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Abstract

The alternate-block-factorization (ABF) method is a procedure for par-
tially decoupling systems of elliptic partial differential equations by means
of a carefully chosen change of variables. By decoupling, we mean that
the ABF strategy attempts to reduce intra-equation coupling in the system
rather than intra-grid coupling for a single elliptic equation in the system.
This has the effect of speeding convergence of commonly used iteration
schemes, which use the solution of a sequence of linear elliptic PDEs as
their main computational step. Algebraically, the change of variables is
equivalent to a postconditioning of the original system. The results of
using ABF postconditioning on some problems arising from semiconductor
device simulation are discussed.

1 Introduction

In this paper, we are interested in approximately solving a system of eiliptic
partial differential equations (PDEs) on a domain 2 € IR® with appropriate
boundary conditions. Let us write the system in terms of scalar PDEs as follows

Ly(zy,22,. -1 2m)
La(z1,22,. .., 2m

Ly =] P N (1)
Lm(zlszéi--';zm)
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where z(z) € IR™ is a vector function. Systems of this type arise from many
applications in science and engineering.

In general, we are interested in a discretized form of (1). Let Q® be a
triangulation of Q2. Then a finite-difference, finite-element, or finite-volume
method can be applied to (1) resulting in

Li(zP, 28,.... %)
Lo(zh 28, ... 28)

LA (z") = v = 0. (2)
Lm(zfszg!' . .,Z,':.‘)

If there are v degrees of freedom associated with the underlying discrete ap-
proximation to each PDE, then (2) represents mu nonlinear.algebraic equations
to be solved.

Qur particular interest has been in the system of m = 3 drift-diffusion equa-
tions that occur in semiconductor device modeling [8, 8, 19]. A simplified form
of this system is given by

Li(u,n,p) = =V u+n—p—N(z) =0, (3)
Ly(u,n,p) = V- (nVu = Vn) =, )
La{u,n,p) = ~V - (p¥u + Vp) = 0. (5)

{There are one carrier variants of this problem that amount to dropping (5)
and p or, sometimes, (4) and n.) We assume that Q is a simply connected
polygonal region. N(z) is the given doping profile. The unknown dependent
variables are the electrostatic potential, u, and electron and hole densities, n
and p, respectively; we refer to u, n, and p as the primilive variables. Dirichlet
boundaries conditions are normally given on part of the boundary, 8Q; ¢ 89Q,
with homogeneous Neumann conditions elsewhere.

Equations (3)~(5) are sometimes written in terms of quasi-Fermi variables,
u, v, and w, defined by

n=e""" (8)

p=ev"", (T)

In these variables, the equations become

Li(t,v,w) = —V2u4¢e""% —e¥~% - N(z) =0, (8)
Lafu,v,w) = 7. (e"'”ﬁu) =9, (9
La(u,v,w) = -V - (e"""f?'w) =0. (10)

Equations (3)-{5), or (8)-(10), ignore complications like variable mobili-
ties, oxide regions, and the generation and recombination of carriers. However,



(3)-(5) capture some of the difficnlties that oecur in practice and let us focus
on our main interest — solving discrete analogs of (3)~(5). Equation (3) can
be discretized by a number of finite-difference, finite-element, or finite-volume
methods. Similar discretizations can be applied to (4) and (5), but specialized
methods taking advantage of the the convective-diffusive nature of the PDEs are
usually employed. '

A variety of approaches exists for dealing with the nonlinear equations rep-
resented by (2), but we will concentrate on the two principle techniques used in
device simulators. For notational simplicity, we will drop the use of the supet-
script A to denote the discrete forms since usually only the discretized systems
will be considered in what follows. The first method for solving (2) is nonlinear
Gauss-Seidel {17], known as Gummel’s iteration in the device-simulation litera-

ture (9]. Suppose an initial guess (z°)T = (27,23,...,29) is given. To go from
~ the kth iterate, z*, to the (k+1)st iterate, z¥+!, simply solve, fori = 1,2,...,m,
the ith PDE

k+l _k+1 E+l Lk LB By ..
L;(z1+,z2 ,...,z,-"',z,-+l,z,-+2,...,zm)_0 (11)

for zE*!. We will refer to this nonlinear Gauss-Seidel approach as the plug-in
method. One common scheme for solving each of the m scalar PDEs is Newton’s
method, as we will shortly discuss; we refer to the resulting overall scheme as
the Gauss-Seidel-Newton method.

The second approach is to linearize (2) and apply Newton’s method. Each
step of this method requires solving a system of linear equations and then up-
dating .

L'(z%)z* = —L(z5), (12)
2Rt o gk gk gk (13

where L' is a {possibly approximate) Jacobian and d* is a suitably chosen scalar
damping factor [5]. L' can be viewed as a block matrix

Ly Lz Lim
LZ L LZm

v=(3)=| T (19
Lml Lm2 me

with Li; = 8L;/3z; € R"*". We refer to this approach as the coupled method.

Both the plug-in and coupled methods are widely used in semiconductor
device simulators (for example, see [6, 19, 18, 4, 12, 3]). The plug-in method
results in smaller, mathematically more tractable systems of equations. If the
PDES in (2) are weakly coupled, the convergence can be quite rapid. When the
PDEs are strongly coupled, the convergence of the outer plug-in iteration can be
quite siow, or even diverge. The coupled method takes the interactions between
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the equations into account (through the off-diagonal blocks of L'). However,
dealing with {12) can be arduous because the entire linearized system must be
computed, assembled, and solved.

Equation (12) can itself be solved by an inner iteration. An obvious approach
is to employ a block Gauss-Seidel iteration, which would require solving systems
involving the diagonal blocks, Lj;, of the Jacobian; we refer to this approach as
the Newton-Gauss-Seidel method. These linear equations would be the same as
those solved for the the plug-in method if Newton’s method were used to deal
with the scalar PDEs represented by (11). Hence, in the case of tightly coupled
PDEs, the slow convergence of the outer iteration of the plug-in approach will
correspond to slow convergence of the inner block iteration for the coupled
method.

In both the plug-in and coupled Newton-Gauss-Seidel approaches, the idea
is to reduce the solution of a large coupled system into a series of discrete
scalar elliptic PDEs. Such PDEs are fairly well understood and a wide variety
of algorithms exists to solve them. (Some of the possible algorithms include
sparse direct methods, Krylov-subspace iterations, multigrid techniques, and
fast Poisson solvers.) ‘

The afternate-block-factorization (ABF} technique, which we are about to
discuss in detail, can be applied in the context of either the plug-in or coupled
iterations, assuming the coupled method makes use of an inner block iteration.
(The ABF idea and some results were partially described in {3].} The ABF method
was motivated by trying to find a ‘better’ sequence of scalar problems to solve
in order to speed convergence of an outer iteration. This is done by a temporary
local change of variables. Algebraically, this amounts to preconditioning {12)
on the right {postconditioning it).

The ABF strategy is attractive because it is simple to describe and imple-
ment as well as having limited storage requirements. The computational work
required, mainly the inversion of v matrices of order m and the diagonal scaling
of matrices corresponding to scalar problems, is generally a lower-order term in
the overall work estimate. The ABF approach can substantially reduce the total
effort to solve a tightly coupled system.

The remainder of this paper is organized as follows. In § 2, the ABF technique
will be derived. Some special cases will be studied in § 3. The results of some
computational experiments will be shown in § 4. Some conclusions will be drawn
in § 5.

2 The ABF Method

The alternate-block-factorization (ABF) method can be motivated intuitively
through the following formal line of reasoning. The plug-in iteration (11) con-
verges slowly or diverges when zf is strongly coupled to the other unknown
functions through their PDEs, and thus not well determined by its own PDE.



This suggests that we have somehow made a ‘bad’ choice in assigning un-
knowns to equations; it is quite possible that none of the unknown functions is a
‘good’ choice. This leads us to (temporarily) associate a new unknown function
¢i = (i(zy, 72, ..., zm) with the ith PDE. Our goal is to choose the new unknowns
such that they can be well determined by the solution of their associated PDEs;
we do this by attempting to weaken the coupling between the PDEs. Formally

linearizing (1) about the current iterate z*, we have, for i = 1,2,...,m,
m
6[4; k 321' - k
o { () 1) o= -ne (15)

When discretized, each 8L;/3z; becomes a v x v matrix, the ij block of
the the Jacobian, L;;. The terms 8z;/0¢; generally must be considered dense
v x v matrices. However, if we assume thai the coupling between the PDEs
is largely localized by grid point, then it is reasonable to approximate all the
0z;/0¢; terms by diagonal matrices; these matrices are estimated by solving
local problems at each grid point, holding the solution at all other grid points
fixed. We will now show how this procedure can be performed in practice using
local matrix operations.

. A description of the ABF approach in terms of matrices is rather straightfor-
ward. To simplify things, let us discuss the ABF method assuming that (2) is
being solved by the coupled (Newton) approach with a block Gauss-Seidel iter-
ation being used for (12). Hence, we are interested in solving a linear system of
algebraic equations

Az =be R™. (16)

The matrix, A, can be written in block form as

Ay Az o Aim
A1 Ax - Am
A= | S . (17)
Aml Amz e Amm
and A.‘,’ € RY™Y. Let
Dy Dip - Dim
Dy Doy -+ Dam
D= . . ] . (18)
Dmi Dm2 e Dmm
where D;; = diag(A;;). If D! exists, we postcondition (16} by
(AD™Y)(Dz) = b. (19)



D=1 is the ABF postconditioner. We then solve (19) by block Gauss-Seidel (or
block SSOR) iteration; the diagonal block systems arising in the Gauss-Seidel
iteration can be solved via sparse direct or preconditioned iterative methods
(3, 2].

There are two natural blockings (ordering of variables) for the system rep-
resented by (16). The first is the one given by (17) where the matrix blocks
are associated with PDEs, that is, A corresponds to the ith PDE. With this
PDE blocking, the nonzero structure of the individual matrices, A;;, captures
the connectivity of the underlying spatial mesh, 2*. The nonzero structure of
the block matrix, A, represents the coupling between the PDEs.

There is an alternate blocking that associates matrix blocks with individual
points in the mesh (or degrees of freedom). In this case, the reordered matrix, 4,
consists of 1 x 1 blocks with each block being mxm. The nonzero structure of the
block matrix now represents the connectivity of the mesh while the individual
matrices reflect the coupling between the pDEs.

Let us now consider how A and A are related. Thereisa permutatlon matrix,
P, such that

Ay An o Au
d=papr = | Am Am o A (20)
An A - A,
where .
(Au)y (A o (Am)i
Ay = (Az.l)-‘.i (Az?)ij (Az,:n).-,- c R, (21)
(Arr;l)ij (An;2)ij oo (Ammbij

Once again, note that A is the matrix blocked by PDE while A is alternately
blocked by grid point. Let

D=PDPT. (22)

Obviously, D~!v can be computed using dense matrix techniques since it con-
sists of m x m matrices on its diagonal {and we are assuming that m < v).
Thus, the ABF-postconditioned matrix, AD~!, can be formed by local opera-
tions; by construction, D! eliminates the diagonals of the off-diagonal blocks
of A as we will now see with an example.

For specificity, consider a 2 x 2 block system arising from a system of two

PDES
An A12]<Il)__(bi) 93
[ Agy Az zy J T\ b )’ (23)



where each A;; € R"*Y. Let D be given by

Dy Dz diag(A11) diag{Aiz) } 2ux2v
D= = . . R . 24
[ Dy, Das ] [ diag(Az;) diag(Aas) € 24)

Assuming D! exists, the ABF-postconditioned matrix is
AD™' = A(PTD™!P)

_ [ A1 Dag = A1aDay AeDin = A Dro ] [ 6 0 ] (25)
Ag1Dayg — Age Doy AgaDyy — Ay Dy2 0 6

where

§ = (D11Dag — Dy Dy2) "t {26)

The ABF-postconditioned matrix has zeroed out the diagonals of the off-diagonal
blocks. The aBF method attempts to decouple a block system by reducing the
effect of the off-diagonal blocks.

For the one-carrier drift-diffusion equations {(3) and (4) without p), the

matrix in (23) becomes
A= [ -4 1 ] . (27)

-M C

Here A is a discrete Laplacian so —A is symmetric and positive definite. C is
a discretization of a convection-diffusion term so C + CT is positive definite.
Physically, carrier densities should be positive from which it follows that M is
symmetric and positive definite. Note that the identity matrix, I, in {27) could
be replaced by a mass matrix if a finite-element method was used; the identity
was used to simplify matters. Now AD~! has the form

(—A diag(C) + diag(M))6  (~ diag(A) + A)6

AP = [ (=M diag(C) + C diag(M))§ (~C diag(A) + M) ] -

with
§ = (~ diag(A) diag(C) + diag(M))~!. (29)

Our goal is to solve (18) via a postconditioned block Gauss-Seidel iteration;
with this in mind, let us carefully examine AD~! in (28). We first consider
the diagonal blocks, which correspond to scalar linear elliptic PDEs. In terms of
solving equations involving these blocks as part of a block iteration, they seem
superior to the original diagonal blocks of (27); in particular, the nonsymmet-
ric parts of the diagonal block C has relatively less prominence and there is
more positive weight on the diagonal of —A. This will help iterative methods
for solving linear systems involving these blocks converge more rapidly. As ex-
pected, there is a fair amount of cancellation in the off-diagonal blocks of A.
This should have the effect of reducing the coupling between the discrete PDEs,
thus speeding the convergence of the block iteration.



3 Model Problem Analysis

In this section, we will describe a few special cases. The first examples are
idealized Fourier analyses of two one-dimensional convection-diffusion problems
with equispaced meshes. Later, we will show how the ABF postconditioner can
break dewn.

We consider the application of ABF to the block 2 X 2 matrix

A:[_:T T-J{ES]' (30)

Here 7 and ¢ are nonnegative scalars, T is the tridiagonal matrix
T=h"%-12 -1), (31)
and S is the tridiagonal matrix
S=h"t-11 0]. (32)

This problem captures some of the character of the drift-diffusion equations
written in terms of the primitive variables, that is, (3)~(5). In particular, 5
corresponds to a carrier density, say n, while —¢ corresponds to the electric
field, £ = —Vu. o

The ABF postconditioner for this example is

[ 2wt I -
b= [ =2nh=2I (2h~2 4 eh~¥)I (33)
_ ot [ (te/ ~R21/2
- nl I

with

a:(%) (1+%+”T"2). (34)

The postconditioned matrix AD~! is given by

(35)

AD! = o=t { (1+eh/2)T + 01 I—h*T/2 }

en(S —hT/2)  (1+nh?/2)T + €S

Notice that the off-diagonal blocks have zero diagonals, as a result of the post-
conditioning. To compute the spectral radius of the ABF iteration matrix, we
must consider the eigenvalues of the matrix

[ Q+er/2yT + I 0 lo aT/2-1
G-[ en(S = KT/2) (1+r7h2/2)T+eS] [0 0 ]'(35)

8



We wonld like to reduce this problem to that of computing the spectral radii
of (scalar) 2 x 2 iteration matrices. This cannot be done in a rigorous fashion
because ST # TS. However, we can get an idea of the behavior of the method
through the {formal)} application of the Fourier transform (7).

First consider the 2 x 2 matrix

a b7

o8] R
and the corresponding iteration matrix
-1
a 0 0 -b

9“[ed] [0 0]' (38)
A straightforward calculation shows that the spectral radius, p(g), is given by

be
plg) = |—I. (39)

To apply the Fourier transform, we ignore the effect of the boundary condi-
tions and consider a discrete form of the function exp(ikwz), where i = /=1.
Setting ; = jh, we define the {complex-valued) vector v, with components
exp(ikrz;). Excluding the first and last rows of the matrices, we have

2(1 -
Tog ﬂﬁ”m, (40)
Svp ~ Ll-:fhliﬁu,, (41)

where ¢ = cos(kwh) and s = sin{k7h).
Using the Fourier transform, it suffices to consider the 2 x 2 iteration matrix,
g in {38), with

a:¥(1+%)+n, (42)
b=c, (43)

= Lh'"; (44)
d= 2(1h; ) (1 + ’%2) + (#—‘f) €. (45)

From (39) and some algebraic manipulation, we arrive at an estimate for the
spectral radius of the ABF-postconditioned system

h?p ) heis

pABF:C((l—C)(2+hf)+h2n T—a@+ s hg+hes|




It is easy to see that p,ar < 1 for all choices of 1, ¢, and h.
The largest value of p,pp occurs for the lowest frequency, where

x2h?
l~cm , 47
ex D (4)
s = Th, ) (48)

so, in the limit as h — 0,

) )

In the extreme case when A — 0,  — o0, and ¢ — oo, we find that p, g =
1 —O(h).

This, of course, is the behavior in the asymptotic limit as A - 0; it is also
possible to consider the behavior with respect to other parameters. For example,
holding all parameters except 75 fixed, it is clear from (46) that pypgp — 0ifnp — 0
or 7 — oo. This behavior with respect to n is consistent with empirical results
from the semiconductor device model. For small 7 {weak coupling) or large 5
(strong coupling), convergence should be quite rapid; there is clearly a maximum
of pagr (Opapr/On = 0) for some n > {, corresponding to a case of moderate
coupling. Figure 1 shows the unimodal character of the ABF postconditioner.
Finally, if all parameters except ¢ are fixed, then pypp — 0 as ¢ — 0 or ¢ =
follows from (46). '

Let us contrast these results for the ABF method with the block Gauss-Seidet
iteration applied directly to A of {30). Using the Fourier transform technique
and (39), we arrive at an estimate for the spectral radius

_ hn
PPV = T = o) (2 + he) + heis |’

(50)

which is monotonically increasing in 5. In order for ppy < 1, it is necessary
that ¢ = &7 for & sufficiently large or, in other words, A must be diagonally
dominant. These arguments suggest that Newton-Gauss-Seidel applied to (3)-
(5) can diverge, which is in agreement with the results of {18].

Now A in (30) roughly corresponds to the drift-diffusion equations written
in terms of the primitive variables, (3)~(5). As noted in § 1, the drift-diffusion
equations can also be written in terms of quasi-Fermi variables, u, v, and w;
that system is represented by (8)-(10}. The analogous matrix corresponding to
A for the quasi-Fermi variables is simply

5| T I o0 1_[T+nl  =nI (51)
T | =T T+¢8 ol =gl |~ neS  —=n(T +eS) |’

where T and S are defined in (31) and (32), respectively. We can consider
how B is affected by the application of the ABF postconditioner as well as the
unconditioned block Gauss-Seidel iteration.

10
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Figure 1: This figure shows: (1) the ABF spectral radius, p,gp(nh?) from (46),
as the lower solid line; (2) the block Gauss-Seidel spectral radius, ppy{nh?) from
(50), as the dashed line; and (3) the block Gauss-Seidel spectral radius for the
equations in the quasi-Fermi variables, pop {nh?) from (52), as the upper solid
line. Here ¢ = 0.9 and ¢k = 2.

If we postcondition B by ABF, then we can estimate the spectral radius by
studying the eigenvalues of the matrix, G, appearing in (36) again; this leads
to the same approximation, p,pp in (46), for the spectral radius. This follows
from ABF’s insensitivity to the scaling in {51). (Nevertheless, the ABF technique
‘can be effective when-applied to the quasi-Fermi variant of the drift-diffusion
equations, as we will see in § 4.) Obviously, we can apply block Gauss-Seidel
directly to B. After using the local Fourier trick again and some algebraic
manipulation, we find that an estimate for the spectral radius is

_ nh? (1 = c)eh + ehis
Far = (2(1—c)+nh2) ‘(1 —O)(2 + k) + ehis |’ (52)

It is easy to see that pgp < 1 and that pygp < pqr Where p,pp is given by
(46). Moreover, the limit of pqr 2 h — 0 is the expression as shown in (49).
Hence, the block Gauss-Seidel procedure applied to (51} is equivalent to applying
block Gauss-Seidel to the ABF-postconditioned system, (35), for sufficiently fine
meshes.

In practical problems, it is more interesting to compare the various methods
when A is a fixed positive quantity. As we just noted, the ABF postconditioner
is equally effective when applied to the matrix in (30) or (51). Recall that (30)
was motivated by the drift-diffusion equations, (3)-(5), written in terms of u,

11



n, and p while (51) is motivated by the quasi-Fermi variant, (8)-(10). We have
characterized the spectral radii of the various block Gauss-Seidel iterations as
sumimarized below:

e papr in (46) for the ABF-postconditioned matrix, AD~!, in (35);
* ppy in (50) for the unconditioned matrix, 4, in (30);
* pqr in (52) for the unconditioned quasi-Fermi matrix, B, in (51).

Let us emphasize again that p,ap < PaF which suggests that the ABF approach
applied to (3)—(5) or (8)—(10) will converge more rapidly than a Newton-Gauss-
Seidel iteration applied to (8)~(10). Figure 1 shows the values of these spectral
radii as functions of ph?.

Figure 1 illustrates several important points. First, the ABF approach can
slow down for intermediate coupling between the equations, but does well when
the equations are weakly or strongly coupled. Qur estimates suggest that ABP-
postconditioned matrix, (35), is uniformly superior for a block Gauss-Seidel
iteration than the unconditioned system based on quasi-Fermi variables, (51);
this superiority is especially dramatic for strongly coupled systems. From this,
we surmise that a coupled Newton-ABF-Gauss-Seidel method should converge
faster than a simple Gauss-Seidel-Newton method. Nevertheless, we would ex-
pect a Newton-Gauss-Seidel approach based on quasi-Fermi variables to con-
- verge based on our heuristic analysis, which concurs with the results reported
in {13]. Finally, we can see that a Newton-Gauss-Seidel method for the usual
system will diverge when the coupling becomes large [18].

Let us turn t{o a simple example that shows how the ABF technique can break
down. Consider the block matrix

— I+ M al 20 %2y

W= ol I+M ] el . (53)
Here, M is symmetric with zeros on its diagonal and having eigenvalues, { u; },
in (—=1,1). One possibility for I + M is the block tridiagonal matrix that is
obtained from discretizing —A by scaled finite differences on a uniform two-
dimensional grid; in this case, M would have 4 nonzero entries of -~1/4 in most
of its rows. The ABF postconditioner would then be

- 1 I —al
= () [ T o
and so
-1 _ 1 (1-a®)I+ M —aM
WD = (1—0:2) [ —aM {(l—-a®Y [+ M ] (53)

12



The eigenvalues of the block Gaugs Seidel iteration matrix associated with

W D-! in (55) are given by the solutions of the scalar problem

(1 —a® +p)A ap -
det [ et (lmoaltph | = 0. {56)
Now, (56) holds when A = 0 and
a?yu?

I e | 57
SRR o7

Let u be a fixed positive eigenvalue of M. Then, from (57}, jA(e)} < 1
“f0<a<lorl+pu< a< co However, things can break down for 1 <
@ < 1+ p and there is an infinite eigenvalue associated with o = T+ 4.
This is ‘not at all surprising since W is also singular for « = T+ g; such
behavior is not characteristic of matrices obtained by discretizing elliptic PDEs.
If you change the sign in one of the off-diagonal blocks to —af in {53), then no
singularities occur and the results then correspond to figure 1. Similar results
hold for negative u, but things are a bit worse in that case. Hence, like other
preconditioners, ABF is not a panacea,
_ We can also compute the eigenvalues of the iteration matrix for block Gauss-
Seidel applied to W in (53) by solving problems of the form

da| CEON 2] =0 (58)

where y is an eigenvalue of M. Equation (58) holds when A = 0 or A =
a?/(1 + u)?. For small a, everything is fine; for large a, things can go awry
since g may be quite small.

4 Numerical Experiments

Let us now consider the results of computational experiments on some ‘realistic’
semniconductor modeling problems. Excluding oxide regions, the PDES actually
used in our computer experiments are the drift-diffusion equations based on
either the primitive or quasi-Fermi variables

~Vu4+n—p-N=-Viute' " —e¥ “ - N=0, (59}
V. J, =0, (60)
V.J,=0 (61)
where the current densities are now
Jn = pn (V4 — Vn) = pne® Vo, (62)
Jp = —pp(pVu+ Vp) = —ppe” " Vu. (63)

13



Here N(z) represents the (net) impurity concentration while u, and y, are
carrier mobility functions. Recall from § { that the primitive variables are u, n,
and p; the quasi-Fermi variables are u, v, and w, defined by (6) and (7).

We have performed experiments with several semiconductor structures using
both coupled and plug-in methods. The plug-in implementation uses Newton's
method, (12) and (13}, to solve the nonlinear Poisson equation, based on the
Slotboom vartables [20}, for . The linear electron continuity equation, (80} and
(62), is then solved for n; p is then determined from the corresponding linear
continuity equation. The coupled algorithm is based on applying Newton’s
method to (59)—(63) in order to obtain either the primitive variables or the
quasi-Fermi variables. The coupled-ABF procedure uses block Gauss-Seidel to
solve the Newton correction equations, (12). In our experiments, sparse direct
methods were always used for the innermoest linear equations. We have presented
our most recent experience in more detail elsewhere [3, 2].

It is difficult to relate the general nonlinear semiconductor problem to linear
systems of equations involving the matrix, A4, in (30}. The mobilities, y., typi-
cally are functions of the spatial variable, z, or are nonlinear. The semiconductor
equations are normally discretized by an exponentiaily upwinded scheme (for
example, see [6, 19]) that effectively reduces the convective terms in the carrier
equations, (60)-(63). Ignoring the variable mobilities and meshes, the semicon-
ductor problem discretized with such a scheme gives rise to matrices analogous
to A appearing in (30) or B appearing in (51). In the notation of § 3, 7A% can be
as large as 10 or more while e¢h = O(1) for realistic semiconductor simulations.
These problems are characterized by the extreme variations in the dependent
variables and the nonlinearity of the PDEs.

Figure 2 shows the results of using plug-in and coupled-ABF for a one-
dimensional, one-carrier, resistive-bar problem with a constant mobility. For
this problem, the coupled algorithm is based on solving for u and n with the
Newton-ABF-Gauss-Seidel approach. The plug-in and coupled methods were
iterated until approximately six-digit accuracy (in the 2-norm} was obtained;
for each outer coupled Newton iteration, the ABP-postconditioned block Gauss-
Seidel method was iterated until six-digit accuracy was obtained. (In practice,
an adaptive Newton-Richardson strategy should be used to terminate the in-
ner Gauss-Seidel iteration [5, 3].) As the answer is approached, the matrices
that arise are exactly of the form found in (30). Note that plug-in siows down
with increasing coupling and the ABF approach slows for intermediate coupling,
which supports the results of § 3 and mimics figure 1.

We repeated the computations for a two-dimensional two-carrier resistive
slab with a modest voltage applied across it. In this case, we solved for u, v,
and w in (59)—(63) when applying the coupled Newton-ABF method, but re-
tained the same strategy as before for the plug-in algorithm. The nonlinear it-
erations were terminated when approximately four-digit accuracy was obtained,;
the inner block Gauss-Seidel iteration was terminated based on an adaptive
Newton-Richardson strategy [5, 3]. For successive constant dopings ranging
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Figure 2: This plot contrasts the number of linear solves for the plug-in al-
gorithm (dashed line)} with the number of linear solves for the Newton-ABF-
Gauss-Seidel algorithm (solid line) for a one-dimensional resistive bar. For this
idealized problem, nh? is a measure of the off-diagonal coupling (see (30)).

from approximately 10* up to 10® (in the scaled units), the coupled-ABF algo-
rithm used 6 iterations; moreover, only one or two block Gauss-Seidel iterations
were usually required per outer Newton iteration. The plug-in iteration used
roughly 50 iterations to obtain the same accuracy for that range of doping
values. In [3], we reported results obtained by simulating a large essentially
uniformly doped structure in a magnetic field; the results there showed that the
ABF approach is quite competitive for these drift-dominated devices.

In table 1, some results from the simulation of a small two-dimensional M0s
transistor in a high-current state are summarized. We made use of the same
solution strategies as just described for the two-dimensional resistive slab. For
the coarser grid consisting of 1163 points, the coupled-ABF method reduced the
number of linear solves as compared with the plug-in method. The coupled
approach used fewer iterations, but required the solution of a matrix of order
3 times larger than the plug-in and coupled-ABF methods. For the finer grid,
the ABF scheme was able to substantially reduce both the nonlinear and linear
work as compared to the plug-in method. Once again, the ABF preconditioner
was remarkably effective for this drift-dominated problem, and only one or two
block Gauss-Seidel iterations were usually required per cuter Newton iteration.

We also simulated a forward-biased pn junction with low doping, where diffu-
sion effects are more prominent. The coupled-ABF approach has more difficulty
with this problem. It is sornetimes necessary to do 12 or 15 block Gauss-Seidel
iterations for each Newton iteration. Further experiments on pn junctions and
bipolar transistors are needed.
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Table 1: Results from various algorithms for a small Mos transistor in satura-
tion. '

Nonlinear Vertices Nonlinear Linear

algorithm iterations  iterations
coupled 1163 *14 -
2765 12 -

plug-in 1163 42 217
2765 41 260

coupled-ABF 1163 41 123

. 2765 26 78

5 Conclusions

In summary, the ABF method automatically provides an alternative set of di-
mensionless, scaled grid-function unknowns for use in either a plug-in iteration
or in the inner iteration of a coupled Newton scheme. These new grid funec-
tions are found by examining the coupling between the original unknown grid
functions locally at each grid point.

For either approach (plug-in or coupled), the selection of new variables (that
is, the computation of the postconditioner, D~!) can be carried out at every
iteration step, or less frequently, to the extreme of being computed once at the
beginning and then held fixed throughout the calculation, Indeed, as plug-in
and coupled are generic terms covering a wide classes of potential aigorithms,
the number of possible ABF schemes is really unbounded. In fact, the obvious
nonlinear variant may prove to be attractive.

The heuristic analysis of some model problems in § 3 (born out by the results
in § 4) suggests that the ABF postconditioner avoids some of the convergence dif-
ficulties associated with plug-in algorithms for tightly coupled PDEs. With some
exceptions, our results also suggest that a Newton-Gauss-Seidel iteration appiied
to the drift-diffusion equations written in terms of the primitive variables should
converge faster if the matrices are postconditioned by ABF; the exceptions oc-
cur for cases of moderate coupling when diffusion plays a more significant roie.
We also considered the drift-diffusion equations written in quasi-Fermi variables
where it appears that ABF postconditioning should always improve the conver-
gence rate of a Newton-Gauss-Seidel iteration. For drift-diffusion modeling, our
analyses further validate the usual engineering practice of performing plug-in
on a nonlinear version of the drift-diffusion equations.

The ABF postconditioner shares some similarities with ‘element-by-element’
preconditioners [10, 11, 21] and the recently introduced ‘transforming smoothers’
[22]. The ABF technique is not identical to either of these approaches, as far
as we can determine. We have essentially ignored incomplete preconditioners
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(16, 1, 15] since we are interested in computations where it is difficult to store
just the Jacobian and a few solution vectors in main memory. It has also been
suggested that a nonlinear GMRES algorithm can be used to accelerate the plug-
in algorithm [14]. Further experimentation and comparisons are needed.

The decisions as to what overall approach to follow, what particular inner
and outer iterations to use, and how to incorporate the ABF technique all seem
to be highly problem dependent, and the usual array of empirical trade-offs
must be taken into account. What we want to emphasize here is that ABF is a
simple and easily implemented postconditioner that can have a dramatic effect
on the convergence rate of commonly used plug-in and coupled algorithms for
systems of nonlinear elliptic PDEs.
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