stream lines. The defect correction
technique suffers from the same problem. However,
convergence to a point where the residual of the total
error (the sum of the iteration error and the discreti-
sation error) is of the order of the truncation error can
be obtained in about 7 defect correction cycles, ac-
cording to estimates for the linear constant-coefficient
equations. Here this result is explored for the nonlin-
ear case by some illustrative numerical experiments.

1. Introduction

A bottleneck in the application of the multigrid tech-
nique to the computation of stationary flows is align-
ment [2,3]. Stream lines following grid lines become
decoupled in the direction perpendicular to the fiow.
A high-frequency iteration error {deviation from the
steady state) in that direction can not be removed
by smoothing, because there is no coupling, nor by
solving the equations on a coarser grid, because high-
frequencies can not be represented on the coarser grid.
The result is slow convergence.

One way to deal with alignment is the use of global
relaxation schemes, such as Gauss-Seide] relaxation
or line-relaxation. In [9] it was shown that Gauss-
Seidel and its symmetric variants can only partly
handle alignment. There are still waves for which the
multigrid method does not convergence. For the Euler
equations in two dimensions, Alternating Direction
Damped Line Jacobi can provide a uniformly good
convergence rate [10].

Another way to tackle alignment is the use of
semi-coarsening. This approach is followed in [11].
For arbitrary flows, semi-coarsening must be carried
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out in all co-ordinate direction simultaneously. To
accomplish this, the method described in [11) employs
multiple coarser grids on a given level of coarseness,
while maintaining its O(N) complexity. A uniformly
good convergence rate can be obtained for a first-
order upwind discretisation of the {wo-dimensional
Euler equations. The method provides a nonlinear
alternative to line-relaxation.

In this paper we will discuss the application of the
same method to higher-order upwind discretisatjons of
the Euler equations in two dimensions. The spatial dis-
cretisation is based on van Leer’s kappa-schemes {18]
and provides second- or third-order accuracy. Details
are given in §2. The multigrid method is reviewed in
§3. In [12] is has been shown that the convergence
rates for higher-order discretisations are poor. This
result is explained here in a simpler way. The defect
correction technique {cf.[3]} can not provide good con-
vergence rates either. However, it can provide conver-
gence to a point where the residual of the total error
(the sum of the iteration error and the discretisation
error) is of the order of the truncation error in about 7
defect correction cycles, at least in the linear constant-
coefficient case. In this paper, numerical experiments
are carried out to explore this result for the nonlinear
equations. Details of the nonlinear implementation are
described in §4 and results are presented in §5.

2, Spatial discretisation

The Euler equations of gas dynamics that describe the
flow of a perfect inviscid compressible gas are:

?_1{}.+a_f+..3_€=0_

8t  8r Oy (2.12)

Here the vector of states w and the fluxes f and g are
given by
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(2.15)

The density is denoted by p, and u and v are the -
and y-component of the velocity, The energy E, total
enthalpy H, pressure p, and sound speed c are related
by

ey, 2 - I R
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Here 97 = 4 — 1. The spatial part of the system
is discretised by upwind differencing. The vector of
state quantities w is represented by cell-averages w; ;
on a grid consisting of arbitrary quadr:la.terals, havmg
four corners denoted by (: - 5,] 2) G+3,i-1),
(i+%,j+3),and (i-%,74 1), and correspondmg
sides by (4, — 2) i+ 2,1) (z,J+ D G- %,4). The
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Here f(wr,w,) is a numerical flux corresponding to f
in (2.1b) that provides an approximate solution to the
Riemann problem. In this paper we will use either
van Leer’s Flux-Vector Splitting [17] or Osher’s scheme
in the natural ordering [13,14]. Both are sufficiently
smooth (Lipshitz continuous) for our purpose. The
first rotation matrix is given by

1 0 0 0
_ 10 cos ¢y -4 sing; ;_ p O
Tij-3= o - sind; ;1 cosgyi1 0’ (2:25)
0 0 0 1
where
cosijp = (Yir}j-p — Yimpj-p)/ bij-po
sing iy = ~(Zipg i1 = B i- ) ij-po
¢ _ [ _ 9 (228)
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Here the outward normal is {(cos¢; J_i_,sm b - i')
The rotation matrices for the other sides follow in
a similar way. The expression w(g) denotes a one-
to-one transformation from a set of state quantities
¢ to w. The quantities q * and q| are values at
the cell-boundaries obtained by mterpolatlon from the
state ¢;; = g(wyj). A first-order-accurate scheme is
obtained if the interpolated values simply equal the
interior values. Second-order accuracy is obtained by
using van Leer’s kappa-scheme {1,18], which lets, in
the i-direction,

6= ai5 + §5(A; AL [ - )AL + (1 + w)A],

63=a;— :;-S(A:",»A'+) [(1- )A'+ + (14 k)A};
(2. 3a)
Here
AlG=qi;—

gi-1,5, A:f-;

L= gig1,; — Qe (2.38)

The function s(A~,A%) is a limiter that prevents
numerical oscillations. Here we use a smooth limiter

due to van Albada {16}:

2AA-A* 4 €2)
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s(A™, A*) = (2.3c)

The constant g, prevents division by zero. We use g, =

~16 |
10718 in the numerical experiments of §5. Expressions

similar to (2.3) are used for the j-direction.

The standard second-ocrder upwind scheme is ob-
tained for £ = 0. Central differencing is obtained with
x = 1, if the limiter is not used (s(A~,A*) = 1).
The choice k = —1 provides a fully one-sided upwind
scheme. The limiter may cause the accuracy to reduce
to first-order at isolated points. For & = 1/3, we obtain
third-order accuracy in a point-wise sense, but not in a
volume-averaged sense, because there is a second-order
difference between point-values and volume-averages.
Also, the flux of the average state is not equal to the
average of the flux over one part of the cell-boundary.
Steady discontinuities are smeared out over at least
two cells, which results in a local O(1) error. Thus, we
have at most second-order accuracy in smooth regions
of the flow, and first-order or even zero-order accuracy
at isolated points or lines. For this reason, the dis-
cretisation is referred to as a high-resolution scheme,
An additional problem oceurs if the grid is not locally
Cartesian or if cell-sizes vary strongly from one cell to
another. Then the one-dimensional interpolation (2.3)
should be corrected for stretching and curvature. Here
we will assume that the grid is locally Cartesian with-
out significant stretching from cell to cell. Note that
the aspect ratio of the cells is not involved in this dis-
cussion: it may be far away from 1.

3. Multigrid

The multigrid variant used in this paper has been pre-
sented in [11]. The method employs semi-coarsening in
two directions simultaneously (for a two-dimensional
problem). Figure 1 shows the various grids employed
if the finest grid has 8 x 8 points and the coarsest 1x 1.
For a problem in d dimensions, the total number of
points on all grids is 29N, where N is the number of
points on the finest grid. The cost of a V-cycle is pro-
portional to this number, whereas the cost of an F-
cycle is proportional to (d + 1)29N. For a W-cycle,
the O(N) complexity is lost.

The usual restriction and prolongation operators
have to be modified to handle input from more than
one grid. This is done as follows. If one grid needs
data from two finer grids, the two sets of data obtained
by the restriction from each finer grid are averaged
with equal weights. For prolongation, the correction is
computed with respect to the latest fine-grid solution
available, which now may be different from the one
used during restriction.



This method is useful for any problem with strong
anisotropy. It can not, however, handle alignment at
45°. It is shown in [11} that this is not a problem for
the Euler equations of gas dynamics if first-order up-
wind differencing is used. Two-level analysis for the
linearised Euler equations with constant coefficients
leads to a worst-case convergence rate of 0.5 per cycle,
if damped Point-Jacobi is used as smoother. Numeri-
cal experiments on the noniinear Euler equations show
multigrid convergence rates better than 0.5.

8,8
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Fig. 1. Arrangement of finest (8 x 8) and coarser
grids, that leads to an O(N) multigrid method for
problems with alignment. The arrows indicate how
the grids are linked by restriction (downward) and
prolongation (upward).

A fundamental problem encountered in extending
this method to higher-order discretisations is the fact
that the exact operator vanishes for waves perpendic-
ular to stream lines. Alignment, as mentioned above,
is one of the results. Another one has been described
in [12}: for a scheme of order p, the worst-case two-
level convergence rate can not better than 1 — 2-°7,
Note that the first-order (p = 1) solver described above
actually obtains this value as its worst-case two-leve)
convergence rate,

This lower limit can be explained as follows. Con-
sider the linear scalar operator

a g
L= Use + v«é;, with u > 0,v > 0. (3.1a)
The symbol of this operator ig
L = i(uwg + vwy), (3.1)

where w, and w, are frequencies. It vanishes if vwy =
—Uy, ie., for waves perpendicular to stream lines
(characteristics). Suppose this operator is discretised
on a grid with cell-size k. This yields a operator

LP, which has a truncation error r* of O(R?). Let
the solution be computed with a two-level method,
involving a fine and a coarse grid. The coarse-grid
correction operator is

K =TI~ Ih (L™ 2h (3.2)

First the fine-grid residual L* is restricted to a coarser

L ) PO I
L 1ACH wi€ Coarse-

grid problem, which involves the residual operator L%,
is solved exactly. Finally, the fine-grid solution is
corrected by the coarse-grid result, using a prolonga-
tion operator I?,. The coarse-grid correction opera-
tor should remove low-frequency iteration errors, and
is used in combination with a smoother that removes
high-frequencies errors. Because the smoother is usu-
ally inefficient for low-frequencies, the convergence of
low-frequency iteration errors depends almost entirely
on K. For the lowest frequencies (w; and wy close to
zero), the restriction and prolongation operators have
practically no effect, so

orid meing n ragtristinan anasstan T2H

TiG, GSIIE & I'S8TTI0VION OPEIavor £ .
& ) 5

K=~1— (L1 (3.3)
If the exact operator vanishes, the discrete operator
L* equals the truncation error +®. For those waves,
K ~ 1— 78 /725 If the scheme is of order p, then
TP /1% ~ BP/(2h)P, 80 K =~ 1 —27P. This implies
that the worst-case convergence rate is at best 1—2-7,
For a first-order scheme, the resulting 0.5 is acceptable
as convergence rate. Values larger than that are not
attractive, because one must carry out many cycles on
coarser levels to obtain a sufficiently accurate solution
of the coarse-grid equations. This may increase the
complexity beyond O(N).

For higher-order schemes, the situation is actu-
ally worse than suggested by the above estimate. If
one chooses a first-order restriction operator (volume-
averaging) and prolongation operator (piecewise con-
stant interpolation), the coarse-grid correction oper-
ator for the second- and third-order scheme becomes
unstable. The third-order scheme (k = 1/3) can be
stabilized by using a third-order restriction operator.
The second-order scheme can be stabilized by using
residuals on coarser grids that are first-order in the di-
rection of semi-coarsening, This, however, increases
the lower limit for the worst-case convergence rate to
1 (no convergence at all) [12].

The above implies that one can not design a
multigrid scheme with a uniformly good convergence
rate for a spatial discretisation based on second-order
upwind differencing. For a third-order scheme, one
might be able to obtain a convergence rate of at
best 7/8, which is not very impressive. However,
these conclusions are too pessimistic, as the values are
dominated by those waves for which the exact operator
becomes of the order of the truncation error. Because
it does not make much sense to require convergence



below the truncation error, the numbers found are
not representative for the performance of the multigrid
method.

There does not appear to be a simple way to mea-
sure convergence relative to the size of the truncation
error in the context of local mode analysis. It can,

however, be easily accomplished in the framework of
the dafect correction technione fof 2N Tinfnnt ~nm

MTANLY LLLLAAL vl Aaiguts (Lao)). FRL i i T e g

rection can not provide a uniformly good convergence
rate for the present problem. Consider a linear opera-
tor L;} with an order of accuracy p > 1 and an exact
first-order solver. Then the iteration operator is

I— (L)L) (3.4)
If the exact opera.tor vanishes, we obtain a convergence
rate 1 — 'rh/ =1 — O(hp‘l) However, this result is
again domma.ted by the truncation error. Good results
can be obtained if convergence down to machine zero
is abandoned. An estimate for the linear constant-
coefficient case is presented in [12}. The difference be-
tween the residual after a number of defect correction
steps and the residual of the restriction of the exact
solution of the differential equations, can be bounded
by some factor times the truncation error 7“;'. The
asymptotic value (after many steps) of this factor is
about 4. A value within 10% can be reached in about
7 defect correction steps, if # = 0 or & = 1/3. This re-
sult is obtained for the linear constant-coefficient case
and assumes that the sclution is sufficiently smooth.
If not, extra smoothing steps can be carried out on
the high-resolution residual between defect correction
steps. Other assumptions are! the first-order solver
has a worst-case convergence rate of 0.5, and succes-
sive grid refinement is used on the higher-resolution
solution, starting with an exact higher-resolution so-
lution on the first coarsest grid.

It should be noted that defect correction has been
applied to the Euler equations in earlier work [6,7],
using van Leer’s Flux-Vector Splitting. This scheme
smears slip-lines, and therefore does not suffer from
alignment. A fundamentally different approach is
chosen in {15,5], which is based on a first-order solver
described in {4]. These authors start out with a first-
order solution on the finest grid. Because their first-
order solver is not exact, not even for the long waves,
at least O(log N) iterations with the defect-correction
technique are required, thus leading to an O(N log N)
complexity. The situation is actually worse, because
their first-order solver suffers from alignment.

4. Nonlinear implementation

Here we discuss some details of the nonlinear imple-
mentation of the defect correction method with the
first-order solver based on semi-coarsening {11}, The
upwind discretisation has been outlined in §2. We
use van Leer’s Flux Veetor Splitting [17] or Osher’s

scheme in the natural ordering [13,14] as approximate
Riemann solver. Only x = 1/3 is considered for the
high-resolution discretisation.

It must be noted that a standard multigrid ap-
proach can be used for van Leer’s Flux Vector Split-
ting, because it smears streamlines and does not suffer
from alignment. Damped Symmetric Gauss-Seidel is
a good smoother [8]. Here we choose t0 use the more
complex first-order solver based on semi-coarsening,
because it can handle Osher’s scheme as well.

The smoother for the first-order scheme is damped
Point-Jacobi. In the nonlinear case, one has to deter-
mine ;,; from the equation

(7> Win1,, Wigd, gy Wij-1, Wii41) =0 (4.1a)
for all { and 7, and then update the solution according
to

w = Hw + @). (4.15)

A less costly (but potentially less robust) approach is
obtained by performing just one Newton step:
ot Wy s — RNShp 49

Wi i Wi — Ny T4 (4.2)
where N;; = 8ry;/0w; ;. For van Leer’s Flux Vector
Splitting, the matrix N; ; is non-negative. To make it
positive, we replace it by

Nij=Ni;+ol, (4.3)

where ¢ is a positive scalar, to be specified later,

For Osher’s scheme, this approach fails because
the matrix N;; can be extremely ill-conditioned. Tt
can be made non-negative by using an approximate
linearisation. This is done as follows. For the first-

order scheme, the first term on the right-hand side of
(2.2a) contributes a matrix

b 5’1:‘3-%‘4 ,.?“lgtl},j-%? (4.4a)
where
05y
Aij-y = dw! . wi; =T FWi g (4.4b)

Ih’

For Osher’s scheme, we replace A; ;_1 by Af,_, 1 (w5),

where AT(w) is obtained from A(w) = df(w) /dw by
transforming to its diagonal form, setting the negative
eigenvalues to zero, and transforming back. This
approximate linearisation performed satisfactorily in
[11]. The resulting non-negative matrix can be made
positive by (4.3).

Near boundaries, we use a linearisation that is the
same as for interior cells. Any special dependencies of
boundary values on solution and exterior values are
ignored.



So far, we have assumed that the independent
variables are the conserved variables w of (2.1). It has
been pointed out by the authors of [3] that another set
can be used as well. Here we use

W = (p,u,v,¢)7, (4.5)
as the set of independent variables. Other choices, not
considered here, are the entropy S instead of p, or
the pressure p instead of ¢. The choice (4.5) requires
an additional multiplication of N; ; with the Jacobian
dw/dW, which can be done directly when evaluating
the contribution of each cell-face, The variables for the
interpolation (2.3) in the kappa-scheme are chosen to
be ¢ = (S,u, v,c)¥. This choice makes it easier to per-
form the correct characteristic switching near bound-
aries. For outgoing characteristics in the direction per-
pendicular to the boundary, we extrapolate differences
of the characteristic variables, whereas for incoming
characteristics, the differences are computed with re-
spect to the given exterior variables. After this has
been done, we transform back to differences of gq.

The residual is measured by defining a quantity

{re skl )
(4= max TEm———— |, 4.6
R;; k=14 (le,j,kl + hijx *9)

where h,"j,g = h.',j,g = & j and hl’,j,l = hi’j,4 = O, and
computing its £;-norm. Following [19], the parameter
o in (4.3) is chosen to be ¢ = ;! max; ; R; ;. This
decreases the change in the solution if the residual
is large, and helps to avoid negative values of p and
¢, although this is not guaranteed. The parameter
£ controls the relative change in the solution and is
chosen as 1. Smaller values can be used for complex
flows with strong shocks, but then the number of
relaxation sweeps must be increased.

High-resolution solutions are computed by a Full
Multigrid method. On each level, 8§ F-cycles are
performed with the first-order solver, using one post-
smoothing step of damped Point-Jacobi on each grid.
The first-order solver acts on the sum of most recent
first-order residual r4 (W) and a source term, which is
the difference between the higher-order residual =, (W)
and and first-order residual r;(W) at the begin of
the cycle. That is, the first-order solver finds the
(approximate) solution W' to

rl(W') + [rp(W) - (W)} = 0. (47)
After this has been done, the new solution becomes
W := W'  Because the high-resolution residual,
in general, should stop converging if the iteration
error becomes of the order of the truncation error,
examining its convergence rate does not provide much
information. It is useful to monitor the convergence
rate of the first-order solver (at the cost of computing

an extra fine-grid residual). If a cycle provides a first-
order convergence rate worse than 0.6, some extra
smoothing with damped Point-Jacobi is applied. If
this does not help, the eycle is repeated. In the
examples presented in §5, this never occurred except in
the initial stages of successive grid refinement at very
coarse grids.

Between defect correction cycles, exira smoothing
can be applied on the higher-order residual. This is
necesgsary if the solution is not smooth. We use a two-
stage scheme:

W* := W = BN (W)~ 1rp(W),

. (4.8)
W:i=W—=BNW") tr(W*).
A less costly version uses N(W) instead of N(W*) for
the second step. In the computation of N, we ignore
the interpolation from cell-centers to cell-boundaries.
‘The parameters f; and B2 can be chosen as to
provide an optimal smoothing rate. Straightforward
analysis of scheme (4.5) applied to a high-resolution
discretisation of the one-dimensional scalar equation
au, = { using limiter {2.3c) shows that a necessary
condition for (4.7) to be Total Variation Diminishing
{TVD) is

-1
fia < (L+ 3o+ 1A+ D),

for 2— 6 < k < 1. For & = 1/3, we find §; 2<0.523.
Linear analysis of the two-dimensional scalar equation
auy + buy = 0 under the TVD constraint provides an
optimal smoothing rate @ = 0.840 for §; = 0.251,
B2 = 0.523. This choice provides both linear and
TVD stability. In the examples of the next section,
scheme (4.5) is applied once between multigrid defect
correction cycles.

The restriction operator used in the first-order
solver is volume-averaging, prolongation is piecewise
constant interpolation. Both operators are first-order.
For the grid-refinement of the high-resolution solution
we use third-order interpolation. Within each cell
on the coarser grid, a linear distribution of states
is computed in a manner similar to (2.3), but with
& = (. The initial guess on the finer grid is obtained
by evaluating the values of the linear distribution at
the 4 new cell-centers.

A problem in any nonlinear multigrid method is
the occurrence of solution values outside the admissi-
ble range. Negative densities and sound speeds may
occur after prolongation and relaxation, Experiments
with monotone prolongation do not lead to satisfac-
tory convergence rates for the first-order solver. In cur
code, we reject the entire coarse-grid correction if the
result is inadmissible, even if this happens only in one
cell. Given the redundancy apparent in Fig. 1, elimi-
nating parts of the data-structure does not necessarily

(4.9)



lead to loss of convergence. If relaxation leads to in-
admissible values, we simply do not update the corre-
sponding cell. A diflerent nonlinear multigrid method
by Hackbusch [3] may provide a more robust code, but
this has not been explored.

Another problem is the occurrence of strong dis-
continuities. These can cause large O(1) iteration er-
rors after prolongation and grid refinement. Since
these errors are local, they can be removed by addi-
tional smoothing. In a one-dimensional study reported
in {8], the additional smoothing is carried out only lo-
cally if the residuals are large, at small extra cost. Lo-
cal relaxation has not been used in the following sec-
tion, as no solution with strong discontinuities are con-
sidered, but is expected to be necessary in general.

5. Numerical experiments

As a first example, we consider a smooth flow through
a channel with a sin®(rz) bump, having a thickness
0.1 over a length 1. The length of the channel is 5,
its height 2. The free-stream mach-number is 0.5.
At the left boundary, inflow conditions are given by
the free-stream values for total enthalpy, entropy, and
inflow angle {0°). At the outlet, the free-stream value
of the static pressure is imposed. (Characteristic in-
and outflow conditions result in a weak boundary layer
near the outlet). Characteristic boundary conditions
are used at the walls. Figure 2 shows mach-lines for a
128 x 64 grid, using Osher’s scheme. The coarsest grid
used has size 4 x 2. The relative order of accuracy of
the solution can be estimated from

I 1w,
77— W]

p= zogg(1 (5.1)

and equals 2.5 for p, 2.4 for u, 2.3 forv and 2.5 forc. In
the £ -norm, values between 1.5 and 2 are obtained.
The multigrid convergence rate of the first-order solver
is well below 0.5. The defect correction convergence
rate for the high-resolution residual on the finest grid,
averaged over 8 cycles, is 0.67. This experiment
suggests that the linear estimates of §4 provide a

reasonable description of the nonlinear scheme for
smooth solutions.

Fig. 2. Mach-lines for mach 0.5 inflow through a
channel with a sin® bump on a 128 x 64 grid. Contours
are 0.025 apart.

Next we consider flow through a channel with a
non-smooth bump. The bump is a circular arc with

a thickness of 4.2% of the chord. The length of the
channel is 5, its height 2. The 128 x 64 grid is clustered
near the bump. Figure 3a shows mach-lines for mach
0.5 inflow, using Osher’s scheme. The relative orders
of accuracy in the #;-norm are 1.3, 1.1, 1.4 and 1.3 in
P u, v, and e. These low values are not due to the
iteration error: the same results are found with 100
instead of 8 defect correction eyeles. The singularities
at the begin and end of the bump lead to sharp peaks
in the solution, which are responsible for the decrease
of accuracy in £;. These singularities also pollute the
downstream solution near the lower wall somewhat, as
can be seen from Figure 3a.

Figure 3b and 3¢ show mach-lines for mach 0.85
and mach 1.4 inflow, using Osher’s scheme and 8 defect
correction cycles. The grid for Fig. 3b is clustered
around the bump, the grid for Fig. 3c is fairly uniform.
The relative orders of accuracy do not reflect the
dramatic improvement with respect to the first-order
solutions (cf.[11]). For mach 0.85 inflow, we obtain
estimates of p around 1, in 4, for mach 1.4 inflow
values around 0.6 are obtained. Because the norms
are dominated by the discontinuities, these results are
not very illuminating,.

As an alternative, we can make a cornparison
between the size of the residual #* after 8 cycles and
the truncation error 7#. The latter can be estimated
from the relative truncation error

T]':’h _ I}?hf'h(Wh) - r2h(I§hW}x)’

(5.2)

using 7" ~ (2? — 1)72%. The linear analysis in [12] pre-

- dicts that the norm of the residual should be at most

3.7 times the norm of the truncation error after 7 de-
fect correction cycles for k = 1/3. Assuming a second-
order solution, this implies that [jr*||<1.23}|72%| af-
ter 7 cycles, For the mach (.85 example, we find
Hr®(l/|ir2*{|=0.15. for the mach 1.4 problem this ra-
tio is 0.21, using the £,-norm. These ratios are even
smaller in £,,. Thus, the residual has converged below
the truncation error, and much better than predicted
by the linear analysis.

To illustrate the effect of the remaining iteration
error (which is of the order of the discretisation er-
ror) on the solution, Fig. 3d shows the solution for
mach 1.4 inflow after 100 defect correction cycles. The
residual is about 10 times smaller than after 8 cycles,
the relative truncation error is practically the same.
There are differences on a small scale, but the large-
scale properties, including shock positions, are identi-
cal. Note that the accuracy is mainly determined by
the long waves, which determine the large-scale prop-
erties.
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Fig. 3a. Mach-lines for mach 0.5 inflow through a
channel with a non-smooth bump on a 128 x 64 grid.
Contours are (.01 apart.

Fig. 3b. Mach-lines for mach 0.85 inflow through a
channel with a non-smooth bump on a 128 x 64 grid,
Contours are (1.025 apart.

Fig. 3c. Mach-lines for mach 1.4 inflow through a
channel with a non-smooth bump on a 128 x 64 grid,
Contours are 0.025 apart.

¥ig. 3d. As Fig. 3¢, but after 100 defect correction
cycles instead of 8,

My, 0 grid lift drag
0.80 32 x 16 0.3122 0.0493
1.256° 64 x 32 0.3472 0.0283

Osher 128 x 64 0.3508 0.0234
0.80 32x 16 0.3353 0.0558
1.25° 64 x 32 0.3642 0.0310
FVS 128 x 64 0.3676 0.0247
1.20 32x18 0.510 0.169
7.00° 64 x 32 0.525 0.159

Osher 128 x 64 0.524 0.155
1.20 32 x 16 0.511 0.173
7.00° 64 x 32 0.522 0.160
FVS 128 x 64 0.524 0.155

Table 1. Lift and drag for NACA0012 airfoil on

various grids for Osher’s scheme and van Leer’s Flux-
Vector Splitting (FVS).

The third set of examples involves flow over a
NACAO0012 airfoil. A fairly orthogonal grid has been
used, with a circle as outer boundary at 50 chord
lengths. Characteristic boundary conditions are ap-
plied at the wall and outer boundary. Table 1 lists lift
and drag for 2 types of flow, using Osher’s scherme and
van Leer's Flux Vector Splitting. The results, com-
puted for 8 defect correction cycles, agree very well
with those in {1] and {5]. The improvement of lift and
drag with grid refinement suggests that higher-order
accuracy is indeed obtained,

Pressure curves for the first case of Table 1 are
shown in Fig. 4. The solutions for Osher’s scheme and
FVS agree reasonably well, except for the positions of
the shock. Mach-lines for Osher’s scheme are shown
in Fig. 5a and Fig. 5b.
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Fig. 4. Cp-curves for a NACA0012 airfoil (M, = 0.8,
o = 1.25°) for Osher’s scheme and van Leer’s FVS
(dashed line).
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Fig. 5a. Mach-lines for mach 0.8 inflow at 1.25°
around a NACAQ012 airfoil. Contours are 0.025 apart.

Fig. 5b. Mach-lines for mach 1,2 inflow at 7° around
a NACAQ012 airfoil. Contours are 0.05 apart.

6. Conclusions

The performance of a multigrid method for higher-
order discretisations of the steady Euler equations is
limited by the hyperbolicity of the equations. Waves
perpendicular to a streamline are difficult to remove
by the coarse-grid correction operator and this leads
to poor convergence rates, Because these waves are
related to the truncation error (they do not appear in
the exact differential equations), the convergence rates
obtained by two-level estimates are too pessimistic. It

does not make sense to require iteration errors to be
much smaller than the discretisation error.

The defect correction technique allows us to ob-
tain estimates of the iteration error in terms of the dis-
cretisation error, Linear analysis shows that about 7
cycles can provide a residual of the order of the trunca-
tion error, if higher-order upwind differencing is used

aﬂd _;_f the firet-order solver hae a converransca vnta ~F
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at worst 1/2. The convergence rate of the first-order
solver can be monitored in a computer code. Mea-
suring the convergence rate of the higher-order resid-
ual does not necessarily provide any useful informa-
tion, because convergence will be lost of the residual
becomes of the order of the truncation error.

Numerical experiments on a variety of flows show
that acceptable results are obtained in a Full Multigrid
code with 8 defect correction cycles at each level
of nesting. The convergence rate of the underlying
first-order solver was better than 0.5 in all examples.
The high-resolution residual converged well below the
estimated truncation error.
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