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Summary

In the past severat years, domain decompaosition has
been a very poputar topic, partly because of the poten-
tial of parallelization. Although numerous theories and
algorithms have been developed for model elliptic
problems, they are only recently starting to be tested on
realistic applications, This paper investigates the applica-
tion of some of these methods to two model problems
in computational fluid dynamics: two-dimensional con-
vection-diffusion problems and the incompressible
driven cavity flow problem. Our approach is the con-
struction and analysis of efficient preconditioners for the
interface operator to be used in the iterative solution of
the interface solution. For the convection-diffusion
problems, we discuss the effect of the convection term
and its discretization on the performance of some of the
preconditioners. For the driven cavity problem, we dis-
cuss the effectiveness of a class of boundary probe
preconditioners.
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B N A S

introduction

In the past several years, domain decomposition
methods for solving elliptic partial differential equations
have atiracied much aitenton (Glowinski e al,, 1988:
Chan et al,, 1989). The main impulse for the enormous
interest in these methods has come from the arrival of
parallel computers. Besides the ease of parallelization,
domain decomposition allows one to treat complex ge-
ometries or to isolate singular parts of the domain
through adaptive mesh refinement. One of the goals of
this paper is to give a very brief introduction to the
subject.

The idea of domain decomposition has been used
for some time in several scientific computing areas, such
as computational structural mechanics (CSM) and com-
putational fluid dynamics (CFD). However, in most of
these applications, the coupling of the subdomains is
handled in a rather primitive way. For example, in sub-
structuring algorithms in CSM, the reduced interface
equations are formed explicitly and solved by direct
methods. Thus, for problems where the degree of
freedom on the interfaces is large, the solution of this
reduced problem can actually dominate the overall solu-
tion process. On the other hand, in CFD, domain de-
composition ideas have been used primarily in adaptive
generation of computational grids for complicated ge-
ometries. In these applications, the interface coupling is
usually quite simple, such as using the most recent
boundary values from a neighboring subdomain.

Recent theoretical works have been mostly con-
cemmed with more sophistcated treatment of the cou-
pling of the subdomain solutions. For second order el-
liptic problems, the theory and algorithms are quite well
developed. However, applications of these newly devel-
oped algorithms to real physical problems are still rare.
Moreover, extensions to more complicated operators,
such as the Navier-Stokes equation, are only beginning
to be studied. Much more work in this direction remains
o be done. In this paper, we shall take a small step in
this direction by presenting some results on the applica-
tions of some of these new domain decomposition algo-
rithms to two model problems in computational fluid
dynamics.

The first problem we shall investigate is the dass of
convection-diffusion problems in two dimensions. Most
of the existing domain decomposition techniques have
been derived with only the diffusion part of the oper-



ator in mind. Here we shall study the effect of the con-
vection term (magnitude and direction) and the form of
its discretization (central and upwind) on the effective-
ness of the performance of these techniques. As we shall
demonstrate, it is beneficial in practice to take into ac-
count the particular attributes of the convection term in
constructing the domain decomposition algorithns.

The second problem we shall study is the steady
two-dimensional driven cavity problem. Specifically, we
shall use the fourth order stream function formulation
(Schreiber and Keller, 1985). As mentioned earlier, most
of the domain decomposition techniques have been de-
veloped for second order elliptic problems. It is there-
fore not immediately obvious how to apply these tech-
niques to fourth order problems. Of course, for the
driven cavity problem there are many solution algo-
rithms which at each step require the solution of only
second order problems and to which the appropriate
domain decomposition algorithms can be applied. But
true to the spirit of domain decomposition as a coarse
granularity parallel algorithm, it is interesting to study
algorithms that treat the original problem (rather than
parts of a solution algorithm) by the domain decomposi-
tion approach. Such algorithms may be more flexible
because the subdomain solves can be handled by any
appropriate Navier-Stokes solver. In this paper, we
present some preliminary results on the use of boundary
probing as a method for treating the coupling of the sub-
domain problems. The boundary probe technique,
which was first introduced in Chan and Resasco (1985)
for second order problems, requires only solving the
original problem on the subdomains with a few appro-
priately chosen “probing” boundary conditions. We shall
discuss how to generalize these probing techniques to
fourth order problems and present some numerical re-
sults for the driven cavity problem with Reynold’s
number 200. For work on domain decomposition algo-
rithms for the Navier-Stokes equations in the velocity-
pressure formulation, see Pasciak (1988), Quarteroni
(1988), and Dinh et al. (1982).

We shall give a brief introduction to the various ap-
proaches of domain decomposition, followed by a survey
of domain decomposition preconditioners for the operator
on the interface separating the subdomains, which is the

main approach in this paper. The convection-diffusion
problem and the driven cavity problem will then be
discussed.

Results and Discussion

1. DOMAIN DECOMPOSITION APPROACHES

The main idea of domain decomposition algorithms is
to decompose the original domain into smaller subdo-
mains, solve the original problem on the subdomains,
and somehow “patch” the subdomain solutions to form
the solution to the original problem. In general, the
above process has to be repeated through an iterative
process until some convergence criterion is satisfied.
There are two main approaches, characterized by the
way the subdomains are constructed, namely, overlap-
ping and nonoverlapping.

The overlapping approach decomposes the original
domain into two or more partially overlapping subdo-
mains. A Schwarz (1869) alternating procedure or a
variant is then applied. Starting with an initial guess in a
subdomain, a problem on a neighboring (overlapped)
subdomain is solved, using the initial guess as part of the
required boundary conditions. This process is then re-
peated uniil a problem on the first subdomain is solved,
giving an update on the initial guess. The overall itera-
tion is then repeated untl convergence. There are many
variants. For example, the subdomains can be ordered
in a such a way (e.g., in red/black fashion) that more
than one subdomain solve can be performed in parallel.
Also, relaxation parameters can be introduced to form
weighted averages of the new guess with the old one.
The iterates can be accelerated, say by the conjugate
gradient method. Finally, the type of boundary condi-
tions {e.g., Neumann versus Dirichlet} in the overlapped
region could be chosen appropriately to speed up the
rate of convergence. There is also a wealth of theory
available for the Schwarz procedure, ranging from the
conditions required for convergence (usually that the
operator satisfies the maximum principle) to actual esti-
mates of the rate of convergence as a function of the
amount of overlap (Schwarz, 1869; Miller, 1965; Liens,
19882, 1988b; Tang, 1987; Kang, 1987: Chan, Hou,
and Lions, 1988),




The nonoverlapping approach decomposes the do-
main into nonoverlapping subdomains by lower dimen-
sional interfaces. The original problem is then reduced
to an mmvnlen! one ngcwj on these mnterfaces, The re-

duced mterface operator is usually not a local differen-
tial operator and is more nonlocal in nature, making it
more difficult to solve efficiently by a direct method.
Rather, it is most often solved iteratvely. At each itera-
ton, the action of the interface operator on an interface
solution value has to be calculated, which turns out to
require solves on the subdomains. Just like the overlap-
ping approach, this iteration can be accelerated, for ex-
ample by the conjugate gradient method. A key factor
in the iteration is the construction of effective precondi-
tioners, which is essential to keep the number of itera-
tions small. The technique can be extended to cases in
which an exact subdomain solve is either not available or
too expensive and only an approximate solution proce-
dure is to be used.

It is natural to ask which of the two approaches is 1o
be preferred in a given application. It has been recently
discovered that the two approaches are related; in fact,
they are identical under certain conditions (Chan and
Goovaerts, 1988a). Specifically, given a Schwarz over-
lapped iteration, there corresponds a nonoverlapped
iteration, with a particular interface preconditioner,
which produces exactly the same iterates on the inter-
face. The appropriate preconditioners are predisely the
exact reduced interface operator for the subdomains.
For z large class of second order elliptic operators (es-
sentially separable ones) on rectangles, such precondi-
tioners can be derived and implemented via fast Fourier
transforms on the interfaces (Chan and Resasco 1987a,
1988).

An issue that has often been raised concerning the
efficency of domain decomposition algorithms in a par-
allel implementation is whether they are actually more
efficient than parallelizing a standard sequental algo-
rithm. Part of the doubt arises because in the Schwarz
procedure, a certain overhead is incurred due to the re-
peated solves on the overlapped regions. In fact, since
the rate of convergence usually decreases exponentially
when the amount of overlap is reduced, this overhead
seems to be unavoidable. However, the nonoverlapped

approach has no such overhead. Therefore, for
problems for which such preconditioners can be used,
the nonoverlapping approach is more efficient. The

Pry
overlapped approach is, however, more generally appli-

cable and rather robust. It will remain a main tool in this
area.

One aspect that has generally been ignored is the
gain in sequential computational complexity that domain
decomposition can yield as a divide and conquer tech-
nique. When the work for solving a problem grows
more than linearly with its size, spliting it up in two
subproblems of half the size will yield a faster method
provided that the subsolutions can be efficiently com-
bined to the solution of the original problem. Using the
nonoverlapped approach with the boundary probing
technique, we have been able to develop parallel domain
decomposition algorithms that, in addition to the advan-
tage of ease of parallelization, are actually faster than the
corresponding sequential algorithms (Chan and Goo-
vaerts, 1988h),

2. INTERFACE PRECONDITIONERS

In this section, we briefly review some preconditioners
that have been proposed for use in the nonoverlapped
approach. For a more thorough survey, we refer the
readers to Chan and Resasco (1988) and Keyes and
Gropp (1987).

We formulate this approach for the simplest case of
a domain { split into two subdomains Q, and Q,
sharing the interface I'. Consider the problem Lu = fon
Q1 with boundary conditions u = u, on 3{}, where L is a
linear second order elliptic operator. If we order the
unknowns for the internal points of the subdomains first
and those on the interface T last, then the discrete solu-
tion vector u = (u,,uy,us)7 satisfies the linear system

Ay Al ) h
Au = A Ass {l g = /o |, (B
Agy Asgp Agy Us 5

where the discrete vector [ = (f},fy,f3)7 contains the

contribution of the right-hand side of the differential

equation and of the Dirichiet boundary condition.
System (1) can be solved by block Gaussian elimina-



tion, which gives the equations for the interface varn-
ables uy:

Suy = ]3, (2)
with

§ = Asy — AsdAit'A1s — ApAg'Ags
and
Jy=fs = AsAilf — Ashzlfe

The matrix § is the Schur complement of Ass in the
matrix A. It corresponds to the reduction of the oper-
ator L on ) to an operator on the internal boundary T
Constructing the Schur complement would require the
solution of ny elliptic problems on each subdomain,
where np is the number of internal points on I'. Further-
more, it is dense, so that factoring would be expensive.

Instead of solving the systern (2) directly, iterative
methods such as preconditioned conjugate gradient
(PCG) can be applied in which only matrix vector
product Sy is required. This product can be computed
by one solve on each subdomain with boundary condi-
tion on I' determined by y. Since each iteration is exper-
sive, it is important to precondition this iteration in
order to keep the number of iterations small.

Several preconditioners have been proposed in the
literature. The first was derived from the underlying
properties of the “trace” of the differential operator on
the interface. It is known that for a large class of second
order elliptic operators, the reduced interface operator
(the trace operator) is spectrally equivalent to the oper-
ator M, = VK, where K denotes the Laplace operator
defined on the interface and the square root is taken in
the Fourier space (Lions and Magenes, 1972, 1973).
This is true also for the discretized operator. Therefore
My, should make a reasonably good preconditioner for
S, as first proposed by Dryja (1982). An improvement
was made later by Golub and Mayers (1984}, who pro-
posed as preconditioner the operator Mg = VK + K¥4.
They arrived at this operator by considering the limiting
case of the Laplace operator on semi-infinite planes. In
numerical experiments in Golub and Mayers (1984), M¢
performs consistendy better than M, in reducng the
number of iteratjons.

A different class of preconditioner, called the Neu-

mann-Dirichlet preconditioners, was proposed by
Bjorstad and Widlund (1986) following an earlier sug-
gestion by Dryja. The main feature of these precondi-
tioners is that they require alternatively solving problems
on the subdomains with Neumann and Dirichlet
boundary conditions on the interface. It may be easiest
to understand these preconditioners from the point of
view of symmetry. For if both the operator and the sub-
domains are symmetric about the interface, then the
original problem can be reduced to one on one of the
subdomains with a homogeneous {(symmetric) Neumann
boundary condition on the interface. Thus, the more
symimetry there is about the interface, the better the
preconditioner will perform. These preconditioners
have also been recently extended to domain decomn-
posed spectral methods (Quarteroni and Sacchi-Lan-
driani, 1988). We note that this preconditioner requires
two different kinds of solvers on the subdomains, corre-
sponding to Neumann and Dirichlet boundary condi-
tions, which may be natural in some situations (such as
finite element methods) but an inconvenience in other
situations.

. Another class of preconditioners was proposed by
Chan (1987). The key idea is the observation that for
many elliptic operators (essentially separable ones in-
cluding all piecewise constant coefficient operators) on
rectangular domains decomposed by an interface par-
allel to one of its sides, the exact interface operator can
be derived analytically using Fourier transforms (Chan
and Hou, 1988). For nonrectangular domains, one can
then use as preconditioner the exact interface operator
of the nearest rectangular approximation sharing the same n-
terface. Thus, this class of preconditioners, which we shall
denote by M, is based on the idea of geometric ap-
proximation and therefore can be shown to be less sen-
sitive 1o the aspect ratios {i.e., the relative shape) of the
adjoining subdomains (Chan, 1987). In fact, for certain
geometrical shapes such as L-shaped and C-shaped do-
mains, it can be proved that using this preconditioner,
the condition number of the preconditioned interface
operator can be bounded by a small constant (around 2)
independent of the grid size and the particular shape of
the domain (Chan and Resasco, 1987b; Chan, Hou, and
Lions, 1988).
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One of the problems with preconditioners derived
from general propertes of the differential operators,
such as M, and My, is that they cannot be expected to
perform uniformly well for any particular operator. In
particular, they could be sensitive to both the shape of
the domain and the variability of the coefficdents, A pre-
conditioner that is designed to adapt well to these effects
is the class of boundary probe preconditioners (Chan
and Resasco, 1985). Additional extensive experiments
with this preconditioner have been performed (Keyes
and Gropp, 1987), in which it was called the modified
Schur complement method. The main motivation for
this approach is the observation that, for many elliptic
operators, the magnitude of elements of the matrix §
decays rapidly away from the main diagonal (Golub and
Mayers, 1984), reflecting a weak global coupling among
the interface unknowns. It is therefore reasonable to
consider a 4 diagonal approximation to S. However, it
would not be efficient to calculate the elements of $ in
order to do this. Rather, as proposed in Chan and Re-
sasco (1985), a 2k + 1 diagonal approximation to § can
be constructed by computing the action of § on 2% + ]
“probing” vectors v, j = 1, ..., 2k + 1. The idea is
motivated by sparse Jacobian evaluation techniques
(Curtis, Powell, and Reid, 1974). For the cases & = 0 and
% = 1 the probing vectors are the following:

E=0: v = (LLLLLLL, .. )
k=1 v = (1,00,1,00,1,.. )
v = (0,1,0,0,1,00,.. )7
v = (0,0,1,0,0,1,0, .. )7,

The case k£ = 0 corresponds to a scaling of each row of
the matrix § by the sum of the elements of the row. For
£ = 1, if § were indeed ridiagonal, all of its elements
would be recovered in the vectors Svj, 7=1,2 3 The
idea can be generalized to cases with k > 1 and multiple
domains (Keyes and Gropp, 1988; Chan and Goovaerts,
1988d) and to wider discretization stencils, as for in-
stance in fourth order equations such as the biharmonic
equation (Chan, 1988) and the steady Navier-Stokes
equation (see section 4). Applications to coupled systemns
such as reaction-convection-diffusion problems are also
possible (Keyes and Gropp, 1988).

Finally, we consider cases where the subdomain
solves are too expensive to perform exactly (e.g., a fast
direct solver is not available). One approach is to con-
sider the PCG Heration on the Schur complement as a
combination of an outer and an inner iteration (Golub
and Overton, 1986). Another approach is to combine
preconditioners on the subdomains and on the interface
to form a preconditioner on the whole domain, and
then to iterate on the subdomains and the interface si-
multaneously. A simple way to achieve this is through
the following block factorization of A:

Ap I An' Ay,
A= Age I AR Ay | 3)

A preconditioner for A can be derived by replacing A;
in (3) by approximations B; and replacing the Schur
complement by a preconditioner M. For the latter, we
can take any of the preconditioners that were mentioned
earlier. We therefore arrive at the following precondi-
tioner for A:

. B . I By A
M= Bay I Bp' Ay |. )
Ay Ay M i

Preconditioners of this form were first proposed in
Bramble, Pasciak, and Schatz (1986) and were also men-
tioned in Bjorstad and Widlund (1986) and Chan and
Resasco (1988).

3. CONVECTION-DIFFUSION PROBLEMS

In this section, we shall consider two-dimensional con-
vection-diffusion operators of the form

u du
LusAut a—+B—,
o d
with Dirichlet boundary conditions. In particular, we are
concerned with constructing effidient domain decompo-
sition preconditioners for the reduced interface operator
derived from L. As we have scen from the above sec-
tion, there are many preconditioners available for the
Laplacian operator, and in fact two of these can be di-
rectly derived from it (Mp, and M,). In theory, these
preconditioners for the Lapladian should work well in
the presence of the convection terms as well. Specifically,




the first order convection terms do not affect the spec-
tral equivalence properties. In the discrete case, this
means that if the coeffidents o and B are kept fixed
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condition number (in the spectral norm) can be
bounded by a constant independent of £ In practical
computations, however, & is bounded from below by
both memory and time limitations and the relevant pa-
rameters to consider are the cell Reynold’'s numbers 7,
= oh and r, = Ph It is well known that for central
differencing the discrete solution exhibits oscillatory be-
havior when the cell Reynold’s numbers exceed the crit-
ical value of 2. Moreover, the direction of the flow (de-
termined by « and B) relative to the interfaces may af-
fect the choice of preconditioners, because the coupling
between the subdomains is affected by the amount of
information carried by the flow from one subdomain
into the other. Related to this is the effect of the form of
discretization, in particular central difference versus up-
wind difference, on the performance of preconditioners.

To test the effect of the first order term, we com-
pute the condition numbers (in the L-norm) in the case
when we use only the diffusion operator to construct
preconditioners. In Figures 1 and 2, we plot the condi-
don numbers versus the coefficient o in the following
two model equations:

+: upwind, o central ’,.-"’

K(inv(C(ENHC()

Fig. 1 Klinv{C(0))C{a)) va
afor hax + Uyy + a Uy
=0, h = 0.02

45 , - . . -

+ 1 upwind, o ; central .

K{nw{CONClay
-

Fig. 2 Klinw{C(0))(Xa}} vs
afor Uxx + Uyy + a Ux
=0, = 002

Au+aiu»x0 (5)
ay

T du
Au+a—=0. 6)
ax

We use C(a) to represent the Schur complement corre-
sponding to Eq. (5) or Eq. (6) and C(0) to represent the
Schur complement for the Poisson equation. In Figure
1, we plot the condition number K{C~Y0)C(a)) for Eq.
(5) using both central and upwind differencing, for the
rectangular (0,1) x (0,3) with an interface joining the
points (0,2) and (1,2) and with a grid size of £ = 0.02.
Figure 2 displays the same computation for Eq. (6). Note
that for this value of 4, the critcal cell Reynold’s number
corresponds to @ = 100 for the central differencing
case.
These caleulations show that the conditon number
can grow appredably above 1 as a increases, implying
that the preconditioner based on only the diffusion op-
erator may give very slow convergence when the cell
Reynold's number is of order O(1). By comparing
Figures 1 and 2, we see that the growth is more rapid
for Eq. (6) than for Eq. (6). In other words, it is more
crucial to have a good preconditioner when the flow di-
rection is perpendicular to the interface than when it is
parallel to it. Intuitively, in the former case there is a




stronger coupling of the subdomains due to information 25 "
carried by the flow from one domain into the other. 2b wesloeraslt, was20 L
Moreover, in both cases, the condition number for cen- Lsh  c3s40, a6l ., .
tral differencing grows faster than that for upwind dif- 1} L ]
ferencing for cell Reynold’s number close to the critical 4 sk '
value. These results seem to indicate that upwind differ- ;- o ]
encing is less affected by the lack of a good precondi- % s
tioner than central differencing. -
In addition to the condition number, the eigenvalue Hr T ]
distribution of the preconditoned system plays an im- al ) i
portant role in the effectiveness of the preconditioner. 2f o
In Figures 3 to 6, these eigenvalues are plotted for sev- 235 - - ~ . J
eral values of a for the same computation described ear- e ais
lier. Note that the corresponding eigenvalues for Eg. (6}
are complex because the corresponding capacitance ma- Fig. 4 Eigenvalue
trix is nonsymmetric. These plots show how rapidly the distributions for central
spectrum spreads from unity as a increases. It is inter- b fg’huf__" o".'o_:,’""
G esting to note that the plots for upwind differencing in
[y Figures 3 and 5 and for central differencing in Figures 4
%i and 6 are quite different qualitatively; in the former the problems with a sizable cell Reynold’s number, the in-
il clustering of the spectrum shifts to the right when ¢ in- formation carried in the convection terms should be
%1 creases wi?ereas in the latter the clustering remains taken into account when constructing preconditioners
;’r :; around unity. In all cases, clustering around the value 1 for the interface operator. We shall discuss two ways of
if; ;’ can be seen, but even this effect weakens as a grows. achieving this.
§ From the above numerical results, it is clear that for The first is to generalize the preconditioner M, to
[
|
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Fig. 3 Eigenvalue Fig. 8 Eigenvaiues for
distributions for upwind upwind difference for
diffarence for Uxx + Uyy tho + Uyy + alUy = 0,
+ alx=0; h= 002 h = 0.02
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Fig. 6 Eigenvalues for
central difference for Uxx
+ Uy + ally =0, h =
0.02

convection-diffusion operators. It turns out that for rect-
angular domains, the effects of the convection terms can
be incorporated exactly. In Chan and Hou (1988), exact
eigendecompositions {which can be inverted efficiently
using FFTs) for the interface operator § are derived for
general constant coefficient, five-point discrete elliptic
difference equations, including in particular the convec-
tion-diffusion operators of the form L, posed on rectan-
gular domains decomposed into two smaller rectangles.
For rectangular domains decomposed into multiple
smaller rectangles, the technique can be easily extended
to derive fast direct solvers. For nonrectangular domains
or variable coefficient problems, they can be adapted to
construct effident preconditioners that incorporate the
effects of the convection terms.

Another approach is to use the boundary probe
preconditioners, which automatically capture the effects
of the convection terms. Some success has been reported
in the numerical experiments in Keyes and Gropp
{1988) for convection-diffusion problems and also in the
experiments to be presented below for the driven cavity
problem. The key to the success of the boundary
probing technique is 2 weak global coupling of the in-
terfacial unknowns. The numerical experiments seem to
indicate that this property holds at least for the mod-

erate cell Reynold’s numbers used, Further analysis to.
determine the effect of the convection term on this
property is needed. An important factor could be the

direction of the flow relative to the interface.

4. THE DRIVEN CAVITY PROBLEM

In this section, we consider the two-dimensional driven
cavity problem of incompressible flow. We shall use the
fourth order stream function formulation

L{d) = A% ~ RG{$} = 0,
where
G(d) = diAd,) — b (A, 7N

The classical driven cavity preblem is posed on ) =
{0,1) x (0,1) with boundary conditions: ¢ = 0 on d{}, ¢,
=0ifx=0146¢ =0ify=0and$, = lify = L
We shall follow Schreiber and Keller (1985) and use a
13-point central difference discretization of (7) on a n
% n uniform mesh. Consider the use of the nonover-
lapping Schur complement approach of section 2 in a
domain decomposition algorithm for solving the discrete
problem. For simplicity, we shall consider only two sub-
domains, separated by an interface at y = (.5. We are
interested in the use of the boundary probing technique
described in section 2 for constructing efficient precon-
ditioners for the interface operator for the discrete
problem. Several modifications are necessary in order to
extend the boundary probing technique developed for
second order problems. Some of these techniques were
considered for the biharmonic equation in Chan (1988).
Here we consider extending them to the Navier-Stokes
problem.

First, since the difference stencil is wider than the
corresponding five-point discretization for second order
problems, the interface must consist of two rows of grid
points, say I'; and Ty, in order to completely decouple
the subdomain problems. The Schur complement
system corresponding to Eq. (2) can be written as a block
2 X 2 system:

8,8 &'
(§)-GE)E)-6) e

where ¢! and ¢? denote the unknowns on I'} and Iy,

respectively.

E; A T A0 )




We now consider a second modification of the
boundary probing technique in order to construct an ef-
ficient preconditioner for S. The basic idea is still to cap-
ture the strong local coupling and weak global coupling
of the interfacial unknowns. To see how this can be
achieved, note that the blocks §;; and 85 account for
the coupling of the unknowns on I’ and T', respec-
tively, among themseives, and the blocks Sy and S, ac-
count for the coupling between the unknowns on the
two Interfaces. Thus, if we number the unknowns on
the two interfaces in a spatially consistent manner, we
‘can stll expect the individual subblocks of § to exhibit
the property that the magnitude of their elements
.decays rapidly away from the respective main diagonals.
For example, Figure 7 shows a plot of the elements of
the matrix S for the case n = 30, where the unknowns
on both interfaces are ordered from left to right. The
decay property can be seen clearly. Moreover, the ele-
ments of the main diagonal blocks §,, and Sy are negli-
gible except for the five main diagonals. Similarly, the
off-diagonal blocks §,, and Sy, have only three non-neg-
ligible main diagonals.

A simple way to construct an interface precondi-
tioner is therefore to use the boundary probing tech-
nique on the individual blocks of §. For example,
suppose we want to compute a preconditioner M con-
sisting of k-diagonal approximations for the diagonal
blocks S;; and Sgy, and I/-diagonal approximations for
the off-diagonal blocks Sy5 and Sy,. Let Vibe an X &
matrix consisting of £ probing vectors for either one of

the two interfaces as described in section 2. Then M,
can be obtained by probing § by the columns of the fol-
lowing tnatrix:

(v, v, 0 0)

ko 0V, Vv, }
This requires solving subdomain problems with
boundary conditions consisting of probing vectors from
V, or V,on one grid line and zero on the other grid line.
More efficient probing techniques, with fewer probing
vectors and hence subdomain solves for given values of &
and /, can be constructed, but for simplicity we shall not
present them here.

Finally, the block matrix M;, can be permuted into a
narrow-banded matrix by reordering the unknowns to
preserve their physical proximity. For example, if we
start from the left and alternately order the unknowns
on the two grid lines, then My, is reordered into a
banded matrix with bandwidth 2k — 1, assuming [ < %
for simplicity. Therefore, the product Mz 'w for a given
interfacial vector w can be computed efficiently by
banded Gaussian elimination.

We now present some numerical results for the per-
formance of the above boundary probing techniques on
the driven cavity problem for Reynold’s number R =
200 and = = 30. Figures 8 and 9 show the eigenvalue

o8|
0.6r
04t
ozt
Obmeitioammman  aimmismase = e e 4 e e s s aean]
o2t

L) g

Imaglnary Part

0.6y

08

Q 3 0 15 0 28 0 35 40 45
Real Part

Fig. 8 Elgenvalue
distribution of §,
n = 30



o} R R R : y
D.2F 4
0.4}

Q.61 R

1] 0.2 3.4 0.6 %) 1 t.2 1:4 1.6 1.8 2

Fig. 8 Eigenvalue
distribution of M'S,
n = 30

distribution of the unpreconditioned interface matrix §
and the preconditioned matrix Mgz'S, respectively,
where § corresponds to the interface operator for the
Jacobian matrix A4 of L at the soluton. Note that the
matrices A, §, and M are all nonsymmetric and hence
the eigenvalues are complex in general. The figures
show that the preconditioner M;4 dramatically improves
the conditioning of the interface operator. As a sample
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measure, the real parts of the eigenvalues of S lie in the
interval (0.0083, 45) while those of the preconditioned
system lie in (0.2,1.8). Moreover, many eigenvalues of
the preconditioned system are dustered around the
point (0,I). Figure 10 shows the condition number
Mg 1S in the spectral norm as a function of n for several
values of % and /. These results show not only that the
condition numbers of the preconditioned matrix are
much lower than § itself, but also that they grow at a
slower rate. The plots also show that Mg is in some
sense optimal because the more expensive M,; produces
negligible improvement in the condition numbers. Fi-
nally, to show that the improvement in the condition
number and the eigenvalue distribution of the precon-
ditioned matrix does improve the performance in an
iterative solution of the interfacial unknowns, we solve
the interfacial system by the GMRES algorithm (Saad
and Schultz, 1986). Figure 11 shows the history of an
iteration, with the norm of the residual plotted against
the iteration step. It is clear that M5 produces a much
faster convergence rate.

The above is only preliminary evidence that the
boundary probing technique can be applied successfully
to Navier-Stokes problems. Much further work needs 1o
be done, espedially concerning the decay rates of the ele-
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ments of § and the properties of the preconditioners de-

nved from it
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